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Clustering of consecutive numbers in permutations
under Mallows distributions and super-clustering

under general p-shifted distributions

Ross G. Pinsky*

Abstract

Let A(n)
l;k ⊂ Sn denote the set of permutations of [n] for which the set of l consecutive

numbers {k, k + 1, · · · , k + l − 1} appears in a set of consecutive positions. Under the
uniform probability measure Pn on Sn, one has Pn(A

(n)
l;k ) ∼

l!
nl−1 as n → ∞. In one

part of this paper we consider the probability of clustering of consecutive numbers
under Mallows distributions P qn , q > 0. Because of a duality, it suffices to consider
q ∈ (0, 1). We show that for qn = 1− c

nα
, with c > 0 and α ∈ (0, 1), P qn(A

(n)
l;kn

) is of order
1

nα(l−1) , uniformly over all sequences {kn}∞n=1. Thus, letting N
(n)
l =

∑n−l+1
k=1 1

A
(n)
l;k

denote the number of sets of l consecutive numbers appearing in sets of consecutive
positions, we have

lim
n→∞

Eqnn N
(n)
l =

{
∞, if l < 1+α

α
;

0, if l > 1+α
α
.

.

We also consider the cases α = 1 and α > 1. In the other part of the paper we

consider general p-shifted distributions, P
{pj}∞j=1
n , of which the Mallows distribution is

a particular case. We calculate explicitly the quantity

lim
l→∞

lim inf
n→∞

P
{pj}∞j=1
n (A

(n)
l;kn

) = lim
l→∞

lim sup
n→∞

P
{pj}∞j=1
n (A

(n)
l;kn

)

in terms of the p-distribution. When this quantity is positive, we say that super-
clustering occurs. In particular, super-clustering occurs for the Mallows distribution
with fixed parameter q 6= 1.
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Clustering under Mallows and general p-shifted distributions

1 Introduction and statement of results

Let l ≥ 2 be an integer. Let Pn denote the uniform probability measure on the
set Sn of permutations of [n] := {1, · · · , n}, and denote a permutation σ ∈ Sn by σ =

σ1σ2 · · ·σn. The set of l consecutive numbers {k, k + 1, · · · , k + l − 1} ⊂ [n] appears
in a set of consecutive positions in the permutation if there exists an m such that
{k, k + 1, · · · , k + l − 1} = {σm, σm+1, · · · , σm+l−1}. Let A(n)

l;k ⊂ Sn denote the event that
the set of l consecutive numbers {k, k + 1, · · · , k + l − 1} appears in a set of consecutive
positions. It is immediate that for any 1 ≤ k,m ≤ n − l + 1, the probability that
{k, k + 1, · · · , k + l − 1} = {σm, σm+1, · · · , σm+l−1} is equal to l!(n−l)!

n! . Thus,

Pn(A
(n)
l;k ) = (n− l + 1)

l!(n− l)!
n!

∼ l!

nl−1
, as n→∞, for l ≥ 2, (1.1)

where an ∼ bn means limn→∞
an
bn

= 1. Let A(n)
l = ∪n−l+1

k=1 A
(n)
l;k denote the event that there

exists a set of l consecutive numbers appearing in a set of consecutive positions, and let
N

(n)
l =

∑n−l+1
k=1 1

A
(n)
l;k

denote the number of sets of l consecutive numbers appearing in

sets of consecutive positions. Then

EnN
(n)
l = (n− l + 1)2

l!(n− l)!
n!

∼ l!

nl−2
, as n→∞, for l ≥ 2. (1.2)

Using the inequality

n−k+1∑
k=1

Pn(A
(n)
l;k )−

∑
1≤j<k≤n−l+1

Pn(A
(n)
l;j ∩A

(n)
l;k ) ≤ Pn(A

(n)
l ) ≤

n−k+1∑
k=1

Pn(A
(n)
l;k ),

along with the fact that for j, k,m, r, with {j, j+1, · · · , j+ l−1}∩{k, k+1, · · · , k+ l−1} =

∅ and {m,m + 1, · · · ,m + l − 1} ∩ {r, r + 1, · · · , r + l − 1} = ∅, the probability that
both {k, k + 1, · · · , k + l − 1} = {σm, σm+1, · · · , σm+l−1} and {j, j + 1, · · · , j + l − 1} =

{σr, σr+1, · · · , σr+l−1} is equal to, (l!)2(n−2l)!
n! , it is easy to show that

Pn(A
(n)
l ) ∼ l!

nl−2
, as n→∞, for l ≥ 3. (1.3)

It follows from (1.2) (or from (1.3)) that for l ≥ 3, the sequence {N (n)
l }∞n=1 converges to

zero in probability. On the other hand, when l = 2, {N (n)
l }∞n=1 converges in distribution to

a Poisson random variable with parameter 2. This result on the clustering of consecutive
numbers in permutations goes back over 75 years; see [10], [5].

In one of the two parts of this paper, we obtain results in the spirit of (1.1) and (1.2)
in the case that the uniform probability measure Pn is replaced by the Mallows measure
P qnn with parameter qn, where qn → 1 at various rates. The Mallows measures P qn are
described below. The Mallows measure with q = 1 is the uniform measure.

In the other part of this paper we consider so-called p-shifted distributions P
{pj}∞j=1
n

on Sn, of which the Mallows measure P qn is a particular example. Here {pj}∞j=1, with
pj > 0, for all j, is a probability distribution on N:

∑∞
j=1 pj = 1. We calculate

lim
l→∞

lim inf
n→∞

P
{pj}∞j=1
n (A

(n)
l;kn

) = lim
l→∞

lim sup
n→∞

P
{pj}∞j=1
n (A

(n)
l;kn

)

explicitly. This reveals a necessary and sufficient condition on the distribution {pj}∞j=1 in
order for the above limit to be positive. When this limit is positive, we say that super-
clustering occurs. In particular, super-clustering occurs for the Mallows distribution for
fixed q 6= 1.
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Clustering under Mallows and general p-shifted distributions

We turn now to a description of the results in this paper, beginning with those
concerning specifically the Mallows distributions.

Mallows distributions and the behavior of the probability of A(n)
l;kn

. For each q > 0,
the Mallows distribution with parameter q is the probability measure P qn on Sn defined
by

P qn(σ) =
qIn(σ)

Zn(q)
, σ ∈ Sn, (1.4)

where
In(σ) =

∑
1≤i<j≤n

1σj<σi =
∑

1≤i<j≤n

1σ−1
j <σ−1

i
(1.5)

is the inversion statistic on Sn, that is, the number of inversions in σ, and Zn(q) is the
normalization constant, given by [6, 9]

Zn(q) =

n∏
k=2

1− qk

1− q
.

Thus, for q ∈ (0, 1), the distribution favors permutations with few inversions, while
for q > 1, the distribution favors permutations with many inversions. Of course, the
case q = 1 yields the uniform distribution. Recall that the reverse of a permutation
σ = σ1 · · ·σn is the permutation σrev := σn · · ·σ1. The Mallows distributions satisfy the
following duality between q > 1 and q ∈ (0, 1):

P qn(σ) = P
1
q
n (σrev), for q > 0, σ ∈ Sn and n = 1, 2, · · · .

Since the set A(n)
l;k is invariant under reversal, for our study of clustering it suffices to

consider the case that q ∈ (0, 1).
When q → 0, the Mallows distribution P qn converges weakly to the degenerate

distribution on the identity permutation, and of course the identity permutation belongs
to A

(n)
l;k for all k and l. Because the smaller q is, the more the distribution favors

permutations with few inversions, and as such, the smaller q is, the more the distribution
favors permutations which are close to the identity permutation, it seems intuitive that
the smaller q is, the more clustering there will be. However, whereas the structure
of the Mallows distribution lends itself naturally to proving theorems concerning the
inversion statistic [7], it is less transparent how to exploit that structure with regard to
this clustering statistic. For example, the set A(n)

l;k is the disjoint union of the n− l + 1

sets {k, k + 1, · · · , k + l − 1} = {σm, σm+1, · · · , σm+l−1}, m = 1, · · · , n− l + 1. In the case
of the uniform distribution, these n− l + 1 sets all have the same probability. However,
in the case of P qn , q ∈ (0, 1), we expect that for certain m, these sets will have probability
less than what they have under the uniform distribution, and for other m these sets will
have probability greater than what they have under the uniform distribution. (For results
concerning the behavior under a Mallows distribution of other permutation statistics,
such as cycle counts and increasing subsequences, see [1], [2] and [3].)

Our first theorem gives asymptotic results in the case that q = qn = 1− c
nα with c > 0

and α ∈ (0, 1). We use the notation an . bn as n→∞ to indicate that lim supn→∞
an
bn
≤ 1.

Theorem 1.1. Let A(n)
l;k ⊂ Sn denote the event that the set of l consecutive numbers

{k, k + 1, · · · , k + l − 1} appears in a set of l consecutive positions. Let qn = 1− c
nα , with

c > 0 and α ∈ (0, 1). Then(
(l − 1)!

)2
(2l)!

c l−1 l!

nα(l−1)
. P qnn (A

(n)
l;kn

) .
1

l

c l−1 l!

nα(l−1)
, (1.6)

EJP 27 (2022), paper 87.
Page 3/20

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP812
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Clustering under Mallows and general p-shifted distributions

for any choice of {kn}∞n=1, and the asymptotic behavior is uniform over all {kn}∞n=1. If kn
satisfies min(kn,n−kn)

nα =∞, then the upper bound in (1.6) can be improved:

P qnn (A
(n)
l;kn

) .
( ∫ 1

0

xl−1e−(l−1)xdx
) c l−1 l!
nα(l−1)

. (1.7)

Recall that N (n)
l =

∑n−l+1
k=1 1

A
(n)
l;k

denotes the number of sets of l consecutive numbers

appearing in sets of consecutive positions. Theorem 1.1 yields immediately the following
corollary.

Corollary 1.2. Let qn = 1 − c
nα with c > 0 and α ∈ (0, 1), Then there exist constants

C
(−)
l , C

(+)
l > 0 such that

C
(−)
l n1−(l−1)α ≤ Eqnn N

(n)
l ≤ C(+)

l n1−(l−1)α.

In particular,

lim
n→∞

Eqnn N
(n)
l =

{
∞, if l < 1+α

α ;

0, if l > 1+α
α .

.

Remark 1.3. For τ ∈ Sl, let A(n)
l,τ ;k ⊂ A

(n)
l;k denote the event that the set of l consecutive

numbers {k, k + 1, · · · , k + l − 1} ⊂ [n] appears in a set of consecutive positions in the
permutation and also that the relative positions of these consecutive numbers correspond
to the permutation τ . That is, {k, k+1, · · · , k+ l−1} = {σm, σm+1, · · · , σm+l−1}, for some

m, and σm+i−1 − (k− 1) = τi, i = 1, · · · , l. Then A(n)
l;k = ∪τ∈SlA

(n)
l,τ ;k. Small changes in the

proof of Theorem 1.1, which we leave to the reader, show that (1.6) and (1.7) hold with
P qnn (A

(n)
l;kn

) replaced by P qnn (A
(n)
l,τ ;kn

) and with l! deleted from the numerator in the upper

and lower bounds, for all τ ∈ Sl. In particular, if τ = id, then A(n)
l,τ ;kn

is the event that the
numbers {k, · · · , k + l − 1} form an increasing run in the permutation, and if τ satisfies

τ rev = id, then A(n)
l,τ ;kn

is the event that the numbers {k, · · · , k + l − 1} form a decreasing
run in the permutation.

Remark 1.4. LetK(−)(l) =

(
(l−1)!

)2
(2l)! andK(+)(l) =

∫ 1

0
xl−1e−(l−1)xdx respectively denote

the coefficient of c l−1 l!
nα(l−1) on the left hand side of (1.6) and in (1.7). We have K(−)(l) ∼

√
π l−

3
2 4−l as l→∞. One can show that

K(+)(l) =

∫ 1

0

xl−1e−(l−1)xdx =
(l − 1)!

(l − 1)l
(
1− e−(l−1)

l−1∑
i=0

(l − 1)i

i!

)
.

Thus, K(+)(l) . (l−1)!
(l−1)l ∼

√
2π e l−

1
2 e−l, as l → ∞. On the other hand, a rudimentary

asymptotic analysis we performed on the interval [ l−1l −l
− 1

2 , 1] yields K(+)(l) & e
1
2 l−

1
2 e−l,

as l→∞.

Now we consider the cases q = qn = 1− c
n and q = qn = 1− o( 1

n ).

Theorem 1.5. Let A(n)
l;k ⊂ Sn denote the event that the set of l consecutive numbers

{k, k + 1, · · · , k + l − 1} appears in a set of l consecutive positions.

i. Let qn = 1− c
n , with c > 0. Let kn ∼ dn with d ∈ (0, 1). Then

( ∫ 1

e−cmax(d,1−d)

(
y(1− y)

)l−1
dy
) c l−1 l!
n(l−1)

. P qnn (A
(n)
l;kn

) .

1

(1− e−cd∗)l
( ∫ 1

e−cd∗
yl−1e

(log 1−e−cd
∗

1−e−c
)ecd

∗
(l−1)y

dy
) c l−1 l!
n(l−1)

,

(1.8)
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Clustering under Mallows and general p-shifted distributions

where d∗ can be chosen to be either d or 1− d.

ii. Let qn = 1− o( 1
n ) < 1. Then for any choice of {kn}∞n=1,

P qnn (A
(n)
l;kn

) .
l!

nl−1
. (1.9)

Remark 1.6. In part (i), we certainly expect that the asymptotic behavior of P qnn (A
(n)
l;kn

),
when kn ∼ dn, is in fact independent of d ∈ (0, 1). We note that the expression

1
(1−e−cd∗ )l

( ∫ 1

e−cd∗
yl−1e

(log 1−e−cd
∗

1−e−c
)ecd

∗
(l−1)cy

dy
)
cl−1, which multiplies l!

nl−1 on the right

hand side of (1.8), converges to 1 when c → 0, for all d∗ ∈ (0, 1), thus matching up
with (1.9). For each c and l, the expression on the right hand side of (1.8) can be shown
to be larger for d∗ = d than for d∗ = 1− d, if d is sufficiently close to 1. We didn’t try to
analyze this for general d, as it is quite complicated and in any case the bound is not
precise, but rather an artifact of the method of proof.

Remark 1.7. In the case of the uniform distribution (q = 1), we have from (1.1) that
P 1
n(A

(n)
l;kn

) ∼ l!
nl−1 , for any choice of kn. Since we expect P qn(A

(n)
l;kn

) to be decreasing in q,
we certainly expect that the asymptotic inequality in (1.9) is an asymptotic equality.

We now turn to a description of the results of the other part of the paper, concerning
p-shifted random permutations.

p-shifted distributions and super-clustering. Denote by S∞ the set of permutations
of N, that is, the set of bijective functions from N to itself. We build random permutations
in S∞ and then project them down in a natural way to Sn. Let p := {pj}∞j=1 be a
probability distribution on N whose support is all of N; that is, pj > 0, for all j ∈
N. Take a countably infinite sequence of independent samples from this distribution:
n1, n2, · · · . Now construct a random permutation Π ∈ S∞ as follows. Let Π1 = n1
and then for k ≥ 2, let Πk = ψk(nk), where ψk is the increasing bijection from N to
N − {Π1, · · · ,Πk−1}. Thus, for example, if the sequence of samples {nj}∞j=1 begins
with 7, 3, 4, 3, 7, 2, 1, then the construction yields the permutation Π beginning with
Π1 = 7,Π2 = 3,Π3 = 5,Π4 = 4,Π5 = 11,Π6 = 2,Π7 = 1. The probability measure
P {pj}

∞
j=1 on S∞ is then the distribution of this random permutation Π. We call P {pj}

∞
j=1

the p-shifted distribution on S∞ and Π a p-shifted random permutation on S∞.
For σ ∈ S∞, we write σ = σ1σ2 · · · . For n ∈ N, define projn(σ) ∈ Sn to be the permu-

tation obtained from σ by deleting σi for all i satisfying σi > n. Thus, for n = 4 and σ =

2539461 · · · , one has proj4(σ) = 2341. Given the p-shifted random permutation Π ∈ S∞
that was constructed in the previous paragraph, define P

{pj}∞j=1
n as the distribution of the

random permutation Π(n) := projn(Π); that is, P
{pj}∞j=1
n (σ) = P {pj}

∞
j=1(proj−1n (σ)), σ ∈ Sn.

We call P
{pj}∞j=1
n the p-shifted distribution on Sn and Π(n) a p-shifted random permutation

on Sn. A more efficient and useful construction of Π(n) is given in Proposition 2.1 in
section 2.

We note that in the case that pj = (1− q)qj−1, where q ∈ (0, 1), the measure P
{pj}∞j=1
n

is the Mallows distribution on Sn with parameter q; see [8], [4].

Remark 1.8. We assume in this paper that pj > 0, for all j. In fact, the p-shifted random
permutation can be constructed as long as p1 > 0, with no positivity requirement on
pj , j ≥ 2. The positivity requirement for all j ensures that for all n, the support of the
p-shifted measure Pn is all of Sn.

It is known [8] that a random permutation under the p-shifted distribution P {pj}
∞
j=1

is strictly regenerative, where our definition of strictly regenerative is as follows. For
a permutation π = πa+1πa+2 · · ·πa+m, of {a + 1, a + 2, · · · , a + m}, define red(π), the
reduced permutation of π, to be the permutation in Sm given by red(π)i = πa+i − a.
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We will call a random permutation Π of S∞ strictly regenerative if almost surely there
exist 0 = T0 < T1 < T2 < · · · such that Π([Tj ]) = [Tj ], j ≥ 1, and Π([m]) 6= [m] if
m 6∈ {T1, T2, · · · }, and such that the random variables {Tk − Tk−1}∞k=1 are IID and the
random permutations {red(Π|[Tk]−[Tk−1])}∞k=1 are IID. The numbers {Tn}∞m=1 are called
the renewal or regeneration numbers. Our definition of strictly regenerative differs
slightly from that in [8].

Let un denote the probability that the p-shifted random permutation Π has a renewal
at the number n; that is, un = P {pj}

∞
j=1(σ ∈ S∞ : σ([n]) = [n]). It follows easily from the

construction of the random permutation that

un =

n∏
j=1

(

j∑
i=1

pi) =

n∏
j=1

(1−
∞∑

i=j+1

pi). (1.10)

See [8]. Thus, un > 0, for all n. (Note that this positivity, and the consequent aperiodicity
of the renewal mechanism, does not require the positivity of all pj , but only of p1.)

The strictly regenerative distribution P {pj}
∞
j=1 is called positive recurrent if T1 has

finite expectation: E{pj}
∞
j=1 T1 <∞. From standard renewal theory, it follows that

lim
n→∞

un =
1

E{pj}
∞
j=1 T1

. (1.11)

Since
∑∞
j=1

∑∞
i=j+1 pi =

∑∞
j=1 jpj+1, it follows from (1.10) and (1.11) that

P {pj}
∞
j=1 is positive recurrent if and only if

∞∑
n=1

npn <∞. (1.12)

We now state our theorem concerning super-clustering.

Theorem 1.9. Let A(n)
l;k ⊂ Sn denote the event that the set of l consecutive numbers

{k, k + 1, · · · , k + l − 1} appears in a set of l consecutive positions. Let {pn}∞n=1 be a
probability distribution on N with pj > 0, for all j ∈ N. Also assume that the sequence
{pn}∞n=1 is non-increasing. Then for all k ∈ N,

lim
l→∞

lim
n→∞

P
{pj}∞j=1
n (A

(n)
l,k ) = lim

l→∞
lim
n→∞

P
{pj}∞j=1
n (A

(n)
l,n+2−k−l) =

( k−1∏
j=1

j∑
i=1

pi
)( ∞∏

j=1

j∑
i=1

pi
)
.

(1.13)

Also, if limn→∞min(kn, n− kn) =∞, then

lim
l→∞

lim inf
n→∞

P
{pj}∞j=1
n (A

(n)
l,kn

) = lim
l→∞

lim sup
n→∞

P
{pj}∞j=1
n (A

(n)
l,kn

) =
( ∞∏
j=1

j∑
i=1

pi
)2
. (1.14)

Furthermore, the limits in (1.13) and (1.14) are positive, that is, super-clustering oc-
curs, if and only if

∑∞
n=1 npn < ∞, or equivalently, if and only if the p-shifted random

permutation is positive recurrent.

Remark 1.10. If one removes the requirement that the sequence {pj}∞j=1 be non-
increasing, then it follows immediately from the proof of the theorem that

lim
l→∞

lim
n→∞

P
{pj}∞j=1
n (A

(n)
l,k ) ≥

( k−1∏
j=1

j∑
i=1

pi
)( ∞∏

j=1

j∑
i=1

pi
)

and

lim
l→∞

lim inf
n→∞

P
{pj}∞j=1
n (A

(n)
l,kn

) ≥
( ∞∏
j=1

j∑
i=1

pi
)2
.
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Thus, for this more general case, the finiteness of
∑∞
n=1 npn is a sufficient condition for

super-clustering.

Remark 1.11. Consider Theorem 1.9 in the case of the Mallows distribution P qn with
parameter q ∈ (0, 1); that is, the case pj = (1− q)qj−1. From (1.13) and (1.14) we have

lim
l→∞

lim
n→∞

P qn(A
(n)
l,k ) = lim

l→∞
lim
n→∞

P qn(A
(n)
l,n+2−k−l) =

( k−1∏
j=1

(1− qj)
)( ∞∏

j=1

(1− qj)
)
, for all k ∈ N;

lim
l→∞

lim
n→∞

P qn(A
(n)
l,kn

) =
( ∞∏
j=1

(1− qj)
)2
, if lim

n→∞
min(kn, n− kn) =∞.

(1.15)

In particular, super-clustering occurs for the Mallows distribution for fixed parameter
q 6= 1.

We now establish a connection between super-clustering and the inversion statistic
In. For k ≥ 2 and σ ∈ S∞, or σ ∈ Sn with 2 ≤ k ≤ n, let I<k(σ) denote the number of
inversions involving pairs of numbers {{i, k} : 1 ≤ i < k}:

I<k(σ) =
∑

1≤i<k

1σ−1
k <σ−1

i
.

The statistics {I<k}∞k=2 are called the backward ranks. The following result was proven
in [7].

Proposition P. Under P {pj}
∞
j=1 , the random variables {I<k}∞k=2 are independent. Fur-

thermore, the distribution of I<k is given by

P {pj}
∞
j=1(I<k = l) =

pl+1∑k
j=1 pj

, l = 0, 1, · · · , k − 1. (1.16)

Remark 1.12. As noted in [7], from the constructions, it is immediate that Proposition
P also holds with the probability measure P {pj}

∞
j=1 on S∞ replaced by the probability

measure P
{pj}∞j=1
n on Sn, and with {I<k}∞k=2 replaced by {I<k}nk=2, for any n = 2, 3, · · · .

The inversion statistic In, defined in (1.5), can be represented as

In(σ) =

n∑
k=2

I<k(σ). (1.17)

Let X be a random variable on Z+ whose distribution is characterized by 1 +X having
the distribution {pj}∞j=1; that is,

P (X = j) = pj+1, j = 0, 1, · · · . (1.18)

Noting that the distributions in (1.16) are truncated versions of the distribution of X, it
follows readily from (1.17), Proposition P and the remark following the proposition that
the inversion statistic In satisfies the following weak law of large numbers as n→∞:

In
n

under P
{pj}∞j=1
n or under P {pj}

∞
j=1 converges in probability to

EX =

∞∑
n=1

npn+1 ∈ (0,∞].
(1.19)

For a proof in the case of the Mallows distribution, see [7]. Theorem 1.9 and (1.19)
show that for p-shifted distributions, super-clustering occurs if and only if the inversion
statistic In has linear rather than super-linear growth.
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In [7] it was shown that In under the Mallows distribution P qnn , with qn = 1− c
nα , for

c > 0 and α ∈ (0, 1], grows on the order n1+α. One can make cosmetic changes in the
arguments in this paper to conclude that super-clustering does not occur in these cases.
(These measures P qnn are a little different than the p-shifted measures on Sn discussed
in this paper. The ones in this paper are constructed from one distribution p on N, which
is not the case with these measures because the parameter qn is changing with n.)

In section 2 we present an alternative construction of p-shifted random permutations
that is motivated by Proposition P and that, in the context of the Mallows distributions,
can be found, for example, in [6]. This alternative construction will be important for
the proofs of all three theorems. Section 2 also includes a useful duality result that
will be needed for the proof of Theorem 1.1. The above-noted alternative construction
of p-shifted random permutations will be used for both the upper and lower bound
calculations in the proof of Theorem 1.9. The same type of upper bound calculations,
specialized to the case of a Mallows distribution, will also be used in the proof of the
upper bound in Theorem 1.1 and in Theorem 1.5. On the other hand, the original
p-shifted construction, specialized to the case of a Mallows distribution, will be used for
the proof of the lower bound in Theorem 1.1 and in Theorem 1.5. In light of this, it will
be convenient to begin with the proof of Theorem 1.9, which is given in section 3. The
proof of the upper bounds in Theorem 1.1 are given in section 4, and the proof of the
lower bound in Theorem 1.1 is given in section 5. The proof of Theorem 1.5 is given in
section 6.

2 Two auxiliary results

We begin this section with an alternative construction of the p-shifted distribution.
Let X be a random variable on Z+ whose distribution is as in (1.18). Let {Xn}∞n=2

be a sequence of independent random variables with the distribution of Xn being the
distribution of X truncated at n− 1:

P (Xn = i) =
pi+1∑n
j=1 pj

, i = 0, 1, · · ·n− 1. (2.1)

To construct a p-shifted random permutation in S∞, set the number 1 down on a hor-
izontal line. Now inductively, if the numbers {1, · · · , n − 1} have already been placed
down on the line, where n ≥ 2, then sample from Xn and place the number n on the
line in the position for which there are Xn numbers to its right. Let Π denote the above
constructed random permutation in S∞, and let Π(n) denote the random permutation in
Sn obtained by terminating the above construction after n steps.

Proposition 2.1. The random permutations Π and Π(n) generated above are distributed

respectively as the p-shifted distributions P {pj}
∞
j=1 and P

{pj}∞j=1
n .

Proof. By the construction, the random variables {I<n(Π)}∞n=2 are independent and
I<n(Π) is distributed as Xn. As is well-known, a permutation is uniquely determined by
its backward ranks. This fact along with Proposition P and the remark following it prove
that Π has the p-shifted distribution on S∞ and that Π(n) has the p-shifted distribution
on Sn.

The following duality result will be used in the proof of Theorem 1.1.

Proposition 2.2.

P qn(A
(n)
l;k ) = P qn(A

(n)
l;n+2−k−l), k = 1, 2 . . . , n− l + 1. (2.2)

Proof. We defined earlier the reverse σrev of a permutation σ ∈ Sn. The complement
of σ is the permutation σcom satisfying σcom

i = n + 1 − σi, i = 1, · · · , n. Let σrev-com
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denote the permutation obtained by applying reversal and then complementation to
σ (or equivalently, applying complentation and then reversal). Since σrev-com

i < σrev-com
j

if and only σn+1−j < σn+1−i, it follows that σ and σrev-com have the same number of
inversions, and thus, from the definition of the Mallows distribution in (1.4), P qn({σ}) =

P qn({σrev-com}). Using this along with the fact that σ ∈ A
(n)
l;k if and only if σrev-com ∈

A
(n)
l;n+2−k−l proves (2.2).

3 Proof of Theorem 1.9

We note that the final statement of the theorem is almost immediate. Indeed,∑j
i=1 pi = 1−

∑∞
i=j+1 pi and

∑∞
j=1

(∑∞
i=j+1 pi

)
=
∑∞
j=1 jpj+1. Thus, the infinite product∏∞

j=1

∑j
i=1 pi is positive if and only if

∑∞
j=1 jpj <∞.

We now turn to the proofs of (1.13) and (1.14). We use the alternative method
for constructing the p-shifted random permutation, as described at the beginning of
section 2. Thus, we consider a sequence of independent random variables {Xn}∞n=2, with
Xn distributed as in (2.1). For the proof, we will use the notation

Nn =

n∑
i=1

pi = P (X ≤ n− 1), n ∈ N, and N0 = 0, (3.1)

where X is as in (1.18). Note that Nn is the normalization constant on the right hand

side of (2.1). Although P
{pj}∞j=1
n denotes the p-shifted probability measure on Sn, we will

also use this notation for probabilities of events related to the random variables {Xj}nj=2

since these random variables are used in the construction of the P
{pj}∞j=1
n -distributed

random permutation. However, probabilities of events related to X will be denoted by P .

We begin with the proof of (1.13). Fix k ∈ N. Consider the event, which we denote
by Bl;k, that after the first k + l − 1 positive integers have been placed down on the
horizontal line, the set of l numbers {k, k+1, · · · , k+ l−1} appear in a set of l consecutive
positions. Then Bl;k = ∪k−1a=0Bl;k;a, where the events {Bl;k;a}k−1a=0 are disjoint, with Bl;k;a
being the event that the set of l numbers {k, k + 1, · · · , k + l − 1} appear in a set of l
consecutive positions and also that exactly a of the numbers in [k − 1] are to the right of

this set. We calculate P
{pj}∞j=1
n (Bl;k;a).

Lemma 3.1.

P
{pj}∞j=1
n (Bl;k;a) =

l−1∏
j=0

Na+j+1 −Na
Nk+j

. (3.2)

Proof. Suppose that we have already placed down on the horizontal line the numbers in
[k − 1]. Their relative positions are irrelevant for our considerations. Now we use Xk

to insert on the line the number k. Suppose that Xk = a, a ∈ {0, · · · , k − 1}. Then the
number k is inserted on the line in the position for which a of the numbers in [k − 1]

are to its right. Now in order for k + 1 to be placed in a position adjacent to k, we need
Xk+1 ∈ {a, a+ 1}. (If Xk+1 = a, then k + 1 will appear directly to the right of k, while if
Xk+1 = a+1, then k+1 will appear directly to the left of k.) If this occurs, then {k, k+1}
are adjacent, and a of the numbers in [k − 1] are to the right of {k, k + 1}. Continuing
in this vein, for i ∈ {1, · · · , l − 2}, given that the numbers {k, · · · , k + i} are adjacent to
one another, and a of the numbers in [k − 1] appear to the right of {k, · · · , k + i}, then in
order for k + i+ 1 to be placed so that {k, · · · , k + i+ 1} are all adjacent to one another
(with a of the numbers in [k − 1] appearing to the right of these numbers), we need

EJP 27 (2022), paper 87.
Page 9/20

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP812
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Clustering under Mallows and general p-shifted distributions

Xk+i+1 ∈ {a, · · · , a+ i+ 1}. We conclude then that

P
{pj}∞j=1
n (Bl;k;a) =

l−1∏
j=0

P
{pj}∞j=1
n (Xk+j ∈ {a, · · · , a+ j}). (3.3)

Using (2.1), we have

P
{pj}∞j=1
n (Xk+j ∈ {a, · · · , a+ j}) =

Na+j+1 −Na
Nk+j

. (3.4)

The lemma follows from (3.3) and (3.4).

We now consider the conditional probability, P
{pj}∞j=1
n (A

(n)
l;k |Bl;k;a), that is, the proba-

bility, given that Bl;k;a has occurred, that the numbers k + l, · · · , n are inserted in such a
way so as to preserve the mutual adjacency of the numbers in the set {k, · · · , k + l − 1}.
We have the following lower bound.

Lemma 3.2.

P
{pj}∞j=1
n (A

(n)
l;k |Bl;k;a) ≥

n−k−l∏
j=0

Na+j+1

Nk+l+j
. (3.5)

Proof. The conditional probability in the statement of the lemma is larger or equal to
the probability of the event that all of the remaining numbers are inserted to the right of
the set {k, · · · , k + l − 1}. This event is given by ∩n−k−lj=0 {Xk+l+j ≤ a+ j}. We have

P
{pj}∞j=1
n (∩n−k−lj=0 {Xk+l+j ≤ a+ j}) =

n−k−l∏
j=0

Na+j+1

Nk+l+j
. (3.6)

It is clear from the construction that P
{pj}∞j=1
n (A

(n)
l;k |Bl;k;a) is decreasing in n. Thus,

since P
{pj}∞j=1
n (Bl;k;a) is independent of n, it follows that P

{pj}∞j=1
n (A

(n)
l;k ) is decreasing in

n. Consequently limn→∞ P
{pj}∞j=1
n (A

(n)
l;k ) exists. Since P

{pj}∞j=1
n (A

(n)
l;k ) is clearly decreasing

in l, it then follows that liml→∞ limn→∞ P
{pj}∞j=1
n (A

(n)
l;k ) also exists. Using Lemmas 3.1

and 3.2, we now obtain a lower bound on liml→∞ limn→∞ P
{pj}∞j=1
n (A

(n)
l;k ). Writing

P
{pj}∞j=1
n (A

(n)
l;k ) =

k−1∑
a=0

P
{pj}∞j=1
n (Bl;k;a)P

{pj}∞j=1
n (A

(n)
l;k |Bl;k;a), (3.7)

(3.2) and (3.5) yield

P
{pj}∞j=1
n (A

(n)
l;k ) ≥

k−1∑
a=0

( l−1∏
j=0

Na+j+1 −Na
Nk+j

)( n−k−l∏
j=0

Na+j+1

Nk+l+j

)
. (3.8)

We have
∏n−k−l
j=0

Na+j+1

Nk+l+j
= Na+1···Nk+l−1

Nn−k−l+a+2···Nn . Using this along with the fact that limn→∞Nn=

1 and the fact that the limit of the left hand side of (3.8) as n→∞ exists, we have

lim
n→∞

P
{pj}∞j=1
n (A

(n)
l;k ) ≥

k−1∑
a=0

( l−1∏
j=0

Na+j+1 −Na
Nk+j

)( k+l−1∏
i=a+1

Ni
)

=

k−1∑
a=0

( l−1∏
j=0

(Na+j+1 −Na)
)( k−1∏

i=a+1

Ni
)
.

(3.9)
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We now let l → ∞ in (3.9). We only consider the term in the summation with a = 0,
because it turns out that the terms with a ≥ 1 converge to 0 as l→∞. We obtain

lim
l→∞

lim
n→∞

P
{pj}∞j=1
n (A

(n)
l;k ) ≥

( k−1∏
j=1

Nj
)( ∞∏

j=1

Nj
)

=
( k−1∏
j=1

j∑
i=1

pi
)( ∞∏

j=1

j∑
i=1

pi
)
. (3.10)

We now turn to an upper bound on P
{pj}∞j=1
n (A

(n)
l;k |Bl;k;a).

Lemma 3.3.

P
{pj}∞j=1
n (A

(n)
l;k |Bl;k;a) ≤

n−k−l+1∏
j=1

(1−Na+j+l−1 +Na+j). (3.11)

Proof. For the proof of this upper bound, we note the following facts. By the assumption
that {pn}∞n=1 is non-increasing, it follows that P (X 6∈ {j+1, · · · , j+ l−1}) is increasing in

j. Also, P (X 6∈ {j+ 1, · · · , j+ l− 1}) > P
{pj}∞j=1
n (Xm 6∈ {j+ 1, · · · , j+ l− 1}), for j+ l ≤ m.

Recall that P
{pj}∞j=1
n (A

(n)
l;k |Bl;k;a) is the conditional probability, given Bl;k;a, that the

numbers k + l, · · · , n are inserted in such a way so as to preserve the mutual adjacency
of the set {k, · · · , k + l − 1}. First the number k + l is inserted. The probability that
its insertion preserves the mutual adjacency property of the set {k, · · · , k + l − 1} is

P
{pj}∞j=1
n (Xk+l 6∈ {a+1, · · · , a+l−1}), which is less than P (X 6∈ {a+1, · · · , a+l−1}). If the

insertion of k+ l preserves the mutual adjacency, then either Xk+l ∈ {0, · · · , a} or Xk+l ∈
{a+ l, · · · , k + l− 1}. If Xk+l ∈ {0, · · · , a}, then in order for the mutually adjacency to be
preserved when the number k+ l+1 is inserted, one needs

{
Xk+1+1 6∈ {a+2, · · · , a+ l}

}
,

while if Xk+l ∈ {a+ l, · · · , k+ l−1}, then one needs
{
Xk+1+1 6∈ {a+1, · · · , a+ l−1}

}
. The

probability of either of these events is less than P (X 6∈ {a+ 2, · · · , a+ l}). Thus, an upper
bound for the conditional probability, given Bl;k;a, that the insertion of k + l and k + l + 1

preserves the mutual adjacency is P (X 6∈ {a+ 1, · · · , a+ l− 1})P (X 6∈ {a+ 2, · · · , a+ l}).
Continuing in this vein, we conclude that

P
({pj}∞j=1)
n (A

(n)
l;k |Bl;k;a) ≤

n−k−l+1∏
j=1

P (X 6∈ {a+ j, · · · , a+ j + l − 2}). (3.12)

We have
P (X 6∈ {a+ j, · · · , a+ j + l − 2}) = (1−Na+j+l−1 +Na+j) (3.13)

The lemma now follows from (3.12) and (3.13).

We now use Lemmas 3.1 and 3.3 to obtain an upper bound on

liml→∞ limn→∞ P
{pj}∞j=1
n (A

(n)
l;k ). From (3.7) (3.2) and (3.11), we have

P
{pj}∞j=1
n (A

(n)
l;k ) ≤

k−1∑
a=0

( l−1∏
j=0

Na+j+1 −Na
Nk+j

)( n−k−l+1∏
j=1

(1−Na+j+l−1 +Na+j)
)
. (3.14)

Letting n→∞ and using the fact, noted above in the proof of the lower bound, that the
limit of the left hand side of (3.14) exists as n→∞, we have

lim
n→∞

P
{pj}∞j=1
n (A

(n)
l;k ) ≤

k−1∑
a=0

( l−1∏
j=0

Na+j+1 −Na
Nk+j

)( ∞∏
j=1

(1−Na+j+l−1 +Na+j)
)
. (3.15)

We have
Na+j+1 −Na

Nk+j
= 1− Na + (Nk+j −Na+j+1)

Nk+j
< 1−Na ∈ (0, 1),

for all j ≥ 0 and a ∈ {1, · · · , k − 1}.
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Therefore, when letting l →∞ in (3.15), a contribution will come from the right hand
side only when a = 0. We obtain

lim
l→∞

lim
n→∞

P
{pj}∞j=1
n (A

(n)
l;k ) ≤ lim

l→∞

( l−1∏
j=0

Nj+1

Nk+j

)( ∞∏
j=1

(1−Nj+l−1 +Nj)
)

=

( k−1∏
j=1

Nj
)( ∞∏

j=1

Nj
)

=
( k−1∏
j=1

j∑
i=1

pi
)( ∞∏

j=1

j∑
i=1

pi
)
.

(3.16)

Now (1.13) follows from (3.10) and (3.16).

We now turn to the proof of (1.14). As with the proof of (1.13), the term with a = 0

will dominate. Thus, for the lower bound, using (3.8) with k = kn and ignoring the terms
with a ≥ 1, we have

P
{pj}∞j=1
n (A

(n)
l;kn

) ≥
( l−1∏
j=0

Nj+1

Nkn+j

)( n−kn−l∏
j=0

Nj+1

Nkn+l+j

)
. (3.17)

Letting n→∞ in (3.17) and using the assumption that limn→∞min(kn, n− kn) =∞, it
follows that

lim inf
n→∞

P
{pj}∞j=1
n (A

(n)
l;kn

) ≥
( l∏
j=1

Nj
)( ∞∏

j=1

Nj
)
.

Now letting l→∞ gives

lim
l→∞

lim inf
n→∞

P
{pj}∞j=1
n (A

(n)
l;kn

) ≥
( ∞∏
j=1

Nj
)2

=
( ∞∏
j=1

j∑
i=1

pi
)2
. (3.18)

For the upper bound, let k = kn in (3.14). The second factor in the summand,(∏l−1
j=0

Na+j+1−Na
Nkn+j

)(∏n−kn−l+1
j=1 (1 − Na+j+l−1 + Na+j)

)
, is less than 1, while the first

factor in the summand satisfies

l−1∏
j=0

Na+j+1 −Na
Nkn+j

≤ Na+1 −Na
Nkn

=
pa+1

Nkn
≤ pa+1

p1
,

for a ∈ {0, · · · , kn − 1} and n ≥ 1. Since
∑∞
a=0

pa+1

p1
< ∞, the dominated convergence

theorem and the assumption that limn→∞min(kn, n− kn) =∞ allow us to conclude upon
letting n→∞ in (3.14) with k = kn that

lim sup
n→∞

P
{pj}∞j=1
n (A

(n)
l;kn

) ≤
∞∑
a=0

( l−1∏
j=0

(Na+j+1 −Na)
)( ∞∏

j=1

(1−Na+j+l−1 +Na+j)
)
. (3.19)

For a ≥ 1, we have Na+j+1−Na ∈ (0, 1−p1). Consequently, when letting l→∞ in (3.19),
a contribution will come from the right hand side only when a = 0. We obtain

lim
l→∞

lim sup
n→∞

P
{pj}∞j=1
n (A

(n)
l;kn

) ≤
( ∞∏
j=1

Nj
)2

=
( ∞∏
j=1

j∑
i=1

pi
)2
. (3.20)

Now (1.14) follows from (3.18) and (3.20).
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4 Proofs of upper bounds in Theorem 1.1

We begin the proof of (1.7) and the proof of the upper bound in (1.6) in tandem, and
then consider each case separately at an appropriate point in the exposition. We also
need to show that the upper bound in (1.6) is uniform over all sequences {kn}∞n=1.

Recall that (1.7) is stated to hold under the assumption min(kn,n−kn)
nα =∞, while (1.6)

is stated to hold with no assumption on {kn}∞n=1. In fact, for our proofs, we will always
need to assume that

lim
n→∞

kn
nα

=∞. (4.1)

What allows us to make this assumption is Proposition 2.2. Thus, in the sequel we will
always assume that (4.1) holds.

We follow the same construction used in the proof of the upper bound in Theorem 1.9.
We start from (3.14) with k replaced by kn and with {pj}∞j=1 satisfying pj = (1− qn)qj−1n ,
since the Mallows distribution P qnn is the p-shifted distribution with this choice of p-
distribution. Thus, it follows from (3.1) that for the case at hand,

Nb =

b∑
i=1

(1− qn)qi−1n = 1− qbn. (4.2)

Substituting (4.2) in (3.14), we obtain

P qnn (A
(n)
l;kn

) ≤
l−1∏
j=0

1− qj+1
n

1− qkn+jn

kn−1∑
a=0

qaln

n−kn−l+1∏
j=1

(
1− qa+jn + qa+j+l−1n

)
. (4.3)

We have

1− qbn = 1− (1− c

nα
)b ∼ bc

nα
, for b ∈ N, (4.4)

and
1− qkn+jn = 1− (1− c

nα
)kn+j ≥ 1− e−

c(kn+j)
nα . (4.5)

From (4.4) and (4.5) along with the assumption on qn and the assumption (4.1) on kn,
the term multiplying the summation in (4.3) satisfies

l−1∏
j=0

1− qj+1
n

1− qkn+jn

∼ l!cl

nαl
. (4.6)

Using (4.4), the summation in (4.3) satisfies

kn−1∑
a=0

qaln

n−kn−l+1∏
j=1

(
1− qa+jn + qa+j+l−1n

)
∼
kn−1∑
a=0

qaln

n−kn−l+1∏
j=1

(
1− qa+jn (l − 1)c

nα

)
. (4.7)

We split up the continuation of the proof between the upper bound in (1.6), in which
case no assumption is made on kn (accept for (4.1), as explained above), and the bound
in (1.7), in which case kn is assumed to satisfy min(kn,n−kn)

nα = ∞. We begin with the
former case. In this case, from (4.3) along with (4.4), (4.6) and (4.7), we have

P qn(A
(n)
l;kn

) .
l!cl

nαl

kn−1∑
a=0

qaln ≤
l!cl

nαl
1

1− qln
∼ 1

l

l!cl−1

nα(l−1)
,

which is the upper bound in (1.6).
It is clear from the above proof that if we fix α′ ∈ (α, 1) and let k′n = [nα

′
], then

the upper bound in (1.6) is uniform over sequences {kn}∞n=1 satisfying kn ≥ k′n. From
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this along with (2.2), it follows that the upper bound in (1.6) is in fact uniform over all
sequences {kn}∞n=1.

Now consider the bound in (1.7) and assume that kn satisfies min(kn,n−kn)
nα = ∞. In

the previous case, we simply replaced the product on the right hand side of (4.7) by one.
For the current case, we analyze this product. We write

log

n−kn−l+1∏
j=1

(
1− qa+jn (l − 1)c

nα

)
=

n−kn−l+1∑
j=1

log
(

1− qa+jn (l − 1)c

nα

)
. (4.8)

We have∫ n−kn−l+1

0

log
(

1− qa+xn (l − 1)c

nα

)
dx ≤

n−kn−l+1∑
j=1

log
(

1− qa+jn (l − 1)c

nα

)
≤

∫ n−kn−l+2

1

log
(

1− qa+xn (l − 1)c

nα

)
dx.

(4.9)

Making the change of variables, y = qxn, we have∫ B

A

log
(

1− qa+xn (l − 1)c

nα

)
dx = − 1

log qn

∫ qAn

qBn

log
(
1− qan(l−1)c

nα y
)

y
dy. (4.10)

From (4.10) and the assumptions on qn and kn, both the left and the right hand sides

of (4.9) are asymptotic to nα

c

∫ 1

0

log
(
1− q

a
n(l−1)c

nα y
)

y dy. A change of variables gives∫ 1

0

log(1−By)

y
dy =

∫ B

0

log(1− u)

u
du ∼ −B, as B → 0+.

Therefore,

nα

c

∫ 1

0

log
(
1− qan(l−1)c

nα y
)

y
dy ∼ −(l − 1)qan, uniformly over a ∈ {0, · · · , kn − 1}.

Consequently, the middle term in (4.9) satisfies

n−kn−l+1∑
i=1

log
(

1− qa+in (l − 1)c

nα

)
∼ −(l− 1)qan, uniformly over a ∈ {0, · · · , kn − 1}. (4.11)

From (4.8) and (4.11), we have

n−kn−l+1∏
j=1

(
1− qa+jn (l − 1)c

nα

)
∼ e−(l−1)q

a
n , uniformly over a ∈ {0, · · · , kn − 1}. (4.12)

From (4.3) along with (4.6), (4.7) and (4.12), we obtain

P qn(A
(n)
l;kn

) .
l!cl

nαl

kn−1∑
a=0

qaln e
−(l−1)qan . (4.13)

By the assumptions on kn and qn,
∑kn−1
a=0 qaln e

−(l−1)qan is asymptotic to∫ kn
0

qxln e
−(l−1)qxndx. Making the change of variables y = qxn, this integral is equal to

− 1
log qn

∫ 1

qknn
yl−1e−(l−1)ydy, which in turn is asymptotic to

nα

c

∫ 1

0
yl−1e−(l−1)ydy. Thus,

kn−1∑
a=0

qaln e
−(l−1)qan ∼ nα

c

∫ 1

0

yl−1e−(l−1)ydy. (4.14)
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From (4.13) and (4.14), we conclude that

P qn(A
(n)
l;kn

) .
( ∫ 1

0

yl−1e−(l−1)ydy
) cl−1l!

nα(l−1)
,

which is the upper bound in (1.7).

5 Proof of lower bound in Theorem 1.1

We need to prove the lower bound in (1.6), and we need to show that it holds uniformly
over all sequences {kn}∞n=1. As in the proof of the upper bounds, we will assume that kn
satisfies (4.1), which is permissible by Proposition 2.2. The method used in the proof of
Theorem 1.9 and in the proof of the upper bounds in Theorem 1.1, via the alternative
method for constructing a p-shifted random permutation, is not precise enough to be
of use in the proof of the lower bound in Theorem 1.1. For the lower bound, we utilize
the original construction for p-shifted random permutations on Sn, specializing to the
Mallows distribution with parameter qn, for which pj = (1− qn)qj−1n . We use the notation
P qnn not only for the Mallows distribution itself, but also for probabilities of events
associated with the construction. With regard to this construction, for j ∈ {0, · · · , kn−1},
let Cj;kn,l denote the event that exactly j numbers from the set {1, · · · , kn − 1} appear
in the permutation before any number from the set {kn, · · · , kn + l − 1} appears. We
calculate P qnn (Cj;kn,l) explicitly.

Lemma 5.1.

P qnn (Cj;kn,l) =


(1−qln)q

kn−1−j
n

1−qkn−1−j+l
n

∏kn−1
b=kn−j

(1−qbn)∏kn+l−1
b=kn−j+l

(1−qbn)
, j ∈ {0, 1, · · · , l − 1};

(1−qln)q
kn−1−j
n

1−qkn−1−j+l
n

∏kn−j+l−1
b=kn−j

(1−qbn)∏kn+l−1
b=kn

(1−qbn)
, j ∈ {l, l + 1, · · · , kn − 1}.

(5.1)

Proof. For a, b ∈ N, let ra,b denote the probability that in the construction, the first
number that appears from the set {1, · · · , a+ b} comes from the set {1, · · · , a}. Then

ra,b =

∑a
j=1(1− qn)qj−1n∑a+b
j=1(1− qn)qj−1n

=
1− qan

1− qa+bn

. (5.2)

For convenience, define r0,b = 0. Then from the construction, it follows that

P qnn (Cj;kn,l) =
( j∏
i=1

rkn−i,l
)
(1− rkn−j−1,l), j = 0, · · · , kn − 1. (5.3)

From (5.2) and (5.3), we have

P qnn (Cj;kn,l) =
( j∏
i=1

1− qkn−in

1− qkn−i+ln

)qkn−j−1n − qkn−j−1+ln

1− qkn−j−1+ln

=

(1− qln)qkn−1−jn

1− qkn−1−j+ln

∏min(kn−j+l−1,kn−1)
b=kn−j (1− qbn)∏kn+l−1
b=max(kn−j+l,kn)(1− q

b
n)

.

(5.4)

The right hand side of (5.4) is equivalent to the right hand side of (5.1).

We now obtain a lower bound on P qnn (A
(n)
l;kn
|Cj;kn,l).

Lemma 5.2.

P qnn (A
(n)
l;kn
|Cj;kn,l) ≥ q(l−1)(kn−1−j)n

∏l−1
b=1(1− qbn)∏n−j−1

b=n−l−j+1(1− qbn)
. (5.5)
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Proof. In order for the event A(n)
l;kn

to occur, the l numbers {kn, · · · , kn+l−1}must appear
consecutively (in arbitrary order) in the construction. Thus, given the event Cj;kn,l, in

order for the event A(n)
l;kn

to occur, all of the other l − 1 numbers in {kn, · · · , kn + l − 1}
must occur immediately after the appearance of the first number from this set. Given
Cj;kn,l, after the appearance of the first number from {kn, · · · , kn + l − 1}, there are still
kn − 1− j numbers from {1, · · · , kn − 1} that have not yet appeared, as well as a certain

amount of numbers from {kn + l, · · · , n}. Thus, a lower bound on P qnn (A
(n)
l;kn
|Cj;kn,l) is

obtained by assuming that none of the numbers from {kn + l, · · · , n} have yet appeared.
(Here it is appropriate to note that if we calculate an upper bound by assuming that all
of the numbers from {kn + l, · · · , n} have already appeared, then the upper bound we

arrive at for P qnn (A
(n)
l;kn

) is not as good as the upper bound in (1.7).)
In order to calculate explicitly this lower bound, for a, b, c ∈ N, let ra,b,c denote the

probability that the first number that appears from the set {1, · · · , a+ b+ c} comes from
the set {1, · · · , a} ∪ {a+ b+ 1, · · · , a+ b+ c}. Then

ra,b,c =

∑a
j=1(1− qn)qj−1n +

∑a+b+c
j=a+b+1(1− qn)qj−1n∑a+b+c

j=1 (1− qn)qj−1n

=
1− qan + qa+bn − qa+b+cn

1− qa+b+cn

.

From the construction, the lower bound on P qnn (A
(n)
l;kn
|Cj;kn,l), obtained by assuming that

none of the numbers from {kn + l, · · · , n} have yet appeared, is given by

P qnn (A
(n)
l;kn
|Cj;kn,l) ≥

l−1∏
i=1

(1− rkn−1−j,i,n−kn−l+1) =

l−1∏
i=1

qkn−1−jn − qkn−1−j+in

1− qn−l−j+in

=

q(l−1)(kn−1−j)n

∏l−1
b=1(1− qbn)∏n−j−1

b=n−l−j+1(1− qbn)
.

We now use Lemmas 5.1 and 5.2 to obtain a lower bound on P qnn (A
(n)
l;kn

). From (5.1)
and (5.5), we have

P qnn (A
(n)
l;kn

) =

kn−1∑
j=0

P qnn (Cj;kn,l)P
qn
n (A

(n)
l;kn
|Cj;kn,l) ≥

kn−1∑
j=l

(1− qln)qkn−1−jn

1− qkn−1−j+ln

∏kn−j+l−1
b=kn−j (1− qbn)∏kn+l−1
b=kn

(1− qbn)
q(l−1)(kn−1−j)n

∏l−1
b=1(1− qbn)∏n−j−1

b=n−l−j+1(1− qbn)
.

(5.6)

Using the assumption on qn in the last step below, the right hand side of (5.6) satisfies

kn−1∑
j=l

(1− qln)qkn−1−jn

1− qkn−1−j+ln

∏kn−j+l−1
b=kn−j (1− qbn)∏kn+l−1
b=kn

(1− qbn)
q(l−1)(kn−1−j)n

∏l−1
b=1(1− qbn)∏n−j−1

b=n−l−j+1(1− qbn)
≥

( l∏
b=1

(1− qbn)
) kn−1∑
j=l

ql(kn−1−j)n

kn−j+l−2∏
b=kn−j

(1− qbn) ≥

( l∏
b=1

(1− qbn)
) kn−1∑
j=l

ql(kn−1−j)n (1− qkn−jn )l−1 ∼ l!cl

nlα

kn−1∑
j=l

ql(kn−1−j)n

(
1− qkn−jn

)l−1
.

(5.7)

And
kn−1∑
j=l

ql(kn−1−j)n

(
1− qkn−jn

)l−1 ∼ ∫ kn−1−l

0

qxln (1− qxn)l−1dx. (5.8)
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Making the change of variables y = qxn, and using the assumption on qn and the assump-
tion on kn in (4.1), we have∫ kn−1−l

0

qxln (1− qxn)l−1dx = − 1

log qn

∫ 1

qkn−1−l
n

yl−1(1− y)l−1dy ∼

nα

c

∫ 1

0

yl−1(1− y)l−1dy =
nα

c

Γ(l)Γ(l)

Γ(2l)
=
nα

c

(
(l − 1)!

)2
(2l)!

.

(5.9)

From (5.6)-(5.9), we conclude that

P qnn (A
(n)
l;kn

) &

(
(l − 1)!

)2
(2l)!

cl−1l!

nα(l−1)
,

which is the lower bound in (1.6).
It is clear from the proof that if we fix α′ ∈ (α, 1) and let k′n = [nα

′
], then the lower

bound in (1.6) is uniform over sequences {kn}∞n=1 satisfying kn ≥ k′n. From this along
with (2.2), it follows that the lower bound in (1.6) is in fact uniform over all sequences
{kn}∞n=1.

6 Proof of Theorem 1.5

Proof of part (i). We begin with the upper bound in (1.8). We follow a slightly more
precise version of the construction that was used in the upper bound in Theorem 1.9,
and then reused for the particular case of the Mallows distribution in the proof of the
upper bounds in Theorem 1.1. As with the proof of the upper bounds in Theorem 1.1, we
use the construction from the proof of Theorem 1.9 in the particular case of the Mallows
distribution, with parameter qn; namely, with pj = (1 − qn)qj−1n . Then from (2.1), the
random variables {Xj}∞j=2 have truncated geometric distributions. Although P qnn denotes
the Mallows distribution with parameter qn, we also use this notation for probabilities of
events related to the random variables {Xj}nj=2 since these random variables are used
in the construction of the P qnn -distributed random permutation. It is easy to check that
P qnn (Xm 6∈ {j+ 1, · · · , j+ l− 1}) is monotone increasing in j. Thus, the argument leading
up to (3.12) in fact gives the following slightly more precise version of (3.12):

P qnn (A
(n)
l;kn
|Bl;kn;a) ≤

n−kn−l+1∏
i=1

P qnn (Xkn+l−1+i 6∈ {a+ i, · · · , a+ i+ l − 2}) =

n−kn−l+1∏
i=1

(
1− qa+in − qa+i+l−1n

1− qkn+l+i−1n

)
.

(6.1)

From the assumption on qn,

n−kn−l+1∏
i=1

(
1− qa+in − qa+i+l−1n

1− qkn+l+i−1n

)
∼
n−kn−l+1∏

i=1

(
1− (l − 1)cn−1qa+in

1− qkn+l+i−1n

)
. (6.2)

We have

log

n−kn−l+1∏
i=1

(
1− (l − 1)cn−1qa+in

1− qkn+l+i−1n

)
=

n−kn−l+1∑
i=1

log
(

1− (l − 1)cn−1qa+in

1− qkn+l+i−1n

)
∼

∫ n−kn−l+1

0

log
(

1− (l − 1)cn−1qa+xn

1− qkn+l+x−1n

)
dx, uniformly over a ∈ {0, · · · , kn − 1}.

(6.3)

Making the change of variables y = qxn, using the assumptions on kn and qn and defining

γ(c, d) = log
1− e−cd

1− e−c
< 0, (6.4)
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in order to simplify notation in the sequel, we have∫ n−kn−l+1

0

log
(

1− (l − 1)cn−1qa+xn

1− qkn+l+x−1n

)
dx =

− 1

log qn

∫ 1

qn−kn−l+1
n

log
(

1− (l−1)cn−1qany

1−qkn+l−1
n y

)
y

dy ≤

1

log qn

∫ 1

qn−kn−l+1
n

(l − 1)cn−1qan
1− qkn+l−1n y

dy ∼

− (l − 1)qan

∫ 1

e−c(1−d)

1

1− e−cdy
dy =

(l − 1)qane
cd log

1− e−cd

1− e−c
= (l − 1)qane

cdγ(c, d), uniformly over a ∈ {0, · · · , kn − 1}.

(6.5)

From (6.1)-(6.5), we conclude that

P qnn (A
(n)
l;kn
|Bl;k;a) . e(l−1)q

a
ne
cdγ(c,d), uniformly over a ∈ {0, · · · , kn − 1}. (6.6)

Recall that for the particular case of the Mallows distribution with parameter qn,
the quantity Nb is given by (4.2). Thus, in this particular case, and with k replaced by
kn, (3.2) becomes

P qnn (Bl;kn;a) =

l−1∏
j=0

qan − qa+j+1
n

1− qkn+jn

. (6.7)

Using (6.6) and (6.7), along with the assumptions on kn and qn, we have

P qnn (A
(n)
l;kn

) .
kn−1∑
a=0

qaln

∏l
b=1(1− qbn)∏kn+l−1

b=kn
(1− qbn)

e(l−1)q
a
ne
cdγ(c,d) ∼

l!cl

nl(1− e−cd)l

∫ dn

0

qxln e
(l−1)qxne

cdγ(c,d)dx.

(6.8)

Making the change of variables y = qxn and using the assumption on qn, we obtain∫ dn

0

qxln e
(l−1)qxne

cdγ(c,d)dx = − 1

log qn

∫ 1

qdnn

yl−1e(l−1)e
cdγ(c,d)ydy ∼

n

c

∫ 1

e−cd
yl−1e(l−1)e

cdγ(c,d)ydy.

(6.9)

From (6.8), (6.9) and (6.4), we obtain the upper bound in (1.8).
We now turn to the lower bound in (1.8). We follow the proof of the lower bound in

Theorem 1.1 in section 5 up through equation (5.6), as the proof in that section up to
that point makes no assumption on qn. The next equation in section 5, equation (5.7),
contains α, which arises from the fact that qn = 1 − c

nα . Equation (5.7) also holds in
the present situation, where qn = 1 − c

n , if we set α = 1 in (5.7). Equation (5.8) and
the first line of equation (5.9) continue to hold in the present situation. However, in
the present situation, the first term on the second line of (5.9) must be changed from
nα

c

∫ 1

0
yl−1(1− y)l−1dy to n

c

∫ 1

e−cd
yl−1(1− y)l−1dy, because in the present situation α = 1

and limn→∞ qkn−1−ln = e−cd. Of course, in the present situation, we ignore the rest of the
second line. Thus, from (5.6)-(5.9), with the above noted changes taken into account, we
conclude that

P qnn (A
(n)
l;kn

) &
( ∫ 1

e−cd

(
y(1− y)

)l−1
dy
) c l−1 l!
n(l−1)

,

which is the lower bound in (1.8).
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Proof of part (ii). We write qn = 1− ε(n), where 0 < ε(n) = o( 1
n ). We follow the proof of

part (i) through the first three lines of (6.5), the only change being that the term cn−1 is
replaced by ε(n). Starting with the inequality between the first and third lines there, we
have ∫ n−kn−l+1

0

log
(

1− (l − 1)ε(n)qa+xn

1− qkn+l+x−1n

)
dx ≤

1

log qn

∫ 1

qn−kn−l+1
n

(l − 1)ε(n)qan
1− qkn+l−1n y

dy =

(l − 1)ε(n)qan
log qn

q−(kn+l−1)n log
( 1− qnn

1− qkn+l−1n

)
.

(6.10)

Since ε(n) = o( 1
n ), we have 1 − qnn ∼ nε(n), 1 − qkn+l−1n ∼ knε(n), q−(kn+l−1)n ∼ 1 and

qan ∼ 1, uniformly over a ∈ {0, · · · , kn − 1}. Using this with (6.10), we have∫ n−kn−l+1

0

log
(

1− (l − 1)ε(n)qa+xn

1− qkn+l+x−1n

)
dx . (l − 1) log

kn
n
,

uniformly over a ∈ {0, · · · , kn − 1}.
(6.11)

From (6.1)-(6.3) (with cn−1 replaced by ε(n)) and (6.11), we conclude that

P qnn (A
(n)
l;kn
|Bl;k;a) . (

kn
n

)l−1, uniformly over a ∈ {0, · · · , kn − 1}. (6.12)

Using (6.12) and (6.7), along with the assumption on qn, we conclude that

P qnn (A
(n)
l;kn

) .
kn−1∑
a=0

qaln

∏l
b=1(1− qbn)∏kn+l−1

b=kn
(1− qbn)

(
kn
n

)l−1 ∼

l!(ε(n))l

(knε(n))l
(
kn
n

)l−1
kn−1∑
a=0

qaln =
l!(ε(n))l

(knε(n))l
(
kn
n

)l−1
1− qknln

1− qln
∼

l!

nl−1kn

knlε(n)

lε(n)
=

l!

nl−1
.

(6.13)
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