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Abstract

In this paper we study several inequalities of log-Sobolev type for Dunkl operators.
After proving an equivalent of the classical inequality for the usual Dunkl measure µk,
we also study a number of inequalities for probability measures of Boltzmann type
of the form e−|x|

p

dµk. These are obtained using the method of U -bounds. Poincaré
inequalities are obtained as consequences of the log-Sobolev inequality. The connec-
tion between Poincaré and log-Sobolev inequalities is further examined, obtaining in
particular tight log-Sobolev inequalities. Finally, we study application to exponential
integrability and to functional inequalities for a class of singular Boltzmann-Gibbs
measures.
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1 Introduction

The non-tight logarithmic Sobolev inequality (or log-Sobolev, for short), on a general
measure space (Ω,F , µ) with a quadratic form Q defined on a suitable space of functions
on Ω, states that ∫

Ω

f2 log
f2∫

Ω
f2 dµ

dµ ≤ CQ(f) +D

∫
Ω

f2 dµ, (1.1)

for some constants C and D. If D = 0, we say that (1.1) is tight and we call it simply the
log-Sobolev inequality. Although this inequality was used before, it was first explicitly
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Logarithmic Sobolev inequalities for Dunkl operators

recognised in Gross’s seminal paper [10]. His main result was the equivalence of log-
Sobolev inequalities to hypercontractivity. For more information about the properties
and uses of log-Sobolev inequalities, as well as some historical background, see [4] and
[11] and references therein.

Dunkl operators are differential-difference operators which generalise the usual
partial derivatives by including difference terms defined in terms of a finite reflection
group. Although originally introduced to study special functions with certain symmetries,
they have found other applications, for example in mathematical physics where they have
been used to study Calogero-Moser-Sutherland (CMS) models of interacting particles. A
short introduction to the theory of Dunkl operators is given below in Section 2. More
information about applications to CMS models can be found in [18], and an overview of
their use in probability theory is contained in [9]. For more recent work on functional
inequalities for Dunkl operators see [19], [20], [3], [1], [7], [21], [15], and references
therein.

We begin our study with a log-Sobolev inequality for the Dunkl measure µk which we
prove using the Sobolev inequality for Dunkl operators and Jensen’s inequality:∫

RN
f2 log

f2∫
f2 dµk

dµk ≤ C
∫
RN
|∇kf |2 dµk. (1.2)

Here dµk = wk dx is the Dunkl measure with weight wk and ∇k is the Dunkl gradient
(see Section 2 for a definition of these terms and an introduction to Dunkl theory). Here
and in most inequalities proved in the paper, the constants we obtain depend on the
dimension N and are not necessarily optimal.

The log-Sobolev inequality (1.2) will be the basis of many of the subsequent inequali-
ties. Our main aim is to study functional inequalities for the Boltzmann-type probability
measures

dνU =
1

Z
e−U dµk, (1.3)

where Z is just a normalising constant and U is a function (in this paper, we mainly
consider U(x) = |x|p for some p > 1). The strategy to prove (non-tight) log-Sobolev
inequalities for such measures is to apply inequality (1.2) to a function with a suitable
weight. This will indeed almost prove the inequality we desire, except for a few residual
terms. In order to estimate these terms we use U -bounds, which were introduced in [12]
as part of powerful machinery to study quite general functional inequalities.

We also exploit the connection between the log-Sobolev and Poincaré inequalities. In
general, it is known that the tight log-Sobolev inequality implies the Poincaré inequality.
On the other hand, a non-tight log-Sobolev inequality, in the presence of a Poincaré
inequality, can be improved to obtain a tight log-Sobolev inequality. For a detailed
discussion of this connection, see [4]. We use these ideas both to produce new Poincaré
inequalities for Dunkl operators, and to deduce tight log-Sobolev inequalities from our
previous results.

Let us summarise our main results. Firstly, for dνU defined by (1.3) with U(x) = |x|p
for some p > 1, we shall prove in Proposition 6.4 the Poincaré inequality∫

RN

∣∣∣∣f − ∫
RN

f dνU

∣∣∣∣2 dνU ≤ C
∫
RN
|∇kf |2 dνU .

For the same measures but for p ≥ 2, we shall prove in Theorem 7.1 the tight log-Sobolev
inequality ∫

RN
f2 log

f2∫
f2 dνU

dνU ≤ C
∫
RN
|∇kf |2 dνU .
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Logarithmic Sobolev inequalities for Dunkl operators

Such an inequality cannot hold for 1 < p < 2 (see the Remark at the end of Section
8.1), and in this range we shall prove in Theorem 7.3 a more general tight Φ-Sobolev
inequality ∫

RN
Φ(f2) dνU − Φ

(∫
RN

f2 dνU

)
≤ C

∫
RN
|∇kf |2 dνU ,

where Φ(x) = x(log(x + 1))s and s = 2p−1
p . Finally, we also prove, in Theorem 7.3, a

log-Sobolev type inequality in L1:∫
RN

f

∣∣∣∣log
|f |∫
|f |dνU

∣∣∣∣s dνU ≤ C1

∫
RN
|∇kf |dνU + C2

∫
RN
|f |dνU ,

where p ≥ 1 and s = p−1
p . Note that here, and everywhere below, we use the shorthand∫

:=
∫
RN

in order not to overcomplicate the notation.
In terms of applications, we first prove exponential integrability of Lipschitz functions

for probability measures of the form (1.3), as well as a Gaussian measure concentration
property for the same family of measures.

Finally, we also study applications of our inequalities to singular Boltzmann-Gibbs
measures. A good expository paper on functional inequalities for such measures is [5]. In
this paper, the probability measures in question are of the form 1

Z1De
−V dx, where Z is a

normalising constant, 1D is the indicator function of D = {x ∈ RN |x1 > x2 > . . . > xN},
and

V (x) = U(x) +
∑
i<j

W (xi − xj).

In this notation, U is the confinement potential and it is assumed to be strongly convex
(i.e., U − m|x|2 is convex for some m > 0), and W : (0,∞) → R is the interaction
potential, which is assumed to be convex. This setting can be naturally interpreted in
terms of Dunkl theory, with particular interaction potentials arising from the weight
function wk that appears in the Dunkl measure µk. Indeed, the set D corresponds to a
Weyl chamber associated to the root system AN−1 (see (2.2)), and the canonical choice
W (u) = −2k log u produces exactly the Dunkl measure for the same root system:

e−
∑
i<jW (xi−xj) =

∏
i<j

(xi − xj)2k = wk(x).

Using this idea, from our results we obtain functional inequalities similar to those of
[5], for confinement potentials of the form U(x) = |x|p. Note that in our case U is not
strongly-convex for 1 < p < 2, so our results complement those of [5].

Moreover, our results hold for any root system and so they allow for different new
types of interaction potentials. For example, using the root system BN (see (2.2)), we
obtain the probability measure

dνU,H =
1

ZH
1{x1>...>xN>0}e

−|x|p
N∏
i=1

|xi|2k1
∏
i<j

(xi − xj)2k2
∏
i<j

(xi + xj)
2k2 ,

for some k1, k2 ≥ 0. A more detailed discussion of examples corresponding to different
root systems is Section 8.2.

This paper is organised as follows. After a short introduction to Dunkl theory in
Section 2, we prove the main log-Sobolev inequality for the Dunkl measure µk in Section
3. In order to introduce the method of U -bounds in a simple framework, in the same
section we also prove the log-Sobolev inequality for the Gaussian measure e−|x|

2

dµk.
More general U -bounds are proved in Section 4, which we then apply in Section 5
to obtain the desired non-tight log-Sobolev inequalities for Boltzmann measures. In

EJP 27 (2022), paper 89.
Page 3/25

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP810
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Logarithmic Sobolev inequalities for Dunkl operators

Section 6 we prove Poincaré inequalities which we then use in Section 7 to obtain tight
log-Sobolev inequalities. Finally, in Section 8 we discuss applications to exponential
integrability and singular Gibbs measures.

2 Introduction to Dunkl theory

In this section we will present a very quick introduction to Dunkl operators. For
proofs of fundamental results mentioned below and for more details see the survey
papers [16] and [2].

A root system is a finite set R ⊂ RN \ {0} such that R ∩ αR = {−α, α} and σα(R) = R

for all α ∈ R. Here σα is the reflection in the hyperplane orthogonal to the root α, i.e.,

σαx = x− 2
〈α, x〉
〈α, α〉

α. (2.1)

The group generated by all the reflections σα for α ∈ R is a finite subgroup of the
orthogonal group O(N), and we denote it by G.

We say that a root system is irreducible if it cannot be written as a disjoint union
of two orthogonal root systems. Irreducible root systems are fully classified and they
consist of four infinite families and a number of exceptional cases. The first three infinite
families can be defined in RN for N ≥ 2:

AN−1 = {ei − ej |1 ≤ i < j ≤ N}

BN = {
√

2ei|1 ≤ i ≤ N} ∪ {ei ± ej |1 ≤ i < j ≤ N}
DN = {ei ± ej |1 ≤ i < j ≤ N},

(2.2)

where the e1, e2, . . . , eN are the standard orthonormal basis of RN . The fourth infinite
family is best described in C and it is given by

I2(m) = {ei
jπ
m |0 ≤ j < m}.

Let k : R → [0,∞) be a G-invariant function, i.e., k(α) = k(gα) for all g ∈ G and
all α ∈ R. We will normally write kα = k(α) as these will be the coefficients in our
Dunkl operators. We can write the root system R as a disjoint union R = R+ ∪ (−R+),
where R+ and −R+ are separated by a hyperplane through the origin and we call R+

a positive subsystem; this decomposition is not unique, but the particular choice of
positive subsystem does not make a difference in the definitions below because of the
G-invariance of the coefficients k.

The Weyl chambers associated to the root system R are the connected components of
{x ∈ RN : 〈α, x〉 6= 0 ∀α ∈ R}. It can be checked that the reflection group G acts simply
transitively on the set of Weyl chambers so, in particular, the number of Weyl chambers
equals the order of the group, |G|.

From now on we fix a root system in RN with positive subsystem R+. We also assume
without loss of generality that |α|2 = 2 for all α ∈ R. For i = 1, . . . , N we define the Dunkl
operator on C1(RN ) by

Tif(x) = ∂if(x) +
∑
α∈R+

kααi
f(x)− f(σαx)

〈α, x〉
.

We will denote by ∇k = (T1, . . . , TN ) the Dunkl gradient, and ∆k =

N∑
i=1

T 2
i will denote

the Dunkl Laplacian. Note that for k ≡ 0 Dunkl operators reduce to partial derivatives,
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and ∇0 = ∇ and ∆0 = ∆ are the usual gradient and Laplacian. Note also that if f is
G-invariant, i.e., f(x) = f(gx) for all g ∈ G, then Tif = ∂if , so, in particular, ∇kf = ∇f .

We can express the Dunkl Laplacian in terms of the usual gradient and Laplacian
using the following formula:

∆kf(x) = ∆f(x) + 2
∑
α∈R+

kα

[
〈∇f(x), α〉
〈α, x〉

− f(x)− f(σαx)

〈α, x〉2

]
. (2.3)

The weight function naturally associated to Dunkl operators is

wk(x) =
∏
α∈R+

|〈α, x〉|2kα .

This is a homogeneous function of degree 2γ, where

γ :=
∑
α∈R+

kα.

We will work in spaces Lp(µk), where dµk = wk(x) dx is the weighted measure; the norm
of these spaces will be written simply ‖·‖p. With respect to this weighted measure we
have the integration by parts formula∫

RN
Ti(f)g dµk = −

∫
RN

fTi(g) dµk. (2.4)

This formula holds for f ∈ C∞c (RN ) and g ∈ C1(RN ) and can be extended (see below) to
f, g ∈ H1

k(RN ).
For any f ∈ L1

loc(µk) we say that Tif exists in a weak sense if there exists g ∈ L1
loc(µk)

such that ∫
RN

fTiϕdµk = −
∫
RN

gϕdµk ∀ϕ ∈ C∞c (RN )

and we write Tif = g. Higher order derivatives are defined similarly and we use the
notation T ηf = T η11 T η22 . . . T ηNN f for η ∈ NN0 . We can then define a Dunkl Sobolev space
Wn,p
k (RN ) for all n ∈ N and 1 ≤ p ≤ ∞ as the space of all functions f ∈ Lp(µk) for which

T ηf exists in a weak sense and T ηf ∈ Lp(µk) for all η ∈ NN0 with |η| ≤ n. It can be
checked (following, for example, the ideas of [8, Section 5.2]) that this is a Banach space
under the norm

‖f‖Wn,p
k (RN ) :=

 ∑
η∈NN0 ,|η|≤n

‖T ηf‖pp

1/p

.

In the particular case p = 2, we write Hn
k (RN ) := Wn,2

k (RN ). More generally, for any
measure µ we can define Wn,p

k (µ) as the space for which T ηf ∈ Lp(µ) for all 0 ≤ |η| ≤ n.
Note that for k ≡ 0, when Dunkl operators reduce to usual partial derivatives, then

Dunkl Sobolev spaces also reduce to the standard Sobolev spaces, i.e., Wn,p
0 (µ) =

Wn,p(µ).
One of the main differences between Dunkl operators and classical partial derivatives

is that the Leibniz rule does not hold in general. Instead, we have the following.

Lemma 2.1. If one of the functions f, g is G-invariant, then we have the Leibniz rule

Ti(fg) = fTig + gTif.

In general, we have

Ti(fg)(x) = Tif(x)g(x) + f(x)Tig(x)−
∑
α∈R+

kααi
(f(x)− f(σαx))(g(x)− g(σαx))

〈α, x〉
.
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A Sobolev inequality is available for the Dunkl gradient (see [19], which also contains
a discussion about the optimal constant CDS):

Proposition 2.2. Let 1 ≤ p < N + 2γ and q = p(N+2γ)
N+2γ−p . Then there exists a constant

CDS > 0 such that we have the inequality

‖f‖q ≤ CDS ‖∇kf‖p ∀f ∈W 1,p
k (RN ).

3 The main Log-Sobolev inequalities

To begin with, we have the following Dunkl equivalent of the classical log-Sobolev
inequality.

Theorem 3.1. Assume that N + 2γ > 2. Then, there exists a constant c ∈ R such that
for any δ > 0 and for any f ∈ H1

k(RN ) we have∫
RN

f2 log
f2∫
f2 dµk

dµk ≤ δ
∫
RN
|∇kf |2 dµk + C(δ)

∫
RN

f2 dµk, (3.1)

where C(δ) = N+2γ
2 (log 1

δ − c).
In particular, by choosing δ = e−c, we obtain the following tight log-Sobolev inequality:

there exists a constant C > 0 such that∫
RN

f2 log
f2∫
f2 dµk

dµk ≤ C
∫
RN
|∇kf |2 dµk, (3.2)

holds for any f ∈ H1
k(RN ).

Proof. Fix f ∈ H1
k(RN ), f 6≡ 0. Then f2∫

RN
f2 dµk

dµk is a probability measure, and so by

Jensen’s inequality we have, for any r > 0,∫
RN

f2 log
f2∫
f2 dµk

dµk =
1

r

∫
RN

f2 dµk ·
∫
RN

f2∫
f2 dµk

log

(
f2∫
f2 dµk

)r
dµk

≤ 1

r

∫
RN

f2 dµk · log

∫
RN

(
f2∫
f2 dµk

)1+r

dµk

=
r + 1

r
‖f‖22 log

‖f‖22+2r

‖f‖22
.

We then use the elementary inequality

log x ≤ δx+ log
1

δ
− 1,

which holds for all x, δ > 0. Thus∫
RN

f2 log
f2∫
f2 dµk

dµk ≤
r + 1

r

[
δ ‖f‖22+2r + (log

1

δ
− 1) ‖f‖22

]
.

Finally, by choosing r > 0 such that 2 + 2r = 2(N+2γ)
N+2γ−2 , we can apply Sobolev’s inequality

to deduce∫
RN

f2 log
f2∫
f2 dµk

dµk ≤
r + 1

r
C2
DSδ

∫
RN
|∇kf |2 dµk +

r + 1

r
(log

1

δ
− 1)

∫
RN

f2 dµk,

where CDS is the Sobolev constant. A simple relabelling of the constants finishes the
proof.
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Remark 3.2. From the proof above we can compute the constant c appearing in C(δ) in

terms of the Sobolev constant: c = 1− log
(
N+2γ

2 C2
DS

)
. Thus, we can also compute the

constant in the tight log-Sobolev inequality (3.2): C = N+2γ
2e C2

DS . Note that this constant
is not necessarily optimal.

Using the results of [6], from the non-tight inequality (3.1) which holds for any δ > 0,
we can deduce a more general Lp result, as well as the ultracontractivity property.
Here we use the fact that the Dunkl heat semigroup (Ht)t≥0 has generator ∆k and
associated quadratic form Q(f) =

∫
RN
|∇kf |2 dµk (for a discussion of this semigroup, see

[16, Section 4.2]).

Corollary 3.3. Assume that N + 2γ > 0 and let 2 < p <∞. Then, for any δ > 0 and for
any f ∈ C∞c (RN ) such that f ≥ 0, we have∫

RN
fp log

fp∫
fp dµk

dµk ≤ δ
∫
RN
∇kf · ∇k(fp−1) dµk + C

(
2δ

p

)∫
RN

fp dµk,

where C(δ) is as in the previous theorem.

Proof. This follows from the previous theorem and [6, Lemma 2.2.6].

Finally, we recover the ultracontractivity property for the Dunkl heat semigroup.
This was already established in [19] using properties of the heat kernel; using the new
log-Sobolev approach, no a priori bounds on the heat kernel are necessary.

Corollary 3.4. The Dunkl heat semigroup (Ht)t≥0 on L2(µk) with generator ∆k is ultra-
contractive. More precisely, there exists a constant C > 0 such that for all t > 0 and for
all f ∈ L2(µk) we have

‖Htf‖∞ ≤ Ct
−N+2γ

4 ‖f‖2 .

Proof. This follows from the previous Corollary and [6, Theorem 2.2.7].

In what follows, we want to study inequalities for probability measures of the form

dνU :=
1

Z
e−U dµk,

where U(x) = |x|p and Z =

∫
RN

e−U dµk. To illustrate the method and to motivate the

study of U -bounds in the next section, we first consider Gaussian weight in the following
theorem. This result will be further refined and generalised in the next sections, but the
main lines of the proof will remain the same.

Theorem 3.5. Assume that N + 2γ > 2 and consider the probability measure νU with
U(x) = |x|2. Then, there exist constants C1, C2 > 0 such that the following inequality
holds for all f ∈ H1

k(RN ):∫
RN

f2 log
f2∫
f2 dνU

dνU ≤ C1

∫
RN
|∇kf |2 dνU + C2

∫
RN

f2 dνU .

Proof. Applying inequality (3.2) to the function 1√
Z
fe−U/2, we have∫

RN
f2 log

f2∫
f2 dνU

dνU ≤
1

Z
C

∫
RN
|∇k(fe−U/2)|2 dµk

+ logZ

∫
RN

f2 dνU +

∫
RN

f2U dνU .

(3.3)
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Since U is G-invariant, we can use the Leibniz rule from Lemma 2.1 to obtain the identity

∇k(fe−U/2) = e−U/2∇kf −
1

2
fe−U/2∇U. (3.4)

Thus, we have

1

Z

∫
RN
|∇k(fe−U/2)|2 dµk =

∫
RN
|∇kf −

1

2
f∇U |2 dνU

≤ 2

∫
RN
|∇kf |2 dνU +

1

2

∫
RN

f2|∇U |2 dνU

= 2

∫
RN
|∇kf |2 dνU + 2

∫
RN

f2U dνU ,

where, in the last line, we used the fact that ∇U(x) = 2x, so |∇U |2 = 4U . Replacing this
inequality in formula (3.3), we have∫

RN
f2 log

f2∫
f2 dνU

dνU ≤ 2C

∫
RN
|∇kf |2 dνU

+ logZ

∫
RN

f2 dνU + (1 + 2C)

∫
RN

f2U dνU .

(3.5)

Using the identity (3.4) again, we deduce∫
RN
|∇kf |2 dνU =

1

Z

∫
RN
|∇k(fe−U/2)|2 dµk +

1

4

∫
RN

f2|∇U |2 dνU

+
1

Z

∫
RN

f∇U · ∇k(fe−U/2)e−U/2 dµk.

(3.6)

Keeping in mind that ∇U(x) = 2x, this equality implies that∫
RN
|∇kf |2 dνU ≥

∫
RN

f2U dνU +A, (3.7)

where

A :=
1

Z

∫
RN

f∇U · ∇k(fe−U/2)e−U/2 dµk

We now compute the quantity A. Firstly, by the integration by parts formula (2.4) applied
to the pairs of functions fe−U/2, xife−U/2 ∈ H1

k(RN ) for each 1 ≤ i ≤ N , we have

A = −
N∑
i=1

1

Z

∫
RN

fe−U/2Ti(2xife
−U/2) dµk(x).

Using Lemma 2.1, we have

Ti(xife
−U/2)

= xiTi(fe
−U/2) + fe−U/2Ti(xi)−

∑
α∈R+

kααie
−U(x)/2 (f(x)− f(σαx))(xi − (σαx)i)

〈α, x〉

= xiTi(fe
−U/2) + fe−U/2(1 +

∑
α∈R+

kαα
2
i )−

∑
α∈R+

kαα
2
i e
−U(x)/2(f(x)− f(σαx)).

(3.8)
Thus, recalling that |α|2 = 2,

A = −A− 2(N + 2γ)

∫
RN

f2 dνU + 4
∑
α∈R+

kα

∫
RN

f(x)(f(x)− f(σαx)) dνU (x),

EJP 27 (2022), paper 89.
Page 8/25

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP810
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Logarithmic Sobolev inequalities for Dunkl operators

and so

A = −N
∫
RN

f2 dνU − 2
∑
α∈R+

kα

∫
RN

f(x)f(σαx) dνU (x).

Using the elementary inequality 2XY ≤ X2 + Y 2 and the fact that the measure νU is
G-invariant, we obtain

A ≥ −(N + 2γ)

∫
RN

f2 dνU .

Replacing this in equation (3.7), we obtain∫
RN

f2U dνU ≤
∫
RN
|∇kf |2 dνU + (N + 2γ)

∫
RN

f2 dνU . (3.9)

Finally, using this in (3.5), we have∫
RN

f2 log
f2∫
f2 dνU

dνU ≤ C1

∫
RN
|∇kf |2 dνU + C2

∫
RN

f2 dνU ,

for some constants C1, C2 > 0, as required.

4 U-bounds

Looking back at the proof of the weighted log-Sobolev inequality in Theorem 3.5, we
can see that inequality (3.9) was the key element. Inequalities of this form are called
U-bounds (cf. [12]). In this section we will prove more general U-bounds by adapting
our proof slightly, and these will later be used to deduce log-Sobolev inequalities.

Proposition 4.1. Let p > 1 and consider the probability measure νU with U(x) = |x|p.
Then, there exist some constants C,D > 0 such that for any f ∈ H1

k(νU ), we have the
inequality ∫

RN
f2|x|2(p−1) dνU ≤ C

∫
RN
|∇kf |2 dνU +D

∫
RN

f2 dνU . (4.1)

Proof. We follow more closely the proof of (3.9). We have

∇U(x) = p|x|p−2x.

From (3.6), we obtain

p2

4

∫
RN

f2|x|2(p−1) dνU ≤
∫
RN
|∇kf |2 dνU −A,

where

A =
1

Z

∫
RN

f∇U · ∇k(fe−U/2)e−U/2 dµk.

As in the proof of Theorem 3.5, using integration by parts and Lemma 2.1, we have

2A = − [p(p− 2) + p(N + 2γ)− 2γp]

∫
RN

f2|x|p−2 dνU

− 2p
∑
α∈R+

kα

∫
RN
|x|p−2f(x)f(σαx) dνU (x)

≥ −
[
p2 + p(N + 2γ − 2)

] ∫
RN

f2|x|p−2 dνU .

Thus∫
RN

f2|x|2(p−1) dνU ≤
4

p2

∫
RN
|∇kf |2 dνU +

2
[
p2 + p(N + 2γ − 2)

]
p2

∫
RN

f2|x|p−2 dνU .

(4.2)
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Assume first that p > 2 and let ε > 0. Then, using Hölder’s inequality with coefficients
p̃ := 2(p−1)

p and q̃ := 2(p−1)
p−2 , and then Young’s inequality XY ≤ Xp̃

p̃ + Y q̃

q̃ , we have

∫
RN

f2|x|p−2 dνU ≤
(∫

RN
f2 dνU

) p
2(p−1)

(∫
RN

f2|x|2(p−1) dνU

) p−2
2(p−1)

≤ p

2(p− 1)
ε−

p−2
p

∫
RN

f2 dνU +
p− 2

2(p− 1)
ε

∫
RN

f2|x|2(p−1) dνU .

Thus, by choosing ε > 0 small enough such that

1 >
(p− 2)[p2 + p(N + 2γ − 2)]

p2(p− 1)
ε,

we obtain inequality (4.1) for some constants C,D > 0.
The case 1 < p < 2 requires more care. Let φ : R2 → [0, 1] be defined by

φ(x) =


0, |x| < 1

|x| − 1, 1 ≤ |x| ≤ 2

1, |x| > 2.

(4.3)

Note that φ is radial, so G-invariant, and ∇φ(x) = x
|x| on 1 ≤ |x| ≤ 2, and it vanishes

elsewhere; in particular, |∇φ| ≤ 1 on RN . Then, writing f = fφ+ f(1− φ), we have∫
RN

f2|x|2(p−1) dνU ≤ 2

∫
RN
|fφ|2|x|2(p−1) dνU + 2

∫
RN
|f(1− φ)|2|x|2(p−1) dνU , (4.4)

and we estimate each of the terms on the right hand side separately. Firstly, by (4.2), we
have ∫

RN
|fφ|2|x|2(p−1) dνU ≤

4

p2

∫
RN
|∇k(fφ)|2 dνU + Cp

∫
RN
|fφ|2|x|p−2 dνU (4.5)

where Cp := 2[p2+p(N+2γ−2)]
p2 . By the Leibniz rule (since φ is G-invariant) and using the

properties of the function φ, we have

|∇k(fφ)|2 ≤ 2φ2|∇kf |2 + 2f2|∇φ|2 ≤ 2|∇kf |2 + 2f2. (4.6)

Moreover, note that fφ = 0 on |x| ≤ 1 and outside this region we have |x|p−2 ≤ 1 (since
p < 2), so ∫

RN
|fφ|2|x|p−2 dνU ≤

∫
RN

f2 dνU . (4.7)

Thus, combining inequalities (4.5), (4.6) and (4.7), we have obtained∫
RN
|fφ|2|x|2(p−1) dνU ≤

8

p2

∫
RN
|∇kf |2 dνU + (

8

p2
+ Cp)

∫
RN

f2 dνU . (4.8)

We now turn to the second term in (4.4). Here we simply note that the function f(1− φ)

is supported on |x| ≤ 2, and thus∫
RN
|f(1− φ)|2|x|2(p−1) dνU ≤ 22(p−1)

∫
RN
|f(1− φ)|2 dνU ≤ 22(p−1)

∫
RN

f2 dνU . (4.9)

Therefore, putting (4.4), (4.8) and (4.9) together, we obtain the U -bound (4.1) for some
C,D > 0.
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From this result we can obtain another type of U -bound which will be essential in the
later study of log-Sobolev inequalities. Note however that this bound holds in the more
restricted range p ≥ 2.

Corollary 4.2. Let p ≥ 2 and consider the probability measure νU with U(x) = |x|p.
Then, there exist some constants C,D > 0 such that for any f ∈ H1

k(RN ) we have the
inequality ∫

RN
f2|x|p dνU ≤ C

∫
RN
|∇kf |2 dνU +D

∫
RN

f2 dνU . (4.10)

Proof. We employ the same idea as in the last part of the previous result. Namely, let φ
be the function defined by (4.3) and consider the decomposition f = fφ+ f(1− φ). We
have ∫

RN
f2|x|p dνU ≤ 2

∫
RN
|fφ|2|x|p dνU + 2

∫
RN
|f(1− φ)|2|x|p dνU . (4.11)

The function fφ vanishes on |x| ≤ 1 and outside this region we have |x|p ≤ |x|2(p−1) (since
p > 2). Thus∫

RN
|fφ|2|x|p dνU ≤

∫
RN
|fφ|2|x|2(p−1) dνU ≤

∫
RN

f2|x|2(p−1) dνU .

On the other hand, the function f(1− φ) is supported on |x| ≤ 2 and thus∫
RN
|f(1− φ)|2|x|p dνU ≤ 2p

∫
RN

f2 dνU .

Putting these inequalities together, we obtain∫
RN

f2|x|p dνU ≤ 2

∫
RN

f2|x|2(p−1) dνU + 2p+1

∫
RN

f2 dνU .

Finally, using inequality (4.1) for the first term on the right hand side, we obtain (4.10),
as required.

The two bounds we have proved so far are both in L2(νU ). In the last result of this
section we prove an L1(νU ) bound whose proof will require a slightly different approach.

Proposition 4.3. Let p > 1 and consider the probability measure νU with U(x) = |x|p.
Then, there exist some constants C,D > 0 such that for any f ∈W 1,1

k (RN ) we have the
inequality ∫

RN
|f | · |x|p−1 dνU ≤ C

∫
RN
|∇kf |dνU +D

∫
RN
|f |dνU .

Proof. In order to avoid a singularity that will arise at the origin, we first consider a
function f that vanishes on the unit ball. As before, we start with identity (3.4). Noting
that in this case we have

∇U(x) = p|x|p−1∇(|x|),

the identity in the previous section now reads

∇k(fe−U ) = e−U∇kf − pf |x|p−1e−U∇(|x|).

Taking inner product with ∇(|x|) and integrating on both sides, we have

1

Z

∫
RN
∇(|x|) · ∇k(fe−U ) dµk

=

∫
RN
∇(|x|) · ∇kf dνU − p

∫
RN
|∇(|x|)|2f |x|p−1 dνU .

(4.12)
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We can use integration by parts on the left hand side to obtain

1

Z

∫
RN
∇(|x|) · ∇k(fe−U ) dµk = −

∫
RN

∆k(|x|)f dνU .

Replacing this in (4.12), and using also the fact that |∇(|x|)| = 1 for x 6= 0, we have∫
RN

f |x|p−1 dνU =
1

p

∫
RN
∇(|x|) · ∇kf dνU +

1

p

∫
RN

∆k(|x|)f dνU

≤ 1

p

∫
RN
|∇kf |dνU +

1

p

∫
RN

∆k(|x|)f dνU .

Finally, we have

T 2
i (|x|) = Ti

(
xi
|x|

)
=

1

|x|
− x2

i

|x|3
+
∑
α∈R+

kα
α2
i

|x|
,

so

∆k(|x|) = (N + 2γ − 1)
1

|x|
.

Therefore, from the above we deduce that (recall that f vanishes on the unit ball)∫
RN

f |x|p−1 dνU ≤
1

p

∫
RN
|∇kf |dνU +

N + 2γ − 1

p

∫
RN
|f |dνU .

Writing f = f+ − f−, where f+(x) = max(f(x), 0) and f−(x) = −min(f(x), 0), we can
apply this inequality to f+ and f− separately. Adding the two resulting inequalities, we
have ∫

RN
|f | · |x|p−1 dνU ≤ C1

∫
RN
|∇kf |dνU +D1

∫
RN
|f |dνU ,

where C1 = 1
p and D1 = N+2γ−1

p .
Having proved the result for functions that vanish on the unit ball, let us now consider

a general function f ∈ L1(dνU ). To prove this more general result, we once again employ
the method from the end of the proof of Proposition 4.1. More precisely, let φ be the
function defined in (4.3) and consider f = φf + (1− φ)f ; the first term vanishes on the
unit ball so the above can be applied to it, while the second term has compact support
and it is easy to bound. We have∫

RN
|f | · |x|p−1 dνU ≤

∫
RN
|φf | · |x|p−1 dνU +

∫
RN
|(1− φ)f | · |x|p−1 dνU

≤ C1

∫
RN
|∇k(φf)|dνU +D1

∫
RN
|φf |dνU + 2p−1

∫
RN
|f |dνU

≤ C1

∫
RN
|∇kf |dνU + (C1 +D1 + 2p−1)

∫
RN
|f |dνU .

Here, in the last step, we used the Leibniz rule (which holds because φ is G-invariant)
and the fact that |∇φ| ≤ 1. This completes the proof.

5 Non-tight log-Sobolev inequalities for Boltzmann-type measures

In this section we use the U -bounds obtained above to deduce non-tight log-Sobolev
inequalities. To begin with, from Proposition 4.1 and Corollary 4.2 we obtain a log-
Sobolev inequality for probability measures dνU = 1

Z e
−U(x) dµk, for U(x) = |x|p and with

p ≥ 2, and in the range 1 ≤ p ≤ 2 we prove a Φ-Sobolev inequality. Similarly, from
Proposition 4.3 we obtain a Φ-Sobolev inequality in L1(νU ) for general 1 < p <∞. The
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approach in these results is similar to that of Theorem 3.1: first employing Jensen’s
inequality to take the logarithm outside the integral, and then using the classical Sobolev
inequality. U -bounds will be used to control residual terms arising from the introduction
of a weight.

Theorem 5.1. Assume N + 2γ > 2. Let p ≥ 2 and consider the probability measure dνU
with U(x) = |x|p. Then there exist some constants C1, C2 > 0 such that for all f ∈ H1

k(νU ),
we have the inequality∫

RN
f2 log

f2∫
f2 dνU

dνU ≤ C1

∫
RN
|∇kf |2 dνU + C2

∫
RN

f2 dνU . (5.1)

Proof. We apply inequality (3.2) of Theorem 3.1 to the function 1√
Z
fe−U/2 and thus we

obtain ∫
RN

f2 log
f2∫
f2 dνU

dνU ≤ 2C

∫
RN
|∇kf |2 dνU + logZ

∫
RN

f2 dνU

+

∫
RN

f2U dνU + 2C

∫
RN

f2|∇U |2 dνU .

Note that in this case we have |∇U |2 = |x|2(p−1) and thus by applying Proposition 4.1 and
Corollary 4.2 (hence the restriction p ≥ 2), we obtain inequality (5.1) for some constants
C1, C2 > 0, as required.

Theorem 5.2. Assume N + 2γ > 2. Let 1 < p ≤ 2 and consider the probability measure
νU with U(x) = |x|p. Let s = 2p−1

p . Then there exist some constants C1, C2 > 0 such that

for all f ∈ H1
k(νU ), we have the inequality∫
RN

f2

∣∣∣∣log
f2∫
f2 dνU

∣∣∣∣s dνU ≤ C1

∫
RN
|∇kf |2 dνU + C2

∫
RN

f2 dνU . (5.2)

Proof. Consider the function h = 1√
Z
fe−U/2. Then

∫
RN

f2 dνU =

∫
RN

h2 dµk, and

∫
RN

f2

∣∣∣∣log
f2∫
f2 dνU

∣∣∣∣s dνU =

∫
RN

h2

∣∣∣∣log
h2∫
h2 dµk

+ U + logZ

∣∣∣∣s dµk

≤
∫
RN

h2

∣∣∣∣log
h2∫
h2 dµk

∣∣∣∣s dµk +

∫
RN

h2Us dµk + | logZ|s
∫
RN

h2 dµk,

(5.3)

where in the last inequality we used the fact that since s ∈ (0, 1], then the function
X 7→ Xs is subadditive, i.e., we have (X + Y )s ≤ Xs + Y s for X,Y > 0.

Before we start the usual procedure of applying Jensen’s inequality, we note that the
function x |log x|s is bounded on (0, 1), and let

D = sup
x∈(0,1)

x |log x|s <∞.

Consider now the function log+ x := max{0, log x}. Then the above observation implies
that

x |log x|s ≤ x(log+ x)s +D for all x > 0.

With this in mind, we have∫
RN

h2

∣∣∣∣log
h2∫
h2 dµk

∣∣∣∣s dµk =

∫
RN

h2 dµk ·
∫
RN

h2∫
h2 dµk

∣∣∣∣log
h2∫
h2 dµk

∣∣∣∣s dµk

≤
∫
RN

h2 dµk ·
[∫
RN

h2∫
h2 dµk

(
log+

h2∫
h2 dµk

)s
dµk +D

]
.

(5.4)
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For the fixed function h the measure h2∫
h2 dµk

dµk is a probability measure. Thus, we

can apply Jensen’s inequality to the concave function (log+ t)
s in the below as follows∫

RN

h2∫
h2 dµk

(
log+

h2∫
h2 dµk

)s
dµk =

1

δs

∫
RN

h2∫
h2 dµk

(
log+

(
h2∫
h2 dµk

)δ)s
dµk

≤ 1

δs

(
log+

∫
RN

(
h2∫
h2 dµk

)1+δ

dµk

)s

=
(1 + δ)s

δs

(
log+

‖h‖22+2δ

‖h‖22

)s
.

By standard calculus methods we can show that

cs := sup
x>0

| log+ x|s

x
<∞.

Applying this in the previous inequality, we obtain∫
RN

h2∫
h2 dµk

(
log+

h2∫
h2 dµk

)s
dµk ≤ cs

(1 + δ)s

δs
‖h‖22+2δ

‖h‖22

≤ cs
(1 + δ)s

δs
1∫

h2 dµk
εC2

DS ‖∇kh‖
2
2 .

(5.5)

Here in the last step we used the Sobolev inequality of Proposition 2.2, which holds if
we choose δ > 0 such that 2 + 2δ = 2(N+2γ)

N+2γ−2 .
Next, we have

‖∇kh‖22 =
1

Z

∫
RN
|∇k(fe−U/2)|2 dµk ≤ 2

∫
RN
|∇kf |2 dνU +

1

2

∫
RN

f2|∇U |2 dνU . (5.6)

Combining (5.3), (5.4), (5.5) and (5.6), we have∫
RN

f2

∣∣∣∣log
f2∫
f2 dνU

∣∣∣∣s dνU ≤ cs
(
N + 2γ

2

)s
2C2

DS

∫
RN
|∇kf |2 dνU + | logZ|s

∫
RN

f2 dνU

+ cs

(
N + 2γ

2

)s
C2
DS

2

∫
RN

f2|∇U |2 dνU +

∫
RN

f2Us dνU .

But |∇U | = p|x|p−1 and Us = |x|2(p−1), so the last two terms can be computed as follows∫
RN

f2Us dνU =

∫
RN

f2|x|2(p−1) dνU =
1

p2

∫
RN

f2|∇U |2 dνU .

Finally, from Proposition 4.1 we obtain inequality (5.2) for some constants C1, C2 > 0

which depend on γ and the dimension N . This concludes the proof.

Theorem 5.3. Assume N + 2γ > 1. Let 1 ≤ p <∞ and consider the probability measure
νU with U(x) = |x|p. Let s = p−1

p . Then there exist some constants C1, C2 > 0 such that

for all f ∈W 1,1
k (νU ), we have the inequality∫
RN

f

∣∣∣∣log
|f |∫
|f |dνU

∣∣∣∣s dνU ≤ C1

∫
RN
|∇kf |dνU + C2

∫
RN
|f |dνU .

Proof. The proof is similar to that of the previous result except for in this case we rely
on the Sobolev inequality

‖h‖q ≤ C ‖∇kh‖1
where q = N+2γ

N+2γ−1 (see Proposition 2.2), and the U -bound of Proposition 4.3.
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6 Poincaré inequalities

In this section we discuss Poincaré inequalities for Dunkl operators. These will be
used in the next section to improve some of our previous log-Sobolev inequalities, but
are also of independent interest.

Using a standard argument (see for example [4]), the non-tight log-Sobolev inequality
(3.1) of Theorem 3.1 implies the following Poincaré inequality.

Theorem 6.1. AssumeN+2γ > 2. Let R > 0 and consider the ball BR := {x ∈ RN : |x| ≤
R}. There exists a constant C > 0 independent of R such that for any f ∈ H1

k(BR, µk) we
have the inequality∫

BR

∣∣∣∣f − 1

µk(BR)

∫
BR

f dµk

∣∣∣∣2 dµk ≤ CR2

∫
BR

|∇kf |2 dµk.

Proof. To simplify the notation, let µ̃R := 1
µk(BR)µk be the Dunkl probability measure on

the ball BR. Note that it is enough to prove the theorem for f that satisfies the additional
assumption

∫
BR

f dµ̃R = 0, in which case the inequality takes the form∫
BR

f2 dµ̃R ≤ CR2

∫
BR

|∇kf |2 dµ̃R. (6.1)

To obtain the general case it is then enough to replace f by f −
∫
BR

f dµ̃R in (6.1).

For any ε > 0 consider the function g = 1 + εf . A Taylor expansion shows that

g2 log
g2∫

BR
g2 dµ̃R

= 2εf + 3ε2f2 − ε2
∫
BR

f2 dµ̃R + o(ε2),

and thus ∫
BR

g2 log
g2∫

BR
g2 dµ̃R

dµ̃R = 2ε2
∫
BR

f2 dµ̃R + o(ε2), (6.2)

as ε→ 0.

From Theorem 3.1 we have that∫
BR

g2 log
g2∫

BR
g2 dµ̃R

dµ̃R ≤ δ
∫
BR

|∇kg|2 dµ̃R + (C(δ) + log(µk(BR))

∫
BR

g2 dµ̃R,

holds for all δ > 0. However, using the fact that µk(BR) = µk(B1)RN+2γ , we find that
δ = c′R2, for a constant c′ > 0, solves the equation C(δ) + log(µk(BR)) = 0 (the exact
formula for c′ is given in the remark below). Therefore, we have the tight log-Sobolev
inequality ∫

BR

g2 log
g2∫

BR
g2 dµ̃R

dµ̃R ≤ c′R2

∫
BR

|∇kg|2 dµ̃R. (6.3)

Combining (6.2) and (6.3), and letting ε→ 0, we have obtained (6.1), as required.

Remark 6.2. The constant c′ obtained above can be computed and we obtain

c′ =
N + 2γ

2e
µk(B1)2/(N+2γ)C2

DS ,

where CDS is the Sobolev constant. The volume of the unit ball µk(B1) can also be
computed explicitly using the Macdonald-Mehta integral, see formulas (2.4) and (2.5) in
[19] for details.
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Remark 6.3. This Poincaré inequality corresponds to the classical Neumann-Poincaré
inequality. A Dirichlet-Poincaré inequality for Dunkl operators was also proved in [20].
Namely, we have the result:∫

Ω

|f |2 dµk ≤ C(Ω)

∫
Ω

|∇kf |2 dµk,

which holds on any bounded domain Ω ⊂ RN for a constant C(Ω) > 0 and for all
f ∈ C∞0 (RN ).

We can now use the previous result together with the U -bounds proved above to
obtain a Poincaré inequality for the weighted measure νU .

Proposition 6.4. Assume N + 2γ > 2. Let p > 1 and consider the weighted probability
measure νU with U(x) = |x|p. Then, there exists a constant C > 0 such that for any
f ∈ H1

k(νU ) we have ∫
RN

∣∣∣∣f − ∫
RN

f dνU

∣∣∣∣2 dνU ≤ C
∫
RN
|∇kf |2 dνU . (6.4)

Proof. It is known that

varνU (f) :=

∫
RN

∣∣∣∣f − ∫
RN

f dνU

∣∣∣∣2 dνU = min
ζ∈R

∫
RN
|f − ζ|2 dνU . (6.5)

Indeed, this can be proved by considering the minimum of the quadratic function

ζ 7→
∫
RN
|f − ζ|2 dνU over R. Thus, it is enough to prove the inequality∫

RN
|f − ζ|2 dνU ≤ C

∫
RN
|∇kf |2 dνU (6.6)

for some ζ ∈ R.
Let R > 0 and let BR = {|x| ≤ R}. We will prove (6.6) with ζ = 1

µk(BR)

∫
BR

f dµk for
large enough R. Firstly, we have∫

BR

|f − ζ|2 dνU ≤
1

Z

∫
BR

∣∣∣∣f − 1

µk(BR)

∫
BR

f dµk

∣∣∣∣2 dµk

≤ C

Z
R2

∫
BR

|∇kf |2 dµk

≤ CR2eR
p

∫
BR

|∇kf |2 dνU .

(6.7)

Here we used the Poincaré inequality of Theorem 6.1 and the bounds e−R
p ≤ e−U ≤ 1 on

BR.
On the other hand, we can use Proposition 4.1 applied to the function (f − ζ)1RN\BR ,

where 1X is the indicator function of set X, to obtain∫
RN\BR

|f − ζ|2 dνU ≤ R−2(p−1)

∫
|x|≥R

|f(x)− ζ|2|x|2(p−1) dνU (x)

≤ CR−2(p−1)

∫
|x|≥R

|∇kf |2 dνU +DR−2(p−1)

∫
|x|≥R

|f − ζ|2 dνU .

But R was an arbitrary positive number so we are free to choose it such that DR−2(p−1) <

1. Then we have∫
RN\BR

|f − ζ|2 dνU ≤
CR−2(p−1)

1−DR−2(p−1)

∫
|x|≥R

|∇kf |2 dνU . (6.8)

Adding the inequalities (6.7) and (6.8), we obtain (6.6), and therefore, by the observation
above, the Proposition is proved.
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7 Tight log-Sobolev inequalities

We now have all the ingredients to obtain tight log-Sobolev inequalities. The first is a
tight version of the log-Sobolev inequality from Theorem 5.1.

Theorem 7.1. Assume N + 2γ > 2. Let p ≥ 2 and consider the probability measure νU
with U(x) = |x|p. Then there exists a constant C > 0 such that the inequality∫

RN
f2 log

f2∫
f2 dνU

dνU ≤ C
∫
RN
|∇kf |2 dνU (7.1)

holds for all f ∈ H1
k(νU ).

In order to prove this result we will need the following inequality, known as Rothaus’s
lemma (see [17, Lemma 9]).

Lemma 7.2. Recall that

Ent(g) :=

∫
RN

g log g dνU −
∫
RN

g dνU log

∫
RN

g dνU ,

for g ≥ 0. Then, for all f measurable with

∫
RN

f dνU = 0, we have the inequality

Ent((f + c)2) ≤ Ent(f2) + 2

∫
RN

f2 dνU ,

for all c ∈ R.

Proof of Theorem 7.1. By Rothaus’s lemma we have

Ent(f2) ≤ Ent

((
f −

∫
RN

f dνU

)2
)

+ 2

∫
RN

(
f −

∫
RN

f dνU

)2

dνU .

Furthermore, from Theorem 5.1, we have

Ent(f2) ≤ C1

∫
RN
|∇kf |2 dνU + (2 + C2)

∫
RN

(
f −

∫
RN

f dνU

)2

dνU .

Finally, using the Poincaré inequality of Proposition 6.4, we obtain

Ent(f2) ≤ (C1 + C(2 + C2))

∫
RN
|∇kf |2 dνU ,

which is exactly what we wanted to prove.

As we shall see in the next section, the condition p ≥ 2 in the previous theorem is
necessary. However, in the range 1 < p < 2 we can still obtain a Φ-Sobolev inequality.
This is the object of the following theorem, which is a tight version of the generalised
log-Sobolev inequality of Theorem 5.2, and it is obtained from this result in a manner
very similar to the proof that we have just seen.

Theorem 7.3. Assume N + 2γ > 2. Let 1 < p < 2 and s = 2p−1
p and consider the

probability measure νU with U(x) = |x|p. Let also

Φ(x) = x(log(x+ 1))s.

Then there exists a constant C > 0 such that the inequality∫
RN

Φ(f2) dνU − Φ

(∫
RN

f2 dνU

)
≤ C

∫
RN
|∇kf |2 dνU ,

holds for all f ∈ H1
k(νU ).
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As before, we need the following generalisation of Rothaus’s lemma (see [14, Lemma
A.1]).

Lemma 7.4. Let Φ be as in the statement of the theorem and define, for g ≥ 0,

EntΦ(g) :=

∫
RN

Φ(g) dνU − Φ

(∫
RN

g dνU

)
.

Then there exist constants A1, B1 > 0 such that for any f with

∫
RN

f dνU = 0 we have

EntΦ((f + c)2) ≤ A1EntΦ(f2) +B1

∫
RN

f2 dνU

for all c ∈ R.

Proof of Theorem 7.3. The proof of this goes along the same lines as the proof of Theo-
rem 7.1. From the previous Lemma we have

EntΦ(f2) ≤ EntΦ

((
f −

∫
RN

f dνU

)2
)

+ 2

∫
RN

(
f −

∫
RN

f dνU

)2

dνU . (7.2)

However, here we cannot apply Theorem 5.2 directly to bound EntΦ

(
(f −

∫
f dνU )2

)
since the quantity on the left-hand side of (5.2) is not the same as EntΦ(f).

Instead, we note that

EntΦ(g) =

∫
RN

g

[
(log(1 + g))

s −
(

log

(
1 +

∫
RN

g

))s]
dνU

≤
∫
RN

g

∣∣∣∣log
g + 1∫
g dνU + 1

∣∣∣∣s dνU ,

where we used the inequality (a + b)s ≤ as + bs which holds for all a, b ≥ 0 since
s ∈ [0, 1]. We compute the integral on the right hand side separately over X ={
x : g(x) ≥

∫
RN

g dνU

}
and X = RN \X. On X we have

1 ≤ g + 1∫
g dνU + 1

≤ g∫
g dνU

,

so ∫
X

g

∣∣∣∣log
g + 1∫
g dνU + 1

∣∣∣∣s dνU ≤
∫
RN

g

∣∣∣∣log
g∫
g dνU

∣∣∣∣s dνU .

On the other hand, on X we have

1 ≤
∫
g dνU + 1

g + 1
≤ 1 +

∫
g dνU
g

,

so ∫
X

g

∣∣∣∣log
g + 1∫
g dνU + 1

∣∣∣∣s dνU =

∫
X

g

(
log

∫
g dνU + 1

g + 1

)s
dνU

≤
∫
X

g

(∫
g dνU
g

)s
dνU ≤

∫
RN

g dνU ,

where we first used the inequality log(1 + x) ≤ x for all x ≥ 0, and then the fact that

s ≤ 1, so
( ∫

g dνU
g

)s
≤

∫
g dνU
g . Thus

EntΦ(g) ≤
∫
RN

g

∣∣∣∣log
g∫
g dνU

∣∣∣∣s dνU +

∫
RN

g dνU .
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We can now apply the same strategy as before. First, by Theorem 5.2, we have

EntΦ(g2) ≤ C1

∫
RN
|∇kg|2 dνU + (C2 + 1)

∫
RN

g2 dνU .

Taking g = f −
∫
RN

f dνU in this inequality and applying (7.2), we have

EntΦ(f2) ≤ A1C1

∫
RN
|∇kf |2 dνU + (A1(C2 + 1) +B1)

∫
RN

(
f −

∫
RN

f dνU

)2

dνU .

Finally, using the Poincaré inequality of Proposition 6.4, the proof is complete.

8 Applications

8.1 Exponential integrability and measure concentration

As a consequence of the tight log-Sobolev inequality of Theorem 7.1, we can prove
exponential integrability for Lipschitz functions (note that we say a function f is a-
Lipschitz if |f(x) − f(y)| ≤ a|x − y|). The proof of this fact uses the classical Herbst
argument (see [4]); for completeness, we give a sketch of the argument here.

Theorem 8.1. Assume N + 2γ > 2. Let p ≥ 2 and consider the probability measure νU

with U(x) = |x|p. For any a-Lipschitz function f and for any b <
√

2
a2C (where C is the

constant in (7.1)) we have ∫
RN

eb
2f2/2 dνU <∞.

Proof. Step 1: assume f is G-invariant (in addition to the assumptions above). Then,
for any s ∈ R we have ∫

RN
esf dνU ≤ exp

(
s

∫
RN

f dνU + a2C
s2

4

)
. (8.1)

It is enough to prove this inequality for a bounded function f . Indeed, the general
case can then be obtained by defining fn(x) = max{min{f(x), n},−n} for all n ∈ N, and
taking the limit n→∞ in (8.1) using Fatou’s lemma.

From inequality (7.1) applied to the function esf/2 (recall that f is G-invariant, so
∇k(esf/2) = s

2e
sf/2∇f ) we obtain∫

RN
esf log esf dνU −

∫
RN

esf dνU log

∫
RN

esf dνU ≤ C
s2

4

∫
RN

esf |∇f |2 dνU . (8.2)

Define X(s) =

∫
RN

esf dνU and hence X ′(s) = s

∫
RN

fesf dνU . Using this new notation,

inequality (8.2) becomes

sX ′(s)−X(s) logX(s) ≤ a2C
s2

4
X(s).

Here we also used the fact that since f is a-Lipschitz, then |∇f | ≤ a a.e. Letting
Y (s) = 1

s logX(s) (with Y (0) =
∫
f dνU ), this further becomes

Y ′(s) ≤ a2C

4
.

Integrating this inequality we obtain (8.1).
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Multiplying (8.1) with e−s
2/(2b2) we obtain∫ ∞

−∞

∫
RN

e−
s2

2b2
+sf dνU ds ≤

∫ ∞
−∞

e−
s2

2b2
+a2C s2

4 +s
∫
f dνU ds.

Using Fubini’s theorem and computing the integrals with respect to s, it follows that∫
RN

eb
2f2/2 dνU ≤

√
2√

2− b2a2C
exp

(
c2

2− b2a2C

(∫
RN

f dνU

)2
)
.

To conclude the proof in this case, it is enough to check that f is integrable. We refer to
the proof of [4, Proposition 4.4.2] for a discussion of this using the Poincaré inequality.

Step 2: general f (not necessarily G-invariant). Before we prove this case, let us
note here that for any G-invariant function g and any Weyl chamber H we have∫

RN
g dµk =

∑
H′

∫
H′
g dµk = |G|

∫
H

g dµk, (8.3)

where the sum goes over all Weyl chambers H ′ and recall that |G| is the number of Weyl
chambers. Indeed, this is because for any Weyl chamber H ′ there exists α ∈ R such that
H ′ = σαH, so by a change of variables y = σαx we have∫

H

g dµk =

∫
H′
g dµk.

For any Weyl chamber H, let f
∣∣
H

: H → R be the restriction of f to H, and let

f̃H : RN → R be the G-invariant function equal to f
∣∣
H

on each Weyl chamber, i.e.,

f̃H(σαx) = f
∣∣
H

(x) ∀x ∈ H, ∀α ∈ R+.

Then f̃H is also a-Lipschitz. Indeed, let x, y ∈ RN . As the Weyl group G acts simply
transitively on the set of Weyl chambers, there exist g1, g2 ∈ G such that g1x, g1y are both
in H. Then, from the definition of f̃H and using the fact that f is a-Lipschitz, we obtain

|f̃H(x)− f̃H(y)| = |f
∣∣
H

(g1x)− f
∣∣
H

(g2y)| = |f(g1x)− f(g2y)| ≤ a|g1x− g2y|. (8.4)

Since g1x and g2y belong to the same Weyl chamber, by Lemma 8.2 below we have

|g1x− g2y| ≤ |g1x− (g1g
−1
2 )g2y| = |g1x− g1y| = |x− y|, (8.5)

where in the last step we used the fact that G is a subgroup of the orthogonal group
O(N), so it is distance-preserving. From (8.4) and (8.5) it follows that

|f̃H(x)− f̃H(y)| ≤ a|x− y|,

which proves that f̃H is a-Lipschitz.
As f̃H is a-Lipschitz, from Step 1 above, we have

|G|
∫
H

eb
2f2/2 dνU =

∫
RN

eb
2f̃2
H dνU <∞.

Here in the first equality we used property (8.3) and the fact that f̃H = f on H. Finally,
we have ∫

RN
eb

2f2/2 dνU =
∑
H

∫
H

eb
2f2/2 dνU <∞,

where the sum goes over all the Weyl chambers H. This completes the proof.
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For the reader’s convenience, we include the proof of the following lemma. For a
similar approach, see the proof of Theorem 2.12 in [13, Chapter VII].

Lemma 8.2. Let x, y ∈ RN belong to the same Weyl chamber associated to the Weyl
group G. Then, we have

min
g∈G
|x− gy| = |x− y|.

Proof. Suppose for contradiction that ming∈G |x− gy| = |x− g′y| for some non-identity
element g′ ∈ G. Then x and g′y must belong to different Weyl chambers, so, by definition,
there exists a root α ∈ R such that 〈α, x〉 and 〈α, g′y〉 have different signs, i.e.,

〈α, x〉 · 〈α, g′y〉 < 0. (8.6)

On the other hand, we can compute

|x− σαg′y|2 = 〈x− σαg′y, x− σαg′y〉 = |x|2 + |y|2 − 2〈x, σαg′y〉, (8.7)

and similarly
|x− g′y|2 = |x|2 + |y|2 − 2〈x, g′y〉. (8.8)

Furthermore, using formula (2.1) (recall that |α|2 = 2), we obtain

〈x, σαg′y〉 = 〈x, g′y〉 − 〈α, g′y〉〈α, x〉.

This implies, using (8.6), that 〈x, σαg′y〉 > 〈x, g′y〉, so, from equations (8.7) and (8.8), we
obtain

|x− σαg′y| < |x− g′y|,

which contradicts the choice of g′. This concludes the proof.

As a by-product of the proof of Theorem 8.1, we next obtain a Gaussian measure
concentration property.

Corollary 8.3. Assume N + 2γ > 2. Let p ≥ 2 and consider the probability measure νU
with U(x) = |x|p. For any G-invariant a-Lipschitz function f and for any r ≥ 0 we have

νU

(
f ≥

∫
RN

f dνU + r

)
≤ e−r

2/(a2C). (8.9)

Proof. By Markov’s inequality and (8.1) we have, for any s ∈ R,

νU

(
f ≥

∫
RN

f dνU + r

)
= νU

(
esf ≥ exp

(
s

∫
RN

f dνU + sr

))
≤ e−s

∫
f dνU−sr

∫
RN

esf dνU ≤ e−sr+a
2C s2

4 .

The right hand side is minimised for s = 2r
a2C , and replacing this in the above inequality

we obtain exactly (8.9), as required.

Remark 8.4. Using exponential integrability we can see that the condition p ≥ 2 in
Theorem 7.1 is necessary. Indeed, assuming that (5.1) holds for some 1 < p < 2, then
Theorem 8.1 can be extended in exactly the same way to this case. In other words, this
shows that eb

2f2/2 is integrable if f is a Lipschitz function. In particular, taking f(x) = |x|
which is 1-Lipschitz, we have that∫

RN
e−|x|

p+b2|x|2/2 dµk <∞,
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for some b > 0. Since the weight wk of the measure µk is homogeneous of degree 2γ,
using polar coordinates (see, for example, formula (2.4) in [19]), the above implies∫ ∞

0

rN+2γ−1e−r
p+b2r2/2 dr <∞,

which contradicts the assumption p < 2.

8.2 Functional inequalities for singular Boltzmann-Gibbs measures

As discussed in the introduction, the Dunkl setting allows us to rephrase some
functional inequalities related to Boltzmann-Gibbs measures. We exploit this connection
here to obtain such applications. The inequalities in this subsection are all stated for the
classical gradient ∇f , and the probability measures we consider are supported on the
closure of a Weyl chamber H, and take the form

dνU,H =
1

ZH
1He

−|x|p dµk, (8.10)

where ZH =

∫
RN

e−|x|
p

1H dµk is a normalising constant, 1H is the indicator function of

any Weyl chamber, and p > 1. The spaces H1(νU,H) used in this section are classical
Sobolev spaces defined in terms of partial derivatives.

Firstly, as a corollary of Proposition 6.4, we obtain a Poincaré inequality for this
setting.

Theorem 8.5. Assume N + 2γ > 2. Let p > 1. Let H be any Weyl chamber associated
with the root system R and consider the probability measure dνU,H defined by (8.10).
Then there exists a constant C̃ > 0 such that for any f ∈ H1(νU,H) we have∫

RN

∣∣∣∣f − ∫
RN

f dνU,H

∣∣∣∣2 dνU,H ≤ C̃
∫
RN
|∇f |2 dνU,H . (8.11)

Proof. As in (6.5) we have∫
RN

∣∣∣∣f − ∫
RN

f dνU,H

∣∣∣∣2 dνU,H ≤
∫
RN
|f − ζ|2 dνU,H (8.12)

for any ζ ∈ R.

Let f
∣∣
H

: H → R be the restriction of f to H, and let f̃ : RN → R be the G-invariant
function equal to f

∣∣
H

on each Weyl chamber, i.e.,

f̃(σαx) = f
∣∣
H

(x) ∀x ∈ H, ∀α ∈ R+. (8.13)

Since f̃ is G-invariant, we have ∇kf̃ = ∇f̃ . Moreover, since f ∈ H1(µU,H), it can be
checked that also f̃ ∈ H1

k(µU ).

Applying the Poincaré inequality (6.4) to the function f̃ we obtain∫
RN

∣∣∣∣f̃ − ∫
RN

f̃ dνU

∣∣∣∣2 dνU ≤ C
∫
RN
|∇kf̃ |2 dνU . (8.14)

Using ∇kf = ∇f and property (8.3), the inequality (8.14) becomes∫
H

∣∣∣∣f − |G|∫
H

f dνU

∣∣∣∣2 dνU ≤ C
∫
H

|∇f |2 dνU .
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Using now the fact that 1H dνU = ZH
Z dνU,H , this inequality becomes∫

RN

∣∣∣∣f − |G|ZHZ
∫
RN

f dνU,H

∣∣∣∣2 dνU,H ≤ C
∫
RN
|∇f |2 dνU,H .

Taking ζ = |G|ZHZ
∫
RN

f dνU,H in (8.12) together with the previous inequality imply (8.11)

with C̃ = 4C.

Similarly, from Theorem 7.1 we obtain a tight log-Sobolev inequality for this setting
when p ≥ 2.

Theorem 8.6. Assume N + 2γ > 2. Let p ≥ 2. Let H be any Weyl chamber associated
with the root system R and consider the probability measure dνU,H defined by (8.10).
Then there exists a constant C > 0 such that the inequality∫

RN
f2 log

f2∫
f2 dνU,H

dνU,H ≤ C
∫
RN
|∇f |2 dνU,H (8.15)

holds for all f ∈ H1(νU,H).

Proof. Consider the G-invariant function f̃ : RN → R defined by (8.13). Applying the
log-Sobolev inequality (7.1) to the function f̃ and using property (8.3), we obtain∫

H

f2 log
f2∫

H
f2 dνU

dνU ≤ C
∫
H

|∇f |2 dνU + log |G|
∫
H

f2 dνU .

Using now the fact that 1H dνU = ZH
Z dνU,H , this inequality becomes∫

RN
f2 log

f2∫
f2 dνU,H

dνU,H ≤ C
∫
RN
|∇f |2 dνU,H + log

(
|G|ZH

Z

)∫
RN

f2 dνU,H .

To obtain a tight log-Sobolev inequality we use the same method as in the proof of
Theorem 7.1, making use of the Rothaus lemma and the Poincaré inequality (8.11).

Example 8.7. Let us consider the case of root system AN−1 where we have R+ = {ei −
ej |1 ≤ i < j ≤ N} and one choice of Weyl chamber is H = {x ∈ RN |x1 > x2 > . . . > xN}.
In this case, all roots belong to the same orbit of the reflection group G = SN , so
the multiplicity function reduces to a constant, i.e., kα = k ≥ 0 for all α ∈ R+, and
wk(x) =

∏
i<j(xi − xj)2k. Thus, the measure νU,H becomes

dνU,H =
1

ZH
1{x1>x2>...>xN}e

−|x|p
∏

1≤i<j≤N

(xi − xj)2k.

Example 8.8. In the case of root system BN we have R+ = {
√

2ei|1 ≤ i ≤ N} ∪ {ei ±
ej |1 ≤ i < j ≤ N} and a choice of Weyl chamber is H = {x ∈ RN |x1 > x2 > . . . > xN > 0}.
Here, the multiplicity function reduces to two constants, say k1, k2 ≥ 0 (depending
on whether the root is of the form

√
2ei, or ei ± ej) and the Dunkl weight becomes

wk(x) = 2k1N
∏N
i=1 |xi|2k1

∏
i<j(xi − xj)2k2

∏
i<j(xi + xj)

2k2 . Thus, the measure (8.10) in
this case equals

dνU,H =
1

ZH
1{x1>...>xN>0}e

−|x|p
N∏
i=1

|xi|2k1
∏
i<j

(xi − xj)2k2
∏
i<j

(xi + xj)
2k2 .

Finally, we note that we can obtain a Φ-Sobolev inequality in the range 1 < p < 2

which complements Theorem 8.6. The proof of this fact uses Theorem 7.3 and goes along
the same lines as above so we omit it here.
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Theorem 8.9. Assume N + 2γ > 2. Let 1 < p < 2 and s = 2p−1
p . Let H be any Weyl

chamber associated with the root system R and consider the probability measure dνU,H
defined by (8.10). Define

Φ(x) = x(log(x+ 1))s.

Then there exists a constant C > 0 such that the inequality∫
RN

Φ(f2) dνU,H − Φ

(∫
RN

f2 dνU,H

)
≤ C

∫
RN
|∇f |2 dνU,H (8.16)

holds for all f ∈ H1(νU,H).
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[7] J. Dziubański and A. Hejna. On semigroups generated by sums of even powers of Dunkl
operators. Integral Equations and Operator Theory, 93(3):1–30, 2021. MR4266674

[8] L. C. Evans. Partial differential equations, volume 19 of Graduate Studies in Mathematics.
American Mathematical Society, Providence, RI, second edition, 2010. MR2597943

[9] P. Graczyk, M. Rösler, and M. Yor, editors. Harmonic and stochastic analysis of Dunkl
processes. Travaux en cour. Herman, Paris, 2008.

[10] L. Gross. Logarithmic Sobolev inequalities. Amer. J. Math., 97(4):1061–1083, 1975.
MR0420249
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[12] W. Hebisch and B. Zegarliński. Coercive inequalities on metric measure spaces. J. Funct.
Anal., 258(3):814–851, 2010. MR2558178

[13] S. Helgason. Differential geometry, Lie groups, and symmetric spaces. Academic Press New
York, 1978. MR0514561
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