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Abstract

The rock-paper-scissors model simulates the effect of cyclic dominance in a finite
population of size N and has received considerable attention in applied literature. In
the well-mixed version of the model, population densities fluctuate around periodic
orbits of a deterministic ODE approximation, and for large N the time to fixation
(complete dominance by one species) has been observed by simulation to be approxi-
mately τN where τ is a positive, finite random variable. We give a rigorous proof of
this observation by establishing a slow diffusion limit for a conserved quantity of the
deterministic approximation, together with a careful analysis of the behaviour at the
boundary, both in the limit as N → ∞, and for large but finite N .
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1 Introduction and main results

In this article we give a rigorous formulation and proof of some results concerning
the asymptotic behaviour of a stochastic neutral model of cyclic dominance in a finite,
well-mixed population, that is commonly known as the rock-paper-scissors model. For a
review of work on the model, in many settings besides the one considered here, see the
survey article [16].

The model has three types, that we denote 0, 1 and 2, and three positive parameters,
r0, r1 and r2. The total population size N is constant over time. There are three possible
interactions: for each i, an individual (ind) of type i converts an individual of type i− 1

(modulo 3) to its own type, with associated rate constant ri. In the notation of chemical
reactions these interactions can be summarized as follows:

0 + 1
r1→ 1 + 1, 1 + 2

r2→ 2 + 2 and 2 + 0
r0→ 0 + 0.
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Fixation time of the rock-paper-scissors model

Assuming a well-mixed population, the rate constants are translated into rates as follows:
for each i, each ind of type i converts each ind of type i− 1 to its own type at rate ri/N .
The normalization by 1/N ensures that the total rate at which an ind interacts with
others depends only on the population density x = (x0, x1, x2), defined by xi := Xi/N . For
example, an ind of type i interacts with others at a total rate riXi−1/N + ri+1Xi+1/N =

rixi−1 + ri+1xi+1, from either converting an ind of type i− 1 or being converted by an ind
of type i+ 1. Letting Xi denote the number of inds of type i, the vector X = (X0, X1, X2)

is a continuous-time Markov chain on the state space SN := {X ∈ N3 :
∑
iXi = N} with

the following transitions:

for each i ∈ {0, 1, 2} mod 3,

X → X + ei − ei−1 at rate riXi−1Xi/N, (1.1)

where ei is the ith unit vector in R3, i.e., e0 = (1, 0, 0), e1 = (0, 1, 0) and e2 = (0, 0, 1), and
i is always understood modulo 3. System (1.1) is a density-dependent Markov chain
(DDMC) in the sense of [15]. Roughly speaking, DDMCs correspond to well-mixed models
of interacting populations with a system size parameter (the parameter here is N ), and
are such that the population density x := X/N has both a deterministic and a diffusive
approximation on the original time scale, as described in [15]. Understanding the long-
term behaviour of DDMCs typically requires a careful analysis of both approximations,
which is the case in this article. For models with absorbing states that correspond to
unstable equilibria of the deterministic approximation, large deviations analysis may
also be required; see [7] for an example in the case of logistic growth.

Write X(N) for sample paths of (1.1), similarly x(N) = X(N)/N , when it is necessary
to emphasize the dependence on N . We are interested in the behaviour of X(N) in the
limit as N →∞, and specifically in

(i) the fixation time, i.e., the amount of time until one type has taken over the popula-
tion, or equivalently, until X reaches one of the “single-type” states Nei:

τoN := inf{t : X(N)(t) = Nei for some i ∈ {0, 1, 2}},

(ii) and the fixation probability, i.e., which type is the eventual winner:

p
(N)
i := P(X(N)(τoN ) = Nei).

In this article we study the fixation time, for which the main result is Theorem 1.1 below.
The fixation probability will be addressed in a later work, so for now, we will simply state
the desired result as Conjecture 1.2. The result of Theorem 1.1 is implicit in [17] and [4],
though not formally stated or proved. Similarly, Conjecture 1.2 can be found in [9] and
[2]. Let x∗ = (x∗0, x

∗
1, x
∗
2) be the vector with entries x∗i = ri−1/

∑
j rj , which as described

below is the coexistence equilibrium of the deterministic approximation (3.5) of x(N),
and let

d→ denote convergence in distribution.

Theorem 1.1. Suppose thatX(N)(0)/N → x∗ asN →∞. Then there is a non-degenerate
random variable τ in (0,∞) such that

τoN/N
d→ τ as N →∞,

To our knowledge, this is the first result on asymptotic behaviour of a density-
dependent Markov chain whose deterministic approximation has a neutrally stable
heteroclinic cycle. The hypothesis of Theorem 1.1 can be weakened to P (x(N))→ p ∈
(0, p∗] as N →∞, see Theorem 4.1, and the distribution of the limit τ , which depends on
p, is stochastically non-increasing in p.
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Conjecture 1.2. Suppose that X(N)(0)/N → x∗ as N →∞. Then

lim
N→∞

p
(N)
i =

{
1/#{i : ri = minj rj} if ri = minj rj

0 otherwise.

To summarize both statements in a few words: if the system is initialized near the
interior equilibrium x∗, then

(i) the fixation time is of order N , with a non-degenerate limiting distribution, and
(ii) the final state X(N)(τoN ) is evenly distributed over types with minimal rates.

In the above references, Theorem 1.1 and Conjecture 1.2 are demonstrated using
numerical simulations, and explained with the help of two large-N limit processes:

1. a system of ODEs on S := {x ∈ R3
+ :
∑
i xi = 1}, given in (3.5), that approximates

x(N) on the original (fast) time scale t and
2. an SDE on an interval [0, p∗], given in (3.8), that approximates the process P (x(N))

on the (slow) time scale Nt,

where P (x) :=
∏
i x

ri−1

i is constant along solutions of (3.5) and p∗ = P (x∗) is the maximal
value of P on S. Here is a very brief explanation of the results.

• The phase space S is foliated by the level curves Lp := {x ∈ S : P (x) = p} of
P , with L0 comprising the boundary, Lp∗ the coexistence equilibrium and each
Lp, 0 < p < p∗ a periodic orbit of (3.5).

• On the fast time scale, x(N) closely follows solutions of (3.5) along the level curves
Lp, with small fluctuations of size 1/

√
N .

• On the slow time scale, the process Y (N) := P (x(N)(Nt)) experiences fluctuations
of constant size, with drift and diffusion coefficients given by the orbital average,
with respect to (3.5), of the instantaneous coefficients, eventually hitting 0 which
corresponds to x(N) hitting ∂S := {x ∈ S : xi = 0 for some i}, the boundary of S
relative to the affine space {x ∈ R3 :

∑
i xi = 1}.

• From the point x0 where x(N) first hits So, within O(logN) time x(N) reaches the
absorbing state prescribed by the solution of (3.5) with initial value x0.

• Letting Y denote the solution of the SDE approximation of Y (N), τ = inf{t : Y (t) =

0} and limN→∞ p
(N)
i is predicted by the relative distance, as p→ 0, from Lp to the

boundary edges {x ∈ S : xi = 0, 0 < xi+1 < 1}.

The rest of the article is organized as follows. In Section 2 we discuss some related
work. In Section 3 we compute the deterministic approximation (3.5) for x(N) and the
slow diffusion approximation (3.8) for Y (N) and study their solutions. The deterministic
approximation has a single interior equilibrium, a family of interior periodic orbits, and a
single heteroclinic cycle, given by the level sets of P . The slow diffusion takes place on an
interval [0, p∗], with 0 an accessible boundary and p∗ an entrance boundary (Lemma 3.5),
and from any initial value in [0, p∗] reaches 0 in finite time (Proposition 3.4). In Section 4
we use stochastic averaging (Lemma 4.6) to show convergence of Y (N) to the limiting
diffusion on the interior of [0, p∗] (Proposition 4.2), then analyze the boundary behaviour
of Y (N) (Proposition 4.3) and combine the two to obtain convergence of fixation time.
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2 Related work

As mentioned in the Introduction, our model has a diffusion approximation, which as
shown in (3.4) takes the form

dx = F (x)dt+ εN
√
G(x)dB, (2.1)

where x ∈ S, εN = 1/
√
N , F : S → R3, G : S → M+(R, 3) are smooth functions

computed from the transition rates in (3.3) (M+(R, 3) denotes 3× 3 positive semidefinite
matrices) and B is a standard Brownian motion in R3. The deterministic part x′ = F (x)

is sometimes called the mean field equations, or replicator equations, of the model. The
diffusion part dx = εN

√
G(x)dB captures the finite-size effects of discernible jumps in

the population vector, reflecting the demographic stochasticity inherent in the Markov
chain formulation. For each N , both the Markov chain and its diffusion approximation
hit the boundary of S in finite time, so it is of interest to know how quickly this happens
as a function of N , as we do in this article.

If instead we want to model random fluctuations in the per-capita growth rates, which
is known as environmental stochasticity, we can use a model of the form

dx = x ◦ (R(x)dt+Q(x)dB), (2.2)

where xR(x) = F (x), ◦ is Hadamard (entrywise) product, Q is any Lipschitz continuous
3×d matrix-valued function for some integer d ≥ 1 and B is standard BM on Rd. For each
i ∈ {0, 1, 2} the diffusion term in dxi is xi

∑
j Qij(x)dBj which has diffusion coefficient

σ2
i (x) = x2i

∑
j Qij(x)2 = O(x2i ), which implies the set xi = 0 inaccessible for each i,

i.e., if x0 is supported on the interior of S then (xt) never hits the boundary. This is
a property shared by the model’s deterministic counterpart x′ = F (x) and it means
that broadly similar results can be provided, provided that the objects of study are
suitably generalized. For example, it has long been known (see [1] for an overview and
references) that in the deterministic case, permanence (existence of a globally stable
interior attractor) and impermanence (attracting boundary) can be partly characterized
by invasibility conditions, essentially, whether or not a new species introduced at low
density into an equilibrium population can disturb that equilibrium. In [1] the authors
show these results are robust to small enough perturbations of the form (2.2), provided
that in the stochastic case we understand an attractor to mean a stationary distribution
and global stability of µ to mean that the distribution of xt converges to µ as t→∞, for
any distribution of x0 supported on the interior; an irreducibility assumption is needed
to obtain palatable results. In [18], invasibility conditions are defined for all systems
of the form (2.2), extending the deterministic definition by accounting for the effect of
the diffusion term. These conditions are shown to imply persistence, defined as “with
probability 1, (xt) spends o(1) proportion of time within distance ≤ δ of the boundary, as
δ → 0+”, and with an irreducibility assumption are shown to imply permanenence in the
previous sense. The results of [18] and other works are generalized in several directions
in [11].

In [12] the authors consider three-dimensional systems of the form (2.2) and give a
complete classification of the possible dynamics. The novel behaviour in three dimensions
(i.e., not occurring in dimensions 1 and 2) is a rock-paper-scissors type of dynamic,
characterized by a labelling of the 3 types such that the invasion rate λ(i, j) of type i
into a type j population is positive whenever j = i + 1 mod 3 and negative whenever
j = i − 1 mod 3. Letting λ±(i) = λ(i, i ± 1), they find that permanence holds when∏
i λ+(i) >

∏
i |λ−(i)| and that impermanence holds whenever the inequality is reversed.

These results are generalized in [10] to allow parameters to change according to a
piecewise deterministic Markov chain, and a fast algorithm for computing the stationary
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distributions is also given. I expect that for density-dependent Markov chains and
SDEs of the form (2.1), since εN → 0 as N → ∞ a similar result holds if we use the
invasion rates defined for the corresponding deterministic system x′ = F (x), and define
permanence and impermanence according to whether the time to hit the boundary is
long or short as a function of N . Denoting that time by τN , typically “long” means that
lim infN P(τN ≥ ecn) > 0 for some c > 0 while “short” means that for large enough C > 0,
P(τN ≥ C log(N)) → 0 as N → ∞. For an example of both, see [7] where the logistic
model is considered. For the model considered in the present article, the invasion
rates are λ+(i − 1) = −λ−(i) = ri so

∏
i λ+(i) =

∏
i |λ−(i)| and the above condition is

inconclusive, which agrees with our result that τN is of order N , an intermediate case
between long and short.

3 Limit processes

We begin with an informal discussion of approximation of a Markov chain and
translate terms and equations between the conventions of mathematics and physics.

3.1 Generalities

Suppose X is a Markov chain on state space S ⊂ Rd with transition rate q(x, y) from
x to y, (x, y) ∈ S × S, and that X changes mostly by small jumps. Define the respective
drift and diffusion coefficients µ, σ2 on S by

µ(x) =
∑
y

(y − x)q(x, y) and σ2(x) =
∑
y

(y − x)(y − x)>q(x, y). (3.1)

For each x, σ2(x) is a positive semidefinite d×d matrix. We can think of µ as the “average
velocity” of X, or more precisely, the instantaneous rate of change of the expected value
of X, conditioned on past information. Similarly, we can think of σ2 as the “rate of
accumulation of variance” of X, or more precisely, the instantaneous rate of change of
the variance of X, conditioned on past information.

If µ and σ2 can be extended to an open connected set D ⊂ Rd containing S, then a
suitable diffusion approximation of X is the SDE on D given by

dX = µ(X)dt+ σ(X)dB,

where B is a d-dimensional standard Brownian motion and for x ∈ D, σ(x) is the
positive square root of the d× d matrix σ2(x). If, in addition, σ is small, then a suitable
deterministic approximation of X is the ODE

X ′ = µ(X).

To connect these with the references, we make a few linguistic notes. In physics
and chemistry, stochastic processes are usually studied indirectly via their probability
distributions p(x, t) := P(Xt = x). For a continuous-time Markov chain on a finite or
countable state space S (with some additional requirements when S is infinite), the
vector-valued function t 7→ (p(x, t))x∈S solves a system of ODEs known to physicists
as the master equation (see, for example, [19]) and to mathematicians as the forward
Kolmogorov equations. The above SDE approximation is known to physicists as the
Langevin equation corresponding to the Fokker-Planck (FP) approximation of the master
equation. The FP approximation is a PDE which, itself, is the forward Kolmogorov
equation of the SDE approximation. The ODE approximation is often referred to as the
mean-field equation.
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3.2 The population density process x(N)

Recall that x(N) = X(N)/N , where X satisfies (1.1). Let ∆(i) = −ei−1 + ei and
qi(x) = rixi−1xi, then x(N) has the following transitions:

for each i ∈ {0, 1, 2} mod 3,

x(N) → x(N) + ∆(i)/N at rate Nqi(x). (3.2)

Notice that jumps in x(N) are of size 2/N (in the `1 norm, say), so are small when N is
large. Referring to (3.1) and defining

F (x) =

2∑
i=0

∆(i)qi(x) and G(x) =

2∑
i=0

∆(i)∆(i)>qi(x), (3.3)

a suitable diffusion approximation of x(N) is the SDE

dx = F (x)dt+ εN
√
G(x) dB, (3.4)

where εN = 1/
√
N . Since εN is small when N is large, a suitable deterministic ap-

proximation of x(N) is x′ = F (x), which when written in components has the following
form:

for each i ∈ {0, 1, 2} mod 3,

x′i = rixi−1xi − ri+1xixi+1. (3.5)

In particular, F is locally Lipschitz, so local existence and uniqueness holds. The
behaviour of solutions of (3.5) has already been studied, see for example [3]-[8]. Below,
we give a quick and mostly self-explanatory summary.

Recall that S = {x ∈ R3
+ :
∑
i xi = 1}. If x(t) solves (3.5) then d

dt

∑
i xi(t) = 0, and

since x′i ≥ −ri+1xi on S, xi(0) ≥ 0 implies xi(t) ≥ 0 for t ≥ 0, so S is forward invariant
and in particular, global existence and uniqueness holds. To verify that P (x) :=

∏
i x

ri−1

i

is constant on solutions of (3.5), let x(t) solve (3.5). If P (x(0)) = 0 then xi(0) = 0 for some
i, implying xi(t) = 0 and thus P (x(t)) = 0 for t > 0. If P (x(0)) > 0 then in a similar way
P (x(t)) > 0 for all t > 0, and in that case check it’s easy to check that d

dt logP (x(t)) = 0.
Let So := {x ∈ S : mini xi > 0} denote the interior of S relative to the affine space

{x ∈ R3 :
∑
i xi = 1}. Define x∗ by x∗i = ri−1/

∑
j rj and let p∗ = P (x∗). Then x∗ is both

the unique equilibrium of (3.5) in So, and the unique maximizer of P , in S. As noted
in the Introduction, the level curves (Lp : p ∈ [0, p∗]) are a partition of S, with Lp∗ = x∗,
L0 = ∂S = {x ∈ S : xi = 0 for some i} and for 0 < p < p∗, Lp is a periodic orbit of (3.5).

3.3 Slow diffusion limit for P (x(N))

Since P is constant on solutions of (3.5), it should vary slowly on solutions of (3.4),
since the term εn

√
G(x)B is small. On the other hand, fluctuations can accumulate over

time. To quantify this effect, as in [4], use Itô’s formula to find that the instantaneous
drift and diffusion coefficients of P (x), with respect to the approximation (3.4), are

∇P (x)F (x) +
ε2N
2

∑
i,j

Gij(x)(D2P )ij(x) and

ε2N
∑
i,j

∇Pi(x)∇Pj(x)Gij(x).

Since P is constant on solutions of (3.5), ∇P (x)F (x) = 0 for x ∈ S. Speeding up time by
a factor 1/ε2N = N multiplies both drift and diffusion by the same factor, so the process
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Y (N)(t) := P (x(N)(Nt)), with respect to the approximation (3.4), has drift and diffusion
coefficients µY , σ2

Y given in terms of the value of x(N) by

µY (x) :=
1

2

∑
i,j

Gij(x)(D2P )ij(x) and

σ2
Y (x) :=

∑
i,j

∇Pi(x)∇Pj(x)Gij(x). (3.6)

Note that these do not depend on N , but are also not written in terms of the desired
state variable Y . To fix this, first observe that in a small time increment on the time
scale Nt, the value of P (x(N)) should not change very much, whereas solutions of (3.5)
initialized on any of the periodic orbits Lp, 0 < p < p∗ complete many cycles. So, as
pointed out in [4], we expect stochastic averaging to occur. In other words, letting T (p)

denote the period of the orbit Lp with respect to (3.5), we expect that in the large-N
limit, the drift and diffusion coefficients of Y (N) are given in terms of the value of Y (N)

by

µ(p) :=
1

T (p)

∫ T (p)

0

µY (φ(t, x(p)))dt

σ2(p) :=
1

T (p)

∫ T (p)

0

σ2
Y (φ(t, x(p)))dt (3.7)

where t 7→ φ(t, x) is the solution of (3.5) with φ(0, x) = x, T (p) is the period of the orbit
Lp and x(p) ∈ Lp is arbitrary. In other words, the desired large-N limit of Y (N) is the
SDE

dY = µ(Y )dt+ σ(Y )dB, (3.8)

where σ(Y ) is the unique positive semidefinite square root of σ2(Y ). To understand
solutions of (3.8) we begin by proving existence and uniqueness of solutions on (0, p∗),
then afterward discuss behaviour at the boundaries 0 and p∗. As we show in Lemma 3.3,
µ, σ2 are sufficiently regular that (3.8) has a stochastic flow of pathwise unique strong
solutions, as follows.

Proposition 3.1. Let B be a standard Brownian motion on R with respect to a complete
filtration F . There is a continuous function (s, t, p) 7→ ψ(s, t, p) defined for p ∈ (0, p∗) and
0 ≤ s ≤ t ≤ τe(s, p) := inf{t ≥ s : ψ(s, t, p) ∈ {0, p∗}} (e for exit) such that for each s and
any F(s)-measurable random variable ξ in (0, p∗), t 7→ ψ(s, t, ξ) is the a.s. unique solution,
on [s, τe(s, ξ)), to the integral equation

Y (t) = ξ +

∫ t

s

µ(Y (u))du+

∫ t

s

σ(Y (u))dB(u). (3.9)

Moreover, ψ has the semigroup property:

almost surely, ∀0 ≤ s ≤ t ≤ u ≤ τe(s, p), ∀p ∈ (0, p∗),

ψ(t, u, ψ(s, t, p)) = ψ(s, u, p). (3.10)

The proof has a few steps, so it’s included in the Appendix. To establish the desired
regularity of µ and σ2, we first need to do the same for the orbital period p 7→ T (p).

Lemma 3.2. The function p 7→ T (p) is C∞ on (0, p∗).

Proof. Recall ui := xi/ri−1 and let Γ = {x ∈ S : 0 < u0 = u2 < u1} which is a line
segment in So \ {x∗} connecting e1 to x∗. It is visually obvious, and can be checked
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with a calculation (omitted), that Γ is transverse to the level curves Lp, so for p ∈ (0, p∗)

let x(p) ∈ Γ be the unique point with P (x(p)) = p. Then T (p) solves the equation
φ0(T (p), x(p))− φ2(T (p), x(p)) = 0. Writing x′i from (3.5) in terms of u,

x′i = rπui(ui−1 − ui+1),

so if u0 = u2 < u1 then

x′0 − x′2 = rπ(u0u2 − u0u1 − (u1u2 − u2u0))

= rπ(2u0u2 − u1(u0 + u2)) = 2rπu0(u0 − u1) < 0.

In particular, for p ∈ (0, p∗),

∂t(φ0(T (p), x(p))/r2 − φ2(T (p), x(p))/r1) 6= 0

so by the implicit function theorem (IFT), there is a neighbourhood Up of x(p) in S and a
function τp(x) with τp(x(p)) = T (p) (note p here is still fixed) such that for x ∈ Up,

φ0(τp(x), x)/r2 = φ2(τp(x), x)/r1.

Since Γ is an open subset of {x ∈ S : u0 = u2} and φ(τp(x(p)), x(p)) = φ(T (p), x(p)) =

x(p) ∈ Γ, shrinking Up if necessary, Up ∩ Γ is a non-empty open subset of Γ and
φ(τp(x), x) ∈ Γ for all x ∈ Up ∩ Γ. Since the vector field F that defines (3.5) is C∞,
the same is true of φ (standard theory of dependence on initial data for ODEs), and the
IFT implies the same is true of x 7→ τp(x). By definition T (p) = inf{t > 0: φ(t, x(p)) ∈ Γ}
and, since Lp is a periodic orbit of (3.5) that intersects Γ at the unique point x(p), it is
again visually obvious that the same is true of τp(x) for x ∈ Up ∩ Γ, from which it follows
that τp(x(y)) = T (y) for x(y) ∈ Up ∩ Γ. Thus, for any p ∈ (0, p∗), since y 7→ x(y) and
x 7→ τp(x) are C∞, the same is true of y 7→ T (y) for y in a neighbourhood of p.

Lemma 3.3. µ, σ2 are C∞ on (0, p∗).

Proof. Combining (3.3) and (3.6), we can write µY and σ2
Y in terms of ∆(i) and qi as

µY (x) =
1

2

2∑
i=0

∆(i)>(D2P )(x)∆(i)qi(x) and

σ2
Y (x) =

2∑
i=0

((∇P )(x)∆(i))2qi(x). (3.11)

For each i ∈ {0, 1, 2}, x 7→ qi(x) = rixi−1xi is C∞ on S, so by (3.3), so are F and G.
The function P (x) =

∏
i x

ri−1

i is C∞ on the positive orthant {x ∈ R3 : mini xi > 0}, so in
particular, ∇P and D2P are C∞ on So = {x ∈ S : P (x) > 0}. Combining with (3.11), µY
and σ2

Y are C∞ on So.
Since F is C∞ on So and the latter is forward invariant for (3.5), (t, x) 7→ φ(t, x) is C∞

on R+ × So. Let x be a C∞ function p 7→ x(p) on [0, p∗], with x(p) ∈ Lp; to obtain x, draw
a line segment from the boundary of S to the central equilibrium x∗ and parametrize
it by the value of P . Using x(p) in (3.7), it follows that µ, σ2 are C∞ on (0, p∗) provided
that p 7→ T (p) is smooth on (0, p∗), which was shown in Lemma 3.2.

3.4 Boundaries of the slow diffusion limit

We next discuss the behaviour of solutions of (3.9) at the boundaries 0 and p∗. First
note that if x(N)

i (t) = 0 then x
(N)
i (s) = 0 for t > s, which implies that 0 is absorbing

for Y (N). To reflect this in the limit process, we impose the same for Y (t): letting
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τ = inf{t : Y (t) = 0}, we define Y (t) = 0 for all t > τ . Let Pp denote the measure
of the solution with initial value p, and Ep the corresponding expectation. Let τ(a) =

inf{t : Y (t) = a}, τ(a, b) = τ(a) ∧ τ(b) and τe = τ(0, p∗). Our main finding settles the
boundary behaviour of solutions of (3.9).

Proposition 3.4. For each p ∈ [0, p∗), (3.9) has a pathwise unique strong solution
(Y (t))t≤τ , where τ = τ(0) = inf{t : Y (t) = 0}, satisfying Y (0) = p and Y (t) ∈ (0, p∗)

for t ∈ (0, τ). Moreover, p 7→ Ep[ τ ] is bounded on [0, p∗), and as a function of Y (0), τ
converges in distribution to an a.s. finite limit as Y (0)→ p∗.

The main tool required for Proposition 3.4 is the following.

Lemma 3.5. Let Y (t) solve (3.9) with ξ = p and τ(p),Pp be as above. Then

(i) 0 is accessible, i.e., if p ∈ (0, p∗) then Pp(τ(0) <∞) > 0, and
(ii) p∗ is an entrance boundary, i.e., Pp(τ(p∗) <∞) = 0 ∀ p ∈ (0, p∗) and

lim
t→∞

inf
p∈(y,p∗)

Pp(τ(y) ≤ t) > 0 ∀ y ∈ (0, p∗). (3.12)

First we show how this gives Proposition 3.4.

Proof of Proposition 3.4, using Lemma 3.5. The result is trivial if p = 0, as then τ = 0

a.s. and E0[ τ ] = 0. Let ψ be as in Proposition 3.1. The first part of (ii) in Lemma 3.5 im-
plies that for each s, p, τe(s, p) = inf{t : ψ(s, t, p) = 0} a.s. Combining with Proposition 3.1,
for p ∈ (0, p∗), t 7→ ψ(0, t, p) is the desired solution. It remains to do show p 7→ Ep[ τ ] is
bounded on (0, p∗] and τ has an a.s. finite limit as Y (0)→ p∗, beginning with the latter.
Let

τ(s, p, y) = inf{t : ψ(s, t, p) = y}.
Then p 7→ τ(s, p, y) is non-decreasing on [y, p∗). To see this, for s ∈ R+ and p1, p2 ∈ (0, p∗)

define the collision time τc(s, p1, p2) = inf{t : ψ(s, t, p1) = ψ(s, t, p2)} of ψ(s, ·, p1) with
ψ(s, ·, p2). Applying the semigroup property (3.10) to each trajectory at time τc(s, p1, p2)

shows that ψ(s, t, p1) = ψ(s, t, p2) for all t ≥ τc(s, p1, p2). In particular, if p1 ≤ p2 then
ψ(s, t, p1) ≤ ψ(s, t, p2) for all t ≥ s, from which it follows that p 7→ τ(s, p, y) is non-
decreasing on [y, p∗).

Let τ(s, p∗, y) = limp→p∗ τ(s, p, y). To see that the latter is a.s. finite, first note that
the limit in (3.12), when positive, is equal to 1; this is explained below (21) in Chapter
20 of [13]. Since p 7→ τ(s, p, y) is non-decreasing, {τ(s, p∗, y) ≤ t} is the decreasing
limit of {τ(s, p, y) ≤ t} as p → p∗, so P(τ(s, p∗, y) ≤ t) = infp∈(y,p∗)P(τ(s, p, y) ≤ t) and
P(τ(s, p∗, y) <∞) = limt→∞ infp∈(y,p∗)P(τ(s, p, y) ≤ t) = 1 from the stronger (3.12).

It remains to show that Ep[ τ ] is bounded on [0, p∗). Fix y ∈ (0, p∗) and let t, δ be
such that Py(τ(0) ≤ t) ≥ δ and Pp(τ(y) ≤ t) ≥ δ for p ∈ [y, p∗). By the Markov property,
Pp(τ(y) ≤ 2t) ≥ δ2 for p ∈ [y, p∗). Since p 7→ τ(s, p, 0) is non-decreasing, Pp(τ(0) ≤ t) ≥ δ
for p < y, so in particular Pp(τ(0) ≤ 2t) ≥ δ2 for p ∈ [0, p∗). By the Markov property
Pp(τ(0) ≥ 2kt) ≤ (1 − δ2)k for p ∈ [0, p∗) and integer k ≥ 1 so in particular Ep[ τ(0) ] is
bounded on [0, p∗).

Next we prove Lemma 3.5, using the boundary point classification from [14]. First
we check that the process (Y (t)) is a regular diffusion on the interval I = (0, p∗) with
infinitesimal mean µ and variance σ2, i.e., that it satisfies assumptions 1-4 of Ch. 15,
Sec. 3 on pg. 191. Assumption 1 is just that the range of Y is an interval. Assumption 2
is regularity, i.e., P(τ(y) <∞ | Y (0) = x) > 0 for x, y in I, that we address in a moment.
Assumption 3 is that

µ(x) = lim
h→0+

E[Y (h)− Y (0) | Y (0) = x] and

σ2(x) = lim
h→0+

E[(Y (h)− Y (0))2 | Y (0) = x] (3.13)
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which follows by taking the appropriate limits in (3.9). Assumption 4 is that µ, σ2

are continuous and σ2 is positive on (0, p∗). Continuity follows from Lemma 3.3. For
positivity, by (3.7), σ2 is the average value of σ2

Y on Lp so it suffices that σ2
Y is positive on⋃

p∈(0,p∗) Lp = So \ {x∗}. If x ∈ So then qi(x) > 0 for all i, and using (3.15) below, since
P (x) > 0, ∇P (x)∆(i) = 0 for all i iff ri−1/xi = ri−2/xi−1 for all i, i.e., if x = x∗. The claim
then follows from the formula (3.11) for σ2

Y .

Regularity of Y is “obviously” implied by positivity of σ2, but for some reason I
could not find a reference for this, so I’ll show it here using the random time-change
representation of one-dimensional diffusions, and also introduce a function that we’ll
need later. By assumption on µ, σ2 the scale function S ((6.3) in Chapter 15 of [14]) is
defined on (0, p∗) by

S(x) =

∫ x

c

s(y)dy where s(x) = exp

(
−
∫ y

c

(2µ(z)/σ2(z))dz

)
dy (3.14)

and c ∈ (0, p∗) is arbitrary but fixed. Clearly S is continuous and since s > 0 on (0, p∗),
S is increasing, so S extends to [0, p∗] by taking the appropriate limits, provided we
allow it to take the values ±∞, and then S−1 : (S(0), S(p∗)) is defined, continuous
and increasing, so regularity holds for Y iff it holds for Z := S(Y ). As outlined below
(1) in Chapter 20 of [13], using Itô’s formula Z takes values in (S(0), S(p∗)) and is on
natural scale, i.e., is a martingale, and has diffusion coefficient σ̃2 where σ̃ = σ ◦ S−1.
Since µ, σ2 are C∞ and σ2 is positive on (0, p∗), σ̃ is C∞ and positive on (S(0), S(p∗)).
In particular, distributional uniqueness holds for the solutions of dZ = σ̃(Z)dB on
(S(0), S(p∗)), so Z is equal in distribution to the time-changed Brownian motion t 7→
B(T (t)) with B(0) := Z(0), defined for t < ζ := inf{t : B(T (t)) /∈ (S(0), S(p∗))}, where

T (t) = inf{s ≥ 0:
∫ S(p∗)
S(0)

Lx(s)dx/σ̃2(x) ≥ t} is continuous and increasing and L is the

local time of B. To see why, show that B(T (t)) has coefficients 0 and σ̃2 in the sense
of (3.13), using P(|B(h) − B(0)| ≥ ε) → 0 as h → 0+ for fixed ε > 0 together with∫ bt
at
Lx(t)dx = t where at = infs≤tB(s) and bt = sups≤tB(s), together with continuity

of σ̃2. Now, suppose B(0) = z and S(0) < a < z < S(p∗), and fix b ∈ (z, S(p∗)). We’ll
show that P(B(T (t)) = a for some t < ζ | B(0) = z) ≥ (z − a)/(b − a) > 0, establishing
regularity. From basic properties of B, Ta,b := inf{t : B(t) ∈ {a, b}} is a.s. finite and
P(B(Ta,b) = a) = (z − a)/(b− a). On the other hand, δ := inf{σ̃2(x) : x ∈ [a, b]} > 0 so for

s ≤ Ta,b,
∫ b
a
Lx(s)dx/σ̃2(x) ≤ δs, so T (t) ≥ t/δ on the event that Ta,b > T (t). Together,

this gives the desired estimate.

With the assumptions verified, we can now make use of the theory in Ch. 15, Sec. 6
of [14]. We’ll need to do computations involving µ and σ2 so we’ll need formulae for the
latter, which in turn requires formulae for µY and σ2

Y . We begin with σ2
Y .

Since i indexes the possible interactions, use j, k to index vectors and matrices. For
each j,

(∇P )j(x) =
∂

∂xj
P (x) =

rj−1
xj

P (x).

Since the non-zero entries of ∆(i) are ∆i−1(i) = −1 and ∆i(i) = 1,

∇P (x)∆(i) =

(
ri−1
xi
− ri−2
xi−1

)
P (x). (3.15)
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Referring to (3.6),

σ2
Y (x) =

∑
i

(∇P (x)∆(i))2qi(x)

=
∑
i

(
ri−1
xi
− ri−2
xi−1

)2

rixi−1xiP (x)2. (3.16)

Next we compute µY . We have (D2P )jj(x) = rj−1(rj−1 − 1)P (x)/x2j and for j 6= k,

(D2P )jk(x) =
rj−1rk−1
xjxk

P (x),

so

∆(i)>(D2P )(x)∆(i)

= ((D2P )i−1,i−1(x) + (D2P )i,i(x)− 2(D2P )i−1,i(x))P (x)

=

(
ri−2(ri−2 − 1)

x2i−1
+
ri−1(ri−1 − 1)

x2i
− 2

ri−2ri−1
xi−1xi

)
P (x). (3.17)

and since qi(x) = rixi−1xi,

∆(i)>(D2P )(x)∆(i)qi(x)

=

(
ri−2(ri−2 − 1)

xi
xi−1

+ ri−1(ri−1 − 1)
xi−1
xi
− 2r0r1r2

)
P (x) (3.18)

Letting ρi = ri(ri − 1) and rπ =
∏
i ri for tidiness and summing over i,

µY (x) =
1

2

∑
i

(
ρi−2

xi
xi−1

+ ρi−1
xi−1
xi

)
P (x)− 3rπP (x). (3.19)

We can now prove Lemma 3.5.

Proof of Lemma 3.5. First note that since ri ≤ 1 for all i by assumption, µY (x) ≤
−3rπP (x) for all x ∈ So, so µ(p) ≤ −3rπp for p ∈ (0, p∗].

First we check that 0 is accessible. With the scale function S from (3.14), by Lemma
6.2 in Ch. 15 of [14] 0 is accessible (they call it “attainable”) if S(0) > −∞ and

∫ p
0

(S(y)−
S(0))m(y)dy <∞ for some p ∈ (0, p∗), where m(y) := 1/(σ2(y)s(y)) is the density of the
speed measure and s is given by (3.14). By definition

S′(p) = s(p) = exp

(∫ c

p

(2µ(z)/σ2(z))dz

)
.

In particular S′(p) ≥ 0 and since µ(p) ≤ 0, p 7→ S′(p) is increasing, i.e., p 7→ S(p) is convex,
on (0, p∗). In particular, since S′(c) = 1, S′(p) ≤ 1 for p ≤ c so S(0) ≥ S(c) − c > −∞.
Since y 7→ S′(y) is increasing, S(y)− S(0) ≤ yS′(y) = ys(y) so∫ p

0

(S(y)− S(0))m(y)dy =

∫ p

0

S(y)− S(0)

s(y)σ2(y)
dy ≤

∫ p

0

y dy

σ2(y)
.

It remains to show the integral on the right is finite. Since σ2 is continuous and
positive on (0, p∗) and σ2(p) ≥ inf{σ2

Y (x) : x ∈ S, P (x) = p} it suffices to find c, ε, δ > 0

such that σ2
Y (x) ≥ cP (x)2−ε whenever P (x) ≤ δ. Recall ui := xi/ri−1. Rewriting (3.16),

σ2
Y (x) =

∑
i

(ui−1 − ui)2

ui−1ui
P (x)2rπ. (3.20)
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Let uM = maxi ui and um = mini ui. Since
∑
i xi = 1,

∑
i ri−1ui = 1 and with rM :=

maxi ri,
∑
i ui ≥ 1/rM so uM ≥ 1/3rM . By definition of P , um ≤ uM/2 if P (x) is

small enough, then using both observations, for some c, δ > 0, σ2
Y (x) ≥ cP (x)2/um

when P (x) ≤ δ. Let rs =
∑
i ri. Since P (x) =

∏
i x

ri−1

i ≥ (rmum)rs , for some C > 0,
um ≤ CP (x)1/rs . Combining with the above σ2

Y (x) ≥ (c/C)P (x)2−1/rs when P (x) ≤ δ, as
desired.

Next we check that p∗ is an entrance boundary. By Lemma 6.2 in Ch. 15 of [14], if
S(p∗) =∞ (which we show in a moment) then p∗ is inaccessible, i.e., Pp(τ(p∗) <∞) = 0

for p ∈ (0, p∗), which is half of the definition of entrance boundary. The other half, as in
Lemma 3.5, is that

lim
t→∞

inf
p∈(y,p∗)

Pp(τ(y) ≤ t) > 0 (3.21)

for y ∈ (0, p∗). To show this, we will make use of the drift of Y . Indeed, since µ(p) ≤
−3rπp, the process W defined by W (t) := Y (t ∧ τ(y, p∗)) + (t ∧ τ(y, p∗))3rπy is a non-
negative supermartingale with W (0) ≤ p∗. Since p∗ is inaccessible, τ(y) = τ(y, p∗) so if
p ∈ (y, p∗) and t < τ(y) then Y (t) > y and t < τ(y, p∗), so

Pp(τ(y) > t) ≤ Pp(W (t) > y + 3rπyt) ≤
p∗

y + 3rπt
.

Since this tends to 0 uniformly over p ∈ (y, p∗) as t → ∞ we have proved (3.21). It
remains to show that S(p∗) =∞. Given c ∈ (0, p∗), µ(y) ≤ −3rπc for y ∈ [c, p∗), and since
∇P (x∗)∆(i) = 0 for each i, P (x) = O(|x∗ − x|2) as x→ x∗ and so σ2(p) = O((p∗ − p)2) as
p→ p∗, so for some c1 > 0, letting c2 = exp(−c1/(p∗ − c)),

S(p∗) ≥
∫ p∗

c

exp

(
c1

∫ y

c

dz/(p∗ − z)2
)
dy

=

∫ p∗

c

c2 exp (c1/(p
∗ − y)) dy.

To see that the integral diverges, note the integrand is at least c2ec1k for y ≥ p∗−1/k and
with k0 large enough that p∗ − 1/k0 ≥ c, bound the integral below by the divergent sum∑

k≥k0

1

k(k + 1)
c2e

c1k.

4 Convergence of fixation time

In this section we prove Theorem 1.1 part (i), using Theorem 4.1 below which
establishes convergence of Y (N) to the slow diffusion limit Y . Recall that τ (N) =

inf{t : Y (N)(t) = 0} is the hitting time of ∂S on the slow time scale and that
d→ denotes

convergence in distribution. For convergence of processes we use the Skorokhod
topology on càdlàg functions.

Theorem 4.1. Suppose P (x(N)(0))→ p as N →∞ for some p ∈ [0, p∗] and for p < p∗ let
τ = inf{t : Y (t) = 0} where Y solves (3.9) with Y (0) = p, letting τ be the distributional
limit given by Proposition (3.4) if p = p∗. Then τ (N) d→τ .

Note that Theorem 4.1 with p = p∗ is just Theorem 1.1 part (i) with τ (N) in place of
the rescaled fixation time τoN/N . So, to prove Theorem 1.1 part (i) it remains to show
that the time to fixation after hitting the boundary of S is o(N); in fact it’s O(logN).

Proof of Theorem 1.1 assuming Theorem 4.1. Recall the fixation time τoN = inf{t : x(N) ∈
{ei}} where ei are standard basis vectors in R3. It suffices to show that (τoN − τN )/N

p→ 0.
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This is implied by E[τoN − τN ] = O(logN) which we show now; note that P (x) = 0 iff

xi = 0 for some i so τN = inf{t : x(N)
i (t) = 0 for some i}.

If xi = 0 then xi+2 = 1 − xi+1 and xi+2 → xi+2 + 1 at rate Nri+2xi+1xi+2 =

Nri+2(1 − xi+2)xi+2. If in addition Xi+2 = 0 then x = ei+1, otherwise xi+2 has state
space {0, 1/N, . . . , 1} and transition rates q(x, x + 1/N) = Nri+2x(1 − x), so from any
distribution of xi+2(0) on {1/N, . . . , 1},

E[ inf{t : xi+2(t) = 1} ] ≤
N−1∑
k=1

1

Nri+2(k/N)(1− k/N)
=

2

ri+2

N−1∑
k=1

1

k
= O(logN)

where we used the formulae

1

x(1− x)
=

1

x
+

1

1− x
and

N−1∑
k=1

1

1− k/N
=

N−1∑
k=1

1

k/N
.

For what follows let

τ−N (a) = inf{t : P (x(N)(t)) ≤ a},

τ+N (b) = inf{t : P (x(N)(t)) ≥ b},
τN (a, b) = τ−N (a) ∧ τ+N (b) and

τeN (ε) = τN (ε, p∗ − ε)

and let
τ
(N)
− (a) = τN (a−)/N = inf{t : Y (N)(t) ≤ a},

analogously for τ (N)
+ (b) and τ (N)(a, b), and for ε ∈ (0, p∗/2) let τ (N)

e (ε) = τ (N)(ε, p∗ − ε)
and for Y solving (3.9) recall τ(a) = inf{t : Y (t) = a} and let τ(a, b) = τ(a) ∧ τ(b) and
τe(ε) = inf{t : Y (t) /∈ (ε, p∗ − ε)}. Let τN = τ−N (0), similarly for τ (N) and τ .

The proof strategy for Theorem 4.1 mirrors the development of the previous section:
Proposition 4.2 demonstrates convergence on the interior of (0, p∗), then Proposition 4.3
establishes that p∗ and 0 are, asymptotically, entrance and accessible boundaries for
Y (N), respectively.

Proposition 4.2. Suppose P (x(N)(0))→ p as N →∞ for some p ∈ (0, p∗) and Y is as in
Theorem 4.1. For every ε ∈ (0, p∗/2), as N →∞

(Y (N)(· ∧ τ (N)
e (ε)), τ (N)

e (ε))
d→(Y (· ∧ τe(ε)), τe(ε)).

Proposition 4.3. For each ε > 0 there is δ > 0 so that

(i) if Y (N)(0) ≥ p∗ − δ then lim supN→∞ P(τ
(N)
− (p∗ − δ) > ε) ≤ ε and

(ii) if Y (N)(0) ≤ δ then lim supN→∞ P(τ (N) > ε) ≤ ε.

Proof of Theorem 4.1 assuming Propositions 4.2 and 4.3. We distinguish two cases ac-
cording to p = limN→∞ P (x(N)(0)), namely, p < p∗ and p = p∗, beginning with the first
case.
Case 1: p < p∗. Since, by Proposition 4.2, τ (N)

e (ε)
d→ τe(ε) for every ε ∈ (0, p∗/2) it’s

enough to show that τ − τe(ε)
p→ 0 as ε→ 0 and that τ (N) − τ (N)

e (ε)
p→ 0 if N →∞ slowly

enough as ε→ 0.
By Proposition 3.4, τ < ∞ a.s. and Y (t) < p∗ for t ≤ τ , so supt≤τ Y (t) < p∗ a.s. by

continuity of t 7→ Y (t). In particular, Pp(τ(ε) = τe(ε)) → 1 as ε → 0. Since t 7→ Y (t) is

a.s. continuous, τ − τ(ε)
p→ 0 as ε → 0. Combining, τ − τe(ε)

p→ 0. On the other hand,

using Y (N)(· ∧ τ (N)
e (ε))

d→ Y (· ∧ τe(ε)) and Pp(τ(ε/2) = τe(ε/2))→ 1 as ε→ 0, P(τ
(N)
− (ε) =
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τ
(N)
e (ε)) → 1 if N → ∞ slowly as ε → 0. By Proposition 4.3 (ii), τ (N) − τ (N)

− (ε)
p→ 0 if

N →∞ slowly as ε→ 0. Combining, τ (N) − τ (N)
e (ε)

p→ 0 as desired.

Case 2: p = p∗. Y (N)(τ
(N)
− (p∗ − ε)) → p∗ − ε as N → ∞ since sup

t≤τ(N)
−
|Y (N)(t) −

Y (N)(t−)| p→0 as N → ∞; to see this, note that x(N) jumps by 2/N and use the fact
that P is Lipschitz on {x ∈ S : P (x) ≥ p∗ − 2ε}. Observe from Proposition 4.3 (i) that

τ
(N)
− (p∗ − ε)

p→ 0 if N → ∞ slowly enough as ε → 0, and that for càdlàg f , f(a + ·)
converges to f in the Skorokhod topology as a→ 0. To obtain the result, apply Case 1 to
Y (N)(τ

(N)
− (p∗ − ε) + ·) and Y (·) with Y (0) = p∗ − ε, letting N →∞ slowly as ε→ 0.

Remark. To prove Theorem 4.1 we did not need to show that Y (N) d→Y , nor would doing
so directly imply that τ (N) d→τ . Based on what we proved, to find that Y (N) d→Y it would
suffice to show that for each ε > 0, once Y, Y (N) go below δ, with probability → 1 as
δ → 0 (and for Y (N) as N →∞ slowly enough as δ → 0) they remain below ε until they
hit 0.

4.1 Stochastic averaging and convergence on (0, p∗)

In this section we prove Proposition 4.2. To do so we’ll use a standard limit theorem
from the canonical reference [5], which roughly amounts to showing that the jump size
of Y (N) tends to 0 and that its linear and quadratic martingales converge to those of the
limiting diffusion; we begin with the former, which is not hard.

Lemma 4.4. For each N , supt |Y (N)(t)− Y (N)(t−)| ≤ (1/N)rm where rm = mini ri.

Proof. Let S(N) = {x ∈ S : Nx ∈ Z3}. Jumps in Y (N) are bounded by

sup
x∈S(N), i∈{0,1,2}

|P (x+ ∆(i)/N)− P (x)|.

If x ∈ S and P (x) > 0, then from (3.17), since maxi ri ≤ 1 by assumption,

∆(i)>(D2P )(x)∆(i) ≤ 0

for each i, i.e., P is concave on S. It follows that for x ∈ S(N) and k such that x +

k∆(i)/N, x + (k + 1)∆(i)/N ∈ S(N), k 7→ P (x + (k + 1)∆(i)/N) − P (x + k∆(i)/N) is
monotone, so if x maximizes |P (x+ ∆(i)/N)−P (x)| over i and x, x+ ∆(i)/N ∈ S(N) then
either x or x+ ∆(i)/N is on the boundary of S, i.e., xj = 0 or (x+ ∆(i)/N)j = 0 for some
j. Suppose xj = 0; the proof is similar in the other case. Then P (x) = 0, so

|P (x+ ∆(i)/N)− P (x)| =
∏
`

(x` + ∆`(i)/N)r`−1 ≤ (1/N)rm ,

since x` ∈ [0, 1] for each i, xj + ∆j(i)/N ≤ 1/N and N ≥ 1.

The generator AN of x(N) is given for bounded measurable f by

(ANf)(x) =

2∑
i=0

(f(x+ ∆(i)/N)− f(x))Nqi(x).

Defining the appropriate functions and using Dynkin’s formula, then speeding up time
by a factor of N ,

MN (t) = Y (N)(t)− Y (N)(0)−
∫ t

0

Nµ
(N)
Y (x(N)(Ns))ds and

QN (t) = MN (t)2 −
∫ t

0

N(σ
(N)
Y )2(x(N)(Ns))ds (4.1)
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are martingales, where

µ
(N)
Y (x) =

2∑
i=0

(P (x+ ∆(i)/N)− P (x))Nqi(x) and

(σ
(N)
Y )2(x) =

2∑
i=0

(P (x+ ∆(i)/N)− P (x))2Nqi(x). (4.2)

We can think of Nµ(N)
Y and N(σ

(N)
Y )2 as the drift and diffusion coefficients of Y (N). The

following result asserts that, away from the boundary of S, they converge uniformly to
the drift and diffusion coefficients of Y .

Lemma 4.5. Let µY , σ2
Y as in (3.11) and let S(ε) = {x ∈ S : P (x) ≥ ε}. For each ε > 0,

sup
x∈S(ε)

|Nµ(N)
Y (x)− µY (x)|+ |N(σ

(N)
Y )2(x)− σ2

Y (x)| = O(1/N).

Proof. We begin with µ(N)
Y . Since P,∇P and D2P are bounded on S(ε), a Taylor expan-

sion implies that

sup
x∈S(ε)

|P (x+ ∆(i)/N)− P (x)

− (∇P )(x)∆(i)/N −∆(i)>D2P (x)∆(i)/2N2| = O(1/N3).

As noted earlier, since P is constant on solutions of (3.5), (∇P )(x)F (x) = 0 for x ∈ S,
which implies that

2∑
i=0

(∇P )(x)(∆(i)/N)Nqi(x) = 0.

Using the Taylor expansion in µ(N)
Y and cancelling the above terms we find that

sup
x∈S(ε)

|Nµ(N)
Y (x)− µY (x)| = O(1/N).

Let a = P (x+ ∆(i)/N)− P (x) and b = (∇P )(x)∆(i)/N . Then

|N(σ
(N)
Y )2(x)− σ2

Y (x)| ≤
2∑
i=0

|a2 − b2|N2qi(x).

Since ∇P is bounded on S(ε), b = O(1/N), and a Taylor approximation gives a = O(1/N)

and |a− b| = O(1/N2), so |a2 − b2| = |a− b| · |a+ b| = O(1/N3). Since qi = O(1),

sup
x∈S(ε)

|N(σ
(N)
Y )2(x)− σ2

Y (x)| = O(1/N).

The following lemma gives the required stochastic averaging property.

Lemma 4.6. Given ε > 0, let Se(ε) = {x ∈ S : P (x) ∈ [ε, p∗− ε]}. Suppose f : Se(ε)→ R is
continuous. Let f :∈ [ε, p∗]→ R denote the orbital average of f , defined for p ∈ [ε, p∗ − ε]
by

f(p) =
1

T (p)

∫ T (p)

0

f(φ(t, xp))dt

where xp ∈ Lp is arbitrary. Then for T > 0,

sup
t≤T

∣∣∣∣ 1

N

∫ Nt∧τe
N (ε)

0

(f(x(N)(s))− f(P (x(N)(s)))ds

∣∣∣∣ p→ 0 as N →∞.
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Lemma 4.6 takes a bit of effort so first we’ll use it to prove Proposition 4.2.

Proof of Proposition 4.2 assuming Lemma 4.6. To prove the result we use Theorem 4.1
in Chapter 7 of [5], which is a general diffusion limit theorem that requires us to verify
some conditions, listed as (4.1)-(4.7) in the reference. Since µ, σ2 are not globally
Lipschitz, we will localize and work with somewhat more regular processes. It’s enough
to show that for ε ∈ (0, p∗/2),

(Y (N)
ε , τ (N)

e (ε))
d→ (Yε, τe(ε))

where, for each N , Y (N)
ε is a process coupled to Y (N) such that Y (N)

ε (t) = Yε(t) for

t ≤ τ (N)
e (ε) and similarly for Yε and Y .

As in the proof of Proposition 3.1, let µε, σ2
ε be Lipschitz extensions of µ, σ2, respec-

tively, from (ε, p∗ − ε) to R and let Yε solve (3.9) with µε, σ2
ε in place of µ, σ2. As explained

in Chapter 5, Section 3 of [5], since µε, σ2
ε are Lipschitz on R, the martingale problem for

the diffusion with coefficients µε, σ2
ε is well-posed – in particular, the solution t 7→ Yε(t)

exists for all t ∈ R+ and is pathwise unique. Coupling the solutions by using the same
Brownian motion to construct them, Yε(t) = Y (t) for t ≤ τe(ε). Let ψε be the solution flow
of Proposition 3.1 with µε, σ2

ε in place of µ, σ2 and let

Y (N)
ε (t) =

{
Y (N)(t) for t ≤ τ (N)

e (ε),

ψε(τ
(N)
e (ε), t, Y (N)(τ

(N)
e (ε))) for t > τ

(N)
e (ε).

In order for Y (N)
ε

d→Yε it’s enough that conditions (4.1)-(4.7) of the limit theorem are
satisfied by Y (N)(t) for t ≤ τ

(N)
e (ε), since by modifying the processes An, Bn and Mn

described below in the obvious way, i.e., taking for t > τ
(N)
e (ε)

An(τ (N)
e (ε)) +

∫ t

τ
(N)
e (ε)

σ2
ε (Y (N)

ε (s))ds

in place of An(t) and analogously for Bn and Mn, the conditions are trivially satisfied for

t > τ
(N)
e (ε). With respect to their notation with a, b and Xn, An, Bn,Mn, we have a = σ2,

b = µ, Xn = Y (n),

An(t) =

∫ t

0

(σ
(N)
Y )2(x(N)(Ns))ds, Bn(t) =

∫ t

0

µ
(N)
Y (x(N)(Ns))ds,

and Mn as in (4.1).

(i) Conditions (4.1)-(4.2) are implied by (4.1) above.
(ii) Condition (4.3): this follows from Lemma 4.4.

(iii) Conditions (4.4)-(4.5) are trivial, as An, Bn are continuous.
(iv) Recall τ (N)

e (ε) = NτeN (ε), where both are defined at the top of this section. Recalling
that Y (N)(t) = P (x(N)(Nt)), condition (4.6) is equivalent to the following estimate:
for t > 0,

1

N

∫ Nt∧τe
N (ε)

0

|µ(N)
Y (x(N)(Ns))− µ(P (x(N)(Ns)))|ds p→ 0 as N →∞.

Using Lemma 4.5, we can replace µ
(N)
Y with µY . Then, noting µ is by definition the

orbital average of µY and using Lemma 4.6, the estimate follows. Condition (4.7) is
analogous, so we omit it.

Lastly it remains to show that τ (N)
e (ε)

d→ τe(ε). Define the map T : D(R+) → R on

càdlàg functions X : R+ → R by T (X) := inf{t : Xt ≤ 0}, so that τ (N)
e (ε) = T (Y (N) − ε) ∧
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T (p∗− ε−Y (N)) and similarly for τe(ε). Since σ2
ε can be taken continuous and positive on

(0, p∗), for fixed ε ∈ (0, p∗/2), continuity of sample paths and Blumenthal’s 0-1 law imply
that X 7→ T (X − ε) and X 7→ T (p∗ − ε−X) are continuous on a set A ⊂ D(R+) that has

P(Yε ∈ A) = 1. Convergence of Y (N)
ε to Yε and the continuous mapping theorem then

imply the desired result.

It remains to prove Lemma 4.6. To do so we require the following uniform approxi-
mation by solutions of (3.5). Let S(N) = {x ∈ S : Nx ∈ Z3}.
Lemma 4.7. Recall τeN (ε) = inf{t : P (x(N)(t)) /∈ (ε, p∗ − ε)}. Let φ denote the solution
flow of (3.5). For each T > 0 there is γ > 0 so that if ε ∈ [0, 1] and x ∈ S(N) then

Px(sup
t≤T
|x(N)(t)− φ(t, x)| > ε) ≤ 6e−γNε

2

.

Proof. From Lemma 3.3 in [6] we have the following general estimate: ifX is anR-valued
semimartingale with |∆X| ≤ c, a > 0 and λ is such that 0 < λc ≤ 1/2, then

P(sup
t≥0
|Xm

t | − λ〈X〉t ≥ a) ≤ 2e−λa, (4.3)

where Xm is the martingale part and 〈X〉 is the predictable quadratic variation (pqv).

For each i the stopped coordinate process x(N)
i (· ∧ τeN (ε)) has jumps bounded by c = 1/N

and has respective martingale part and pqv

(Iix
(N))(t ∧ τeN (ε)) and

1

N
(Jix

(N))(t ∧ τeN (ε))

where Ii, Ji are defined for measurable x : R+ → S by

(Iix)(t) = x(t)− x(0)−
∫ t

0

Fi(x(s))ds and

(Jix)(t) =

∫ t

0

Gii(x(s))ds.

By (3.3) and since x 7→ qi(x) are quadratic in x, F,G are bounded and Lipschitz on S.
Letting C1 be a Lipschitz constant, for T > 0 and measurable x : R+ → S, an application
of Gronwall’s inequality shows that

sup
t∈[0,T ]

∑
i

|xi(t)− φi(t, x(0))| ≤ eC1t sup
t∈[0,T ]

∑
i

|(Iixi)(t)|. (4.4)

Let C2 be a bound on F,G on S. Since Gii is non-negative, if x : R+ → S then

sup
t∈[0,T ]

(Jix)(t) = (Jix)(T ) ≤ C2 T,

Applying (4.3) to each process x(N)
i , if λc ≤ 1/2, i.e., λ ≤ N/2, then

P(sup
t≤T

∑
i

|(Iix(N))(t)| ≥ 3a+ 3λC2T/N) ≤ 6e−λa.

Let a = ε e−C1T /6 and λ = ε e−C1TN/6C2T . If C2 ≥ e−C1t/3T , which can be chosen as
such, and ε ∈ [0, 1] then λ ≤ N/2. Combining the above estimate with (4.4) and taking
γ = e−2C1T /36C2T then gives the result.
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Proof of Lemma 4.6. Fix ε, T > 0 and define the sequence (si) by s0 = 0 and si+1 =

(si + T (pi)) ∧NT ∧ τeN (ε), where pi = P (x(N)(si)) (no relation to the fixation probability

p
(N)
i defined in the introduction). For t ≤ T let I(t) = inf{i : si ≥ Nt ∧ τeN (ε)}. To set up

the estimate we’ll use the fact that for i ≤ I(T )− 2,

f(pi)T (pi) =

∫ si+1

si

f(φ(t− si, x(N)(si))ds =

∫ t

0

f(P (x(N)(si)))ds.

Then, ∫ Nt∧τe
N (ε)

0

f(x(N)(s))ds =

I(t)−2∑
i=0

f(pi)T (pi) +

I(t)−2∑
i=0

R
(1)
i +R(2)(t)

where R(2)(t) =
∫ Nt∧τe

N (ε)

sI(t)−1
f(x(N)(s))ds and

R
(1)
i =

∫ si+1

si

(f(x(N)(s))− f(φ(t− si, x(N)(si)))ds.

Similarly,

I(t)−2∑
i=0

f(pi)T (pi) =

∫ Nt∧τe
N (ε)

0

f(P (x(N)(s))ds+

I(t)−2∑
i=0

R
(3)
i +R(4)(t)

where R(4)(t) =
∫ Nt∧τe

N (ε)

sI(t)−1
f(P (x(N)(s)))ds and

R
(3)
i =

∫ si+1

si

(f(P (x(N)(s)))− f(P (x(N)(si)))ds.

In particular,∫ Nt∧τe
N (ε)

0

(f(x(N)(s))− f(P (x(N)(s)))ds =

I(t)−2∑
i=0

(R
(1)
i +R

(3)
i ) +R(2)(t) +R(4)(t).

By assumption, f is continuous on the compact set Se(ε) so C1 := supx∈Se(ε) |f(x)| <
∞. Using Lemma 3.2, p 7→ T (p) is continuous so similarly C2 := supp∈[ε,p∗−ε] T (p) < ∞.

By definition si+1 − si ≤ C2 so supt≤T R
(i)(t) ≤ C1C2 for i ∈ {2, 4}. Thus, the desired

result follows if we can show that for each T > 0,

sup
t≤T

1

N

I(t)−2∑
i=0

(R
(1)
i +R

(3)
i )

p→ 0 as N →∞,

which, in turn, follows if we can show that for each T > 0,

1

N

I(T )−2∑
i=0

(
|R(1)
i |+ |R

(3)
i |
)

p→ 0 as N →∞. (4.5)

For δ > 0 let

Ei(δ) = { sup
si≤t<si+1

|x(N)(t)− φ(t− si, x(N)(si))| > δ}.

Since f is continuous on the compact set Se(ε), f is uniformly continuous on Se(ε). Let
m be a modulus of continuity for f and given c > 0 let δ > 0 small enough that m(δ) ≤ c.
Then, on the complement of Ei(δ),

|R(1)
i | ≤ (si+1 − si) ε ≤ c T (pi).
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Using just the bound on f , R(1)
i ≤ 2C1T (pi), so in general,

|R(1)
i | ≤ c T (pi) + 2C1T (pi)1(Ei(δ)).

For R(3)
i let C3 be a Lipschitz constant for P on Se(ε). A similar argument as in the proof

of Lemma 3.3 shows that f is continuous on [ε, p∗ − ε]. Let m be a modulus of continuity
for f and δ > 0 small enough that m(C3δ) ≤ c. Note that supp∈[ε,p∗−ε] f(p) ≤ C1. Using

the fact that P (φ(t, x)) does not depend on t and arguing in the same way as for R(1)
i ,

|R(3)
i | ≤ c T (pi) + 2C1T (pi)1(Ei(δ)).

It’s clear that T (p) > 0 for p ∈ (0, p∗). Since T is continuous, c1 := infp∈[ε,p∗−ε] T (p) > 0.
By definition, if i ≤ I(T )− 2 then pi ∈ (ε, p∗ − ε) and si+1 − si = T (pi) ≥ c1. In particular,
for each T > 0, NT ≥ sI(T )−1 ≥ c1(I(T ) − 1) so I(T ) = O(N). By Lemma 4.7 with δ in

place of ε, there is γ > 0 so that for each i, P(Ei) ≤ 6e−γNδ
2

, so P(
∑I(t)−2
i=0 1(Ei) 6= 0) =

O(Ne−γNδ
2

)→ 0 as N →∞. It follows that with probability tending to 1 as N →∞,

I(T )−2∑
i=0

(
|R(1)
i |+ |R

(3)
i |
)
≤ 2c

I(T )−2∑
i=0

T (pi) = 2c sI(T )−1 ≤ 2cNT.

Since T is fixed and c is arbitrary, (4.5) follows.

4.2 Entrance at p∗

Proof of Proposition 4.3, part (i). We use the same approach as in the proof of Lemma 3.5.
Using Lemma 4.5 and the estimate µY (x) ≤ −3rπP (x), for large N and p ∈ (y, p∗),

Nµ
(N)
Y (x) ≤ −2rπy. Fix c > 0 and δ > 0 and let y = p∗ − δ. If Y (N)(0) ∈ (y, p∗) and N is

large enough that Y (N) jumps by at most c on (y, p∗) then from (4.1) it follows that the
process W (N) defined by

W (N)(t) := Y (N)(t ∧ τ (N)
− (y))− (y + c) + (t ∧ τ (N)

− (y))2rπy

is a non-negative supermartingale with W (N)(0) ≤ δ. So, if t < τ
(N)
− (y) then Y (N)(t) > y

and t < τ(y, p∗), so

P(τ
(N)
− (y) > t) ≤ Pp(W (t) > 2rπyt− c) ≤

δ

2rπt− c
.

Let t = ε, then let c = rπε and δ = rπε
2 to obtain the desired result.

4.3 Accessibility at 0

Proof of Proposition 4.3, part (ii). Recall µ(N)
Y and (σ

(N)
Y )2 from (4.2) that we think of as

drift and diffusion coefficients of Y (N). We’ll show that Y (N) has non-positive drift and
that, if

∑
i ri is small enough, its diffusion coefficient is bounded below by a positive

constant, at which point we can use optional stopping arguments to obtain the result.
First, we show that Y (N) itself has non-positive drift for each N , i.e., µ(N)

Y (x) ≤ 0 for

x ∈ S where µ(N)
Y is given in (4.2). This is clear if P (x) = 0 since 0 is absorbing for Y (N):

if P (x) = 0 and P (x+ ∆(i)/N) > 0 then qi(x) = 0. As noted in the proof of Lemma 4.4, P
is concave on S. In particular, P (x+ ∆(i)/N)−P (x) ≤ ∇P (x)∆(i)/N for all x ∈ So (note
that ∇P (x) is undefined if xi = 0 and ri < 1). From (4.2) and using ∇PF = 0,

µ
(N)
Y (x) ≤

∑
i

∇P (x)∆(i)qi(x) = ∇P (x)F (x) = 0.
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Next, recall from (3.15) that

∇P (x)∆(i) =

(
ri−1
xi
− ri−2
xi−1

)
P (x).

Suppose x ∈ S(N)
o := {x ∈ So : Nx ∈ Z3}. If P (x + ∆(i)/N) ≤ P (x) then by concavity

P (x) − P (x + ∆(i)/N) ≥ ∇P (x)∆(i)/N . Otherwise, P (x + ∆(i)/N) − P (x) ≥ ∇P (x +

∆(i)/N)∆(i)/N . Since x ∈ S(N)
o , (x + ∆(i)/N)i ≤ 2xi for each i. Using this, (3.15) and

P (x+ ∆(i)/N) ≥ P (x),

∇P (x+ ∆(i)/N)∆(i)/N ≥
(
ri−1
2xi
− ri−2
xi−1

)
P (x).

In either case, if x ∈ S(N)
o then

|P (x+ ∆(i)/N)− P (x)| ≥
(
ri−1
2xi
− ri−2
xi−1

)
P (x).

It follows that

(σ
(N)
Y )2(x) ≥

∑
i

(ui−1 − 2ui)
2

2ui−1ui
P (x)2rπ. (4.6)

Recall rs =
∑
i ri. Arguing as we did below (3.20), from (4.6) we find c, δ > 0 such that

(σ
(N)
Y )2(x) ≥ cP (x)2−1/rs when P (x) ≤ δ. Rescaling time in (3.2) by a constant factor, we

may assume that rs = 1/2, and the rescaling does not affect the conclusion of the lemma.

With this assumption, (σ
(N)
Y )2(x) ≥ c when P (x) ≤ δ.

With M (N) as in (4.1) define W (N) by

W (N)(t) =

{
M (N)(t) t ≤ τ (N)

W (N)(τ (N)) + cB(t− τ (N)) t > τ (N)

where B is a standard Brownian motion independent of Y (N). Since µ
(N)
Y ≤ 0, W (N)

is a martingale and W (N)(t) ≤ Y (N)(t) − Y (N)(0) for t ≤ τ (N), and in particular, if

W (N)(t) ≤ −Y (N)(0) then t > τ (N). By construction and the lower bound on (σ
(N)
Y )2,

Q(N)(t) := ct − W (N)(t)2 is a supermartingale with Q(N)(0) = 0. Fix C > 0 and let

τ
(N)
∗ = inf{t : W (N)(t) /∈ (−δ, Cδ)}. If Y (N)(0) ≤ δ and W (N)(τ

(N)
∗ ) ≤ −δ then τ (N) ≤ τ (N)

∗ .
By definition, W (N)(t)−W (N)(t−) = Y (N)(t)− Y (N)(t−) for t ≤ τ (N) and t 7→W (N)(t)

is a.s. continuous for t > τ (N) so by Lemma 4.4, jumps in W (N) are bounded by (1/N)rm .

If Y (N)(0) ≤ δ and N ≥ δ1/rm then W (N)(τ
(N)
∗ ) ∈ [−2δ,−δ] ∪ [Cδ, (C + 1)δ] and −δ ≤

(W (N))(t) ≤ (C + 1)δ for t ∈ [0, τ
(N)
∗ ]. Since E[Q(N)(t ∧ τ (N)

∗ )] ≤ 0 for each t, using the

definition of Q(N) and Fatou’s lemma implies E[τ
(N)
∗ ] <∞.

If W (N)(0) ∈ [−δ, 0] then applying optional sampling to W (N), P(W (N)(τ
(N)
∗ ) ≤ −δ) ≥

C/(C + 2). Applying optional sampling to the supermartingale Q(N),

E[τ
(N)
∗ ] = c−1E[W (N)(τ

(N)
∗ )2 +Q(N)(τ

(N)
∗ )] = c−1E[W (N)(τ

(N)
∗ )2] ≤ (C + 1)2δ2/c.

For ε > 0, if Y (N)(0) ≤ δ then using Markov’s inequality on the second term,

P(τ (N) > ε) ≤ P(τ (N) 6= τ
(N)
∗ ) + P(τ

(N)
∗ > ε)

= P(W (N)(τ
(N)
∗ ) ≥ Cδ) + P(τ

(N)
∗ > ε)

≤ 2/(C + 2) + (C + 1)2δ2/(cε).

Given ε > 0, the desired result follows if C + 2 ≥ 4/ε and δ2 ≤ cε2/(2(C + 1)2).
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Appendix

Proof of Proposition 3.1. We begin by solving, for each ε > 0, the equation (3.9) with
modified coefficients µε, σε that are bounded, Lipschitz, and agree with µ, σ on the
interval [ε, p∗ − ε], denoting the solution ψε(s, t, p), with domain D := {(s, t, p) ∈ R2

+ ×
R : s ≤ t}. We prove a weak semigroup property for ψε:

for 0 ≤ s ≤ t ≤ u and F(s) measurable ξ,

ψε(t, u, ψε(s, t, ξ)) = ψε(s, u, ξ) almost surely. (4.7)

We extract a continuous version of ψε, which has the semigroup property. We show that
(ψ1/k)k>0 are consistent and from this deduce that limk→∞ ψ1/k exists, denoting it ψ. We
show that ψ solves (3.9) and inherits continuity and the semigroup property from (ψ1/k),
completing the proof.

First we obtain ψε. Lemma 3.2 below implies that µ, σ are Lipschitz on compact
subsets of (0, p∗). Fix 0 < ε < p∗/2 and let µε, σε be a Lipschitz extension of µ, σ from
(ε, p∗−ε) to R; for example, let µε = µ and σε = σ on [ε, p∗−ε], set them equal to 0 outside
(0, p∗), and interpolate linearly on (0, ε) and (p∗ − ε, p∗). For each s ∈ R2

+, Theorem 18.3
in [13] then gives a random function (t, p) 7→ ψε(s, t, p), defined for t ≥ s and p ∈ R,
such that for fixed (s, p) and F(s) measurable ξ, t 7→ ψε(s, t, ξ) is the a.s. unique solution
to (3.9) with µε, σε in place of µ, σ, which we’ll notate in shorthand as (3.9)ε.

To prove the weak semigroup property (4.7) for ψε, let η = ψε(s, t, ξ). Then η is F(t)-
measurable so u 7→ ψε(t, u, η) is the a.s. unique solution to (3.9)ε for u ≥ t, with t, u, η in
place of s, t, ξ. Using η = ψε(s, t, ξ) and (3.9)ε for ψε(s, t, ξ) in the corresponding (3.9)ε
for ψε(t, u, η) shows that u 7→ ψε(t, u, η) solves (3.9)ε with u in place of t, and a dummy
variable other than u, for u ≥ t; (4.7) then follows from uniqueness.

Theorem 18.3 in [13] already implies that for fixed s, (t, p) 7→ ψε(s, t, p) is a.s. con-
tinuous. With a bit more work we obtain a version continuous in all three variables.
The required estimate is given by Theorem 2.23 in [13]: for some a, b, C > 0 and all
(s1, t1, p1), (s2, t2, p2) in R3 such that s1 ≤ t1 and s2 ≤ t2,

E[ |ψε(s1, t1, p1)− ψε(s2, t2, p2)|a ] ≤ C(|s1 − s2|3+b + |t1 − t2|3+b + |p1 − p2|3+d).

In the statement of Theorem 2.23 the domain is assumed to be Rd for some d, however
the proof is unaffected if the domain is D. We’ll prove the above estimate with a = 2q

and 3 + b = q for arbitrary q > 3, which suffices. Since |x1 + x2 + x3|2q ≤ (3 maxi |xi|)2q ≤
32q(|x1|2q + |x2|2q + |x3|2q), it suffices to show that

(i) E[ |ψε(s1, t, p)− ψε(s2, t, p)|2q ] ≤ C|s1 − s2|q for 0 ≤ s1 ≤ s2 ≤ t and p ∈ R,
(ii) E[ |ψε(s, t1, p)− ψε(s, t2, p)|2q ] ≤ C|t1 − t2|q for 0 ≤ s ≤ t1 ≤ t2 and p ∈ R and

(iii) E[ |ψε(s, t, p1)− ψε(s, t, p2)|2q ] ≤ C|p1 − p2|q for 0 ≤ s ≤ t and p1, p2 ∈ R.

As noted in the proof of Theorem 2.23 in [13], it suffices to establish the estimates
on compact subsets of D. So, we’ll fix T > 0 and assume 0 ≤ s ≤ t ≤ T and |p| ≤ T . For
statement (iii), use the the display equation below (12) in the proof of Theorem 18.3
in [13]: there is a positive, non-decreasing process (c(t)) such that for 0 ≤ s ≤ t and
p1, p2 ∈ R,

E[ |ψε(s, t, p1)− ψε(s, t, p2)|2q ] ≤ 2|p1 − p2|2q exp((t− s)c(t− s)). (4.8)

If |p1|, |p2| ≤ T then |p1 − p2|2q ≤ |p1 − p2|q(2T )q, so letting C = 2 exp(Tc(T ))(2T )q gives
(iii). Statements (i)-(ii) will follow from the weak semigroup property and the following
short-time estimate: for some C > 0 and any (s, t, p) ∈ R2

+ ×R such that 0 ≤ t− s ≤ T ,

E[ |ψε(s, t, p)− p|2q ] ≤ C|t− s|q. (4.9)
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First we use (4.9) to obtain (i)-(ii) above, then we prove it. We begin with (ii). For fixed
s ≤ t1 ≤ t2, by the semigroup property,

ψε(s, t2, p) = ψ(t1, t2, ψ(s, t1, p)) a.s.

Then, (ii) is obtained by combining this with the short-time estimate, using t1, t2, ψ(s, t1, p)

in place of s, t, p in the latter. Next we show (i). Use the weak semigroup property to
write

ψε(s1, t, p) = ψ(s2, t, ψ(s1, s2, p)) a.s.

Combine this with (4.8), with s2, t, ψε(s1, s2, p) in place of s, t, p, to find that with C =

2 exp(Tc(T )), for 0 ≤ s1 ≤ s2 ≤ T and any p ∈ R,

E[ |ψε(s1, t, p)− ψε(s2, t, p)|2q ] ≤ C|ψε(s1, s2, p)− p|2q

Combine with the short-time estimate to obtain (i). We now prove the short-time
estimate (4.9). By construction, µε, σε are continuous and compactly supported, so
bounded. So, if |t− s| ≤ T then for some C > 0∣∣∣∣∫ t

s

µε(ψε(s, u, p))du

∣∣∣∣2q ≤ (C(t− s))2q ≤ CT q(t− s)q

and the quadratic variation of
∫ t
s
σε(ψε(s, u, p))dB(u) is at most C(t− s). Using the BDG

inequality (see for example Proposition 15.7 in [13]), for some cq > 0,

E

∣∣∣∣∫ t

s

σε(ψε(s, u, p))dB(u)

∣∣∣∣2q ≤ cqCq(t− s)q.
Since |x1 + x2|2q ≤ 22q(|x1|2q + |x2|2q), using (3.9)ε and the above gives the short-time es-
timate. This completes the proof that ψε has a continuous version. Let D1 = {(s, t, u, p) ∈
R4 : 0 ≤ s ≤ t ≤ u}. The weak semigroup property (with ξ = p) holds simultaneously for
all (s, t, u, p) ∈ D1 ∩ Q4 since the latter is countable. Since D1 ∩ Q4 is dense in D1, by
continuity

almost surely, ∀0 ≤ s ≤ t ≤ u, ∀p ∈ R,
ψε(t, u, ψε(s, t, p)) = ψε(s, u, p). (4.10)

Discarding a null set we may assume that ψ1/k is continuous, and satisfies (4.10), for
every integer k > 0. Since µε, σε agrees with µ, σ on (ε, p∗−ε), for each (s, p) ∈ R+×(0, p∗),
t 7→ ψε(s, t, p) is the a.s. unique solution to (3.9) on s ≤ t ≤ τε(s, p) := inf{t : ψε(s, t, p) /∈
(ε, p∗ − ε)}. In particular, a.s. for every j < k ∈ Z>0, ψ1/k(s, t, p) = ψ1/j(s, t, p) for all
s ≤ t ≤ τ1/j(s, t, p), and j 7→ τ1/j(s, t, p) is non-decreasing. Let τ(s, p) = limj→∞ τ1/j(s, t, p)

and for t < τ(s, p) let ψ(s, t, p) = limk→∞ ψ1/k(s, t, p). Then ψ is a.s. continuous on
{(s, t, p) ∈ R2

+ × (0, p∗) : 0 ≤ s ≤ t < τ(s, p)}, τ(s, p) > 0 for (s, p) ∈ R+ × (0, p∗) and
τ = τe, where τe is given in the proposition statement, and for each (s, p) ∈ R+ × (0, p∗),
t 7→ ψ(s, t, p) is the a.s. unique solution to (3.9) on s ≤ t ≤ τe(s, p). The semigroup
property is inherited, with the restriction u ≤ τe(s, p), from (ψ1/k)k>0.
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