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Abstract

We prove that the matching measure of an infinite vertex-transitive connected graph
has no atoms. Generalizing the results of Salez, we show that for an ergodic non-
amenable unimodular random rooted graph with uniformly bounded degrees, the
matching measure has only finitely many atoms. Ku and Chen proved the analogue of
the Gallai-Edmonds structure theorem for non-zero roots of the matching polynomial
for finite graphs. We extend their results for infinite graphs. We also show that the
corresponding Gallai-Edmonds decomposition is compatible with the zero temperature
monomer-dimer model.
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1 Introduction

First, we define the matching measure of a rooted graph. Fix a finite degree bound D.
Throughout the paper, we only consider graphs where the maximum degree is at most
D. A rooted graph (G, o) is a pair of a connected (possibly infinite) graph G and a
distinguished vertex o of G called the root. Let P(o) be the set of finite paths in G which
start at o. The path tree T (G, o) of G relative to o has P(o) as its vertex set, and two paths
are adjacent if one is a maximal proper subpath of the other. For simplicity of notation,
we also use o to denote the path consisting of the single vertex o. The adjacency operator
A of T (G, o) is a bounded self-adjoint operator on the Hilbert-space `2(P(o)) with norm
at most D.1 The matching measure νG,o of the rooted graph (G, o) is defined as the
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Atoms of the matching measure

spectral measure of (T (G, o), o), that is, the unique probability measure on [−D,D] with
the property that for all n ≥ 1, we have

〈Anχo, χo〉 =
∫ D

−D

xndνG,o(x).

Here χo is the characteristic vector of the one vertex path o.
So the matching measure is closely related to the spectral measure, that has been

extensively studied for vertex transitive graphs. It was known that the spectral measure
of a vertex transitive infinite graph can contain atoms. Then answering a long-standing
open question, Żuk and Grigorchuk [16] gave an example of an infinite connected vertex-
transitive graph such that its spectral measure is purely atomic. In contrast, we show
that the matching measure of an infinite connected vertex-transitive graph has no atoms.

Theorem 1.1. Let G be an infinite connected vertex-transitive graph, let o be any vertex
of it. Then νG,o has no atoms, that is,

νG,o({θ}) = 0

for any θ ∈ R.
The matching measure was introduced by Abért, Csikvári, Frenkel and Kun [1] as a

tool to locally understand the matching polynomial of a finite graph. Given a finite graph
with any root, its matching measure is supported on the roots of thematching polynomial.
Taking expectation over a uniform random root, we get the uniform probability measure
on the roots of the matching polynomial.

Marcus, Spielman and Srivastava [20] used the matching polynomial to construct
bipartite Ramanujan graphs of all degrees.

Unimodular random rooted graphs are natural generalizations of vertex-transitive
graphs. We recall their definition in Section 2.1. Note that if a random rooted graph is
the local weak limit of finite graphs, then it is unimodular.

A graph G is called amenable, if for all ε > 0, there is a finite subset S of the vertices
such that |∂S| < ε|S|. Here ∂S is the outer vertex boundary of S, that is, ∂S is the set of
vertices which are not in S, but have a neighbor in S.

Theorem 1.2. Let (G, o) be an ergodic non-amenable unimodular random rooted graph
with maximum degree at most D. Then EνG,o has only finitely many atoms.

We obtain Theorem 1.2 from the following technical result.
Fix a θ ∈ [−D,D]. Given a graph G, and a vertex u of G, we say that u is θ-essential

in G, if νG,u({θ}) > 0. As we keep θ fixed, we will often simply use the term “essential”
in place of the term “θ-essential”.

Theorem 1.3. Let (G, o) be a unimodular random rooted graph. Let S be the set of
essential vertices of G. For o ∈ S, let Co be the connected component of o in the induced
subgraph G[S]. Then Co is finite with probability 1, and

EνG,o({θ}) ≤ E1(o ∈ S)|Co|−1 − P(o ∈ ∂S).

Moreover, for θ = 0, we have an equality in the line above.

The spectral measure of a rooted graph is a similar notion to the matching measure,
that was under more intense research in the past decades. It is defined the same way as
the matching measure, but we use the adjacency operator of G, instead of the adjacency
operator of the path tree. We immediately see that the two definitions coincide when
G is a tree. Therefore, results on the spectral measure of trees can also be viewed as
results on the matching measure. For unimodular trees, the atom at 0 was analyzed
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in depth by Bordenave, Lelarge and Salez [5]. Later they extended these results for
the matching measure of general graphs [6], although they did not use the matching
measure terminology. Results on atoms other than 0 were obtained by Bordenave, Sen
and Virág [7]. Bordenave [4] showed the existence of a continuous part of the spectral
measure in certain cases. On trees, the behaviour of the spectral measure around 0 was
investigated by Coste and Salez [9].

One of the main motivations of our work was the paper of Salez [23]. He proved
Theorem 1.2 and Theorem 1.3 in the special case of a unimodular tree. Actually, in
that more special setting, he proved a slightly stronger result, as he showed that the
inequality in Theorem 1.3 can be replaced by an equality. Note that even for a unimodular
random rooted graph (G, o), it is generally not true that (T (G, o), o) is unimodular. As an
example, consider a vertex-transitive unimodular graph which is not a tree. Thus, our
theorems can not be deduced from the results of Salez in such a trivial way. Most of the
results above rely on the tool of the Stieltjes transform, and this will also be one of our
main tools.

As mentioned before, the matching measure was introduced by Abért, Csikvári,
Frenkel and Kun [1]. Their aim was to understand the asymptotic behaviour of the roots
and coefficients of the matching polynomial in locally convergent sequences of finite
graphs. See also [2]. The matching polynomial of a finite graph was defined by Heilmann
and Lieb [17] as follows. Given a finite graph G, we define its matching polynomial as

µ(G, z) =
∑
k≥0

(−1)kp(k,G)zn−2k,

where n is the number of vertices of G, and p(k,G) is the number of matchings in G with
exactly k edges. It was proved by Heilmann and Lieb [17] that this polynomial has only
real roots. Moreover, if all the degrees are at most D, then all the roots are contained in
[−2

√
D − 1, 2

√
D − 1].

Let νG be the uniform probability measure on the roots of the matching polynomial
µ(G, z), that is,

νG =
1

n

n∑
i=1

δλi ,

where λ1, λ2, . . . , λn are the roots of µ(G, z) with multiplicities, and δλi is the Dirac-
measure on λi. The measure νG can be disintegrated as

νG = EνG,o,

where o is a uniform random vertex of G.
For finite graphs, several matching related graph parameters can be recovered from

the matching measure. For example, νG({0}) is equal to the proportion of vertices that
are left uncovered by a maximum size matching of G. Furthermore, if γG is the size of a
uniform random matching, then

EγG
n

=
1

2

∫
x2

1 + x2
dνG(x) =

1

2
E

∫
x2

1 + x2
dνG,o(x),

where the expectation is over a uniform random vertex o. Also, if M(G) is the set of
matchings in G, then

log |M(G)|
n

=
1

2

∫
log(1 + x2)dνG(x) =

1

2
E

∫
log(1 + x2)dνG,o(x).

These formulas already suggest a way to extend these graph parameters from finite
graphs to general unimodular random rooted graphs. These extensions are indeed
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meaningful, as they will be continuous with respect to the local weak convergence. This
can be seen by using the fact that if a sequence of finite graphs (Gn) locally converges
to a random rooted graph (G, o), then the measures νGn

converge weakly to EνG,o. We
will not give more details, the interested reader should consult the papers [1, 2].

Using the matching measure, Csikvári [10] proved that if we restrict our attention
to vertex-transitive bipartite graphs, then the number of perfect matchings is also well-
behaved with respect to local weak convergence. Another successful application of these
notions is the proof of the Friedland’s Lower Matching Conjecture by Csikvári [11] that
provides a lower bound on the number of matchings of a given size in finite d-regular
bipartite graphs.

The other main motivation for our results is the paper of Ku and Chen [18]. Building
on the work of Godsil [15], they proved the analogue of the Gallai-Edmonds structure
theorem for nonzero roots of the matching polynomial for finite graphs.

First, let us recall a few classical combinatorial theorems from the matching theory
of finite graphs. Classically, a vertex u of a finite graph G is called essential if there
is a maximum size matching in G which leaves u uncovered. Note that this definition
coincides with our definition of a 0-essential vertex, because νG,u({0}) is the probability
that a uniform random maximum size matching leaves u uncovered.

A graph is called factor-critical if it has only essential vertices.

Lemma 1.4 (Gallai [14]). Let G be a finite, connected factor-critical graph. Then each
maximum size matching leaves exactly one vertex uncovered.

Note that the conclusion of the lemma above can be rephrased as∑
u∈V (G)

νG,u({0}) = 1.

Theorem 1.5 (Gallai-Edmonds structure theorem [14, 13]2). Given a finite graph G, let
D be the set of essential vertices in G. Let A = ∂D, and let C = V (G)−D −A. Then

(a) All the components of the induced subgraph G[D] are factor-critical.

(b) Any vertex of the induced subgraph G[C] is non-essential (in the graph G[C]).

(c) Let X be a non-empty subset of A, then there are at least |X|+ 1 connected compo-
nents in G[D] which are connected to a vertex in X in the graph G.

(d) Moreover, each maximum size matching M must satisfy the following properties:

• The vertices in A ∪ C are all covered by M .
• Every vertex in A is matched with a vertex in D.
• Every connected component of G[D] contains at most one vertex not covered
by M .

• Every connected component of G[D] contains at most one vertex which is
matched with a vertex in A.

• The number of vertices that are uncovered by the matching M is equal to the
number of connected components in G[D] minus |A|.

Now we state the generalizations of these theorems by Ku and Chen [18]. As an
obvious generalization of the factor-critical graphs above, we call a graph θ-critical if all
the vertices are θ-essential.

Lemma 1.6 (The analogue of Gallai’s Lemma by Ku and Chen [18]). Let G be a finite,
connected θ-critical graph. Then the root θ has multiplicity 1 in the matching polynomial
of G.

2See also [19, Theorem 3.2.1] for a formulation much closer to ours.
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This lemma has the following corollary.

Corollary 1.7 (Ku, Chen [18]). If G is a finite, connected vertex-transitive graph, then
the matching polynomial of G has only simple roots.

The statement above can be viewed as the finite counterpart of our Theorem 1.1.
Note that the special case of Theorem 1.1 when G can be approximated locally by finite
transitive graphs was proved by Abért, Csikvári and Hubai [2].

Theorem 1.8 (The analogue of the Gallai-Edmonds structure theorem by Ku and Chen [18]).
Let G be a finite graph. Let D be the set of θ-essential vertices in G. Let A = ∂D and
C = V (G)−D −A. Then

(a) All the components of the induced subgraph G[D] are θ-critical.

(b) Any vertex of the induced subgraph G[C] is not θ-essential (in the graph G[C]).

(c) The multiplicity of the root θ in the matching polynomial of G is given by the number
of connected components in G[D] minus |A|.

We generalize these results for infinite graphs. Recall that we always assume that
the maximum degree of our graphs are finite.

Lemma 1.9 (The analogue of Gallai’s lemma). Let G be a connected (possibly infinite)
θ-critical graph. Then ∑

u∈V (G)

νG,u({θ}) = 1.

In the unimodular case, we have an even stronger result.

Theorem 1.10. Let (G, o) be a unimodular random rooted graph. If G is θ-critical with
probability 1, then G is finite with probability 1.

We have the following analogue of the Gallai-Edmonds structure theorem.

Theorem 1.11. Given a graph G (possibly infinite), let D be the set of θ-essential
vertices in G. Let A = ∂D, and let C = V (G)−D −A. Then

(a) All the components of the induced subgraph G[D] are θ-critical.

(b) Let X be a non-empty subset of A, then there are at least |X|+ 1 connected compo-
nents in G[D] which are connected to a vertex in X in the graph G.

Note that in the unimodular case, in addition to the facts above, Theorem 1.3 also
provides an upper bound on the atom EνG,o({θ}), and it also gives the finiteness of the
connected components of G[D].

For θ = 0, we can prove even more. Given a graph G, we can define certain random
matchings of G which are called Boltzmann random matchings at temperature zero. For
a finite graph, a Boltzmann random matching at temperature zero is simply a uniform
random maximum size matching. For infinite graphs, the definition is more involved.
See Section 2.5 for details.

Theorem 1.12 (Gallai-Edmonds structure theorem for the monomer-dimer model). Let
G be a possibly infinite graph, let D be the set of 0-essential vertices in G. Let A = ∂D,
and let C = V (G)−D −A. Then

(a) All the components of the induced subgraph G[D] are 0-critical.

(b) Let X be a non-empty subset of A, then there are at least |X|+ 1 connected compo-
nents in G[D] which are connected to a vertex in X in the graph G.
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(c) Let M be a Boltzmann random matching at temperature zero. Then M has the
following properties with probability 1:

• The vertices in A ∪ C are all covered by M.
• Every vertex in A is matched with a vertex in D.
• Every connected component of G[D] contains at most one vertex not covered
by M.

• Every connected component of G[D] contains at most one vertex which is
matched with a vertex in A.

(d) If (G, o) is a unimodular random rooted graph, then

EνG,o({0}) = E1(o ∈ D)|Co|−1 − P(o ∈ A).

Here, for o ∈ D, Co is the connected component of o in the graph G[D].

Combining part (c) of Theorem 1.12 with Theorem 1.1, we obtain another proof of
the following theorem of Csóka and Lippner [12].

Corollary 1.13. Every infinite vertex-transitive connected bounded degree graph has a
perfect matching.

Note that for an infinite graph G and vertex u, it is not true that u is 0-essential in
our spectral sense if and only if there is a maximum matching that does not cover u. In
fact, it is not even clear what we mean by maximum matching. Nevertheless, one could
make a precise definition of a maximum matching in an infinite graph, and then obtain
an alternative definition of essential vertices. However, this definition does not coincide
with ours, and it gives a different theory of the Gallai-Edmonds decomposition. See the
work of Bry and Las Vergnas [8].

This paper is organized as follows. In Section 2, we define the Stieltjes transform of
the matching measure, the monomer dimer model and unimodular random rooted graphs.
Following the terminology of Godsil [15], we also define three types of vertices: essential,
neutral and positive. In Section 3, we investigate the effect of deleting different types
of vertices. In Section 4, relying on these results, we prove our general version of the
Gallai-lemma and the Gallai-Edmonds structure theorem, then we obtain Theorem 1.1
as an easy corollary. In Section 5, we prove Theorem 1.12. In Section 6, we prove
Theorem 1.2 and Theorem 1.3. Several open questions and additional results are listed
in Section 7.

2 Preliminaries

2.1 Unimodular random rooted graphs

Strictly speaking, we need to define a measurable structure on the space of (iso-
morphism classes of) rooted graphs to be able to speak about random rooted graphs.
However, we omit these rather technical details, and we refer the reader to the paper of
Aldous and Lyons [3] instead.

A bi-rooted graph is a triple (G, x, y), where G is a connected graph, x and y are two
vertices of G. The space of (isomorphism classes of) bi-rooted graphs can be endowed
with a measurable structure. We again omit the details.

A random rooted graph (G, o) is called unimodular if it satisfies the so-called
Mass-Transport Principle, that is, for any non-negative measurable function f defined on
the space of bi-rooted graphs, we have

E
∑

v∈V (G)

f(G, o, v) = E
∑

v∈V (G)

f(G, v, o).
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A measurable function h defined on the space of rooted graphs is called invariant if
h(G, o) only depends on G, but not on the chosen root o. A unimodular random rooted
graph (G, o) is called ergodic if for all invariant measurable functions h, we have that
h(G, o) is constant almost surely.

Sometimes, we will need a bit more general version of the notion of unimodularity.
Let Ξ be a complete separable metric space called the mark space. A rooted decorated
graph is a triple (G,m, o), where (G, o) is a rooted graph and m is a map from V (G) to Ξ.
We define bi-rooted decorated graphs in an analogous way. A random rooted decorated
graph (G,m, o) is called unimodular if for any non-negative measurable function f

defined on the space of bi-rooted decorated graphs, we have

E
∑

v∈V (G)

f(G,m, o, v) = E
∑

v∈V (G)

f(G,m, v, o).

Again, we omitted the details of measurability.
For example, this general definition allows us to speak about the unimodularity of

a random tuple (G,N, `, o), where (G, o) is a random rooted graph, N is subset of V (G)

and ` : V (G) → [0, 1] is a labeling of the vertices. Indeed, if we let Ξ = {0, 1} × [0, 1], then
the pair (N, `) can be encoded as a map m : V (G) → Ξ, where m(v) = (1(v ∈ N), `(v)).

The next two lemmas are typical applications of the Mass-Transport Principle. These
statements are well-known, but we give the proofs for the reader’s convenience.

Lemma 2.1. Let (G,N, o) be a unimodular random triple, where N is a non-empty finite
subset of V (G). Then G is finite with probability 1.

Proof. For the sake of contradiction, assume that G is infinite with positive probability.
We can choose a 0 < k < ∞ such that

P(|V (G)| = ∞ and |N | = k) > 0.

Let us define
f(G,N, x, y) = 1(|V (G)| = ∞, |N | = k and y ∈ N).

Then
E

∑
v∈V (G)

f(G,N, o, v) = k · P(|V (G)| = ∞ and |N | = k),

which is a positive finite number. On the other hand,

E
∑

v∈V (G)

f(G,N, v, o) = P(|V (G)| = ∞, |N | = k and o ∈ N) · ∞,

which is either 0 or infinite. This gives us a contradiction.

Lemma 2.2. Let (G,N, o) be a unimodular random triple, where N is a subset of V (G).
Assume that P(o ∈ N) > 0. For x ∈ N , let Nx be the set of vertices of the connected
component of x in the induced subgraph G[N ]. Let (G′, N ′, o′) have the same law as
(G,N, o) conditioned on o ∈ N . Then the random rooted graph (G′[N ′

o′ ], o
′) is unimodular.

Proof. Let f ′ be any non-negative measurable function on the space of bi-rooted graphs.
We need to prove that

E
∑

v′∈N ′
o′

f ′(G′[N ′
o′ ], o

′, v′) = E
∑

v′∈N ′
o′

f ′(G′[N ′
o′ ], v

′, o′).

Let us define

f(G,N, x, y) = 1(x, y ∈ N and Nx = Ny)f
′(G[Nx], x, y).
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Note that

E
∑

v∈V (G)

f(G,N, o, v) = P(o ∈ N) · E
∑

v′∈N ′
o′

f ′(G′[N ′
o′ ], o

′, v′)

and

E
∑

v∈V (G)

f(G,N, v, o) = P(o ∈ N) · E
∑

v′∈N ′
o′

f ′(G′[N ′
o′ ], v

′, o′).

Therefore, from the Mass-Transport Principle

P(o ∈ N) · E
∑

v′∈N ′
o′

f ′(G′[N ′
o′ ], o

′, v′) = P(o ∈ N) · E
∑

v′∈N ′
o′

f ′(G′[N ′
o′ ], v

′, o′).

Since P(o ∈ N) > 0, the statement follows.

2.2 Spectral definitions

Let G be a (possibly infinite) connected graph with uniform degree bound D. Given a
vertex u of G, let P(u) = PG(u) be the set of finite paths in G which start at u. The path
tree T (G, u) of G relative to u has P(u) as its vertex set, and two paths are adjacent if one
is a maximal proper subpath of the other. For simplicity of notation, we will also use u to
denote the path consisting of the single vertex u. Note that each path in P(u) determines
a path starting with u in T (G, u) with the same length. The adjacency operator A of
T (G, u) is a bounded self-adjoint operator on the Hilbert-space `2(P(u)) with norm at
most D. For a path P ∈ P(u), let χP ∈ `2(P(u)) be its characteristic vector. Let π be
the projection valued measure corresponding to the operator A. Let H ⊂ C be the open
upper half-plane. For a path P ∈ P(u) and z ∈ H, we define

sG,P (z) = 〈(zI −A)−1χu, χP 〉.

We define the signed measure νG,P on [−D,D] ⊂ R by setting
νG,P (E) = 〈π(E)χu, χP 〉 for all measurable subsets E of [−D,D]. Note that νG,P has total
variation at most 1. Moreover, νG,u is a probability measure. From the Spectral-theorem,
we have

sG,P (z) =

∫ D

−D

(z − x)−1dνG,P (x),

that is, sG,P (z) is the Stieltjes transform of νG,P .
Later, in Lemma 2.11, we will prove that sG,P (z) is the same for both orientations of

the path P . However, it is not at all clear at this point.
We recall the second resolvent identity.

Proposition 2.3. Let A and B be two bounded self-adjoint operators on the same
Hilbert-space. For any z ∈ H, we have

(zI −A)−1 − (zI −B)−1 = (zI −A)−1(A−B)(zI −B)−1

= (zI −B)−1(A−B)(zI −A)−1.

Lemma 2.4. Let P = (p0, p1, . . . , pk) be a path with at least one edge. Let P ′ =

(p1, p2, . . . , pk). Then

sG,P (z) = sG,p0
(z)sG−p0,P ′(z).

Proof. Let P1 ⊂ P(p0) be the set of paths such that their first edge is (p0, p1). Let T1

be the subtree of T (G, p0) induced by the set of vertices P1. Let A be the adjacency
operator of T (G, p0). Let B be the adjacency operator of T1. It still can be considered as
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an operator on `2(P(p0)). Note that T1 is isomorphic to T (G− p0, p1). Thus, if A1 is the
adjacency operator of T (G− p0, p1), then

sG−p0,P ′(z) = 〈(zI −A1)
−1χp1 , χP ′〉 = 〈(zI −B)−1χ(p0,p1), χP 〉.

From the second resolvent identity, we have

〈(zI −A)−1χp0 , χP 〉−〈(zI −B)−1χp0 , χP 〉
= 〈(zI −B)−1(A−B)(zI −A)−1χp0 , χP 〉.

Observe that the left hand side is equal to

〈(zI −A)−1χp0 , χP 〉−〈(zI −B)−1χp0 , χP 〉
= 〈(zI −A)−1χp0

, χP 〉 − 〈z−1χp0
, χP 〉

= sG,P (z).

Therefore,

sG,P (z) = 〈(zI −B)−1(A−B)(zI −A)−1χp0
, χP 〉

= 〈(A−B)(zI −A)−1χp0
, (zI −B)−1χP 〉.

Note that (zI −B)−1χP is supported on P1. Moreover, (A−B)(zI −A)−1χp0
supported

on (P(p0)\P1) ∪ {(p0, p1)}. Since (p0, p1) is the only common element of these supports,
we have

〈(A−B)(zI−A)−1χp0
, (zI −B)−1χP 〉

= 〈(A−B)(zI −A)−1χp0 , χ(p0,p1)〉〈(zI −B)−1χP , χ(p0,p1)〉
= 〈(zI −A)−1χp0

, (A−B)χ(p0,p1)〉〈(zI −B)−1χ(p0,p1), χP 〉
= 〈(zI −A)−1χp0

, χp0
〉〈(zI −A1)

−1χp1
, χP ′〉

= sG,p0
(z)sG−p0,P ′ .

Iterating the previous lemma, we get the following lemma.

Lemma 2.5. Let P = (p0, p1, . . . , pk) be a path. Then

sG,P (z) =

k∏
i=0

sG−{p0,...,pi−1},pi
(z).

Lemma 2.6. Let θ be a real number. For any path P , we have

νG,P ({θ}) = lim
t→0

it · sG,P (θ + it).

In particular, for any vertex u, we have

νG,u({θ}) = lim
t→0

it · sG,u(θ + it).

Proof. Recall that

it · sG,P (θ + it) =

∫ D

−D

it

θ − x+ it
dνG,P (x).

Note that

lim
t→0

it

θ − x+ it
=

{
1 for x = θ,

0 for x 6= θ.
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Since
∣∣∣ it
θ−x+it

∣∣∣ ≤ 1 and νG,P has finite total variation, we can use the dominated

convergence theorem to obtain that

lim
t→0

it · sG,P (θ + it) = lim
t→0

∫ D

−D

it

θ − x+ it
dνG,P (x)

=

∫ D

−D

lim
t→0

it

θ − x+ it
dνG,P (x)

= νG,P (θ).

2.3 Finite graphs and the matching polynomial

Assume that G is a finite graph. Let p(k,G) be the number of matchings in G with
exactly k edges. Let n be the number of vertices of G. The matching polynomial of G is
defined as

µ(G, z) =
∑
k≥0

(−1)kp(k,G)zn−2k.

Lemma 2.7. For any finite graph G, a vertex u of G and z ∈ H, we have

sG,u(z) =
µ(G− u, z)

µ(G, z)
.

Proof. Let T = T (G, u) be the path tree of G relative to u. As before, let A be the
adjacency matrix of T . Recall that µ(T, z) = det(zI − A) since T is a tree, see for
example [15]. Let A0 be the matrix obtained from A by removing the row and column
corresponding to u. From Cramer’s rule, we have

sG,u(z) = 〈(zI −A)−1χu, χu〉 =
det(zI −A0)

det(zI −A)
=

µ(T − u, z)

µ(T, z)
.

From [15, Corollary 2.3], we have that

µ(T − u, z)

µ(T, z)
=

µ(G− u, z)

µ(G, z)
.

Even more generally, we have:

Lemma 2.8. For any finite graph G, a path P of G, and z ∈ H, we have

sG,P (z) =
µ(G− P, z)

µ(G, z)
.

Proof. Let P = (p0, p1, . . . , pk). From Lemma 2.5 and the previous lemma, we have

sG,P (z) =

k∏
i=0

sG−{p0,...,pi−1},pi
(z) =

k∏
i=0

µ(G− {p0, . . . , pi}, z)
µ(G− {p0, . . . , pi−1}, z)

=
µ(G− P, z)

µ(G, z)
.

For a finite graph G, let mult(θ,G) be the multiplicity of the root θ in the matching
polynomial µ(G, z).

Lemma 2.9 ([2]). For a finite graph G, we have∑
u∈V (G)

νG,u({θ}) = mult(θ,G).

Consequently, we have
νG = EνG,o,

where the expectation is over a uniform random vertex o.
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Proof. From [15, Theorem 2.1 (d)], we have∑
u∈V (G)

µ(G− u, z) = µ′(G, z).

Therefore, ∑
u∈V (G)

νG,u({θ}) = lim
t→0

it
∑

u∈V (G)

sG,u(θ + it)

= lim
t→0

it
∑

u∈V (G)

µ(G− u, θ + it)

µ(G, θ + it)

= lim
t→0

itµ′(G, θ + it)

µ(G, θ + it)

= mult(θ,G).

2.4 Exhaustion by finite graphs

Let G be a countable connected graph with uniform degree bound D. Let V1 ⊆
V2 ⊆ V2 ⊆ . . . be an infinite sequence of finite subsets of the vertex set V (G) such that
∪∞
i=1Vi = V (G). Let Gi be the subgraph of G induced by Vi. We call the sequence (Gi)

an exhaustion of the graph G.

Lemma 2.10. For any vertex u ∈ V1, the measures νGi,u weakly converge to νG,u.
Consequently, for any z ∈ H, we have

lim
i→∞

sGi,u(z) = sG,u(z).

Proof. Since the supports of the measure are contained in [−D,D], it is enough to prove
that for any n ≥ 0, we have

lim
i→∞

∫ D

−D

xndνGi,u(x) =

∫ D

−D

xndνG,u(x).

Let Ai be the adjacency operator of T (Gi, u). Since
∫D

−D
xndνGi,u(x) = 〈An

i χu, χu〉, we
see that

∫D

−D
xndνGi,u(x) is the number of walks of length n from u to u in the graph

T (Gi, u). If i is large enough, then Vi contains all the vertices that are at most distance
n from u in the graph G. It is easy to see from the walk counting that in this case∫D

−D
xndνGi,u(x) =

∫D

−D
xndνG,u(x), so the statement follows.

Lemma 2.11. Let P = (p0, p1, . . . , pk) be a path. Let P ′ = (pk, pk−1, . . . , p0) be its
reversed path. Then

sG,P (z) = sG,P ′(z)

for any z ∈ H.
Moreover,

νG,P ({θ}) = νG,P ′({θ}).

Proof. We start by the first statement. For a finite graph G, it is clear from Lemma 2.8.
Assume that G is infinite. Take an exhaustion of G, such that P contained in V1. The
statement will follows from the finite case, if we prove that for all z ∈ H, we have

lim
i→∞

sGi,P (z) = sG,P (z).

This is indeed true, as we see form Lemma 2.5 and Lemma 2.10.
The second statement follows from the first one, and Lemma 2.6.
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Lemma 2.12. For any vertex u and z ∈ H, we have

1 = z · sG,u(z)−
∑
v∼u

sG,(u,v)(z),

where the summation is over the neighbors v of u.

Proof. This is well-known for finite graphs, see for example
[15, Theorem 2.1 (c)]. By exhaustion, it is also true for infinite graphs.

Let K = {k1, k2, . . . , km} be a finite set of vertices. Let us define

sG,K(z) =

m∏
i=1

sG−{k1,...,ki−1},ki
(z).

Note that we already defined sG,K , where K is a path, Lemma 2.5 shows that this
definition is consistent with our previous definition. The next lemma shows that this is a
well-defined notion.

Lemma 2.13. The value of sG,K(z) does not depend on the ordering of the elements of
K.

Proof. It is enough to prove for finite graphs, because infinite graphs can be handled by
exhaustion. For a finite graph similarly as in Lemma 2.8, we have

m∏
i=1

sG−{k1,...,ki−1},ki
(z) =

µ(G−K, z)

µ(G, z)
,

which clearly does not depend on the ordering of the elements of K.

2.5 The monomer-dimer model

First, let G be a finite graph on n vertices. The set of matchings in G is denoted by
M(G). For any t > 0, we consider a random matching Mt

G ∈ M(G) such that for any
M ∈M(G), we have

P(Mt
G = M) =

t|V (G)|−2|M |

PG(t)
,

where PG(t) =
∑

M∈M(G) t
|V (G)|−2|M | = (−i)nµ(G, it). The random matching Mt

G is
called a Boltzmann random matching at temperature t.

Now, we extend these definitions for an infinite countable graph G with maximum
degree at most D. Let V1 ⊆ V2 ⊆ V2 ⊆ . . . be an infinite sequence of finite subsets of the
vertex set V (G) such that ∪∞

i=1Vi = V (G). Let Gi be the subgraph of G induced by Vi.
We call the sequence (Gi) an exhaustion of the graph G. Since E(Gn) ⊆ E(G), we can
consider Mt

Gn
as a random matching of G.

Lemma 2.14 ([6]). Fix any t > 0. The random matchings Mt
Gn

converge in law to
a random matching Mt

G as n → ∞. The law of Mt
G does not depend on the chosen

exhaustion.
Moreover, for any finite subset X of V (G), we have

P(Mt
G leaves uncovered all the vertices in X) = (it)|X|sG,X(it),

and for any finite matching M ∈M(G), we have

P(M ⊆ Mt
G) = (−1)|M |sG,V (M)(it),

where V (M) is the set of vertices covered by M .
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A random matching M of G is called a Boltzmann random matching at temperature
zero, if there is a sequence t1, t2, . . . of positive reals tending to zero such that the
random matchings Mtn

G converge in law to M. In other words, for any finite matching
M ∈M(G), the limit limn→∞ sG,V (M)(itn) exists, and

P(M ⊆ M) = (−1)|M | lim
n→∞

sG,V (M)(itn).

We do not know whether the random matchings Mt
G converge in law as t tends

to zero. This would imply that the distribution of a Boltzmann random matching at
temperature zero is uniquely determined. See Question 7.5 in Section 7 for further
discussion. Anyway, by a standard compactness argument, we see that there is always
at least one Boltzmann random matching at temperature zero. For a finite graph G, the
random matchings Mt

G converge in law to a uniform random maximum size matching as
t → 0.

Moreover, several observables have the same distribution for all the Boltzmann
random matchings at temperature zero. For example, the distribution of the vertices
that are covered by the matching is the same for every Boltzmann random matching at
temperature zero as the next lemma shows.

Lemma 2.15 ([6]). Let M be any Boltzmann random matching at temperature zero. For
any finite subset X of V (G), we have

P(M leaves uncovered all the vertices in X) = lim
t→0

(it)|X|sG,X(it).

In particular, the limit above exists.

2.6 Essential, neutral and positive vertices

Fix a real θ. A vertex u in G is called essential if νG,u({θ}) > 0. Or more generally a
path P is called essential, if νG,P ({θ}) 6= 0.

Lemma 2.16. For any vertex u, we have

lim
t→0

− it

sG,u(θ + it)
=
∑
v∼u

νG−u,v({θ}),

or equivalently,

lim
t→0

−sG,u(θ + it)

it
=

(∑
v∼u

νG−u,v({θ})

)−1

,

with the convention that 0−1 = ∞.

Proof. Consider the identity in Lemma 2.12 with z = θ + it. Multiplying it it
sG,u(θ+it) , we

obtain that
it

sG,u(θ + it)
= it(θ + it)−

∑
v∼u

it · sG−u,v(θ + it).

Letting t → 0 and applying Lemma 2.6, we get that statement.

Definition 2.17. A vertex u is neutral if it is non-essential and∑
v∼u

νG−u,v({θ}) = 0.

A vertex u is positive if ∑
v∼u

νG−u,v({θ}) > 0.3

A vertex is called special if it is non-essential, but it has an essential neighbor.

3Note that in this case it follows that u is non-essential.
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From Lemma 2.16, we have the following lemma.

Lemma 2.18.

(i) A vertex u is essential if and only if

lim
t→0

it · sG,u(θ + it) > 0.

(ii) A vertex u is neutral if and only if it is non-essential and

lim
t→0

−sG,u(θ + it)

it
= ∞.

(iii) A vertex u is positive if and only if

lim
t→0

−sG,u(θ + it)

it

is finite and positive.

The next lemma can be obtained by combining Lemma 2.18 and Lemma 2.7.

Lemma 2.19. Let G be a finite graph, and u be a vertex of G. Then

(i) The vertex u is essential if and only if mult(θ,G− u) = mult(θ,G)− 1.

(ii) The vertex u is neutral if and only if mult(θ,G− u) = mult(θ,G).

(iii) The vertex u is positive if and only if mult(θ,G− u) = mult(θ,G) + 1.

Lemma 2.20. If G is finite, then it has no 0-neutral vertices.

Proof. Observe that mult(0, G) ≡ |V (G)| modulo 2. Thus, the statement follows from
Lemma 2.19.

Note that the statement above is not true for infinite graphs. For example, let G be a
semi-infinite path, and let o be its end vertex. Let r be the unique neighbour of o. Then
(G, o) is isomorphic to (G− o, r). In particular, the type of o in G is the same as the type
of r in G− o. It is only possible, if o is 0-neutral. We can even give a unimodular example.
Indeed, in the bi-infinite path every vertex will be 0-neutral. To see this, observe that it
follows from the previous example that no vertex can be 0-positive. Also, no vertex can
be essential, because of Theorem 1.1.4 In fact, a similar argument shows that all the
vertices of a d-regular infinite tree are 0-neutral.

3 The effects of deleting vertices

3.1 Stability results

The content of this section is summarised in Table 1.
Note that for finite graphs most of these results were proved in [15, 18].
Given a vertex u, let ΠG,u be the orthogonal projection to the θ-eigenspace of the

adjacency operator of T (G, u). It follows from the Spectral theorem that for a path
P = (p0, p1, . . . , pk), we have νG,P ({θ}) = 〈ΠG,p0χp0 , χP 〉.
Lemma 3.1. If a path P is essential, then both endpoints of P are essential.

4There is another way to show that no vertex is essential. Namely, we know that the matching measure is
given by the Kesten-McKay measure [21], which is absolutely continuous.
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Table 1: Stability results. Stars indicate the cases, when we can delete arbitrary many
vertices of the given type.

u in G a in G u in (G− a)

essential non-essential (*) essential Corollary 3.3
special non-essential (*) special Lemma 3.5
positive special (*) positive Lemma 3.6
neutral special neutral Lemma 3.8
positive essential positive Lemma 3.9
neutral essential neutral Lemma 3.9

non-essential neutral non-essential Lemma 3.10
neutral positive non-positive Lemma 3.11
positive positive non-neutral Lemma 3.12

Proof. Assume that P has a non-essential endpoint u. Then

‖ΠG,uχu‖22 = 〈ΠG,uχu, χu〉 = 0,

that is, ΠG,uχu = 0. In particular, 〈ΠG,uχu, χP 〉 = 0, so P is non-essential, which is a
contradiction.

Given a subset A of the vertices, and a vertex u, let P(u,A) be the set of paths starting
at u and ending in A without any inner vertex in A.

Lemma 3.2. Let A be a subset of vertices, and let u be a vertex not in A. Assume that
each path in P(u,A) is non-essential. Then

νG−A,u({θ}) ≥ νG,u({θ}).

In particular, if u is essential in G, then u is essential in G−A.

Proof. Clearly, we may assume that u is essential in G, since the statement is trivial
otherwise. Let w be the projection of ΠG,uχu to the components in PG−A(u). Since for
each P ∈ P(u,A), we have 〈ΠG,uχu, χP 〉 = 0, we see that w is in the θ-eigenspace of the
adjacency operator of T (G−A, u). Recall the elementary fact that

〈ΠG−A,uχu, χu〉 = sup
h

|〈h, χu〉|2,

where the supremum is over all h such that ‖h‖2 = 1 and h is in the θ-eigenspace of the
adjacency operator of T (G−A, u). Thus,

〈ΠG−A,uχu, χu〉 ≥ |〈‖w‖−1
2 w,χu〉|2 = ‖w‖−2

2 |〈w,χu〉|2 = ‖w‖−2
2 |〈ΠG,uχu, χu〉|2

=
‖ΠG,uχu‖2

‖w‖22
〈ΠG,uχu, χu〉 ≥ 〈ΠG,uχu, χu〉.

Corollary 3.3. Let A be a subset of non-essential vertices, u 6∈ A. Then

νG−A,u({θ}) ≥ νG,u({θ}).

In particular, if u is essential in G, then u is essential in G−A.
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Proof. Note that all paths in P(u,A) are non-essential from Lemma 3.1. Thus, the
previous lemma can be applied.

Recall that a vertex is called special if it is non-essential, but it has an essential
neighbor.

Lemma 3.4. Let u be an essential vertex, and let w be a non-essential neighbor of u.
Then w is positive. In other words, every special vertex is positive.

Proof. From Corollary 3.3, we know that the vertex u is essential in G − w. So w is
positive from the definitions.

Lemma 3.5. Let A be a subset of non-essential vertices, and let u be a special vertex
which is not in A. Then u is special in G−A.

Proof. Let w be an essential neighbor of u. We know that u is non-essential. Therefore,
from Corollary 3.3, we have that w is essential in G−A−u. This implies that u is positive
in G−A, in particular, u is non-essential in G−A. From Corollary 3.3, w is essential in
G−A. Thus, u is special in G−A.

Lemma 3.6. Let A be a subset of the special vertices and let u be a positive vertex not
in A. Then u is positive in G−A.

Proof. Since u is positive, there is a neighbor w of u, which is essential in G− u. From
Lemma 3.5, we know that all the vertices of A are special in the graph G−u. In particular,
they are all non-essential. From Corollary 3.3, w is essential in (G− u)−A. That is, w is
essential in (G−A)− u. Thus, u is positive in G−A.

Lemma 3.7. Let a be a special vertex, and let u 6= a be a non-essential vertex. Then u is
non-essential in G− a.

Proof. From Lemma 3.5, we see that a is special in G− u. In particular, a is positive in
G− u. We have that

lim
t→0

−sG−u,a(θ + it)

it
> 0

and finite, furthermore,

lim
t→0

itsG,u(θ + it) = 0.

Therefore,

lim
t→0

−sG−u,a(θ + it) · sG,u(θ + it) = 0.

From Lemma 2.13, we have

sG−u,a(z) · sG,u(z) = sG,a(z) · sG−a,u(z).

Therefore,

lim
t→0

−sG,a(θ + it) · sG−a,u(θ + it) = 0.

Since

lim
t→0

−sG,a(θ + it)

it
> 0

finite, we must have limt→0 itsG−a,u(θ + it) = 0, that is, u is not essential in G− a.

Lemma 3.8. Let a be a special vertex, and let u be a neutral vertex. Then u is neutral in
G− a.
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Proof. From Lemma 3.5, we see that a is special in G− u. In particular, a is positive in
G− u. We have that

lim
t→0

−sG−u,a(θ + it)

it
> 0

and finite, furthermore,

lim
t→0

−sG,u(θ + it)

it
= ∞.

Therefore,

lim
t→0

sG−u,a(θ + it) · sG,u(θ + it)

t2
= ∞.

From Lemma 2.13, this implies that

lim
t→0

sG,a(θ + it) · sG−a,u(θ + it)

t2
= ∞.

Since

lim
t→0

−sG,a(θ + it)

it
> 0

finite, we must have limt→0 − sG−a,u(θ+it)
it = ∞. Since we know from the previous lemma

that u is not essential in G− a, this implies that u is neutral in G− a.

Lemma 3.9. Let a be an essential vertex and let u be a positive (or neutral) vertex. Then
u is positive (or neutral) in G− a.

Proof. First we will show that if u is non-essential in G, then u is non-essential in G− a.
To see this, observe

lim
t→0

it · sG−u,a(θ + it) · it · sG,u(θ + it) = 0,

since u is non-essential in G. On the other hand, by Lemma 2.13, this is the same as

lim
t→0

it · sG−a,u(θ + it) · it · sG,a(θ + it) = 0.

Since a is essential, this could only happen if

lim
t→0

it · sG−a,u(θ + it) = 0,

that is, u is non-essential in G− a.
To prove the statement of the lemma, observe that a is essential in G− u by Corol-

lary 3.3, therefore

lim
t→0

sG−u,a(θ + it) · sG,u(θ + it) = lim
t→0

it · sG−u,a(θ + it) · sG,u(θ + it)

it

is finite if u is positive in G (or infinite if u is neutral in G).
By Lemma 2.13, we know that this is equal to

lim
t→0

sG,a(θ + it) · sG−a,u(θ + it) = lim
t→0

it · sG,a(θ + it) · sG−a,u(θ + it)

it
,

where we know that a is essential in G, thus

lim
t→0

−sG−a,u(θ + it)

it

is finite (or infinite), that is, u is positive (or neutral) in G− a.
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Lemma 3.10. Let a be a neutral vertex and u be an other vertex of G. Then

νG,u({θ}) = νG−a,u({θ}).

In particular, u is essential in G if and only if u is essential in G− a.

Proof. From Corollary 3.3, we have νG−a,u({θ}) ≥ νG,u({θ}). So it is enough to prove
that νG,u({θ}) ≥ νG−a,u({θ}). This is clear when u is non-essential in G − a, so we will
assume that u is essential in G − a. Then w = ΠG−a,uχu ∈ `2(PG−a(u)) is a non-zero
θ-eigenvector of the adjacency operator of T (G − a, u). We would like to show that
the natural extension ŵ of w with 0’s as a vector of `2(PG(u)) is a θ-eigenvector of the
adjacency operator of T (G, u).

To see this, observe that any neighbor of a is non-essential in G − a, thus for any
path P ∈ P(u, a) the subpath P ′ = P − a is non-essential by Lemma 3.1. This means that
〈w,χP ′〉 = 0, and therefore no eigenvalue-equation will fail if we extend w with zeros.
Thus, we have

νG,u({θ}) ≥ 〈‖ŵ‖−1ŵ, χu〉2 = 〈‖w‖−1w,χu〉2 = νG−a,u({θ}).

Lemma 3.11. Let a be positive vertex and u be a neutral vertex. Then u is non-positive
in G− a.

Proof. For the sake of contradiction, assume that u is positive in G− a. Then

lim
t→0

sG,a(θ + it)

−it

sG−a,u(θ + it)

−it
> 0

is finite. On the other hand, by Lemma 2.13, this is equal to

lim
t→0

sG,u(θ + it)

−it

sG−u,a(θ + it)

−it
.

Since u is neutral, we see that limt→0
sG,u(θ+it)

−it is infinite, thus limt→0
sG−u,a(θ+it)

−it has to
be 0 and that is impossible.

Lemma 3.12. Let a be positive vertex and u be an other positive vertex. Then u is
non-neutral in G− a.

Proof. For the sake of contradiction, assume that u is neutral in G− a. So

lim
t→0

sG,a(θ + it) · sG−a,u(θ + it) = lim
t→0

sG,a(θ + it)

it
· it · sG−a,u(θ + it) = 0.

By definition, there is a neighbor w of u, such that w is essential in G − u. Since u is
neutral in G− a, therefore, w has to be non-essential in G− a− u. By Corollary 3.3, this
could happen only if a is essential in G− u. But it means that

lim
t→0

sG,u(θ + it) · sG−u,a(θ + it) = lim
t→0

sG,u(θ + it)

it
· it · sG−u,a(θ + it) < 0,

which contradicts Lemma 2.13.

EJP 27 (2022), paper 107.
Page 18/38

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP809
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Atoms of the matching measure

3.2 A Christoffel-Darboux type formula

We start by the following simple proposition.

Proposition 3.13. Let A be the adjacency operator of T (G, u). Let f : [−D,D] → C be
a continuous function. For any P ∈ P(u), we have

〈f(A)χu, χP 〉 = 〈f(A)χP , χu〉.

Proof. It is straightforward to prove this when f is a polynomial. Any other continuous
function on [−D,D] can be approximated by polynomials.

Lemma 3.14. Let K be a subset of vertices, and let u be a vertex not in K. For path
P ∈ P(u,K), let P ′ be the path obtained from P by deleting the endpoint of P in K.
Then, for z ∈ H, we have

sG,u(z)− sG−K,u(z) =
∑

P∈P(u,K)

sG−K,P ′(z)sG,P (z),

where the sum on the right converges absolutely.

Proof. Let A be the adjacency operator of T (G, u). Let B be the adjacency operator
of the subtree of T (G, u) induced by PG−K(u) ⊆ PG(u). Note that this subtree can by
identified with T (G−K,u).

From the second resolvent identity, we get

sG,u(z)− sG−K,u(z) = 〈(zI −A)−1χu, χu〉 − 〈(zI −B)−1χu, χu〉
= 〈(zI −A)−1(A−B)(zI −B)−1χu, χu〉
= 〈(A−B)(zI −B)−1χu, (zI −A)−1χu〉.

Note that (A − B)(zI − B)−1χu is supported on P(u,K). Moreover, for each
P ∈ P(u,K), we have 〈(A−B)(zI −B)−1χu, χP 〉 = 〈(zI −B)−1χu, χP ′〉. Thus,

〈(A−B)(zI −B)−1χu,(zI −A)−1χu〉

=
∑

P∈P(u,K)

〈(zI −B)−1χu, χP ′〉〈(zI −A)−1χu, χP 〉

=
∑

P∈P(u,K)

〈(zI −B)−1χu, χP ′〉〈(zI −A)−1χP , χu〉

=
∑

P∈P(u,K)

〈(zI −B)−1χu, χP ′〉〈(zI −A)−1χu, χP 〉

=
∑

P∈P(u,K)

sG−K,P ′(z)sG,P (z),

where we used Proposition 3.13 at the third equality.

The following convention will be useful for us.

Convention 3.15. If u ∈ K, we define sG−K,u(z) ≡ 0. Moreover, we define sG−K,P ′ ≡ 1

for the empty path P ′.

With these conventions, Lemma 3.14 remains true even in the case of u ∈ K.

Corollary 3.16. Let u and v be two vertices. Then

sG,u(z)sG,v(z)− sG,v(z)sG−v,u(z) =
∑

P∈P(u,v)

(sG,P (z))
2
.

Note that if u = v, then this statement should be interpreted using Convention 3.15.
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Proof. We apply the previous lemma for K = {v}, and multiply that identity with sG,v(z).

Note that for finite graphs, Corollary 3.16 and Lemma 3.14 are special cases of the
more general formula of Heilmann and Lieb [17, Theorem 6.3].

3.3 The total change of the measure of an atom deleting a single vertex

Our aim in this subsection is to prove the following infinite analogue of Lemma 2.19.

Lemma 3.17.
If u is positive, then ∑

v 6=u

(νG−u,v({θ})− νG,v({θ})) = 1.

If u is neutral, then ∑
v 6=u

(νG−u,v({θ})− νG,v({θ})) = 0.

If u is essential, then ∑
v∈V (G)

(νG−u,v({θ})− νG,v({θ})) = −1.

Here we use the convention that νG−u,u({θ}) = 0.

First, we handle the case when u is neutral. Observe that by Lemma 3.10 each term
of the sum is 0, so we have proved the second statement. In the rest of the subsection,
we will focus on the cases when u is not a neutral vertex.

Lemma 3.18. For any vertex u, we have

lim
t→0

−t2
∑

P∈P(u)

(sG,P (θ + it))
2
= νG,u({θ}).

Proof. Let A be the adjacency operator of T (G, u). Then using Proposition 3.13, we have∑
P∈P(u)

(sG,P (z))
2
=

∑
P∈P(u)

(
〈(zI −A)−1χu, χP 〉

)2
=

∑
P∈P(u)

〈(zI −A)−1χP , χu〉〈(zI −A)−1χu, χP 〉

= 〈(zI −A)−2χu, χu〉.

Therefore,

lim
t→0

−t2
∑

P∈P(u)

(sG,P (θ + it))
2
= lim

t→0
−t2〈((θ + it)I −A)

−2
χu, χu〉

= lim
t→0

∫ D

−D

−t2

(θ − x+ it)2
dνG,u(x)

=

∫ D

−D

lim
t→0

−t2

(θ − x+ it)2
dνG,u(x)

= νG,u({θ}),

where we can exchange the limit and the integral, because of the dominated convergence
theorem.
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Lemma 3.19. Let V be a countable set. For all t ≥ 0, we are given the vectors xt, yt ∈
`2(V ), such that limt→0 xt = x0 and limt→0 yt = y0 in `2-norm. Let xt ◦ yt be the pointwise
product of xt and yt. Then for all t ≥ 0, we have xt ◦yt ∈ `1(V ). Moreover, limt→0 xt ◦yt =
x0 ◦ y0 in `1-norm.

Proof. From the Cauchy-Schwarz-Bunyakovsky inequality, we have that
‖xt ◦ yt‖1 ≤ ‖xt‖2‖yt‖2 < ∞, so xt ◦ yt is indeed in `1(V ). It follows from the con-
vergence of xt and yt, that there is a K such that ‖xt‖2, ‖yt‖2 < K for every small enough
t. Therefore,

‖xt ◦ yt − x0 ◦ y0‖1 ≤ ‖(xt − x0) ◦ yt‖1 + ‖x0 ◦ (yt − y0)‖1
≤ ‖xt − x0‖2‖yt‖2 + ‖x0‖2‖yt − y0‖2
≤ K(‖xt − x0‖2 + ‖yt − y0‖2)

for small enough t. The statement follows from the convergence of xt and yt.

Lemma 3.20. Fix a vertex w of a graph G. For t > 0, we define a vector rt ∈ CP(w) by
setting

rt(P ) = −t2 (sG,P (θ + it))
2

for all P ∈ P(w). Moreover, we define r0 ∈ CP(w) by setting

r0(P ) = (〈ΠG,wχw, χP 〉)2 .

for all P ∈ P(w).
Then rt ∈ `1(P(w)) for all t ≥ 0.
Moreover, limt→0 rt = r0 in `1(P(w)).

Proof. Let A be the adjacency operator of T (G,w). Let t > 0. Observe that

rt = it((θ + it)I −A)−1χw ◦ it((θ + it)I −A)−1χw,

and

r0 = ΠG,wχw ◦ΠG,wχw.

The statement will follow from the the previous lemma, once we prove that

lim
t→0

‖it((θ + it)I −A)−1χw −ΠG,wχw‖2 = 0.

Observe that∥∥(it((θ + it)I −A)−1 −ΠG,w

)
χw

∥∥2
2

=
〈(

it((θ + it)I −A)−1 −ΠG,w

)∗ (
it((θ + it)I −A)−1 −ΠG,w

)
χw, χw

〉
=

∫ D

−D

∣∣∣∣ it

θ + it− x
− δθ,x

∣∣∣∣2 dνG,w(x),

and
∣∣∣ it
θ+it−x − δθ,x

∣∣∣2 ≤ 4. Moreover, limt→0

∣∣∣ it
θ+it−x − δθ,x

∣∣∣2 = 0 for any fixed x. Thus,

from the dominated convergence theorem, we obtain that

lim
t→0

∥∥(it((θ + it)I −A)−1 −ΠG,w

)
χw

∥∥2
2
= 0.
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Lemma 3.21. For any vertex w, we have

lim
t→0

∑
v∈V (G)

−t2 · sG,w(θ + it) (sG,v(θ + it)− sG−w,v(θ + it))

=
∑

v∈V (G)

lim
t→0

−t2 · sG,w(θ + it) (sG,v(θ + it)− sG−w,v(θ + it)) .

Here we used Convention 3.15.

Proof. Consider the linear operator τ : `1(P(w)) → `1(V (G)) defined by setting

(τx)(v) =
∑

P∈P(w,v)

x(P )

for all x ∈ `1(P(w)) and v ∈ V (G).

From Corollary 3.16, we have

(τrt)(v) = −t2 · sG,w(θ + it) (sG,v(θ + it)− sG−w,v(θ + it))

for all v ∈ V (G).

By the triangle inequality, τ is an operator of norm at most 1. Combining this with
Lemma 3.20, we have limt→0 τrt = τr0 in `1(V (G)). Similarly, the map y 7→

∑
v∈V (G) y(v)

is a continuous map from `1(V (G)) to C. Thus,

lim
t→0

∑
v∈V (G)

(τrt)(v) =
∑

v∈V (G)

lim
t→0

(τrt)(v).

This is exactly the statement of the lemma.

In the next four lemmas, we will use the following notation. For a path P ∈ P(u)

we denote by P ′ the path obtained from P by deleting its endpoint u. We will use
Convention 3.15 several times without mentioning it.

In the next two lemmas, we will handle the case of Lemma 3.17, when u is an essential
vertex in G.

Lemma 3.22. Let u be an essential vertex of G. Then∑
v∈V (G)

(νG,v({θ})− νG−u,v({θ})) = lim
t→0

it
∑

P∈P(u)

sG,P (θ + it)sG−u,P ′(θ + it).

Proof. We have

lim
t→0

it
∑

P∈P(u)

sG,P (θ + it)sG−u,P ′(θ + it)

= lim
t→0

it

sG,u(θ + it)

∑
P∈P(u)

(sG,P (θ + it))
2

= lim
t→0

1

it · sG,u(θ + it)
·

−t2
∑

P∈P(u)

(sG,P (θ + it))
2

 .
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By Corollary 3.16 and Lemma 3.21, we have

lim
t→0

−t2
∑

P∈P(u)

(sG,P (θ + it))
2

= lim
t→0

−t2
∑

v∈V (G)

∑
P∈P(u,v)

(sG,P (θ + it))
2

= lim
t→0

∑
v∈V (G)

−t2 · sG,u(θ + it) (sG,v(θ + it)− sG−u,v(θ + it))

=
∑

v∈V (G)

lim
t→0

−t2 · sG,u(θ + it) (sG,v(θ + it)− sG−u,v(θ + it)) .

Moreover, limt→0
1

it·sG,u(θ+it) exists and it is finite. Thus,

lim
t→0

1

it · sG,u(θ + it)
·

−t2
∑

P∈P(u)

(sG,P (θ + it))
2


=

∑
v∈V (G)

lim
t→0

it (sG,v(θ + it)− sG−u,v(θ + it))

=
∑

v∈V (G)

(νG,v({θ})− νG−u,v({θ})).

Lemma 3.23. Let u be an essential vertex of G. Then

lim
t→0

it
∑

P∈P(u)

sG,P (θ + it)sG−u,P ′(θ + it) = 1.

Proof. We have

lim
t→0

it
∑

P∈P(u)

sG,P (θ + it)sG−u,P ′(θ + it) = lim
t→0

it

sG,u(θ + it)

∑
P∈P(u)

(sG,P (θ + it))
2

= lim
t→0

1

it · sG,u(θ + it)
·

−t2
∑

P∈P(u)

(sG,P (θ + it))
2

 .

Here, by Lemma 3.18, we have

lim
t→0

−t2
∑

P∈P(u)

(sG,P (θ + it))
2
= νG,u({θ})

and
lim
t→0

it · sG,u(θ + it) = νG,u({θ}),

so the statement follows.

Combining Lemma 3.22 and Lemma 3.23, we get Lemma 3.17 for essential vertices.
In the rest of this subsection, we prove the analogues of Lemma 3.22 and

Lemma 3.23 for positive vertices. The statements are almost the same, but the proofs
are slightly more involved.

Lemma 3.24. Let u be a positive vertex of G. Then∑
v∈V (G)

(νG,v({θ})− νG−u,v({θ})) = lim
t→0

it
∑

P∈P(u)

sG,P (θ + it)sG−u,P ′(θ + it).
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Proof. We have

lim
t→0

it
∑

P∈P(u)

sG,P (θ + it)sG−u,P ′(θ + it)

= lim
t→0

it · sG,u(θ + it)

1 +
∑
w∼u

∑
P∈PG−u(w)

(sG−u,P (θ + it))
2


= lim

t→0
it · sG,u(θ + it)

∑
w∼u

∑
P∈PG−u(w)

(sG−u,P (θ + it))
2


= lim

t→0

sG,u(θ + it)

it

∑
w∼u

−t2
∑

P∈PG−u(w)

(sG−u,P (θ + it))
2


= lim

t→0

sG,u(θ + it)

it

∑
w∼u

−t2
∑

v∈V (G)−u

∑
P∈PG−u(w,v)

(sG−u,P (θ + it))
2


= lim

t→0

sG,u(θ + it)

it∑
w∼u

∑
v∈V (G)−u

−t2 · sG−u,w(θ + it) (sG−u,v(θ + it)− sG−u−w,v(θ + it))

 .

Here, for any neighbor w of u, from Lemma 3.21, we have

lim
t→0

∑
v∈V (G)−u

−t2 · sG−u,w(θ + it) (sG−u,v(θ + it)− sG−u−w,v(θ + it))

=
∑

v∈V (G)−u

lim
t→0

−t2 · sG−u,w(θ + it) (sG−u,v(θ + it)− sG−u−w,v(θ + it)) .

Since u is positive, limt→0
sG,u(θ+it)

it exists and is finite. Thus,

lim
t→0

sG,u(θ + it)

it

∑
v∈V (G)−u

−t2 · sG−u,w(θ + it) (sG−u,v(θ + it)− sG−u−w,v(θ + it))

=
∑

v∈V (G)−u

lim
t→0

itsG,u(θ + it) · sG−u,w(θ + it) (sG−u,v(θ + it)− sG−u−w,v(θ + it)) .

Therefore,

lim
t→0

it
∑

P∈P(u)

sG,P (θ + it)sG−u,P ′(θ + it)

=
∑

v∈V (G)−u

lim
t→0

∑
w∼u

itsG,u(θ + it) · sG−u,w(θ + it) (sG−u,v(θ + it)− sG−u−w,v(θ + it)) .
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Now fix a v 6= u, then

lim
t→0

∑
w∼u

itsG,u(θ + it) · sG−u,w(θ + it) (sG−u,v(θ + it)− sG−u−w,v(θ + it))

= lim
t→0

(
it · sG−u,v(θ + it)

∑
w∼u

sG,(u,w)(θ + it)

− it · sG,v(θ + it)
∑
w∼u

sG−v,(u,w)(θ + it)
)

= lim
t→0

(
it · sG−u,v(θ + it)((θ + it)sG,u(θ + it)− 1)

− it · sG,v(θ + it)((θ + it)sG−v,u(θ + it)− 1)
)

= lim
t→0

(it · sG,v(θ + it)− it · sG−u,v(θ + it))

= νG,v({θ})− νG−u,v({θ}),

where we used Lemma 2.12 at the second equality.

Lemma 3.25. Let u be a positive vertex of G. Then

lim
t→0

it
∑

P∈P(u)

sG,P (θ + it)sG−u,P ′(θ + it) = −1.

Proof. We have

lim
t→0

it
∑

P∈P(u)

sG,P (θ + it)sG−u,P ′(θ + it)

= lim
t→0

it · sG,u(θ + it)

1 +
∑
w∼u

∑
P∈PG−u(w)

(sG−u,P (θ + it))
2


= lim

t→0
it · sG,u(θ + it)

∑
w∼u

∑
P∈PG−u(w)

(sG−u,P (θ + it))
2


= lim

t→0

sG,u(θ + it)

it

−t2
∑
w∼u

∑
P∈PG−u(w)

(sG−u,P (θ + it))
2

 .

Here

lim
t→0

−t2
∑
w∼u

∑
P∈PG−u(w)

(sG−u,P (θ + it))
2
=
∑
w∼u

νG−u,w({θ}) > 0,

from Lemma 3.18, and

lim
t→0

sG,u(θ + it)

it
= −

(∑
v∼u

νG−u,v({θ})

)−1

from Lemma 2.16. So the statement follows.

Combining Lemma 3.24 and Lemma 3.25, we get Lemma 3.17 for positive vertices.

3.4 Deleting several vertices

Given a graph G, a subset U of its vertices, and a vertex v 6∈ U , we define

∆G,U (v) = νG−U,v({θ})− νG,v({θ}).
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Lemma 3.26. If all the vertices of U are non-essential, then

∆G,U (v) ≥ 0.

Proof. This is a direct consequence of Corollary 3.3.

Let ` : V → [0, 1] be a labeling of the vertices such that the labels are pairwise distinct.
For a vertex u ∈ U , we define

L(u) = {w ∈ U |`(w) < `(u)}.5

Assume that all the vertices of U are special. Then we define

∆`
G,U (v) =

∑
u∈U

∆G−L(u),{u}(v).

The sum above is well defined, because all the terms are non-negative as the following
lemma shows.

Lemma 3.27. Assume that all the vertices of U are special. Let U0 ⊆ U . Then for any
subset U1 ⊆ U − U0, we have

∆G−U0,U1(v) ≥ 0.

Proof. From Lemma 3.5, we see that all the vertices of U1 are special inG−U0. Therefore,
Lemma 3.26 can be applied to get the statement.

Lemma 3.28. Assume that all the vertices of U are special. Then

∆G,U (v) ≥ ∆`
G,U (v).

Proof. It is enough to prove that for any finite subset F of U , we have

∆G,U (v) ≥
∑
u∈F

∆G−L(u),{u}(v).

Let F = {u1, u2, . . . , um}, and assume that `(u1) < `(u2) < · · · < `(um). We set U0 = ∅,
and for i = 1, 2, . . . ,m, we set

U2i−1 = L(ui),

U2i = L(ui) ∪ {ui}.

Finally, we set U2m+1 = U . Observe that U0 ⊆ U1 ⊆ · · · ⊆ U2m+1. So it is clear from the
definitions, that

∆G,U (v) =

2m∑
i=0

∆G−Ui,Ui+1−Ui
(v).

From Lemma 3.27, all the terms in the sum above are non-negative, thus,

∆G,U (v) =

2m∑
i=0

∆G−Ui,Ui+1−Ui
(v)

≥
m∑
i=1

∆G−U2i−1,U2i−U2i−1
(v)

=
∑
u∈F

∆G−L(u),{u}(v).

5This depends on the choice of U and `, but we do not indicate this in the notation.
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4 Critical graphs – Gallai’s lemma and the Gallai–Edmonds de-
composition theorem

In this section, we prove Gallai’s lemma and the Gallai-Edmonds decomposition
theorem stated in the Introduction.

First, we would like to understand the connected components of the essential vertices.
Recall that we say that a graph G is critical if every vertex of G is essential.

Lemma 4.1. Let G be a connected critical graph and let u be a vertex of G. Then all the
vertices of G− u are non-essential.

Proof. Let u be a vertex of G. For the sake of contradiction, assume that G − u has
an essential vertex. Since u is not positive, all the neighbors of u are non-essential in
G− u. In particular, each connected component of G− u contains a non-essential vertex.
Since G − u has an essential vertex, there must be a special vertex w in G − u. From
Lemma 3.7, we have that all the neighbors of u are non-essential in G− u− w, because
they are non-essential in G− u.6 We have sG,u(z)sG−u,w(z) = sG,w(z)sG−w,u(z). Since u

is essential in G, w is positive in G− u, we have

lim
t→0

sG,u(θ + it)sG−u,w(θ + it) = lim
t→0

(it · sG,u(θ + it))
sG−u,w(θ + it)

it

is finite and non-zero. Thus, limt→0 sG,w(θ + it)sG−w,u(θ + it) is also finite and non-zero.
Since w is essential in G, this implies that u is positive in G− w. Then, u has a neighbor
x in G− w such that x is essential in G− w − u. This is a contradiction.

Lemma 1.9. Let G be a connected (possibly infinite) θ-critical graph. Then∑
u∈V (G)

νG,u({θ}) = 1.

Proof. Let u be any vertex of G. From the previous lemma, all the vertices of G− u are
non-essential. Since u is essential in G, from Lemma 3.17, we have∑

v∈V (G)

νG,v({θ}) =
∑

v∈V (G)

(νG,v({θ})− νG−u,v({θ})) = 1.

As an easy corollary, we obtain Theorem 1.1.

Theorem 1.1. Let G be an infinite connected vertex-transitive graph, let o be any vertex
of it. Then νG,o has no atoms, that is,

νG,o({θ}) = 0

for any θ ∈ [−D,D].

Proof. Since G is vertex-transitive, we have νG,u({θ}) = νG,v({θ}) for any two
vertices u, v of G. If all the vertices were essential, then we would have∑

u∈V (G) νG,u({θ}) = ∞, which contradicts Lemma 1.9.

Corollary 4.2. If u 6= v are in the same essential component D′ of G, then v is non-
essential in G− u.

6It might happen that w is a neighbor of u, in this case this statement is about the neighbors of u other than
w.
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Proof. For the sake of contradiction, assume that v is essential in G− u. All the vertices
of ∂D′ are special in G, in particular, they are positive in G. Thus, by Lemma 3.9, we
know that all the vertices in ∂D′ are positive in the graph G− u. By Corollary 3.3, we
know that v is essential in (G − u) − ∂D′. On the other hand, we know that G[D′] is a
critical graph by Corollary 3.3. Thus, by Lemma 4.1, any vertex in G[D′]− u has to be
non-essential, which is a contradiction.

In the rest of this section, we prove the statements of Theorem 1.11.

Lemma 4.3. Let G be a graph (possibly infinite), let D be the set of θ-essential vertices.
Then each component of G[D] is critical.

Proof. Let A = ∂D. By Corollary 3.3, we know that every vertex in (G− A)[D] = G[D]

is essential, since every vertex in A is positive. Since in every connected component of
G[D] all the vertices are essential, every component is critical.

Lemma 4.4. Let D be the set of θ-essential vertices in G, and let A = ∂D and let X be a
non-empty finite subset of A. Then there are at least |X|+ 1 connected components in
G[D] which are connected to a vertex in X in the graph G.

Proof. Let D′ be the union of those connected components of G[D] which are connected
to a vertex of X in G. Let Y be ∂(X ∪D′). Since all essential neighbors of X are in D′,
therefore every vertex in Y is non-essential. Thus, by Corollary 3.3, any vertex of D′ is
essential in G− Y and by Lemma 3.5, any vertex of X is special in G− Y .

Let G′ be the subgraph of G induced by X ∪ D′. Observe that G′ is the union of
connected components of G− Y . In particular, every vertex in D′ is essential in G′, and
every vertex in X is special in G′.

We delete the vertices of X one by one. By Lemma 3.5, each vertex of X is special
at the moment of its deletion. By Lemma 3.17, each deleted vertex decreases the total
weight of the atom θ by 1. After deleting all the vertices of X, the resulting graph will
have critical connected components by Corollary 3.3. Thus, by Lemma 1.9, the total
weight of the atom θ in G′ − X is the number of connected components c(G′[D′]) of
G′[D′]. Therefore,

0 <
∑
u∈G′

νG′,u({θ}) =
∑

u∈G′−X

νG′−X,u({θ})− |X| = c(G′[D′])− |X|.

5 The Gallai-Edmonds decomposition and the monomer-dimer
model

In this section, we prove the statements of Theorem 1.12 part (c). Part (a) and part (b)
of Theorem 1.12 are covered by Lemmas 4.3 and 4.4. The proof of part (d) is postponed
to Section 6.3.

Lemma 5.1. For a graph G let D be the set of 0-essential vertices. Let A = ∂D and let
C = V (G)−D −A. Let M be a Boltzmann random matching of G at temperature zero.
Then, the followings hold with probability 1:

1. Every vertex in A ∪ C is covered by M.

2. Every vertex in A is matched with a vertex in D.

3. Every connected component of G[D] contains at most one vertex not covered by
M.

4. Every connected component of G[D] contains at most one vertex which is matched
with a vertex in A.
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Proof. Let t1, t2, . . . be a sequence of positive numbers tending to zero, such that Mtn
G

converges in law to M.
Let us prove the statements in order.

1. If u ∈ A ∪ C, then u is non-essential, thus

0 = νG,u({0}) = lim
n→∞

itn · sG,u(itn) = P (u is uncovered by M) .

2. Let u ∈ A, and let v be a neighbor of u, which is not in D. Note that u is special in
G, and v is non-essential in G. From Lemma 3.7, we see that v is non-essential in
G − u. So we obtained that limn→∞

sG,u(itn)
itn

is finite and limn→∞ itnsG−u,v(itn) is
zero. Therefore,

P ((u, v) ∈ M) = lim
n→∞

−sG,u(itn)sG−u,v(itn)

= lim
n→∞

−sG,u(itn)

itn
· itnsG−u,v(itn) = 0.

3. Let u and v be two vertices of the same connected component D′ of G[D]. By
Corollary 4.2, we have

P
(
u, v /∈ V (M)

)
= lim

n→∞
(itn)

2sG,{u,v}(itn)

= lim
n→∞

itn · sG,u(itn) · itn · sG−u,v(itn)

= νG,u({0}) · νG−u,v({0}) = 0.

4. Let e = (u, a1) and f = (v, a2) be two vertex disjoint edges, where u and v are
from the same connected component D′ of G[D] and a1, a2 ∈ A. Similarly as in the
second part, we have

P
(
e, f ∈ M

)
= lim

n→∞
sG,{a1,a2,u,v}(itn)

= lim
n→∞

sG,a1
(itn)sG−a1,a2

(itn)sG−a1−a2,u(itn)sG−a1−a2−u,v(itn)

= lim
n→∞

sG,a1
(itn)

−itn

sG−a1,a2
(itn)

−itn
· itnsG−a1−a2,u(itn) · itnsG−a1−a2−u,v(itn)

= 0,

because a1 is special in G, a2 is special in G− a1, and v is non-essential in G− a1 −
a2 − u. Indeed, a2 is special in G− a1 by Lemma 3.5. Moreover, u and v are in the
same essential component of G− a1 − a2 by Corollary 3.3. So Corollary 4.2 can be
applied to deduce that v is non-essential in the graph G− a1 − a2 − u.

6 Unimodular graphs

6.1 The unimodular version of Gallai’s lemma

Theorem 1.10. Let (G, o) be a unimodular random rooted graph. If G is θ-critical with
probability 1, then G is finite with probability 1.

Proof. Mark a vertex u of G, if νG,u({θ}) > 1
2 supv∈V (G) νG,v({θ}).

Recall that by Lemma 1.9, we have∑
v∈V (G)

νG,v({θ}) = 1.

From this, it is easy to see that we marked a non-empty finite subset of the vertices in a
unimodular way. By Lemma 2.1, this is only possible if G is finite almost surely.
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Let us denote by A ⊂ R the set of totally real algebraic integers, that is, a real
number θ is in A if θ is a root of a real-rooted monic polynomial with integer coefficients.

Corollary 6.1. Let (G, o) be a unimodular random rooted graph, then any atom θ of the
expected matching measure EνG,o is a totally real algebraic integer.

Proof. Let D be the set of θ-essential vertices of G. Since θ is an atom, we have
P(o ∈ D) > 0. For o ∈ D, let Co be the connected component of o in G[D]. Let (G′, o′)

have the same law as (G, o) conditioned on the event o ∈ D. Then (Co′ , o′) is unimodular
from Lemma 2.2. From Corollary 3.3, we see that Co′ has only essential vertices. Then
Theorem 1.10 shows that Co is finite with probability 1. In particular, θ is a root of the
matching polynomial of a finite graph.

6.2 An inequality

Theorem 6.2. Let (G, o) be a unimodular random rooted graph. Let (G,N, S, o) be a
unimodular random tuple, where N and S are disjoint subset of V (G) such that all
vertices in N are non-essential, and all the vertices in S are special. Then

E1(o 6∈ N ∪ S)νG−N−S,o({θ}) ≥ P(o ∈ S) + EνG,o({θ}).

Proof. Note that, if o 6∈ N , we have

νG−N,o({θ}) ≥ νG,o({θ})

from Corollary 3.3. Thus,

EνG,o({θ}) = E1(o 6∈ N)νG,o({θ}) ≤ E1(o 6∈ N)νG−N,o({θ}).

From Lemma 3.5, all the vertices of S are special in G−N . Then

E1(o 6∈ N ∪ S)νG−N−S,o({θ})− E1(o 6∈ N)νG−N,o({θ})
= E1(o 6∈ N ∪ S) (νG−N−S,o({θ})− νG−N,o({θ}))
= E1(o 6∈ N ∪ S)∆G−N,S(o).

So it is enough to prove that

E1(o 6∈ N ∪ S)∆G−N,S(o) ≥ P(o ∈ S).

Let ` be an i.i.d. uniform [0, 1] labeling of the vertices ofG−N . It is clear that (G,N, S, `, o)

is unimodular, see [3, Section 6]. From Lemma 3.28, it is enough to prove the following
lemma.

Lemma 6.3. We have

E1(o 6∈ N ∪ S)∆`
G−N,S(o) = P(o ∈ S).

Proof. First, let

f(G,N, S, `, x, y) = 1(y 6∈ N ∪ S, x ∈ S) ·∆G−N−L(x),{x}(y).

Observe that

E
∑

v∈V (G)

f(G,N, S, `, v, o) = E1(o 6∈ N ∪ S)∆`
G−N,S(o).
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Note that by Lemma 3.5 any vertex v ∈ S − (L(o) ∪ {o}) is non-essential in both
G − N − L(o) and G − N − (L(o) ∪ {o}). Thus, for any v ∈ S − (L(o) ∪ {o}), we have
∆G−N−L(o),{o}(v) = 0. Therefore,

E
∑

v∈V (G)

f(G,N, S, `, o, v) = E1(o ∈ S)
∑

v 6∈N∪S

∆G−N−L(o),{o}(v)

= E1(o ∈ S)
∑

v 6∈N∪L(o)∪{o}

∆G−N−L(o),{o}(v).

So from the Mass-Transport Principle, we have

E1(o 6∈ N ∪ S)∆`
G−N,S(o) = E1(o ∈ S)

∑
v 6∈N∪L(o)∪{o}

∆G−N−L(o),{o}(v).

From Lemma 3.5, we see that if o ∈ S, then o is positive in G−N − L(o), thus we can
apply Lemma 3.17 to obtain that∑

v 6∈N∪L(o)∪{o}

∆G−N−L(o),{o}(v) = 1.

Therefore,

E1(o 6∈ N ∪ S)∆`
G−N,S(o) = E1(o ∈ S)

∑
v 6∈N∪L(o)∪{o}

∆G−N−L(o),{o}(v)

= P(o ∈ S).

This concludes the proof of Theorem 6.2.

6.3 The proof of Theorem 1.2 and Theorem 1.3

Theorem 1.3. Let (G, o) be a unimodular random rooted graph. Let S be the set of
essential vertices of G. For o ∈ S, let Co be the connected component of o in the induced
subgraph G[S]. Then Co is finite with probability 1, and

EνG,o({θ}) ≤ E1(o ∈ S)|Co|−1 − P(o ∈ ∂S).

Moreover, for θ = 0, we have an equality in the line above.

Proof. Applying Theorem 6.2 with S = ∂S and N = V (G)−S− ∂S, we get that

EνG,o({θ}) ≤ E1(o ∈ S)νG[S],o({θ})− P(o ∈ ∂S).

Moreover, from Corollary 3.3, we have that G[S] has only essential vertices. Let (Ḡ, ō)

have the same distribution as (G, o) conditioned on the event that o ∈ S. Then (Cō, ō)
is unimodular by Lemma 2.2. All the vertices of Cō are essential. Thus, it follows from
Theorem 1.10 that Co is finite with probability 1.

Let us define
f(G, x, y) = 1(x ∈ S, y ∈ Cx)|Cx|−1νG[S],x({θ}).

It is clear that
E
∑
v∈G

f(G, o, v) = E1(o ∈ S)νG[S],o({θ}).

Form Lemma 1.9, we have

E
∑
v∈G

f(G, v, o) = E1(o ∈ S)|Co|−1
∑
v∈Co

νG[S],v({θ}) = E1(o ∈ S)|Co|−1.
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Thus, from the Mass-Transport Principle, we have

E1(o ∈ S)νG[S],o({θ}) = E1(o ∈ S)|Co|−1.

The last statement of the theorem about the case θ = 0 is the same as Theorem 1.12
part (d), which we will prove below.

The next lemma will be used to overcome the difficulty that the Boltzmann random
matching at temperature zero might no be unique.

Lemma 6.4. Let e = (u, v) be an edge such that u is not 0-neutral. Then
limt→0 sG,{u,v}(it) exists and is finite.

Consequently, if M is any Boltzmann random matching at temperature zero, then we
have

P(e ∈ M) = − lim
t→0

sG,{u,v}(it),

that is, the probability of e ∈ M does not depend on the choice of M.

Proof. First assume that u is positive. Then the limits limt→0
sG,u(it)

it and
limt→0 it · sG−u,v(it) exist and they are finite. Thus,

lim
t→0

sG,{u,v}(it) = lim
t→0

sG,u(it)

it
· (it · sG−u,v(it))

exists and is finite.
Now assume that u is essential. If v is positive in G− u, then limt→0

sG−u,v(it)
it exists

and is finite. So

lim
t→0

sG,{u,v}(it) = lim
t→0

it · sG,u(it) ·
sG−u,v(it)

it
exists and is finite.

Thus, it is enough to prove that if u is essential, then v must be positive in G− u. For
the sake of contradiction, assume that v is not positive in G− u. Then limt→0

sG−u,v(it)
it =

−∞, so limt→0 sG,{u,v}(it) = −∞. This is a contradiction, since −sG,{u,v}(it) = P(e ∈
Mt

G) ∈ [0, 1].
The second statement of the lemma follows from the first one, Lemma 2.14 and the

definition of a Boltzmann random matching at temperature zero.

In the next lemma, we prove Theorem 1.12 part (d).

Lemma 6.5. Let (G, o) be a unimodular random rooted graph. Then

EνG,o({0}) = E1(o ∈ D)|Co|−1 − P(o ∈ A).

Here, for o ∈ D, Co is the connected component of o in the graph G[D].

Proof. Let M be a Boltzmann random matching at temperature zero on G. Let us define

f(G, x, y)

= 1(x ∈ A and y ∈ D)P(x is matched by M with a vertex in Cy)|Cy|−1.

Although we might not have a canonical choice for the Boltzmann random matching
M, the function f(G, x, y) is still well defined. Indeed, if x ∈ A, then x is positive, thus
Lemma 6.4 can be used to see that the probability above does not depend on the choice
of M.

If o ∈ A, then o is matched with a vertex in D with probability 1, as it follows from
Theorem 1.12 part (c). Thus,

E
∑

v∈V (G)

f(G, o, v) = P(o ∈ A).

Again, by Theorem 1.12 part (c), we know that for o ∈ D, either
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(i) M leaves exactly one vertex of Co uncovered and no edge of M connects a vertex
of Co with a vertex of A; or

(ii) M covers Co and there is exactly one edge in M that connects a vertex of Co with a
vertex of A.

So

E
∑

v∈V (G)

f(G, v, o) = E1(o ∈ D)P(M covers Co)|Co|−1

= E1(o ∈ D)|Co|−1

(
1−

∑
w∈Co

P(w is not covered by M)

)
.

Again, note that the probability of the event that w is not covered by M does not depend
on the choice of M by Lemma 2.15.

Then from the Mass-Transport Principle, we have

P(o ∈ A) = E1(o ∈ D)|Co|−1

(
1−

∑
w∈Co

P(w is not covered by M)

)
. (6.1)

Now, let

g(G, x, y) = 1(x ∈ D and y ∈ Cx)|Cx|−1P(x is not covered by M).

Again, this is well defined by Lemma 2.15.
Then

E
∑

v∈V (G)

g(G, o, v) = EP(o ∈ D and o is not covered by M)

= EP(o is not covered by M),

where we used the fact that if o 6∈ D, then o is covered byM with probability 1. Moreover,
we have

E
∑

v∈V (G)

g(G, v, o) = E1(o ∈ D)|Co|−1
∑
w∈Co

P(w is not covered by M).

Thus, from the Mass-Transport Principle, we have

E1(o ∈ D)|Co|−1
∑
w∈Co

P(w is not covered by M) = EP(o is not covered by M).

Inserting this into Equation (6.1), we obtain that

P(o ∈ A) = E1(o ∈ D)|Co|−1

(
1−

∑
w∈Co

P(w is not covered by M)

)
= E1(o ∈ D)|Co|−1 − EP(o is not covered by M)

= E1(o ∈ D)|Co|−1 − EνG,o({0}),

and this is exactly what we needed to prove.

Salez [23] defined the tree-complexity τ(θ) of a totally real algebraic integer θ ∈ A
as the size of the smallest tree such that θ is a root of its characteristic polynomial. Note
that for every totally real algebraic integer θ, we have τ(θ) < ∞, that is, there is a finite
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tree such that θ is a root of its characteristic polynomial [22]. Similarly, we define the
matching-complexity τm(θ) of a θ ∈ A as the size of the smallest graph such that θ is a
root of its matching polynomial. Since for any tree the characteristic polynomial and the
matching polynomial coincide, we have τm(θ) ≤ τ(θ).

The isoperimetric constant i(G) of a graph G is defined as

i(G) = inf

(
|∂S|
|S|

∣∣∣ ∅ 6= S ⊆ V (G), |S| < ∞
)
.

Theorem 1.2 is an easy consequence of the following theorem.

Theorem 6.6. Let (G, o) be a unimodular random rooted graph with maximum degree
at most D. Assume that there is an h > 0 such that i(G) ≥ h with probability 1. Then
EνG,o has only finitely many atoms.

Proof. We follow the approach of Salez [23].

It is enough to show that the matching complexities of the atoms are bounded. Let
θ ∈ A be an atom of the expected matching measure. Using the notations of Theorem 1.3,
we have that

0 < EνG,o({θ}) ≤ E1(o ∈ S)|Co|−1 − P(o ∈ ∂S)

≤ P(o ∈ S)
1

τm(θ)
− P(o ∈ ∂S). (6.2)

Let us define

f(G, x, y) = 1(x ∈ S and y ∈ ∂Cx)|Cx|−1.

Then

E
∑

v∈V (G)

f(G, o, v) = E1(o ∈ S)
|∂Co|
|Co|

≥ hP(o ∈ S).

Moreover,

E
∑

v∈V (G)

f(G, v, o) = E1(o ∈ ∂S) |{Cw|w ∈ ∂{o} ∩S}|

≤ E1(o ∈ ∂S) deg(o)

≤ DP(o ∈ ∂S).

Thus, using Mass-Transport Principle, we have

D · P(o ∈ ∂S) ≥ h · P(o ∈ S).

Combining this with Inequality (6.2), we obtain

τm(θ) ≤ P(o ∈ S)

P(o ∈ ∂S)
≤ D

h
.

Theorem 1.2. Let (G, o) be an ergodic non-amenable unimodular random rooted graph
with maximum degree at most D. Then EνG,o has only finitely many atoms.

Proof. Ergodicity gives us that i(G) is constant almost surely. As (G, o) is non-amenable,
this constant must be positive. Thus, Theorem 6.6 can be applied.
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7 Further remarks and open questions

Question 7.1. Let A be a subset of the vertices of a graph G, such that all the vertices
in A are special. Let u be a neutral vertex. Is it true that u is neutral in G−A?

Note that, if A is finite, then we have an affirmative answer for the question above,
because we can apply Lemma 3.8 and Lemma 3.5 iteratively.

Question 7.2. Can we replace the inequality in Theorem 1.3 with equality?

The anchored isoperimetric constant i?(G, o) of a rooted graph (G, o) is defined as

i?(G, o) = lim
n→∞

inf

{
|∂S|
|S|

: o ∈ S ⊆ V (G), G[S] is connected, n ≤ |S| < ∞
}
.

Observe that i?(G, o) ≥ i(G). Salez [23] proved the following theorem.

Theorem 7.3 (Salez [23]). Let h > 0. Assume that (G, o) is a unimodular random rooted
graph, such that with probability 1, the graph G is a tree, the minimum degree of G is
at least 2, the maximum degree of G is at most D and i?(G, o) ≥ h. Then EνG,o has only
finitely many atoms.

Question 7.4. Is there some version of Theorem 6.6 with anchored expansion (for
graphs which are not necessarily trees)?

The next question was already mentioned in Subsection 2.5.

Question 7.5. Is it true that the random matchings Mt
G converge in law as t → 0?

We believe that the answer to the question above should be negative as we explain
now. Consider two disjoint copies (G, o) and (G′, o′) of the same rooted tree. Connect
them with the edge oo′ to obtain the graph H. Then one can verify that

P(oo′ ∈ Mt
H) =

1

1− (sG,o(it))
−2 .

Thus, to prove that the random matchings Mt
H do not converge in law for an appropri-

ately chosen rooted tree (G, o), it is enough to show that sG,o(it) has no limit (neither
finite, nor infinite) as t → 0. One can find measures such that their Stieltjes transform
satisfies this property7, and we are unaware of any results saying that these measures
can not be obtained as a spectral measure of a rooted tree. However, we do not know
how to construct such a tree.

Let us recall the following definition from the paper of Coste and Salez [9]. We say a
measure ν has no extended states at a location E, if

lim
ε→0+

ν([E − ε,E + ε])− ν({E})
ε

= 0.

Proposition 7.6. Let u be a θ-positive vertex of G. Then νG,u has no extended states at
θ.

Proof. Since u is θ-positive, we have that limt→0
sG,u(θ+it)

it is finite.

7One needs to search among measures such that their cumulative distribution function is not differentiable
at 0, as [24, Theorem 2.1] suggests. However, we need to be careful, because having a radial limit along the
line {it} is not exactly the same as the condition of [24, Theorem 2.1].
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In particular, limt→0 sG,u(θ + it) = 0. Observe that

νG,u([θ − t, θ + t]) =

∫ θ+t

θ−t

1dνG,u(x)

≤
∫ θ+t

θ−t

2t2

(θ − x)2 + t2
dνG,u(x)

≤
∫ D

−D

2t2

(θ − x)2 + t2
dνG,u(x)

= −2t · Im
∫ D

−D

1

θ + it− x
dνG,u(x)

= −2t · ImsG,u(θ + it),

which shows that νG,u has no extended states at θ.

Question 7.7. Let us consider the d-dimensional grid Zd, let o be any vertex of it. Is o
0-neutral or 0-positive? Does νZd,o have extended states at 0 or not?

Note that for d = 1, we have that o is 0-neutral, and we have extended states at 0.
Note that for d-regular trees, all the vertices are 0-neutral. It seems difficult to

understand the matching measure of graphs which are not trees. In particular, the
following question is still open.

Question 7.8. Is there an infinite vertex-transitive graph such that all the vertices are
0-positive?

We proved in Theorem 1.10 that all unimodular critical graphs are finite. Now we
give an example of an infinite connected θ-critical graph G for θ = 5

2 . The construction is
the following: Take 5 half-infinite paths, which start from the same vertex o, but they
are disjoint otherwise. Let f ∈ `2(V (G)) be defined as follows. For any vertex v of G,
let f(v) = 2−`(v), where `(v) is the distance of v from o. It is straightforward to check
that f is a nowhere vanishing vector in the θ-eigenspace of the adjacency operator of G.
Since G is a tree, this easily implies that G is θ-critical. However, we still do not know
the answer for the following question.

Question 7.9. Is there an infinite connected 0-critical graph?

Note that a 0-critical graph can not be a tree. In fact, it can not be bipartite as we
show next.

Lemma 7.10. Let P be a path with an odd number of edges in the graph G. Then P is
not 0-essential.

Proof. Let u be the start vertex of P . Let Podd ⊆ P(u) be the set of paths starting from
u with odd number of edges. Let Peven = P(u)\Podd. Let Hodd be the closed subsapce
of `2(P(u)) consisting of vectors such that their support is contained in Podd. We define
Heven in an analogous way. Let A be the adjacency operator of T (G, u). Then the 0-
eigenspace of A is just kerA. It is easy to see that kerA is the orthogonal direct sum
of kerA ∩ Hodd and kerA ∩ Heven. As before, let ΠG,u be the orthogonal projection to
kerA. Then it is clear from what is written above that ΠG,uχu is supported on Peven as
χu ∈ Heven. Therefore, 〈ΠG,uχu, χP 〉 = 0, that is, P is not 0-essential.

Lemma 7.11. Let G be a bipartite graph. Let u be an 0-essential vertex of it. Then all
the neighbours of u are 0-special.

Proof. Let v be a neighbor of u. It is enough to show that u is essential in G− v. Since G

is bipartite all the paths in P(u, v) have an odd number of edges, thus, from the previous
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lemma, they are all not 0-essential. Therefore, Lemma 3.2 can be applied to give us that
u is essential in G− v.

As an easy corollary, we get the following.

Lemma 7.12. Let G be a connected bipartite graph with at least two vertices, then G is
not 0-critical.
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