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Abstract

We introduce a family of stationary coupled Sasamoto-Spohn models and show that,
in the weakly asymmetric regime, they converge to the energy solution of coupled
Burgers equations. Moreover, we show that any system of coupled Burgers equations
satisfying the so-called trilinear condition ensuring stationarity can be obtained as the
scaling limit of a suitable system of coupled Sasamoto-Spohn models.

The core of our proof, which avoids the use of spectral gap estimates, consists in a
second order Boltzmann-Gibbs principle for the discrete model.
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1 Introduction, model and results

The purpose of this work is twofold. First, we introduce a spatial discretization of
coupled Burgers equations with an explicit invariant distribution. Second, we show that,
at stationarity and in the weakly asymmetric regime, this model converges to the energy
solution of coupled Burgers equations.

Respect to the first point, the most elementary spatial discretization of the single
component Burgers equations is known as the Sasamoto-Spohn model [23, 25, 30]. Our
model consists in a generalization to the multi-components setting. As we discuss below,
the crucial point consists in providing a careful definition of the non-linear term at the
discrete level to obtain a tractable invariant distribution (see Proposition 1.2 below).

Respect to the second point, the convergence of the Sasamoto-Spohn model to the
Burgers equation in the weakly asymmetric regime was shown in [18] and [21]. Our
main result, Theorem 1.3, is a generalization of the second of these references and, as
such, belongs to a long tradition of convergence results inside the KPZ universality class,
dating back at least to the seminal work of Bertini and Giacomin [4]. We refer the reader
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Scaling limit of stationary coupled Sasamoto-Spohn models

to [5, 29] for extensive reviews of the literature on the KPZ universality class, including
convergence theorems for several models.

We start with a brief presentation of coupled Burgers equations in Section 1.1. Then,
we introduce our model and state our main result in Section 1.2.

1.1 Coupled Burgers equations

We consider systems of coupled Burgers equations i.e. processes u = (u1, . . . , uK)

with K ≥ 1 components satisfying systems of stochastic partial differential equations of
the form

∂tuk =
1

2
∂2
xuk +

K∑
i,j=1

Γki,j∂x(uiuj) + ∂xWk, 1 ≤ k ≤ K, (1.1)

where (Wk)k is a family of independent space-time white noises. Here, the space variable
runs either on R or on the one-dimensional torus T.

Coupled Burgers equations first appeared in the physics literature at the beginning of
the nineties in the study of random interfaces [7]. A few years later, they reappeared in
several contexts, including dynamics of crystals [24], magnetohydrodynamics [2, 10, 32]
and sedimenting suspensions [26]. Later, they were used heuristically to compute the
asymptotics of correlations in anharmonic chains [27, 31] and multi-species particle
systems [9]. We point the reader to [31] for a deeper review of the physics literature. As
in the one-component case, coupled Burgers equations can be seen as the evolution of
the slope in systems of coupled KPZ equations.

At the mathematical level, they share the same ill-posedness problems as the usual
one layer Burgers equation, namely, the solutions are distribution-valued, which makes
the non-linear terms ill-defined in principle. They were formalized in the framework
of paracontrolled distributions [16] in [11] on the torus, where it was also proved that,
under the so-called trilinear condition,

Γki,j = Γkj,i = Γik,j , (1.2)

they admit the product of independent space white noise as an invariant distribution.
Under this condition, the theory of energy solution, which is the point of view we adopt
in this work, was developed in [20]. Existence and uniqueness is shown on the torus but
uniqueness on the whole line is still an open question. Recently, this theory was applied
to show the convergence of stationary multi-species zero-range processes [3]. We point
the interested reader to [12] for a deeper discussion.

We will state the precise definition of energy solutions of coupled Burgers equations
in Section 2.

1.2 Coupled Sasamoto-Spohn models and main result

First, we recall the one component Sasamoto-Spohn model. This is a spatial dis-
cretization of the stochastic Burgers equation (i.e. (1.1) with K = 1) consisting of a
system of coupled diffusions u = (uj)j that satisfy

duj =
1

2
∆uj + εBj(u) + dξj − dξj−1

where the index j runs either on Z or ZM = Z/MZ, (ξj)j is an i.i.d. family of standard
one-dimensional Brownian motions,

∆uj = uj+1 + uj−1 − 2uj ,
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is the discrete Laplacian and B(u) is a discretization of the non-linear term in Burgers
equation defined as

Bj(u) = wj − wj−1 with wj =
1

3
(u2
j + ujuj+1 + u2

j+1).

This model was introduced in [23] (see also [25]) and further studied in [30]. It is
known that the product of independent Gaussians is stationary. At a first sight, there
would be much simpler ways to discretize the non-linear term. However, this precise
definition seems to be the simplest one such that the product of Gaussians is invariant.
Convergence to the stochastic Burgers equation was obtained in [18] and [21] in the
weakly-asymmetric regime i.e. scaling time by n2, space by n and taking ε = εn = n−

1
2 .

We consider the following generalization: let u = (u1, . . . , uK) be a vector of stochastic
processes, where each uk = (uk,j)j satisifies

duk,j =
1

2
∆uk,j + εBk,j(u) + dξk,j − dξk,j−1, k ∈ ZK , j ∈ ZM . (1.3)

As above, ∆uk,j = uk,j+1 +uk,j−1− 2uk,j and (ξk,j)k,j are independent Brownian motions.
Now, Bk,j(u) is a quadratic polynomial in the variables uk,j defined as

Bk,j = Gk,j −Gk,j−1,

Gk,j = αkwk,j +
∑
l∈Z∗K

βlkb
l
k,j +

∑
l∈Z∗K

γlkr
l
k,j +

∑
l∈Z∗K

∑
l′∈Z∗K
l′ 6=l

λk−l,k−l
′

k pl,l
′

k,j ,

where Z∗K = ZK\{0}, operations are considered modulo K, and

wk,j =
1

3
(u2
k,j + uk,juk,j+1 + u2

k,j+1),

blk,j =
1

2
(uk,juk+l,j + uk,j+1uk+l,j+1),

rlk,j = uk−l,juk−l,j+1,

pl,l
′

k,j =
1

6
(2uk−l,juk−l′,j + uk−l,juk−l′,j+1 + uk−l,j+1uk−l′,j + 2uk−l,j+1uk−l′,j+1).

Remark 1.1. At first glance it would be easier to write λl,l
′

k instead of λk−l,k−l
′

k above,
but this would complicate the correspondence between our model and the coupled
Burgers equations (1.1). This is discussed in Lemma 1.5 below.

Our model can look overly complicated but, as in the single component case, the
discretization of the nonlinear term has to be carefully performed in order to obtain a
tractable invariant measure. We make the following assumptions on the coefficients,

βak = 2γak+a (1.4)

λk−a,k−a
′

k = λk−a
′,k−a

k = λk,k−a
′

k−a (1.5)

for all k, a, a′ ∈ ZK .

Let µK,M = (ρ⊗ZK )⊗ZM , where dρ(x) = 1√
2π
e−

x2

2 dx. We denote the density of µK,M
by ρK,M .

Proposition 1.2. Assume (1.4) and (1.5). Then, the law µK,M defined above is invariant
for the dynamics given by (1.3).

This is proved in Section 3.1. The assumptions (1.4) and (1.5) are discussed below in
Remark 1.6.
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We now state our main result. We fix K ≥ 1. Let S(T) denote the space of Schwartz
functions on T and S ′(T) the corresponding space of tempered distributions. Let M = n

and, for each k ∈ ZK , define the fluctuation field Xnk,· acting on test functions ϕ ∈ S(T)

as

Xnk,t(ϕ) =
1

n
1
2

∑
j∈Zn

uk,j(tn
2)ϕnj , where ϕnj = ϕ

(
j

n

)
.

Let Pn be the law of the process u = (u1, . . . , uK) with M = n, εn = n−
1
2 and initial

law µK,n. The notion of energy solution alluded in the Theorem below will be properly
defined in Section 2.

Theorem 1.3. Assume (1.4) and (1.5) and let T > 0. Then, if M = n and εn = n−
1
2 , the

sequence (Xn)n converges in law in C([0, T ],S ′(T)K) to the unique energy solution of
the coupled stochastic Burgers equations

∂tuk =
1

2
∂2
xuk + ∂xBk(u) + ∂xWk, k ∈ Zk, (1.6)

where W1, . . . ,WK are independent white noises and

Bk(u) = αku
2
k +

∑
l∈Z∗K

{
βlkukuk+l + γlku

2
k−l
}

+
∑
l∈Z∗K

∑
l′∈Z∗K
l′ 6=l

λk−l,k−l
′

k uk−luk−l′ . (1.7)

The scaling in the definition of the fluctuation field corresponds to a diffusive regime:
time is sped-up by n2 while the mesh of the discrete torus Zn is set to 1

n . As, at each fixed
time, the uk,j ’s are independent Gaussian random variables, the pre-factor n−1/2 insures
that the sum is order one. The strength of the asymmetry εn is then carefully tuned
so that the discrete non-linear terms converge to the non-linear term of the coupled
Burgers equations.

As usual in this setting, the central ingredient of the proof is a certain second order
Boltzmann-Gibbs principle (see Theorem 4.3 and 4.4). This technique originated in [13]
where energy solutions for the one-dimensional Burgers equation were introduced. Our
approach to the proof of this result is inspired by [15], [21] and [22], and avoids the
use of spectral gap estimates. However, we adopt a slightly different though equivalent
path to construct the quadratic term in the continuum which allows us to give a much
simpler proof. This is briefly discussed in Remark 2.5. Convergence to coupled Burgers
equations for multi-type zero range processes was obtained in the recent work [3].

Remark 1.4. Our techniques can be easily extended to the whole line Z with mainly
notational modifications, showing tightness of the fluctuation field and that any limit
point is an energy solution of the coupled Burgers equations. However, the uniqueness
of energy solutions is not yet proved in this setting.

Note that our way of writing the coupled Burgers equations in (1.6) is equivalent
to (1.1) once we make the identification

αk = Γkk,k,
βlk
2

= Γkk,k+l, γlk = Γkk−l,k−l, λk−l,k−l
′

k = Γkk−l,k−l′ .

Our assumptions on the coefficients of the model are in fact equivalent to the trilinear
condition.

Lemma 1.5. The trilinear condition (1.2) and conditions (1.4)-(1.5) are equivalent.

The proof is deferred to Appendix A. In particular, this shows that any system of
coupled Burgers equations satisfying the trilinear condition can be obtained as the
weakly asymmetric limit of suitable coupled Sasamoto-Spohn models.
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Remark 1.6. The trilinear condition (1.2) was considered in [11, 20] to guarantee
that the product of independent white noises is stationary for the coupled Burgers
equations. As seen in [3], it also follows from scaling limits under natural assumptions
at the level of the discrete process. In our case, (1.4)-(1.5) arise as a set of algebraic
conditions allowing us to verify the hypothesis of Echeverría’s criterion when the product
of independent Gaussian variables is taken as a candidate for invariant distribution, a
choice that is justified by the well-known fact that the product of independent Gaussians
is invariant for the single-component Sasamoto-Spohn model. While the precise physical
meaning of (1.4)-(1.5) remains unclear, it is natural to expect that some condition on the
coefficients is required to maintain the whole system of equations in equilibrium. For
instance, the relation βlk = 2γlk+l guarantees that, when a quadratic contribution in uk is
added to the equation for uk+l, a suitable term depending on uk+l is introduced in the
equation for uk.

1.3 Related problems

In this work, we prove the convergence to the energy solution of coupled Burgers
equations in the weakly asymmetric limit for a very natural discretization which extends
the usual Sasamoto-Spohn model to the multi-component setting. While convergence to
the single-component Burgers equation has been obtained for several models (see the
many references above), the first example of convergence to coupled Burgers equations
was only recently obtained for multi-species zero-range processes in [3].

It is expected that coupled Burgers equations should arise as the scaling limit of a
variety of weakly-asymmetric models with more than one conserved quantity, as opposed
to the single conservation laws satisfied by many standard models such as the exclusion
process. Consider, for instance, the Markov process {uj(t) : t ≥ 0, j ∈ Zn}, with state
space RZn and generator given by L = S + εnA, where

Sf(u) =
∑
j

(
f(uj,j+1)− f(u)

)
,

Af(u) =
∑
j

(V ′(uj+1)− V ′(uj)) ∂jf(u).

Here, uj,j+1 is obtained from u by exchanging the values of uj and uj+1, ∂j denotes
the partial derivative with respect to uj and V : R → [0,∞) is a suitable potential
(for instance, V (x) = 1

2x
2). We refer the reader to [12] and references therein for a

deeper discussion of this model. It is standard to show that this process admits product
stationary measures. Furthermore, it can be proved that the two quantities∑

j∈Zn

uj ,
∑
j∈Zn

V (uj),

are conserved by the dynamics. An interesting open problem consists in obtaining the
joint scaling limit of the fluctuation fields corresponding to (uj)j and (V (uj))j under
suitable scaling of space and time, and under a suitable choice of the asymmetry
parameter εn. As explained in [12], the precise choice of meaningful fluctuation fields
is in fact a delicate matter. A variety of possible limiting equations is discussed in [12],
along with a thorough discussion of the available literature.

On a different vein, we note that the theory of energy solutions can be applied beyond
stationarity [20]. It is therefore natural to seek for extensions of our main result to
more general initial conditions. Such extensions could also be attempted within the
framework of paracontrolled distributions, the point of view adopted in [11]. Contrarily
to the single-component case, it is unlikely that general systems of coupled Burgers
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equations can be related to the stochastic heat equation via a Cole-Hopf transformation,
a cornerstone of the approach initiated in [4], which would then be unavailable in the
present setting. Moreover, discrete versions of the Cole-Hopf transform are not currently
available for the Sasamoto-Spohn model, even in the single component case.

1.4 Structure of the article

We start by providing the precise definition of energy solutions in Section 2. Then, we
introduce the coupled Sasamoto-Spohn models along with some of their basic properties
in Section 3. Our core estimates are proved in Section 4. In particular, the second order
Boltzmann-Gibbs principle is proved in Section 4.3. As far as we know, we provide the
simplest proof of such a result in the literature.

In Section 5, we prove the tightness of the fluctuating field by showing the tightness
of each term in the martingale decomposition given in Section 3.2. In Section 6, we
identify the unique limit point. Finally, the two appendices contain the proofs of the
equivalence between conditions (1.4)-(1.5) and the trilinear condition, and a key identity
in the proof of stationarity, respectively.

1.5 General notations

We work on the torus T = R/Z. At the discrete level, we write Zm = Z/mZ and
Z∗m = Zm\{0}. We denote by S(T) the space of Schwartz test functions on T and by
S ′(T) the space of tempered distributions. For n ≥ 1 and a smooth function ϕ, we define
ϕnj = ϕ( jn ), ∇nϕnj = n(ϕnj+1 − ϕnj ) and ∆nϕnj = n2(ϕnj+1 + ϕnj−1 − 2ϕnj ). We also define

E(ϕ) =

∫
T

ϕ2(x)dx, En(ψ) =
1

n

∑
j∈Zn

ψ2
j ,

for ϕ ∈ L2(T) and ψ ∈ l2(ZM ) respectively and, with a slight abuse of notation,

En(ϕ) =
1

n

∑
j∈Zn

(ϕnj )2,

for ϕ ∈ L2(T).
We denote by C the space of twice continuously differentiable functions from RKM

to R with polynomial growth of their derivatives up to order two, where we identify
RKM with RZK×ZM . For a function g : RKM → R, we denote by supp (g) the smallest set
S ⊆ ZK ×ZM such that

g(u) = g(ũ),

if uk,j = ũk,j for all (k, j) ∈ S.
We denote by Pn the law of the process u = (u1, . . . , uK) with M = n, εn = n−

1
2 and

initial law µK,n, and we let En denote expectation with respect to Pn.
As usual, C denotes a constant which value can change from line to line.

2 Energy solutions of the coupled stochastic Burgers equation

The theory of energy solutions for the (one-layer) Burgers equation originated in [13]
and was subsequently developed in [17]. Uniqueness was proved in [19] on the whole
line. The corresponding result in the multi-component setting on the one-dimensional
torus was provided in [20]. Below, we follow the exposition given in [3], which is
equivalent (see [15] for the one-component case).

The theory of energy solutions has been extremely successful to show convergence of
stationary discrete models to the Burgers equation. See for instance [6, 13, 14, 21, 22].
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We recall the system of coupled stochastic Burgers equation,

∂tuk =
1

2
∂2
xuk +

K∑
i,j=1

Γki,j∂x(uiuj) + ∂xWk, 1 ≤ k ≤ K, (2.1)

where the initial condition is taken as the product of independent space white noises on
the one-dimensional torus.

We start with two definitions:

Definition 2.1. We say that a process {ut = (u1,t, · · · , uK,t) : t ∈ [0, T ]} taking values
in C([0, T ],S ′(T)K) satisfies condition (S) if, for all t ∈ [0, T ], the S ′(T)-valued random
variables {uk,t}k∈ZK

form a family of independent white noises of variance 1.
For a process {ut : t ∈ [0, T ], 0 ≤ s ≤ t ≤ T} satisfying condition (S), ϕ ∈ S(T) and

ε > 0, we define

Aε,(i,j)s,t (ϕ) =

{∫ t
s

∫
T
ui,v(
−→ιε (x))uj,v(

−→ιε (x))∂xϕ(x)dxdv, if i 6= j,∫ t
s

∫
T
ui,v(
←−ιε (x))ui,v(

−→ιε (x))∂xϕ(x)dxdv, if i = j,

where←−ιε (x) = 1
ε1(x−ε,x] and −→ιε (x) = 1

ε1(x,x+ε].

Definition 2.2. Let {ut : t ∈ [0, T ]} be a process satisfying condition (S). We say that
{ut : t ∈ [0, T ]} satisfies the energy estimate (EC) if there exists a constant κ > 0 such
that, for any ϕ ∈ S(T), any 0 ≤ s ≤ t ≤ T and any 0 < δ < ε < 1,

E

[∣∣∣Aε,(i,j)s,t (ϕ)−Aδ,(i,j)s,t (ϕ)
∣∣∣2] ≤ κ(t− s)εE(∂xϕ), (2.2)

for all i, j ∈ ZK .

Conditions (S) and (EC) are the key to define the quadratic term. The following
corresponds to [13, Theorem 1] in the multi-component context. The proof is identical.

Theorem 2.3. Assume that {ut : t ∈ [0, T ]} satisfies (S) and (2.2) for some i, j ∈ ZK .
Then, there exists an S ′(T)-valued stochastic process {At : t ∈ [0, T ]} with continuous
paths such that

A(i,j)
t (ϕ) = lim

ε→0
Aε,(i,j)0,t (ϕ),

in L2, for any t ∈ [0, T ] and ϕ ∈ S(T).

In this way, all the components of the quadratic term are well-defined for processes
satisfying (S) and (EC). We can now state the definition of energy solutions.

Definition 2.4. We say that {ut : t ∈ [0, T ]} is a stationary energy solution of the coupled
Burgers equations (2.1) if

• {ut : t ∈ [0, T ]} satisfies (S) and (EC).

• For all ϕ ∈ S(T), for all k ∈ ZK , the process

uk,t(ϕ)− uk,0(ϕ)− 1

2

∫ t

0

uk,s(∂
2
xϕ)ds−Akt (ϕ),

is a martingale with quadratic variation tE(∂xϕ), where

Akt =

K∑
i,j=1

Γki,jA
(i,j)
t ,

the processes A(i,j)
t are given by Theorem 2.3 and (Γki,j)i,j,k are the coefficients

from the coupled stochastic Burgers equations (2.1).
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• The time-reversed process û = {uT−t : t ∈ [0, T ]} satisfies that, for each k ∈ ZK
and ϕ ∈ S(T),

ûk,t(ϕ)− ûk,0(ϕ)− 1

2

∫ t

0

ûk,s(∂
2
xϕ)ds+ Âkt (ϕ)

is a martingale with quadratic variation tE(∂xϕ) in the filtration generated by û,
where Ât = AT −AT−t.

Existence and uniqueness of energy solutions are proved in [20].

Remark 2.5. Our quadratic term Aε,(i,i)s,t is slightly different from the standard one,
which is usually defined as

Ãε,(i,i)s,t =

∫ t

s

∫
T

ui,v(
−→ιε (x))2∂xϕ(x)dxdv.

However, it can be showed that limε→0 Ãε,(i,i)t = limε→0Aε,(i,i)t . This can be seen, for
instance, by combining our second-order Boltzmann-Gibbs principle Theorem 4.3 with a
version of the corresponding result in [21] in the multi-component setting, and taking the
weakly asymmetric limit. The required modifications of Theorem 2.3 are straightforward.

3 Coupled Sasamoto-Spohn processes

3.1 The generator and the invariant measure

Let C be the space of twice continuously differentiable functions from RKM to R
with polynomial growth of their derivatives up to order two. The following lemma follows
from a simple application of Itô’s formula.

Lemma 3.1. The generator of the dynamics (1.3) acts on C as

Lf(u) =
∑
k∈ZK

∑
j∈ZM

{1

2
(∂k,j+1−∂k,j)2− 1

2
(uk,j+1−uk,j)(∂k,j+1−∂k,j)+ εBk,j(u)∂k,j

}
f(u).

(3.1)

We recall that µK,M = (ρ⊗ZK )⊗ZM , where dρ(x) = 1√
2π
e−

x2

2 dx. It is a standard fact
that we have the integration-by-parts formula∫

R

xf(x)dρ(x) =

∫
R

∂xf(x)dρ(x),

for all f ∈ C1(R), such that f and ∂xf grow polynomially. We also recall that the
coefficients of the model (1.3) are assumed to satisfy conditions (1.4)-(1.5), namely,

βak = 2γak+a, λk−a,k−a
′

k = λk−a
′,k−a

k = λk,k−a
′

k−a ,

for all k, a, a′ ∈ ZK .

Lemma 3.2. Assume (1.4)-(1.5). The adjoint of the generator L in L2(µK,M ) is given by

L∗f(u) =
∑
k∈ZK

∑
j∈ZM

{1

2
(∂k,j+1−∂k,j)2− 1

2
(uk,j+1−uk,j)(∂k,j+1−∂k,j)−εBk,j(u)∂k,j

}
f(u).

Proof. First, we compute the adjoint of ∂k,j in L2(µK,M ). Let f and g be twice differen-
tiable. Then,∫

RKM

∂k,jf(u)g(u)dµK,M (u) =

∫
RKM

∂k,jf(u)
{
g(u)ρK,M (u)

}
du

= −
∫
RKM

f(u)∂k,j(g(u)ρK,M (u))du

=

∫
RKM

f(u)
{

(−∂k,j + uk,j)g(u)
}
dµK,M (u).
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We conclude that ∂∗k,j = −∂k,j + uk,j . Hence,

((∂k,j+1 − ∂k,j)2)∗ = ((∂k,j+1 − ∂k,j)∗)2

= (∂k,j − ∂k,j+1 + uk,j+1 − uk,j)2

= (∂k,j+1 − ∂k,j)2 + (∂k,j − ∂k,j+1)(uk,j+1 − uk,j)
− (uk,j+1 − uk,j)(∂k,j+1 − ∂k,j) + (uk,j+1 − uk,j)2.

On the other hand,

(∂k,j − ∂k,j+1)((uk,j+1 − uk,j)f(u)) = −2f + (uk,j+1 − uk,j)(∂k,j − ∂k,j+1)f(u).

Combining the last two displays, we conclude that

((∂k,j+1 − ∂k,j)2)∗ = (∂k,j+1 − ∂k,j)2 − 2(uk,j+1 − uk,j)(∂k,j+1 − ∂k,j) + (uk,j+1 − uk,j)2 − 2.

Next,

((uk,j+1 − uk,j)(∂k,j+1 − ∂k,j))∗ = (∂k,j+1 − ∂k,j)∗(uk,j+1 − uk,j)∗

= (∂k,j − ∂k,j+1 + uk,j+1 − uk,j)(uk,j+1 − uk,j)
= −2 + (uk,j+1 − uk,j)(∂k,j − ∂k,j+1) + (uk,j+1 − uk,j)2.

Finally,

(Bk,j(u)∂k,j)
∗f(u) = ∂∗k,j(Bk,j(u))f(u)

= (−∂k,j + uk,j)Bk,j(u)f(u)

= −(∂k,jBk,j(u))f −Bk,j(u)∂k,jf + uk,jBk,j(u)f(u).

Putting the above computations together, we obtain

L∗f(u) =
∑
k∈ZK

∑
j∈ZM

{1

2
(∂k,j+1 − ∂k,j)2 − 1

2
(uk,j+1 − uk,j)(∂k,j+1 − ∂k,j)− εBk,j(u)∂k,j

+ ε(−∂k,jBk,j(u) + uk,jBk,j(u))
}
f(u).

We conclude the proof by noticing that∑
k∈ZK

∑
j∈ZM

ε(−∂k,jBk,j(u) + uk,jBk,j(u)) = 0,

which is the object of Lemma 3.3 below.

The next lemma summarizes a key identity in the proof above and will be used once
again in the proof of stationarity of the Gaussian distribution.

Lemma 3.3. Let Bk,j be defined as in Section 1.2 and assume (1.4)-(1.5). Then,∑
k∈ZK

∑
j∈ZM

(uk,jBk,j(u)− ∂k,jBk,j(u)) = 0.

The proof is deferred to Appendix B.
Now, we introduce the operators

Sf(u) =
L+ L∗

2
f(u)

=
∑
k∈ZK

∑
j∈ZM

{
1

2
(∂k,j+1 − ∂k,j)2 − 1

2
(uk,j+1 − uk,j)(∂k,j+1 − ∂k,j)

}
f(u),

(3.2)

Af(u) =
L− L∗

2
f(u) =

∑
k∈ZK

∑
j∈ZM

εBk,j(u)∂k,jf(u), (3.3)
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which correspond to the symmetric and anti-symmetric parts of L with respect to µK,M .
Their adjoints are simply given by

S∗ =
L∗ + L

2
= S, A∗ =

L∗ − L
2

= −A.

We can now prove Proposition 1.2. We formulate it once again for the convenience of the
reader.

Proposition 3.4. Assume (1.4)-(1.5). The measure µK,M is invariant for the dynamics
(1.3).

Proof. The lemma follows from Echeverría’s criterion ([8], Theorem 4.9.17) once we
show that ∫

RKM

Lf(u)dµK,M (u) = 0,

for all f ∈ C . We will prove this for the symmetric and anti-symmetric parts of L
separately. First,∫

RKM

Sf(u)dµK,M (u) =

∫
RKM

Sf(u)ρK,M (u)du =

∫
RKM

f(u)S†ρK,M (u)du,

where S† is the adjoint of S with respect to the Lebesgue measure on RKM . Using
standard integration-by-parts, one can easily show that

S†f(u) =
1

2

∑
k∈ZK

∑
j∈ZM

{
(∂k,j+1 − ∂k,j)2 + (uk,j+1 − uk,j)(∂k,j+1 − ∂k,j) + 2

}
f(u).

A tedious but rather straightforward computation then shows that S†ρK,M = 0. As a
result, ∫

RKM

Sf(u)dµK,M (u) = 0,

for all f ∈ C .

We now prove the corresponding identity for A. This time, it will not hold that
A†ρK,M = 0 in general and the argument relies heavily on the explicit structure of the
non-linear term. Using standard integration-by-parts,∫

RKM

AfdµK,M = ε

∫
RKM

∑
k∈ZK

∑
j∈ZM

Bk,j(u)∂k,jf(u)dµK,M (u)

= ε
∑
k∈ZK

∑
j∈ZM

∫
RKM

Bk,j(u)ρK,M (u)∂k,jf(u)du

= −ε
∑
k∈ZK

∑
j∈ZM

∫
RKM

f(u)∂k,j {Bk,j(u)ρK,M (u)} du

= −ε
∑
k∈ZK

∑
j∈ZM

∫
RKM

f(u) {∂k,jBk,j(u)− uk,jBk,j(u)} ρK,M (u)du.

An application of Lemma 3.3 then shows that∫
RKM

Af(u)dµK,M (u) = 0,

for all f ∈ C .
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3.2 The Martingale decomposition

Let ϕ ∈ S(T) be a test function. Remember that the fluctuation field is given by

Xnk,t(ϕ) =
1

n
1
2

∑
j∈Zn

uk,j(tn
2)ϕnj , k ∈ ZK ,

where it is understood that u corresponds to the solution of (1.3) with ε = n−
1
2 . We

decompose Xnk,t(ϕ) into its symmetric, anti-symmetric and martingale parts defined as

Snk,t(ϕ) =

∫ t

0

n2SXnk,s(ϕ)ds =

∫ t

0

1

2n
1
2

∑
j∈Zn

uk,j(sn
2)∆nϕnj ds,

Ank,t(ϕ) =

∫ t

0

n2AXnk,s(ϕ)ds = −
∫ t

0

∑
j∈Zn

Gk,j(sn
2)∇nϕnj ds,

Mn
k,t(ϕ) = Xnk,t(ϕ)−Xnk,0(ϕ)− Snk,t(ϕ)−Ank,t(ϕ),

respectively. Note that the martingale part of the dynamics is explicitly given by

Mn
k,t(ϕ) =

1

n
1
2

∫ tn2

0

∑
j∈Zn

(ϕnj − ϕnj+1)dξk,j(s),

and has quadratic variation

〈Mn
k,·(ϕ)〉t = tEn(∇nϕn), where En(∇nϕn) =

1

n

∑
j∈Zn

(∇nϕn)2.

4 Dynamical estimates

The goal of this section is to prove the second order Boltzmann-Gibbs principle
(Proposition 4.3), which is our main technical estimate. This will be a consequence of
the one-block estimates Lemma 4.1 and 4.2. We start by recalling some general results.

4.1 The Kipnis-Varadhan estimate

We recall the Kipnis-Varadhan inequality in our context: there exists C > 0 such that

En

[
sup

0≤t≤T

∣∣∣∣∫ t

0

F (u(sn2))ds

∣∣∣∣2
]
≤ CT‖F (·)‖2−1,n,

where the ‖·‖−1,n-norm is defined through the variational formula

‖F‖−1,n = sup
f∈C

{
2

∫
RKM

F (u)f(u)dµK,M (u) + n2

∫
RKM

f(u)Lf(u)dµK,M (u)

}
,

where we recall that C denotes the space of twice continuously differentiable functions
from RKM to R with polynomial growth of their derivatives up to order two. The proof
of this estimate in our context can be obtained by a straightforward adaptation of [19,
Corollary 3.5]. Now, using the definition of S and A, we can see that∫

RKM

f(u)Lf(u)dµK,M =

∫
RKM

f(u)Sf(u)dµK,M .

Using Gaussian integration-by-parts, one can show that the above is equal to

−1

2

∑
k∈ZK

∑
j∈ZM

∫
RKM

((∂k,j+1 − ∂k,j)f(u))2dµK,M (u) =: −1

2
DM,K(f),
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where DM,K(f) corrresponds to the Dirichlet form of L. This way,

‖F‖−1,n = sup
f∈C

{
2

∫
RKM

F (u)f(u)dµK,M (u)− n2

2
DM,K(f)

}
.

4.2 The one-block estimates

We prove the key estimates in the proof of the second-order Boltzmann-Gibbs princi-
ple. We define

−→u lk,j =
1

l

l∑
q=1

uk,j+q,
←−u lk,j =

1

l

l−1∑
q=0

uk,j−q.

We also define the canonical shift τk,juk̄,j̄ = uk+k̄,j+j̄ acting on functions as τk,jf(u) =

f(τk,ju).

Lemma 4.1 (One-block estimate - forward version). Let 1 ≤ l ≤ K
2 and let g : RKM → R

be a function with zero mean with respect to µK,M such that supp (g) does not intersect
{(0, 1), . . . , (0, l)}. Let gk,j = g(τk,ju). Then, there exists a constant C > 0 such that, for
all ϕ ∈ l2(ZM ),

En

[∣∣∣∣∣
∫ t

0

ds
∑
j∈ZM

gk,j(sn
2)[uk,j+1(sn2)−−→u lk,j(sn2)]ϕj

∣∣∣∣∣
2]
≤ C tld

n
‖g‖2L2(µK,M )En(ϕ),

where d denotes the diameter of the support of g.

Proof. Let ψi = l−i
l , i = 0, . . . , l − 1. Then,

uk,j+1 −−→u lk,j =
1

l

l∑
q=1

(uk,j+1 − uk,j+q)

=
1

l

l∑
q=1

q−1∑
i=1

(uk,j+i − uk,j+i+1) =
1

l

l−1∑
i=1

l∑
q=i+1

(uk,j+i − uk,j+i+1)

=

l−1∑
i=1

ψi(uk,j+i − uk,j+i+1).

Hence, writing p := j + i,

∑
j∈ZM

gk,jϕj(uk,j+1 −−→u lk,j) =
∑
j∈ZM

gk,jϕj

l−1∑
i=1

ψi(uk,j+i − uk,j+i+1)

=
∑
p

(
l−1∑
i=1

ψiϕp−igk,p−i

)
(uk,p − uk,p+1)

=:
∑
p

Fp(uk,p − uk,p+1).

Now, for f ∈ C , using Gaussian integration-by-parts,

2

∫
RKM

∑
j∈ZM

gk,jϕj(uk,j+1 −−→u lk,j)fdµK,M

= 2

∫
RKM

∑
p

Fp(uk,p − uk,p+1)fdµK,M
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= 2

∫
RKM

∑
p

Fp(∂k,p − ∂k,p+1)fdµK,M

≤
∫
RKM

∑
p

{
αF 2

p +
1

α
((∂k,p − ∂k,p+1)f)2

}
dµK,M ,

by the weighted Young’s inequality. Taking α = 2
n2 , we find that the above is bounded by

2

n2

∑
p

∫
RKM

F 2
p dµK,M +

n2

2

∑
p

∫
RKM

((∂k,p − ∂k,p+1)f)2dµK,M .

By the Kipnis-Varadhan inequality, there exists C > 0 such that

En

[∣∣∣∣∣
∫ t

0

ds
∑
j∈ZM

gk,j(sn)[uk,j+1(sn)−−→u lk,j(sn)]ϕj

∣∣∣∣∣
2]
≤ Ct

n2

∑
p

∫
RKM

F 2
p dµK,M .

We are then left with estimating the right-hand side above:

∑
p

∫
RKM

F 2
p dµK,M =

∑
p

∫
RKM

(
l−1∑
i=1

ψiϕp−igk,p−i

)2

dµK,M .

Observe that, as supp (g) ∩ {(0, 1), . . . , (0, l)} = ∅, it holds that, if d denotes the diameter
of supp (g) and if |j − j′| > d, then gk,j and gk,j′ are independent. Assume first that
d < l. Denoting ai = ψiϕp−igk,p−i, decomposing l − 1 = md+ r with 0 ≤ r < d and using
Jensen’s inequality, we have

En
[
F 2
p

]
= En

[(
d−1∑
z=0

m−1∑
z′=0

azm+z′+1 +

l−1∑
i=md+1

ai

)2]

≤ 2En

[(
d−1∑
z=0

m−1∑
z′=0

azm+z′+1

)2]
+ 2En

[(
l−1∑

i=md+1

ai

)2]

≤ 2d

d−1∑
z=0

En

[(
m−1∑
z′=0

azm+z′+1

)2]
+ 2rEn

[
l−1∑

i=md+1

a2
i

]

= 2d

d−1∑
z=0

En

[
m−1∑
z′=0

a2
zm+z′+1

]
+ 2rEn

[
l−1∑

i=md+1

a2
i

]

≤ 2dEn

[
l−1∑
i=1

a2
i

]
= 2dEn

[
l−1∑
i=1

ψ2
i ϕ

2
p−ig

2
k,p−i

]

≤ 2d

l−1∑
i=1

ϕ2
p−iEn[g2

k,p−i] = 2d

l−1∑
i=1

ϕ2
p−i‖g‖

2
L2(µK,M ),

where we used that ψi ∈ [0, 1] in the last inequality. If d ≥ l, we use the crude bound
F 2
p ≤ 2d

∑l−1
i=0 ϕ

2
p−ig

2
k,p−i. In any case,

t

n2

∑
p

∫
RKM

F 2
p dµK,M ≤

2td

n2

∑
p

l−1∑
i=0

ϕ2
p−i‖g‖

2
L2(µK,M )

≤ 2tld

n2

∑
j

ϕ2
j‖g‖

2
L2(µK,M )
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≤ 2tld

n
‖g‖2L2(µK,M )En(ϕ).

This finishes the proof.

Lemma 4.2 (One-block estimate - backward version). Let 1 ≤ l ≤ K
2 and let g : RKM → R

be a function with zero mean with respect to µ such that supp (g) does not intersect
{(0,−1), . . . , (0,−l)}. Let gk,j = g(τk,ju). Then, there exists a constant C > 0 such that,
for all ϕ ∈ l2(ZM ),

En

[∣∣∣∣∣
∫ t

0

ds
∑
j∈ZM

gk,j(sn
2)[uk,j(sn

2)−←−u lk,j(sn2)]ϕj

∣∣∣∣∣
2]
≤ C tld

n
‖g‖2L2(µK,M )En(ϕ).

Proof. The proof is completely analogous to the proof of Lemma 4.1.

4.3 The second order Boltzmann-Gibbs principle

We now prove our main estimates.

Proposition 4.3 (Second-order Boltzmann-Gibbs principle). Let 1 ≤ l ≤ K
2 . There exists

a constant C > 0 such that, for all ϕ ∈ l2(ZM ),

En

[∣∣∣∣∣
∫ t

0

ds
∑
j∈ZM

[uk,j(sn)uk,j+1(sn)−←−u lk,j(sn)−→u lk,j(sn)]ϕj

∣∣∣∣∣
2]
≤ C tl

n
En(ϕ).

Proof. We use the factorization

uk,juk,j+1 −←−u lk,j−→u lk,j = uk,j(uk,j+1 −−→u lk,j) +−→u lk,j(uk,j −←−u lk,j).

We handle the first term with Lemma 4.1 with gk,j = uk,j and the second one with
Lemma 4.2 with gk,j = −→u lk,j , noting that the diameter of the support of uk,j and −→u lk,j is 1

and l respectively, and noting that

‖uk,j‖2L2(µK,M ) = 1, ‖−→u lk,j‖
2
L2(µK,M ) =

1

l
.

Proposition 4.4 (Second-order Boltzmann-Gibbs principle for crossed terms). Let l ≥ 1.
There exists a constant C > 0 such that, for all ϕ ∈ l2(ZM ) and k 6= k̄,

En

[∣∣∣∣∣
∫ t

0

ds
∑
j∈ZM

[uk,j(sn)uk̄,j(sn)−−→u lk,j−1(sn)−→u lk̄,j−1(sn)]ϕj

∣∣∣∣∣
2]
≤ C tl

n
En(ϕ).

Proof. This time, we use the factorization

uk,juk̄,j −−→u lk,j−1
−→u lk̄,j−1 = uk,j(uk̄,j −−→u lk̄,j−1) +−→u lk̄,j−1(uk,j −−→u lk,j−1),

and proceed as in the proof of Proposition 4.3.

5 Tightness

In the following, we will use Mitoma’s criterion [28]: a sequence of random distri-
butions (γn)n is tight in C([0, T ],S ′(T)) if and only if γn(ϕ) is tight in C([0, T ],R) for all
ϕ ∈ S(T). We will show tightness of the symmetric, anti-symetric and martingale parts
separately. We fix ϕ ∈ S(T) for the remainder of this section.
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5.1 Martingale term

We recall that 〈Mn
k,·(ϕ)〉t = tEn(∇nϕn). From the Burkholder-Davis-Gundy inequality,

it then follows that

En

[
|Mn

k,t(ϕ)−Mn
k,s(ϕ)|p

]
≤ CpEn

[
〈Mn

k,·(ϕ)〉
p
2
t−s

]
= Cp(t− s)

p
2 En(∇nϕn)

p
2 ,

for all p ≥ 1, some constant finite constant Cp > 0. Tightness then follows from
Kolmogorov’s tightness criterion by taking p > 3.

5.2 Symmetric term

This term can be handled by an L2 estimate:

En

[
|Snk,t(ϕ)− Snk,s(ϕ)|2

]
= En

[∣∣∣ ∫ t

s

1

2n
1
2

∑
j∈ZM

uk,j(τn
2)∆nϕnj dτ

∣∣∣2] ≤ |t− s|2
4
En(∆nϕn),

where we used Jensen’s inequality and the fact that {uk,j}j∈ZM
is an i.i.d. family of cen-

tered Gaussian random variables. Tightness then follows once again from Kolmogorov’s
criterion.

5.3 Anti-symmetric term

We state our main estimate on the anti-symmetric part.

Proposition 5.1. The anti-symmetric part of the dynamics satisfies

En

[∣∣Bk,t(ϕ)
∣∣2] ≤ Ct 3

2 .

for every ϕ ∈ S(T). Furthermore, each term in Bk,t(ϕ) satisfies the same bound by itself.

The rest of this section is devoted to the proof of this proposition. Recall that

−Bnk,t(ϕ) =

∫ t

0

∑
j∈ZM

Gk,j(sn
2)∇nϕnj ds

= αk

∫ t

0

∑
j∈ZM

wk,j(sn
2)∇nϕnj ds︸ ︷︷ ︸

:=Wn
k,t(ϕ)

+
∑
q 6=0

βqk

∫ t

0

∑
j∈ZM

bqk,j(sn
2)∇nϕnj ds︸ ︷︷ ︸

:=Bn,q
k,t (ϕ)

+
∑
q 6=0

γqk

∫ t

0

∑
j∈ZM

rqk,j(sn
2)∇nϕnj ds︸ ︷︷ ︸

:=Rn,q
k,t (ϕ)

+
∑
q 6=0

∑
q′ 6=0
q′ 6=q

λk−q,k−q
′

k

∫ t

0

∑
j∈ZM

pq,q
′

k,j (sn2)∇nϕnj ds︸ ︷︷ ︸
:=Pn,q,q′

k,t (ϕ)

.

We begin with a lemma which will allow us to switch from terms involving u2
k,j to terms

involving uk,juk,j+1, to which we can apply the second-order Boltzmann-Gibbs principle.
This will not be needed for products of terms depending on different components of the
process.

Lemma 5.2. Let

Y nk,t(ϕ) =

∫ t

0

∑
j∈ZM

ϕj
{
uk,j(sn

2)uk,j+1(sn2)− u2
k,j(sn

2) + 1
}
ds. (5.1)

There exists a finite constant C > 0 such that

En

[∣∣Y nk,t(ϕ)
∣∣2] ≤ Ct

n
En(ϕ). (5.2)

In particular, Y nk,t(ϕ) goes to zero in the ucp topology.
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Proof. Using integration by parts,∫ t

0

∑
j∈ZM

ϕj(uk,juk,j+1 − u2
k,j)fdµ =

∫ t

0

∑
j∈ZM

ϕj(uk,j+1 − uk,j)uk,jfdµ

=

∫ t

0

∑
j∈ZM

ϕj(∂k,j+1 − ∂k,j)(uk,jf)dµ

=

∫ t

0

∑
j∈ZM

ϕj{uk,j(∂k,j+1 − ∂k,j)f − f}dµ.

Hence,∫ t

0

∑
j∈ZM

ϕj
{
uk,juk,j+1 − u2

k,j + 1
}
fdµ =

∫ t

0

∑
j∈ZM

ϕjuk,j(∂k,j+1 − ∂k,j)fdµ.

By Young’s inequality,

2

∫ t

0

∑
j∈ZM

ϕj
{
uk,juk,j+1 − u2

k,j + 1
}
fdµ = 2

∫ t

0

∑
j∈ZM

ϕjuk,j(∂k,j+1 − ∂k,j)fdµ

≤
∫ t

0

∑
j∈ZM

{
αϕ2u2

k,j +
1

α
((∂k,j+1 − ∂k,j)f)2

}
dµ

=

∫ t

0

∑
j∈ZM

{ 2

n2
ϕ2u2

k,j +
n2

2
((∂k,j+1 − ∂k,j)f)2

}
dµ

=
2

n
En(ϕ) +

n2

2

∑
j∈ZM

∫ t

0

((∂k,j+1 − ∂k,j)f)2dµ,

by taking α = 2
n2 and using that uk,j ∼ N (0, 1). The estimate (5.2) then follows from

the Kipnis-Varadhan estimate (Section 4.1). We then obtain the convergence to 0 in ucp
topology by Chebyshev’s inequality.

This means that we can switch the term wk,j in the anti-symmetric part of the
dynamics by uk,juk,j+1 modulo a vanishing term. Note that, as we apply the previous
lemma to a gradient, the constant term 1 in (5.1) will disappear. Hence, to handle the
term Wn

k,t(ϕ) it is enough to prove the tightness of

W̃
n

k,t(ϕ) :=

∫ t

0

∑
j∈ZM

uk,j(sn
2)uk,j+1(sn2)∇nϕnj ds.

From the Boltzmann-Gibbs Principle (Proposition 4.3), we have that

En

[∣∣∣∣∣W̃n

k,t(ϕ)−
∫ t

0

∑
j∈ZM

←−u lk,j(sn2)−→u lk,j(sn2)∇nϕnj ds

∣∣∣∣∣
2]
≤ C tl

n
En(∇nϕn). (5.3)

On the other hand, by Jensen’s inequality,

En

[∣∣∣∣∣
∫ t

0

∑
j∈ZM

←−u lk,j(sn2)−→u lk,j(sn2)∇nϕnj ds

∣∣∣∣∣
2]
≤ t2En

[∣∣∣∣∣ ∑
j∈ZM

←−u lk,j(0)−→u lk,j(0)∇nϕnj

∣∣∣∣∣
2]
.

Next, as in the proof of Lemma 4.1, a careful L2 computation, taking dependencies into
account, shows that

En

[∣∣∣∣∣ ∑
j∈ZM

←−u lk,j(0)−→u lk,j(0)∇nϕnj

∣∣∣∣∣
2]
≤ n

l
En(∇nϕn).
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Hence,

En

[∣∣∣∣∣
∫ t

0

∑
j∈ZM

←−u lk,j(sn2)−→u lk,j(sn2)∇nϕnj ds

∣∣∣∣∣
2]
≤ t2n

l
En(∇nϕn). (5.4)

Combining (5.3) and (5.4), we obtain

En

[∣∣∣∣∣W̃n

k,t(ϕ)

∣∣∣∣∣
2]
≤ C

(
tl

n
+
t2n

l

)
,

for some finite constant C = C(ϕ) > 0. If tn2 ≥ 1, we choose l ∼
√
tn, which yields

En

[∣∣∣∣∣W̃n

k,t(ϕ)

∣∣∣∣∣
2]
≤ Ct3/2.

For tn2 ≤ 1, a crude L2 bound gives

En

[∣∣∣∣∣W̃n

k,t(ϕ)

∣∣∣∣∣
2]

= En

[∣∣∣∣∣
∫ t

0

∑
j∈ZM

uk,j(sn)uk,j+1(sn)∇nϕnj ds

∣∣∣∣∣
2]

≤ Ct2nEn(∇nϕnj ) ≤ Ct3/2En(∇nϕnj ).

This shows that (W̃
n

k,t(ϕ))n is tight.
We now consider the terms Rn,q

k,t . We use the Boltzmann-Gibbs Principle (Proposi-
tion 4.3) once again to obtain

E

[∣∣∣∣∣
∫ t

0

∑
j∈ZM

uk−q,j(sn
2)uk−q,j+1(sn2)∇nϕnj ds−

∫ t

0

∑
j∈ZM

←−u lk−q,j(sn2)−→u lk,j(sn2)∇nϕnj ds

∣∣∣∣∣
2]

≤ C tl
n
En(∇nϕn)

and follow the same process as before. This yields the tightness of (Rn,q
k,t (ϕ))n for every

q 6= 0.
For the terms Bn,q

k,t (ϕ) and Pn,q,q
′

k,t (ϕ), we use the Boltzmann-Gibbs Principle for crossed
terms (Proposition 4.4) to obtain

E

[∣∣∣∣∣
∫ t

0

ds
∑
j∈ZM

[uk,j(sn
2)uk̄,j(sn

2)−−→u lk,j−1(sn2)−→u lk̄,j−1(sn2)]∇nϕnj

∣∣∣∣∣
2]
≤ C tl

n
En(∇nϕn),

for all k 6= k′. Noticing that

E

[∣∣∣∣∣
∫ t

0

∑
j∈ZM

−→u lk,j−1(sn2)−→u lk̄,j−1(sn2)∇nϕnj

∣∣∣∣∣
2]
≤ t2n

l
En(∇nϕn),

we conclude that

E

[∣∣∣∣∣
∫ t

0

∑
j∈ZM

uk,j(sn
2)uk̄,j(sn

2)∇nϕnj ds

∣∣∣∣∣
2]
≤ C

{
tl

n
+
t2n

l

}
,

from which we get the tightness of (Bn,q
k,t (ϕ))n and (Pn,q,q

′

k,t (ϕ))n following the same
process we used for Wn

k,t(ϕ). Finally, the tightness of each of its components yields
tightness for Bnk,t(ϕ).
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6 Identification of the limit

From Section 5, we get processes S, W, R, B, P andM such that

lim
n→∞

Mn
k =Mk, lim

n→∞
Snk = Sk, lim

n→∞
Wn
k = Wk

lim
n→∞

Rn,q
k = Rq

k, lim
n→∞

Bn,q
k = Bq

k, lim
n→∞

Pn,q,q
′

k = Pq,q
′

k ,

along a subsequence that we still denote by n. We will now identify these limiting
processes. By the convergence of these processes, we obtain that limn→∞ Xnk = Xk,
where Xk is a weighted sum of the previous processes. Additionally, by Lemma 5.2,
limn→∞ W̃

n

k = Wk.

6.1 Convergence at fixed times

We will show that Xnk,t converges to a white noise for each fixed time t ∈ [0, T ] and
each k ∈ ZK . Let ϕ ∈ S(T). Recall that, for each fixed time t ∈ [0, T ], (uk,j)k,j is an i.i.d.
family of standard Gaussian random variables. Hence,

lim
n→∞

En

[
exp

(
iλXnk,t(ϕ)

) ]
= lim
n→∞

En

exp

iλ 1

n
1
2

∑
j∈ZM

uk,j(tn)ϕnj


= lim
n→∞

exp

−λ2

2n

∑
j∈ZM

(ϕnj )2


= lim
n→∞

exp

(
−λ

2

2
En(ϕ)

)
= exp

(
−λ

2

2

∫
ϕ(x)2dx

)
.

This shows that Xnk,t converges in distribution to a white noise and, in turns, proves that
X satisfies property (S).

6.2 Martingale term

The quadratic variation of the martingale part satisfies

lim
n→∞

〈Mn
k,·(ϕ)〉t = lim

n→∞
tEn(∇nϕn) = t

∫
T

(∂xϕ(x))2dx = t ‖∂xϕ‖2L2 ,

for all t ≥ 0 and ϕ ∈ S(T). By a criterion of Aldous [1], this implies that (Mn
k,·(ϕ))n

converges to a Brownian motion with variance ‖∂xϕ‖2L2 . Hence, (Mn
k,·)n converges in

distribution to the derivative of a white noise.

6.3 Symmetric term

A second moment bound and a simple Taylor expansion show that

E

[∣∣∣∣∣Snk,t(ϕ)− 1

2

∫ t

0

Xnk,s(∂2
xϕ)ds

∣∣∣∣∣
2]
≤ Ct2

n2
,

for some finite constant C = C(ϕ) > 0. Together with the convergence of the fluctuation
field, this shows that

Sk(ϕ) = lim
n→∞

Snk (ϕ) =
1

2

∫ ·
0

Xk,s(∂2
xϕ)ds.

6.4 Anti-symmetric term

We will identify the limit of each term separately.
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6.4.1 Limit of Wn
k

For the term Wn
k , it suffices to identify the limit of the process W̃

n

k,·(ϕ). Remember that
←−ιε (x) = 1(x−ε,x] and −→ιε (x) = 1[x,x+ε). Hence,

Xnk,t(←−ιε ( jn )) = n
1
2
←−u lk,j(tn2), and Xnk,t(−→ιε ( jn )) = n

1
2
−→u lk,j(tn2).

Then, if l = tn, we have∫ t

0

∑
j∈ZM

←−u lk,j(sn2)−→u lk,j(sn)∇ϕnj ds =

∫ t

0

1

n

∑
j∈Zn

Xnk,s(←−ιε ( jn ))Xnk,s(−→ιε ( jn ))∇ϕnj ds

n→∞−−−→
∫ t

0

∫
T

Xk,s(←−ιε (x))Xk,s(−→ιε (x))∂xϕ(x)dxds

:= Aε,(k,k)
0,t (ϕ).

Remark 6.1. Given that←−ιε (x),−→ιε (x) 6∈ S(R), the limit does not follow immediately from
the convergence of the field. However, it follows by a suitable approximation by S(R)

functions (see [13], Section 5.3 for details).

Now, we show thatAε,(k,k)(ϕ) satisfies the energy condition (2.2). From the Boltzmann-
Gibbs Principle (Proposition 4.3) and stationarity, we have that

E

[∣∣∣∣∣W̃n

k,t(ϕ)− W̃
n

k,s(ϕ)−
∫ t

s

∑
j∈Zn

←−u lk,j(sn2)−→u lk,j(sn2)∇nϕnj ds

∣∣∣∣∣
2]
≤ C (t− s)l

n
En(∇nϕn).

Taking l = εn, we obtain

E

[∣∣∣∣∣W̃n

k,t(ϕ)− W̃
n

k,s(ϕ)−
∫ t

s

∑
j∈ZM

←−u lk,j(sn)−→u lk,j(sn)∇nϕnj ds

∣∣∣∣∣
2]
≤ C(t− s)ε,

from some finite constant C = C(ϕ) > 0. Therefore, by Fatou’s lemma,

E

[∣∣∣∣∣Wk,t(ϕ)−Wk,s(ϕ)−Aε,(k,k)
s,t (ϕ)

∣∣∣∣∣
2]
≤ C(t− s)ε. (6.1)

In the same way, if 0 < δ < ε,

E

[∣∣∣∣∣Wk,t(ϕ)−Wk,s(ϕ)−Aδ,(k,k)
s,t (ϕ)

∣∣∣∣∣
2]
≤ C(t− s)δ.

Collecting the last two estimates, we obtain

E

[∣∣∣∣∣Aε,(k,k)
s,t (ϕ)−Aδ,(k,k)

s,t (ϕ)

∣∣∣∣∣
2]
≤ C(t− s)ε,

for all 0 < δ < ε. This shows that Aε,(k,k) satisfies the energy estimate (2.2) for all
k ∈ ZK . Hence, by Theorem 2.3, taking ε→ 0, Aε,(k,k)

s,t (ϕ) converges in L2 to a process

we denote by A(k,k)
s,t (ϕ). Finally, by (6.1) and Fatou’s lemma,

E

[∣∣∣∣∣Wk,t(ϕ)−Wk,s(ϕ)−A(k,k)
s,t (ϕ)

∣∣∣∣∣
2]
≤ lim
ε→0

E

[∣∣∣∣∣Wk,t(ϕ)−Wk,s(ϕ)−Aε,(k,k)
s,t (ϕ)

∣∣∣∣∣
2]

= 0,

concluding that the limit of the process Wn
k,·(ϕ) is A(k,k)

· (ϕ).
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6.4.2 Limit of Bn,q
k

Recall that

Bn,q
k,t (ϕ) =

∫ t

0

∑
j∈ZM

bqk,j(sn
2)∇nϕnj ds,

where

bqk,j =
1

2
(uk,juk+q,j + uk,j+1uk+q,j+1).

By a simple L2 computation, we note that it is enough to identify the limit of the processes

U t,n
k,k̄

(ϕ) =

∫ t

0

∑
j∈ZM

uk,j(sn
2)uk̄,j(sn

2)∇nϕnj ds,

for k 6= k̄. We denote U t
k,k̄

(ϕ) = limn→∞ U t,n
k,k̄

(ϕ). As above, it holds that∫ t

0

∑
j∈ZM

−→u lk,j−1(sn2)−→u lk̄,j−1(sn2)∇nϕnj ds

=

∫ t

0

1√
n

∑
j∈Zn

Xnk,s(−→ιε ( j−1√
n

))Xnk̄,s(
−→ιε ( j−1√

n
))∇nϕnj ds

n→∞−−−→
∫ t

0

∫
T

Xk,s(−→ιε (x))Xk̄,s(−→ιε (x))∂xϕ(x)dxds

=: Aε,(k,k̄)
0,t (ϕ).

From the Boltzman-Gibbs Principle for crossed terms (Proposition 4.4), we have that

E

[∣∣∣∣∣U t,nk,k̄(ϕ)−
∫ t

0

ds
∑
j∈Zn

−→u lk,j−1(sn2)−→u lk̄,j−1(sn2)∇nϕnj

∣∣∣∣∣
2]
≤ C tl

n
En(∇nϕn).

Hence, taking l = εn, applying Fatou’s lemma and using stationarity, we obtain that

E

[∣∣∣∣∣U tk,k̄(ϕ)− Usk,k+q(ϕ)−Aε,(k,k̄)
s,t (ϕ)

∣∣∣∣∣
2]
≤ C(t− s)ε.

As above, this shows that Aε,(k,k̄)
s,t (ϕ) satisfies the energy condition. Hence, A(k,k̄)

s,t (ϕ) =

limε→0Aε,(k,k̄)
s,t (ϕ) exists and, proceeding again as above, we conclude that limn→0 U

t,n

k,k̄
=

A(k,k̄)
s,t (ϕ).

In particular, we conclude that the limit of the process Bn,q
k,· (ϕ) is A(k,k+q)

· (ϕ).

6.4.3 Limit of Rn,q
k

Recall that

Rn,q
k,t (ϕ) =

∫ t

0

∑
j∈Zn

rqk,j(sn
2)∇nϕnj ds,

where
rqk,j = uk−q,juk−q,j+1.

Following the argument used to compute the limit of the term W̃
n

k,·(ϕ), we obtain that

the limit of the process Rn,q
k,· (ϕ) is A(k−q,k−q)

· (ϕ).
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6.4.4 Limit of Pn,q,q
′

k

Recall that

Pn,q,q
′

k,t (ϕ) =

∫ t

0

∑
j∈ZM

pq,q
′

k,j (sn2)∇nϕnj ds,

where

pq,q
′

k,j =
1

6
(2uk−q,juk−q′,j + uk−q,juk−q′,j+1 + uk−q,j+1uk−q′,j + 2uk−q,j+1uk−q′,j+1).

Following the argument used to compute the limit of the term Bn,q
k,· (ϕ), we obtain that

the limit of the process Pn,q,q
′

k,· (ϕ) is A(k−q,k−q′)
· (ϕ).

Remark 6.2. As all our arguments apply to the reversed process with straightforward
modification, this finishes the proof of Theorem 1.3.

A Proof of Lemma 1.5

Proof of Lemma 1.5. First, we show that conditions (1.4)-(1.5) imply the trilinear condi-
tion. The equations for uk, uk+a, uk−a are

∂tuk =
1

2
∂2
xuk+∂x

(
αku

2
k+
∑
l 6=0

{
βlkukuk+l+γ

l
ku

2
k−l +

∑
l′ 6=0
l′ 6=l

λk−l,k−l
′

k uk−luk−l′
})

+ ∂xWk,

∂tuk+a =
1

2
∂2
xuk+a + ∂x

(
αk+au

2
k+a +

∑
l 6=0

{
βlk+auk+auk+a+l + γlk+au

2
k+a−l

+
∑
l′ 6=0
l′ 6=l

λk+a−l,k+a−l′
k+a uk+a−luk+a−l′

})
+ ∂xWk+a,

∂tuk−a =
1

2
∂2
xuk−a + ∂x

(
αk−au

2
k−a +

∑
l 6=0

{
βlk−auk−auk−a+l + γlk−au

2
k−a−l

+
∑
l′ 6=0
l′ 6=l

λk−a−l,k−a−l
′

k−a uk−a−luk−a−l′
})

+ ∂xWk−a.

Hence,

Γkk,k = αk, Γk+a
k+a,k+a = αk+a, Γk−ak−a,k−a = αk−a,

Γkk,k+a = Γkk+a,k =
βak
2

= Γk+a
k,k = γak+a,

Γkk−a,k−a = γak = Γk−ak−a,k = Γk−ak,k−a =
βak−a

2
,

Γkk−a,k−a′ = λk−a,k−a
′

k = Γkk−a′,k−a = λk−a
′,k−a

k = Γk−ak,k−a′ = λk,k−a
′

k−a .

The trilinear condition simply follows from the identity γak+a =
βa
k

2 for every a, k ∈ ZK .

Now, consider a system of coupled Burgers equations satisfying the trilinear condi-
tion,

∂tuk =
1

2
∂2
xuk +

∑
i,j∈ZK

Γki,j∂x(uiuj) + ∂xWk, k ∈ ZK ,

Γki,j = Γkj,i = Γik,j for all i, j, k ∈ ZK .
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We rewrite the equations for uk, uk+a, uk−a as

∂tuk =
1

2
∂2
xuk + ∂x

(
Γkk,ku

2
k +

∑
l 6=0

{
Γkk,k+lukuk+l + Γkk+l,kukuk+l

+Γkk−l,k−lu
2
k−l +

∑
l′ 6=0
l′ 6=l

Γkk−l,k−l′uk−luk−l′
})

+ ∂xWk,

∂tuk+a =
1

2
∂2
xuk+a + ∂x

(
Γk+a
k+a,k+au

2
k+a +

∑
l 6=0

{
Γk+a
k+a,k+a+luk+auk+a+l

+Γk+a
k+a+l,k+auk+auk+a+l + Γkk+a−l,k+a−lu

2
k+a−l

+
∑
l′ 6=0
l′ 6=l

Γk+a
k+a−l,k+a−l′uk+a−luk+a−l′

})
+ ∂xWk+a,

∂tuk−a =
1

2
∂2
xuk−a + ∂x

(
Γk−ak−a,k−au

2
k−a +

∑
l 6=0

{
Γk−ak−a,k−a+luk−auk−a+l

+Γk−ak−a+l,k−auk−auk−a+l + Γk−ak−a−l,k−a−lu
2
k−a−l

+
∑
l′ 6=0
l′ 6=l

Γk−ak−a−l,k−a−l′uk−a−luk−a−l′
})

+ ∂xWk−a,

which satisfies the way of writing the equations in Theorem 1.3 and also satisfies

βak
2

= Γkk,k+a = Γkk+a,k = Γk+a
k,k = γak+a,

λk−a,k−a
′

k = Γkk−a,k−a′ = λk−a
′,k−a

k = Γkk−a′,k−a = λk,k−a
′

k−a = Γk−ak,k−a′

which imply conditions (1.4)-(1.5).

B Proof of Lemma 3.3

Proof of Lemma 3.3. First, we will prove that

∂k,jBk,j(u) = ∂k,j

(
αk(wk,j − wk,j−1) +

∑
l 6=0

βlk(blk,j − blk,j−1) +
∑
l 6=0

γlk(rlk,j − rlk,j−1)

+
∑
l 6=0

∑
l′ 6=0
l′ 6=l

λk−l,k−l
′

k (pl,l
′

k,j − p
l,l′

k,j−1)
)

= 0.

Recalling the definition of w, we can see that∑
j∈ZM

∂k,j(wk,j − wk,j−1) =
1

3

∑
j∈ZM

(uk,j+1 − uk,j−1) = 0.

Next, recalling the definitions of b, r and p, we can see that

∂k,j(b
l
k,j − blk,j−1) = ∂k,j(r

l
k,j − rlk,j−1) = ∂k,j(p

l,l′

k,j − p
l,l′

k,j−1) = 0.

We are left to prove that∑
k∈ZK

∑
j∈ZM

uk,jBk,j =
∑
k∈ZK

∑
j∈ZM

uk,j

(
αk(wk,j − wk,j−1) +

∑
l 6=0

βlk(blk,j − blk,j−1)

+
∑
l 6=0

γlk(rlk,j − rlk,j−1) +
∑
l 6=0

∑
l′ 6=0
l′ 6=l

λk−l,k−l
′

k (pl,l
′

k,j − p
l,l′

k,j−1)
)

= 0.
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We will divide the proof in several steps. In each one of them, we will highlight terms
that produce telescopic sums.

•
∑
j∈ZM

uk,j(wk,j − wk,j−1) = 0 ∀k ∈ ZK : by the definition of w,

uk,j(wk,j − wk,j−1) =
1

3
uk,j(u

2
k,j + uk,juk,j+1 + u2

k,j+1)

− 1

3
uk,j(u

2
k,j−1 + uk,j−1uk,j + u2

k,j)

=
1

3
(u2
k,juk,j+1 − u2

k,j−1uk,j) +
1

3
(uk,ju

2
k,j+1 − u2

k,juk,j−1).

Both summands yield telescopic sums when summing over j ∈ ZM .

•
∑
k∈ZK

∑
j∈ZM

(∑
l 6=0 uk,jβ

l
k(blk,j − blk,j−1) +

∑
l 6=0 uk,jγ

l
k(rlk,j − rlk,j−1)

)
= 0: first,

by definition of b,

uk,j(β
l
kb
l
k,j − βlkblk,j−1)

= uk,j(
βlk
2
uk,juk+l,j +

βlk
2
uk,j+1uk+l,j+1)− uk,j(

βlk
2
uk,j−1uk+l,j−1 +

βlk
2
uk,juk+l,j)

=
βlk
2
uk,juk,j+1uk+l,j+1︸ ︷︷ ︸

1

− βlk
2
uk,juk,j−1uk+l,j−1︸ ︷︷ ︸

2

.

Next,

uk,j(γ
l
kr
l
k,j − γlkrlk,j−1) = γlkuk,juk−l,juk−l,j+1︸ ︷︷ ︸

3

− γlkuk,juk−l,j−1uk−l,j︸ ︷︷ ︸
4

.

Now, looking at the terms for k + l instead of k, we obtain

uk+l,j(γ
l
k+lr

l
k+l,j − γlk+lr

l
k+l,j−1) = γlk+luk+l,juk,juk,j+1︸ ︷︷ ︸

2

− γlk+luk+l,juk,j−1uk,j︸ ︷︷ ︸
1

.

Similarly for k − l, we obtain

uk−l,j(β
l
k−lb

l
k−l,j − βlk−lblk−l,j−1)

=
βlk−l

2
uk,j+1uk−l,j+1uk−l,j︸ ︷︷ ︸

4

−
βlk−l

2
uk,j−1uk−l,j−1uk−l,j︸ ︷︷ ︸

3

.

Terms marked with the same number underneath are telescopic when summing

over j ∈ ZM by recalling that βl
k

2 = γlk+l.

•
∑
k∈ZK

∑
j∈ZM

∑
l 6=0

∑
l′ 6=0
l′ 6=l

uk,jλ
k−l,k−l′
k (pl,l

′

k,j − p
l,l′

k,j−1) = 0: by definition of p,

uk,j(λ
k−l,k−l′
k pl,l

′

k,j − λ
k−l,k−l′
k pl,l

′

k,j−1)

= uk,j

(
λk−l,k−l

′

k

6
(2uk−l,juk−l′,j + uk−l,juk−l′,j+1 + uk−l,j+1uk−l′,j

+ 2uk−l,j+1uk−l′,j+1)

)

− uk,j

(
λk−l,k−l

′

k

6
(2uk−l,j−1uk−l′,j−1 + uk−l,j−1uk−l′,j + uk−l,juk−l′,j−1

+ 2uk−l,juk−l′,j)

)
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= uk,j

(
λk−l,k−l

′

k

6
(uk−l,juk−l′,j+1 + uk−l,j+1uk−l′,j︸ ︷︷ ︸

5

+ 2uk−l,j+1uk−l′,j+1︸ ︷︷ ︸
6

)

)

− uk,j

(
λk−l,k−l

′

k

6
(2uk−l,j−1uk−l′,j−1︸ ︷︷ ︸

5

+uk−l,j−1uk−l′,j + uk−l,juk−l′,j−1︸ ︷︷ ︸
6

)

)
.

Terms marked with 5 will cancel when summing over j ∈ ZM , k ∈ ZK , l ∈ ZK and

l′ ∈ ZK by recalling that λk−l,k−l
′

k = λk−l
′,k−l

k = λk,k−l
′

k−l . The same will happen for
terms marked with 6.
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