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Abstract

Given a weighted finite graph G, we consider a random partition of its vertex set
induced by a measure on spanning rooted forests on G. The latter is a generalized
parametric version of the classical Uniform Spanning Tree measure which can be
sampled using loop-erased random walks stopped at a random independent expo-
nential time of parameter q > 0. The related random trees—identifying the blocks
of the partition—tend to cluster nodes visited by the random walk on time scale 1/q.
We explore the emerging macroscopic structure by analyzing two-point correlations,
as a function of the tuning parameter q. To this aim, it is defined an interaction
potential between pair of vertices, as the probability that they do not belong to the
same block. This interaction potential can be seen as an affinity measure for “densely
connected nodes” and capture well-separated regions in network models present-
ing non-homogeneous landscapes. In this spirit, we compute this potential and its
scaling limits on a complete graph and on a non-homogeneous weighted version
with community structure. For such geometries we show phase-transitions in the
behavior of the random partition as a function of the tuning parameter and the edge
weights. Moreover, as a corollary of our main results, we infer the right scaling of the
parameters that give rise to the emergence of “giant” blocks.
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1 Introduction

Consider an arbitrary simple, undirected, weighted and connected graph G =

(V,E,w) on N = |V | vertices where E = {e = (x, y) : x, y ∈ V } stands for the edge
set and w : E → [0,∞) is a given edge-weight function. We call the Random Walk (RW)
associated to G the continuous-time Markov chain X = (Xt)t≥0 with state space V and
the discrete Laplacian as infinitesimal generator, i.e., the N ×N matrix:

L = A−D, (1.1)

where for any x, y ∈ [N ] := {1, 2, . . . , N}, A(x, y) = w(x, y)1{x 6=y} is the weighted adja-
cency matrix and D(x, y) = 1{x=y}

∑
z∈[N ]\{x} w(x, z) is the diagonal matrix guarantying

that the entries of each row in L sum up to 0. In other word, the quantity w(x, y) rep-
resents the rate at which the random walk moves from x to y, while D(x, x) is the total
transition rate from x.

Given the weighted graphG(V,E,w), a rooted spanning forest is a spanning subgraph
in which each connected component is a tree and, for each tree, there is a special vertex
which we call the root. We call F the set of all the possible rooted spanning forests of G
and, for some fixed parameter q > 0, we consider the following probability measure on
the set F :

µq(F ) :=
q|F |w(F )

Z(q)
, F ∈ F , (1.2)

where |F | denotes the number of trees in the forest F and w(F ) is the weight of F ,
defined as the product of the weights on the edges in F , i.e.,

w(F ) :=
∏
e∈F

w(e). (1.3)

The quantity Z(q) in the denominator of (1.2) is the normalizing constant needed to make
µq a probability measure and, as is common in statistical physics, we are going to refer
it to as the partition function of the measure µq. As shown, e.g., in [7, Proposition 2.1],
the partition function Z(q) admits a particularly simple algebraic expression in terms of
the characteristic polynomial of the generator L, namely1

Z(q) :=
∑
F∈F

q|F |w(F ) = det[qI − L]. (1.4)

We notice that the measure µq can be interpreted as a measure supported on the set of
spanning trees of an appropriately defined extended graph. To this aim, given G(V,E,w),
consider an extended graph G∆ having as vertex set V ∪ {∆} and as edge set E ∪ E∆,
where E∆ = {(x,∆) : x ∈ V }, with w(e) = q for all e ∈ E∆. The extra state ∆ is usually
referred to as cemetery (or ghost, or coffin) state. Given the extended graph G∆, the set
F of rooted forests spanning G is in bijection with the set of ∆-rooted trees spanning G∆

and the weight of such extended tree can be thought off as the product of the weights of
the edges in the tree.

The appearance of the measure µq can be traced back at least to the work of Wilson
[40], where the author presents an algorithm for sampling a spanning tree of an undi-
rected graph G uniformly at random or, more generally, weighted rooted forests. Some

1When reading the results in [7, 4] one has to set, in the notation therein, B = ∅.
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Loop-erased partitioning of a graph

properties of the finite volume measure in (1.2) have been recently studied in a series of
work, [7, 8, 4, 17, 31]. Two crucial and particularly nice features of the measure µq are
related with the number and the position of the roots. First of all, it can be shown that
the number of roots (namely, the number of trees in the random forest) is distributed
as a sum of independent Bernoulli random variables, which parameters depend on the
spectrum of the generator L. More precisely, as shown in [4, Theorem 4], called Φq a
random forest sampled accordingly to (1.2), it holds

|Φq|
d
=

N⊕
i=1

Bern

(
q

q + λi

)
, (1.5)

where 0 = λ1 ≤ · · · ≤ λN are the eigenvalues of −L. Notice that, as one can easily figure
out, for every given weighted graph the expected number of roots is an increasing func-
tion of q. Moreover, given the independence of the Bernoulli random variables in (1.5),
in the “thermodynamic regime” in which N → ∞, the number of roots concentrates
around its mean2.

On the other hand, the displacement of the roots on the graph enjoys a special feature:
the set of roots of Φq is determinantal point process on the vertex set. Formally, called
ρ(F ) the set of roots of the rooted spanning forest F , for every A ⊆ V it holds (see [7,
Proposition 2.2])

P (A ⊂ ρ(Φq)) = detA[Kq], (1.6)

where

Kq(x, y) := q(q − L)−1(x, y) (1.7)

and, for a square matrix M ∈ R|V |×|V |, and A ⊆ V , detA[M ] denotes the determinant of
the sub-matrix of M restricted to the rows and columns which are indexed by A. Let us
remark that (see [4, Eq. 17]) the matrix Kq enjoys a particularly simple probabilistic
interpretation: it coincides with the Green’s kernel of the Markov process (Xt)t≥0

generated by L and killed at an independent exponentially distributed time of rate q.
Namely,

Kq(x, y) = P(Xτq = y | X0 = x), (1.8)

where τq is a random variable with law Exp(q) independent from the RW.
The results in (1.5)-(1.6) provide a precise understanding of the roots’ marginal of the

measure µq in the finite volume setting. What we aim at understanding in this paper is
the behavior of another marginal of the rooted spanning forest measure, i.e., the random
partition induced by the forest Φq.

With a slight abuse of notation, in what follows we let µq denote the marginal
distribution of the forest measure when restricted to the partition induced by the forest
Φq. Such a probability distribution is formally introduced in the following definition.

Definition 1.1 (Loop-Erased Partitioning). Given G = (V,E,w), fix a positive real param-
eter q > 0. We call Loop-Erased Partitioning (LEP) the random partition of V sampled
according to the following probability measure: for all partition π of the vertices,

µq(π) :=
q|π|

∑
F :π(F )=π w(F )

Z(q)
, (1.9)

where π(F ) stands for the partition of V induced by a rooted spanning forest F and |π| is
the number of blocks in the partition π. Moreover, we let Πq denote the random partition
having law as in (1.9).

2See (4.9) below for a proof of this fact in our setting.
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Clearly, the law of the number of blocks in the random partition Πq satisfies (1.5).
What we aim at understanding herein are more refined properties of the block structure
of Πq. A first natural question concerns the size of the blocks: should we expect an
high heterogeneity in this respect as, e.g., the existence of a unique giant block when
N →∞? How likely is that two vertices lie in the same block of Πq? Clearly, the answer
to these questions depend on the underlying geometry, i.e., on the specification of the
weighted graph G. Indeed, the first factor q|π| in (1.9) favors partitions having many
small blocks if q > 1, while as q vanishes, the measure degenerates into a one-block
partition. The second combinatorial factor takes into account the underlying geometry
and, in the unweighted case (i.e., constant edge-weights w ≡ 1), counts how many rooted
forests are compatible with a given partition.

We will start our analysis in the simplest setup of an unweighted complete graph on
N vertices, where the measure in Definition 1.1 reduces to

µq(π) =
q|π|

∏|π|
i=1 n

ni−1
i

q(q +N)N−1
, (1.10)

for a partition π = {B1, . . . , B|π|} constituted of |π| blocks with sizes |Bi| =: ni, i ≤ |π|
such that

∑
i≤m ni = N . In particular, we see in this setup that this second factor favors

partitions with a few “fat” blocks. Notice that (1.10) holds true because, by Cayley’s
formula, nni−2

i unrooted trees can cover block Bi, and since we are dealing with rooted
trees, an extra factor ni for the choice of the root is needed. Using the distributional
identity in (1.5) it is easy to check that, when N →∞ and q = Nα for some α > 0, in the
complete graph setting of (1.10) the number of roots is with high probability of order
Θ(Nα∧1). Nonetheless, it is less clear which are the sizes of the blocks of Πq, e.g., for
which values of α should we expect the existence of a block having size of order N?

As we will argue in Section 1.2, the measure in (1.9) has the tendency to cluster in
the same block vertices that can be visited by the RW on time scale 1/q. In this sense
the LEP has the tendency to capture metastable-like regions, namely, regions of vertices
from which it is difficult for the RW to escape on such a time scale. This makes the
the LEP an interesting measure for randomized coarse-graining procedures, see in this
direction [3] and [4, Section 5]. Yet, a-priori it is not clear how strong and stable is this
feature of capturing “metastable landscapes”, since it heavily depends on the underlying
geometry and the choice of the killing parameter q. The scope of this paper is to start
making precise this heuristic by analyzing the typical resulting blocks on the simplest
dense informative geometries3. To this aim, we will consider a complete weighted graph
on 2N vertices with a “community structure”, i.e., for all x 6= y ∈ [2N ]

A(x, y) =

{
w1 if x, y ∈ [N ] or x, y ∈ [2N ] \ [N ].

w2 otherwise,
(1.11)

with w1 > w2. Notice that, when N → ∞, the RW on such weighted graph exhibit
metastability as soon as w1 = w1(N)� w2 = w2(N), in the sense that for all the times

1
Nw1

� t� w1

w2
the distribution of the RW is concentrated on the community where the

process started, despite the fact that the equilibrium distribution is uniform.
A natural question to ask is to what extent the measure in (1.9) is sensitive to the

ratio w1/w2: is there a proper scaling for q = q(N) such that a typical partition put
vertices in the same community into the same block? Are there one or more giant
blocks and, in the affirmative case, are their supports localized on the two communities?
Finally, how does the interaction between the ratio w1/w2 and the parameter q determine

3We point out that in the recent work [6]–appeared after the first release of this paper–the authors extend
our approach to the case in which the underlying graph is sparse and, in particular, contains no cycles.
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the answer to these questions? In what follows we will provide a rigorous answer to
each of these questions, showing a rich phenomenology captured by the emergence of
phase-transitions.

1.1 Related literature

In this section we highlight the connections between the measure µq and several
topics of current interest in the literature. We start by describing the link between the
rooted spanning measure and the celebrated Random-Cluster Model and by stressing
the similarities and the differences between the measure in (1.2) and other similar forest
measures.

Finally, we briefly mention the applications that the measure µq recently found in
approaching problems in network analysis, which was the starting motivation that led us
to this manuscript.

1.1.1 Relations with the random-cluster model

The so-called Random-Cluster Model (RCM) is a meta-model unifying the theory of
percolation, Ising/Potts model and electrical networks (see, among others, [20]). This can
be thought off as a probability measure on subgraphs of a given graph G. More precisely,
given a finite, undirected and unweighted graph G(V,E), the RCM is a probability
distribution over the set of subgraphs of G, namely, fixed parameters γ > 0 and ~p ∈ [0, 1]E ,
and to every configuration ω ∈ {0, 1}E assign probability

νγ,~p(ω) :=
1

Zγ,~p
γk(ω)

∏
e∈E

p(e)ω(e)(1− p(e))1−ω(e), (1.12)

where k(ω) is the number of connected components in the subgraph of G in which only
the edges e ∈ E such that ω(e) = 1 are retained, and Zγ,~p is a normalizing constant. It
is well know that the Uniform Spanning Tree (UST) measure as well as the Uniform
Spanning Forest (USF) measure can be obtained from (1.12) by choosing p→ 0∧γ/p→ 0

and p = γ → 0, respectively. As pointed out in [6, Lemma 1], also the rooted spanning
forest measure in (1.2) can be obtained from the RCM measure by taking a proper limit.
To this aim, given G(V,E), consider an extended (unweighted) graph G∆(V ∪{∆}, E∪E∆)

as explained right below (1.4). Then, fixed γ > 0 and r, λ ∈ [0, 1], consider the following
RCM measure on {0, 1}E∪E∆

with p(e) = r, if e ∈ E and p(e) = λ, if e ∈ E∆. Namely, we
focus on the probability measure defined by

ν∆
γ,r,λ(ω) :=

1

Zγ,r,λ
γk(ω)

∏
e∈E

rω(e)(1− r)1−ω(e)
∏
e∈E∆

λω(e)(1− λ)1−ω(e). (1.13)

Assume that both r and λ are functions of γ such that, as γ → 0, λ/r → q > 0. An easy
algebraic manipulation shows that, in the case in which the graph is unweighted, i.e.,
w(e) ≡ 1, one has

µq(F ) = lim
γ→0

νγ,r,λ(F ), (1.14)

where µq is the rooted forest measure defined in (1.2). Let us remark that, in the case in
which λ/r → 0 as γ ↓ 0, the latter coincides with the UST measure on the graph G(V,E).
This is not surprising, as it can also be seen by the definition of µq that the UST measure
can be obtained by taking the limit q ↓ 0 in (1.2).

Limits of the RCM giving rise to measures which are supported on forests are usually
referred to as arboreal gases. Most of the literature on arboreal gas models is focused
on unrooted forests; see, e.g., [11, 12, 13, 34, 18] for some very recent mathematical
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work in this direction. In [12, Appendix A] the authors consider what they call arboreal
gas with an external field and they notice that this can be interpreted as a marginal of a
measure over rooted spanning forests. Yet, let us remark that the model in [12, Appendix
A] differs from the measure we are considering here, since in their case each tree in the
forest can have multiple roots or even none.

1.1.2 Wilson’s algorithm, UST and loop-erased RW

As previously mentioned, the measure in (1.2) can be sampled efficiently using Wilson’s
algorithm [40]. Beside the algorithmic efficiency4, Wilson’s algorithm has shown to be
also a powerful computational tool to analyze observable of the UST model, and we will
in fact make use of this algorithm in our analysis.

One of the key ideas in the algorithm proposed by Wilson is related to the connection
between uniform spanning trees and Loop-Erased RW (LERW) on the underlying graphs.
LERW is a time-indexed probability distribution on the set of trajectories of a RW on G
in which “loops” are neglected. LERW has become in the last twenty years a prominent
topic in mathematical literature (see, among others, [14, 23, 25, 24, 35, 36, 37]). Another
main tool that is crucial in our approach is a closed formula for the LERW trajectory
statistics, due to Marchal [26].

A detailed exact and asymptotic analysis of observables related to Wilson’s algorithm
on a complete graph have been pursued in [32, 30]. The derivation of our results is in
the same spirit, although we deal with the additional randomness given by the presence
of the killing parameter, which in turns makes the combinatorics more involved. In
fact, as we explain in Section 1.2.1 below, the main difference between the sampling
algorithm for the forest measure µq and the original Wilson’s algorithm is that we need
to deal with killed LERW on the graph G, namely loop-erased paths that are stopped at
an exponentially distributed time.

We remark that the algebraic properties of the measure in (1.2), e.g., the form the
partition function in (1.4), can be traced back to the seminal work of Kirchhoff [22] on
the theory of electrical networks. See also [38] for a more recent account on the analysis
of partition functions of the form (1.4).

We conclude this section by mentioning that, in dense geometries, the UST has been
studied under the perspective of the continuous random tree topology on the complete
graph in [2] and with respect to local weak convergence still on the complete graph
in [19] and, more recently, on growing expanders admitting a limiting graphon in [21].
These other interesting lines of investigation could also be naturally considered for the
forest measure µq but we will not pursue these approaches in this work.

1.1.3 Applications to network analysis

Several properties of the forest measure associated to the loop-erased partitioning have
been derived in the papers [7, 8]. Recently, a number of algorithms based on these
results have been proposed as tools for tackling different problems in data science.
These applications include: wavelets basis and filters for signal processing on graphs
[3, 29, 28], trace estimation [10], network renormalization [4, 5], centrality measures
[16] and statistical learning [9]. The fact that random rooted forests proved a powerful
tool in such different applied areas, was one of the staring motivation for the analysis of
the partition measure in (1.9).

4In continuous time, the average running time is given by the sum of the inverse of the eigenvalues of −L,
see [26].
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1.2 Pairwise interaction potential

This section is devoted to the introduction of the main tool of our analysis, which we
call pairwise LEP-interaction potential, which—as it will become clear in Section 1.2.2—
can be thought off a two-point correlation function. The results presented in the forth-
coming sections are based on a precise understanding of the behavior of this object on
the graphs under analysis. Before introducing the potential, we will explain a sampling
technique for the random forest Φq, which follows by [40].

1.2.1 Sampling algorithm

An attractive feature of the probability measure in (1.2) is that there exists a simple and
exact sampling algorithm based on the associated LERW killed at random times. The
LERW with killing is the process obtained by running the RW (Xt)t≥0, erasing cycles as
soon as they appear, and stopping the evolving self-avoiding trajectory at an independent
random time τq with law Exp(q).

The algorithm can be described as follows:

1. pick any arbitrary vertex in V and run a LERW up to an independent time τq
d∼

Exp(q). Call γ1 the obtained self-avoiding trajectory.

2. pick any arbitrary vertex in V that does not belong to γ1. Define again τq as a new
exponential random variable of rate q independent from everything else. Run a
LERW until min{τq, τγ1

}, τγ1
being the first time the RW hits a vertex in γ1. Call γ2

the union of γ1 and the new self-avoiding trajectory obtained in this step.

3. Iterate step (2) with γ`+1 in place of γ` until exhaustion of the vertex set V .

In step (2) we note that if the killing occurs before τγ1 , then γ2 is a rooted forest in G,
else γ2 is a rooted tree.

When the above algorithm stops, it produces a rooted spanning forest Φq ∈ F , where
the roots are the points where the involved LERWs were killed along the algorithm steps,
and the trees are specified by the loop-erased paths (γ`)`≥1. The resulting forest Φq on
G induces the partition Πq = π(Φq) of the vertex set V , where each block is identified
by vertices belonging to the same tree. It can be shown that the probability to obtain
a given rooted spanning forest F coincides with µq as in (1.2). It then follows that the
induced partition is distributed according to Definition 1.1. We refer the reader to [7,
Section 2] for the proof of the latter and for more detailed aspects of this algorithm,
including dynamical variants.

1.2.2 Two-point correlations

For a pair of distinct vertices x, y ∈ V , consider the event in which they belong to
different blocks of Πq, i.e.,

{Bq(x) 6= Bq(y)} := {x and y are in different blocks of Πq},

where Bq(z) stands for the block in Πq containing z ∈ V . The probability of this event
induces a 2-point correlation function which turns out to be analyzable by means of
LERW explorations, and it encodes relevant information on how the resulting partition
behaves as a function of the parameters. Below we provide a formal definition together
with an operative characterization.

In the sequel we will denote by P a probability measure on an proper probability
space sufficiently rich for the randomness required by this algorithm.
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Definition 1.2 (Pairwise LEP-interaction potential). For given q > 0 and G, and any pair
x, y ∈ V , we call pairwise LEP-interaction potential the following probability:

Uq(x, y) :=P(Bq(x) 6= Bq(y))

=
∑
γ

PLEqx (Γ = γ)Py(τγ > τq) (1.15)

where P
LEq
x and Px stand for the laws of the LERW killed at rate q and of the RW,

respectively, starting from x ∈ V , and Γ is the loop-erased path starting at x as in point
(1) in the algorithm in Section 1.2.1. Therefore, the above sum runs over all possible
self-avoiding paths γ starting at x.

The representation in (1.15) is a consequence of Wilson’s sampling procedure de-
scribed in Section 1.2.1 and it holds true since, remarkably, in steps (1) and (2) of the
algorithm the starting points can be chosen arbitrarily.

We further stress that, as for any generic random partition of V , the LEP interaction
potential defines a distance on the vertex set5. This specific metric Uq(x, y) can be
interpreted as an affinity measure capturing how densely connected vertices x and y are
in the graph G.

Still, the observable captured by Uq(x, y) is not the only one inducing a natural notion
of two-point correlations associated to Πq. For example, if we express the LEP-potential
in Definition 1.2 as an expectation, i.e., Uq(x, y) = E

[
1{Bq(x)6=Bq(y)}

]
, and normalize

it with the equilibrium mass of the related blocks, we could obtain another natural
two-point correlation function. This is captured in the following definition.

Definition 1.3 (Pairwise RW-interaction potential). For given q > 0 and G, and any pair
x, y ∈ V , we call pairwise RW-interaction potential the following correlation function:

Uq(x, y) := E

[
1{Bq(x)6=Bq(y)}

u(Bq(x))u(Bq(y))

]
,

where u(·) is the stationary distribution of the Markov process generated by L and, for
any set A ⊆ V , u(A) =

∑
x∈A u(x).

As we will see, the functional Uq is actually much simpler to analyze but it captures
less insightful information on the underlying graph structure. Further, unlike Uq, this
is neither a probability nor a metric, and it does not allow to derive a description of
the macroscopic structure of Πq. In a sense, the latter is not surprising. In fact, as
Lemma 2.8 unveils, this alternative correlation function can be actually expressed in
terms of the sole RW Green’s kernel. Therefore, in order to analyze Ūq there is no need
to introduce the LEP measure in (1.9) nor the rooted forest measure in (1.2).

1.3 Paper overview

Our main theorems are presented in Section 2. Therein we identify the LEP-potential
in Section 1.2 and its asymptotics on a complete graph, Theorem 2.1, and on a non-
homogeneous complete graph with two communities, Theorems 2.2 and 2.4. Some
consequences on the macroscopic emergent partition Πq on these mean-field models
are derived in Corollary 2.7. The last result in Proposition 2.9 concerns the asymptotics

5To prove the triangle inequality it is enough to notice that

{Bq(x) 6= Bq(z)} ∪ {Bq(y) 6= Bq(z)} = {Bq(x) 6= Bq(y)} t
(
{Bq(x) = Bq(y)} ∩ {Bq(x) 6= Bq(z)}

)
,

hence P
(
{Bq(x) 6= Bq(z)} ∪ {Bq(y) 6= Bq(z)}

)
≥ Uq(x, y). On the other hand, by a union bound,

P({Bq(x) 6= Bq(z)} ∪ {Bq(x) 6= Bq(z)}) ≤ Uq(x, z) + Uq(y, z).
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behavior of the other two-point correlation function in Definition 1.3. The concluding
Sections 3 and 4 are devoted to the proofs for the complete graph and the community
model, respectively.

1.4 Notational conventions

In what follows we will use the following standard asymptotic notation. For given
positive sequences f(N) and g(N), we write:

• f(N) = o(g(N)) if limN→∞
f(N)
g(N) = 0.

• f(N) = O(g(N)) if lim supN→∞
f(N)
g(N) <∞.

• f(N) = ω(g(N)) if limN→∞
f(N)
g(N) =∞.

• f(N) = Ω(g(N)) if lim infN→∞
f(N)
g(N) > 0.

• f(N) = Θ(g(N)) if 0 < lim infN→∞
f(N)
g(N) ≤ lim supN→∞

f(N)
g(N) <∞.

• f(N) ∼ g(N) if limN→∞
f(N)
g(N) = 1.

For k ≤ n ∈ N we will denote by (n)k := n(n−1)(n−2) · · · (n−k) the descendant factorial.
Furthermore, we denote by I the identity matrix, 1 and 1′, respectively, for the row and
column vectors of all 1’s, where the dimensions will be clear from the context. We will
write ATr for the transpose of a matrix A.

2 Results: correlations and emerging partition on mean-field
models

Our first result characterizes the LEP-potential in absence of geometry for finite N ,
and shows that this probability is asymptotically non-degenerate when q scales as

√
N .

Theorem 2.1 (Mean-field LEP-potential and limiting law). Fix q > 0 and let KN be a
complete graph on N ≥ 1 vertices with constant edge weight w > 0. Then, for all
x 6= y ∈ [N ],

Uq(x, y) = Uq =

N−1∑
h=1

q

q +Nw

(
Nw

q +Nw

)h−1 h∏
k=2

(
1− k

N

)
, (2.1)

Furthermore, if q = z · w
√
N , for fixed z, w > 0, then

lim
N→∞

Uq =
√

2πze
z2

2 P(Z > z), (2.2)

with Z being a standard Gaussian random variable.

For an intuitive explanation of the non-degeneracy in (2.2) for q = O(
√
N) we remark

that this coincides with the typical length of the first branch in Wilson’s algorithm on the
complete graph, as shown in [32].

Our second result is the analogous of (2.1) when still every vertex is accessible from
any other, but the edge weights are non-homogeneous and give rise to a community
structure. In this sense we will informally refer to this network as mean-field-community
model. Formally, for given positive reals w1 and w2, we denote by K2N (w1, w2) the graph
G with V = [2N ], and a weighted adjacency matrix as the one in (1.11). Thus, the weight
w1 measures the pairwise connection intensity within the same community, while w2

between pairs of nodes belonging to different communities. Given the symmetry of the
model, we will use the notation U (N)

q (out) to refer to the potential U (N)
q (x, y), for x and y

in different communities. Conversely, we set U (N)
q (in) for the potential associated to two

nodes belonging to the same community.
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Theorem 2.2 (LEP-potential for mean-field-community model). Fix q, w1, w2 > 0 and
consider a two-community-graph K2N (w1, w2). Let Tq ≥ 1 be a geometric random
variable with success parameter

ξq,N :=
q

q +N(w1 + w2)

and let X̃ =
(
X̃n

)
n∈N0

be a discrete-time Markov chain with state space {1, 2} and

transition matrix

P̃ =

(
p 1− p

1− p p

)
, p =

w1

w1 + w2
.

Denote by `(n) =
∑
m<n 1{X̃m=1} the corresponding local time in state 1 up to time n

and by P̃1 the corresponding path measure starting from 1.
For x ∈ [N ], set ? = in if y ∈ [N ] \ {x}, and ? = out if y ∈ [2N ] \ [N ], then

Uq(x, y) = Uq(?) :=
∑
n≥1

P(Tq = n)

n∑
k=1

P̃1(`(n) = k)N−n+1f̂(n, k)θ(n, k)P †? (n, k) (2.3)

where

f̂(n, k) = (N − 2)k−1(N − 1)n−k, θ(n, k) =
(q − λ1(n, k)) (q − λ2(n, k))

q(q + 2Nw2)
(2.4)

with, for i = 1, 2,

λi(n, k) = −1

2

[
w1n+ w2N + (−1)i

√
w2

1(2k − n)2 + 4 (N − k) (N − k)w2
2

]
, (2.5)

and

P †? (n, k) =
q(q + k?(w1 − w2) + w2N)

[q + kw1][q + (n− k)w1] +Nw2(2q + nw1) + w2
2[Nn− k(n− k)]

× η? (2.6)

with

k? :=

{
k, if ? = out,

n− k, if ? = in,
η? =

{
(N − 1)(N − n+ k − 1), if ? = out,

N(N − k − 1), if ? = in.
(2.7)

The above theorem is saying that the pairwise LEP-potential can be seen as the

double-expectation of the function g?(n, k) = N−n+1
(
f̂ θP †?

)
(n, k) in (2.3) with respect

to the geometric time Tq and to the local time of the (discrete time) coarse-grained RW
(X̃n)n∈N0

. As it will be clear in the proof, the analysis of this model can be in fact reduced
to the study of such a coarse-grained RW jumping between the two “lumped communities”
up to the independent random time Tq. The function g? is the crucial combinatorial
term encoding in the different parameter regimes the most likely trajectories for such a
stopped two-state macroscopic walk X̃.

Remark 2.3 (Extensions to many communities of arbitrary sizes and weigths). The
formula in (2.3) can be derived also for the general model with arbitrary number of
communities of variable compatible sizes and arbitrary weights within and among
communities. The corresponding statement is much more involved, but the proof follows
exactly the same scheme of the equal-sized-two-community case captured in the above
theorem. Therefore, we avoid to present the general case here since, beside the long and
convoluted statement of the result, we think it does not add much to the understanding
of the general behavior of the model. We refer the reader interested in such an extension
to [33].
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Figure 1: α–β axis, α controls the killing rate (q = Nα) and β the weight between
communities (w2 = N−β). The above diagram describes at glance the limiting behavior
of the LEP-potential as captured in Theorem 2.4. The detectability region (b) corresponds
to the regimes where the difference of the in- and out-potential is maximal. In this case,
indeed, the RW does not manage to exit its starting community within time scale 1/q

and hence it is confined with high probability to “its local universe”. In the dust region
(f) both in- and out-potential degenerates to 1, it is in fact a regime where the killing
rate is sufficiently large (recall from (2.2) that

√
N is the critical scale for the complete

graph) to produce “dust” as emerging partition. Finally, the global mixing region (d) is
the other degenerate regime where the RW “mixes globally” in the sense that it changes
community many times within time scale 1/q, hence loosing memory of its starting
community. The separating lines (c)–(a)–(e) correspond to the delicate critical phases
where the competition of the above behaviors occurs. This will become transparent in
the proof in Section 4.7, where such boundaries will deserve a more detailed asymptotic
analysis.

The next theorem gives the limit of the LEP-potential computed in Theorem 2.2, the
resulting scenario is summarized in the phase-diagram in Figure 1.

Theorem 2.4 (Detectability and phase diagram for two communities). Under the as-
sumptions of Theorem 2.2, set w1 = 1, w2 = N−β and q = Nα for some α ∈ R, β ∈ R+.
Then:

(a) if 1− β < α = 1
2 , limN→∞ Uq(out) = 1 and limN→∞ Uq(in) = ε0(β) ∈ (0, 1).

(b) if 1− β < α < 1
2 , limN→∞ Uq(out) = 1 and limN→∞ Uq(in) = 0.

(c) if α = 1− β < 1
2 , limN→∞ Uq(out) = ε2(α, β) ∈ (0, 1) and limN→∞ Uq(in) = 0.

(d) if α < min{ 1
2 , 1− β}, limN→∞ Uq(?) = 0, with ? ∈ {in, out}.

(e) if α = 1
2 < 1− β, limN→∞ Uq(?) = ε1(α, β) ∈ (0, 1), with ? ∈ {in, out}.

(f) if α > 1
2 , limN→∞ Uq(?) = 1, with ? ∈ {in, out}.

Remark 2.5 (Link with community detection). Theorem 2.4 says that the measure (1.9)
has a tendency to aggregate on the same block two given vertices in the same community
iff the ratio between the out and in weights is bigger than

√
N . This suggests that

estimating the probabilities in Definition 1.2 could be a valuable method to design a
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community detection algorithm for well-separated regions. Notice that the adjacency
matrix of our graph can be thought off as the average adjacency matrix of a Symmetric
Stochastic Block Model (SSBM). The community detection problem on SSBM is a widely
studied topic, see, among others, the recent review by Abbe [1]. In the language of
community detection (see [1, Definition 6]), based on the results of Theorem 2.4, we
could say that a single sample of the LEP is enough to ensure almost exact recovery only
in the scenario of point (b). On the other hand, an almost exact recovery can be obtained
in the scenarios (a) and (c) by estimating the matrix Uq by means of a sufficiently large
number of samples of the LEP. Nonetheless, there exist algorithms achieving such result
on dense SSBM—having an average adjacency matrix of the form (1.11)—well beyond
the threshold for which the same result is achieved by the LEP.

Remark 2.6 (Anticommunities for negative β). The above theorem is stated for arbitrary
α ∈ R and β > 0. We notice that while for β = 0 we are back to the complete
graph with constant weight 1, for β < 0, it would be more appropriate to speak about
“anticommunities” rather than communities. In fact in this case, at every step, the RW
prefers to change community rather than staying in its original one. Thus, it is somewhat
artificial to see what the loop-erased partitioning captures. This is the reason why the
plot in Figure 1 is restricted to β ≥ 0. However, the theorem can be easily extended to
cover negative β’s and, not surprisingly, the difference between the in and out potentials
turns out to be zero.

The next corollary collects some simple consequences, deduced by Theorem 2.4, on
the macroscopic structure of Πq. We recall that |Πq| stands for the number of blocks in
the random partition Πq.

Corollary 2.7 (Macroscopic emergent structure). There exists c > 0 depending only on
α ∈ R and β ≥ 0 s.t.

|Πq|
Nα∧1

P−→ c.

Moreover:

(a) if 1− β < α = 1
2 then whp there are two blocks of linear size s.t. each block has a

fraction (1− o(1)) of vertices from the same community.

(b) if 1− β < α < 1
2 then whp there are two blocks of size N(1− o(1)) s.t. each block

has a fraction (1− o(1)) of vertices from the same community.

(c) if α = 1− β < 1
2 then whp there is at least a block of linear size.

(d) if α < min{ 1
2 , 1− β} then whp there is one block of size 2N(1− o(1)).

(e) if α = 1
2 < 1− β then whp there is at least a block of linear size.

(f) if α > 1
2 then whp blocks of linear size do not exist.

Our last result, Proposition 2.9, is the analogous of Theorem 2.4 for the RW-potential
in Definition 1.3 and shows that this other potential gives essentially no insight on the
emergent partition and very little can be inferred from it. To state the result, we first
give in the next lemma a characterization of the RW-potential which reveals that in
reality this kind of two-body interaction is determined only by the RW flow in the graph
rather than the LEP measure.

Lemma 2.8 (RW-potential independent of LEP structure). For any arbitrary graph G

on N vertices, the pairwise correlation function in Definition 1.3 admits the following
representation:

Uq(x, y) = N2 [Kq(x, x)Kq(y, y)−Kq(x, y)Kq(y, x)] ,

where Kq is defined as in (1.7).
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We can now state the RW-potential in the mean-field-community model. As for the
LEP-potential we adapt the notation Uq(in/out) to distinguish between pairs within the
same community or not.

Proposition 2.9 (Detectability via RW–potential). Consider the two–community–graph
K2N (w1, w2) with w1 = 1, w2 = N−β and q = Θ(Nα). Then, if α ≤ 0 and β > 1− α

Uq(?) ∼

{
4q2 + 8q if ? = in,

4q2 + 8q + 4 if ? = out.

On the other hand:

Uq(in) ∼ Uq(out) ∼

{
4q(q + 1) if α ≤ 0 and β < 1− α,
Nmax{2,2α} if α > 0.

As anticipated, this last statement shows that the RW-potential in Definition 1.3 is
less informative than the LEP one. In particular, seen as a 2-point correlation function,
it provides relevant informations on the community-structure of our complete network
only in the region of the parameters space where α ≤ 0 and β > 1− α, which is strictly
contained on the in “detectability” region of the LEP-potential; see Figure 1.

2.1 Strategy of proof

As mentioned, two key tools in our analysis are Wilson’s algorithm [40] and the
Marchal’ formula for LE-paths [26]. All our proofs are a combination of reduction
arguments exploiting the rich algebraic determinantal structure and symmetries of the
underlying geometries. This can be appreciated in the proof of Theorem 2.1, where the
closed formula in (2.1) has been derived after a mapping into a one-dimensional problem
(see what we refer below as “bear strategy”). For the two-community model, the proof
of Theorem 2.2 is based on a delicate lumping procedure. Finally, in order to derive the
phase-diagram in Theorem 2.4 we use soft probabilistic arguments and Theorem 2.1 for
the interior of the various regions, and a careful asymptotic analysis of the interplay of
the functions appearing in (2.3) for the separating lines.

3 Proofs of Theorem 2.1: homogeneous complete graph

Proof of (2.1). For convenience, we consider a discretization of the continuous time
Markov process with generator

L = A−D, with A = w(11′ − I) and with D = (N − 1)wI. (3.1)

Set L = 1
NwL, so that L = 1

N 11′ − I and the associated transition matrix is given by

P = L+ I =
1

N
11′ (3.2)

If we consider the killing as an absorbing state within the state space of the Markov
chain extended from V to V ∪{∆}, ∆ denoting this absorbing state, we get the adjacency
matrix

Â =

(
A q1

0′ 0

)
, (3.3)

and generator

L̂ = Â − D̂, D̂ =

(
[(N − 1)w + q]I 0

0′ 0

)
. (3.4)
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We can then normalize it by setting

L̂ =
1

Nw + q
L̂ =

( w
Nw+q11

′ − I q
Nw+q1

0′ 0

)
(3.5)

and get a discrete RW with transition matrix given by

P̂ = L̂+ I =

( w
Nw+q11

′ q
Nw+q1

0′ 1

)
=

(
(1− r) 1

N 11′ r1

0′ 1

)
, (3.6)

where
r :=

q

Nw + q
. (3.7)

It should be clear that a sample of a LE-path starting at a given vertex can be obtained
as the output of the following procedure:

• With probability r the discrete process reaches the absorbing state. In particular
we set Tq for a geometric random variable of parameter r = q/(Nw + q).

• With probability 1 − r the LERW moves accordingly to the law P (v, ·) where v is
the last reached node.

• We call Hn the vertices covered by the LE-path up to time n. Then, if at time
n + 1 the transition Xn → Xn+1 takes place and the vertex Xn+1 6∈ Hn, then
Hn+1 = Hn∪{Xn+1}. Conditioning on |Hn|, the latter event occurs with probability
N−Hn
N . Conversely, if Xn+1 ∈ Hn, then we remove from Hn all the vertices that has

been visited by the LERW since its last visit to Xn+1. As consequence the quantity
|H| reduces. One can then compute that the reductions occur with law

P (|Hn+1| = h | |Hn| ≥ h, Tq > n+ 1) =
1

N
. (3.8)

It would be easier to look at the quantity |Hn| by using the following metaphor. We
interpret |Hn| as the height from which a bear fall down while moving on a stair of height
n. In particular, we will assume that

• The bear starts with probability 1 from the first step of the stair.

• At each time the bear select a step of the stair uniformly at random, including also
the step he currently stands on.

• If the choice made by the bear is a lower step (or the current one), he moves to
that step.

• If he chooses an upper step, then he walks in the upper direction by a single step.

• Before doing each step, there is a probability r as in (3.7) that the bear “falls
down”.

Let us next fix q = 0, that is, r = 0, so that we can study the bear’s dynamic
independently of his falling. By setting Z(n) for the position of the bear at time n ∈ N,
we get

P(Z(0) = ·) = (1, 0, 0, 0, . . . , 0) (3.9)

P(Z(1) = ·) =

(
1

N
, 1− 1

N
, 0, 0, . . . , 0

)
(3.10)

P(Z(2) = ·) =

(
1

N
,

(
1− 1

N

)
2

N
,

(
1− 1

N

)(
1− 2

N

)
, 0, . . . , 0

)
(3.11)

P(Z(n) = ·) =


(
1− 1

N

) (
1− 2

N

)
· · ·
(
1− h−1

N

)
h
N if n ≥ h(

1− 1
N

) (
1− 2

N

)
· · ·
(
1− h−1

N

)
if n = h− 1

0 if n < h− 1.

(3.12)

EJP 27 (2022), paper 67.
Page 14/35

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP792
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Loop-erased partitioning of a graph

The latter implies that at time n = h we reached the ergodic measure over the first h
steps of the stair, while at time n = N the probability measure is exactly the ergodic one.

It is interesting to notice that an easier expression can be written for the cumulative
distribution of the variable Z(n), i.e.

P {Z(n) ≥ h} =

{(
1− 1

N

) (
1− 2

N

)
· · ·
(
1− n−1

N

)
if n ≥ h− 1

0 if n < h− 1
(3.13)

Next, calling T− the time immediately before the bear falls, we get

P
{
Z(T−) ≥ h

}
=P

{
T− < h− 1

}
P
{
Z(T−) ≥ h|T− < n− 1

}
+ P

{
T− ≥ h− 1

}
P
{
Z(T−) ≥ h|T− ≥ n− 1

}
(3.14)

=0 + (1− r)h−1

(
1− 1

N

)(
1− 2

N

)
· · ·
(

1− h− 1

N

)
(3.15)

which gives us the distribution of the last step of the bear before his fall. Recall that
this is equivalent to the length of the original LERW starting on x ∈ KN , when the walk
is stopped at an exponential time of rate q. Hence, we are now left to compute the
probability that another walker, starting on y 6= x, is killed before it hits the previously
sampled LERW.

Thanks to the bear’ metaphor, for the size of the LE-trajectory we get:

PLEqx (|Γ| ≥ h) = (1− r)h−1
h−1∏
i=1

(
1− i

N

)
. (3.16)

Call TΓ the first hitting time of the LE-path Γ starting at x and, noting that in the complete
graph setting the law of TΓ depends only on |Γ|, we obtain

Uq(x, y) =

N−1∑
h=1

PLEqx (|Γ| = h)Py(Tq < TΓ | |Γ| = h)

=

N−1∑
h=1

PLEqx (|Γ| = h)[Py(Tq < TΓ | |Γ| = h, y ∈ Γ)P(y ∈ Γ | |Γ| = h)

+ Py(Tq < TΓ | |Γ| = h, y /∈ Γ)P(y /∈ Γ | |Γ| = h)]

=

N−1∑
h=1

PLEqx (|Γ| = h)

(
q

q + hw

)
N − h
N − 1

,

where in the last equality we used that Py(Tq < TΓ | |Γ| = h, y ∈ Γ) = 0 while Py(Tq <

TΓ | |Γ| = h, y /∈ Γ) = q
q+hw . Moreover, we used that P(y /∈ Γ | |Γ| = h) = N−h

N−1 . Now we
want to make use of (3.16), therefore we rewrite

Uq(x, y) =

N−1∑
h=1

PLEqx (|Γ| ≥ h)

(
q

q + hw

)
N − h
N − 1

−
N−1∑
h=1

PLEqx (|Γ| ≥ h+ 1)

(
q

q + hw

)
N − h
N − 1

=

N−1∑
h=1

[(
Nw

q +Nw

)h−1 h−1∏
i=1

(
1− i

N

)](
q

q + hw

)
N − h
N − 1

+

−
N−1∑
h=1

[(
Nw

q +Nw

)h h∏
i=1

(
1− i

N

)](
q

q + hw

)
N − h
N − 1

.
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By taking out the common terms in the difference above, and performing some algebraic
manipulations we get

Uq(x, y) =

N−1∑
h=1

q

q +Nw

N − h
N − 1

(
Nw

q +Nw

)h−1 h−1∏
i=1

(
1− i

N

)[
1− Nw

Nw + q

(
N − h
N

)]

=

N−1∑
h=1

q

q + hw

N − h
N − 1

(
Nw

q +Nw

)h−1 h−1∏
i=1

(
1− i

N

)(
q + hw

q +Nw

)

=

N−1∑
h=1

q

q +Nw

(
Nw

q +Nw

)h−1
N − h
N − 1

h−1∏
i=1

(
1− i

N

)

=

N−1∑
h=1

q

q +Nw

(
Nw

q +Nw

)h−1 h∏
i=2

(
1− i

N

)
,

and the formula in (2.1) immediately follows by the last identity.

Proof of (2.2). Let
ξq
N

:=
q

Nw + q
(3.17)

and notice that if q = z · w
√
N , with z, w = Θ(1), then

q =
Nwξq
N − ξq

=⇒ q ∼ wξq =⇒ ξq ∼ z
√
N (3.18)

Call

f(k,N) :=

k∏
i=2

(
1− i

N

)
, (3.19)

in order to rewrite

Uq =

N−2∑
k=0

(
ξq
N

)(
1− ξq

N

)k k+1∏
i=2

(
1− i

N

)

=

N−2∑
k=0

(
ξq
N

)(
1− ξq

N

)k
f(k + 1, N)

(3.20)

and notice that the first term in the latter sum is the probability that the geometric

random variable Tq
d∼ Geom

(
ξq
N

)
assumes value k. Moreover it trivially holds that

f(k + 1, N) ≤ 1, ∀k ∈ N, f(k + 1, N) = 0, ∀k ≥ N − 1. (3.21)

Hence,
Uq = E[f(Tq + 1, N)]. (3.22)

Let us approximate ln f(k + 1, N) at the first order as follows

ln f(k + 1, N) =

k+1∑
i=2

ln

(
1− i

N

)
= −

k+1∑
i=2

i

N
+O

(
i2

N2

)
=− 1

N

(k + 1)(k + 2)− 2

2
+ kO

(
k2

N2

)
= − 1

N

k2 + 3k

2
+O

(
k3

N2

)
=− k2

2N
+O

(
k

N
+
k3

N2

)
=: − k2

2N
+ cN (k).

(3.23)
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Next, set Y
d∼ Exp(z) and Z

d∼ N (0, 1), notice that E[e
Y 2

2 ] =
√

2πze
z2

2 P(Z > z) and that

lim
N→∞

|E[e−
T2
q

2N ]− E[e
Y 2

2 ]| = 0, (3.24)

since Tq/
√
N converges in distribution to Y as N diverges. In view of the latter together

with (3.22), we can estimate

|Uq−
√

2πe
z2

2 P(Z > z)|

≤
∣∣∣∣E[f(Tq + 1, N)]− E[e−

T2
q

2N ]

∣∣∣∣+ o(1)

≤

∣∣∣∣∣∣E[f(Tq + 1, N)]−
bNδc∑
k=0

P(Tq = k)e−
k2

2N ecN (k)

∣∣∣∣∣∣
+

∣∣∣∣∣∣
bNδc∑
k=0

P(Tq = k)e−
k2

2N ecN (k) − E[e−
T2
q

2N ]

∣∣∣∣∣∣+ o(1)

≤
∞∑

k=bNδc+1

P(Tq = k) +

∣∣∣∣∣∣
bNδc∑
k=0

P(Tq = k)e−
k2

2N ecN (k) −
bNδc∑
k=0

P(Tq = k)e−
k2

2N

∣∣∣∣∣∣+ o(1)

= o(1),

where the last inequality holds true by choosing any δ ∈
(

1
2 ,

2
3

)
which in particular

guarantees that cN (k) = o(1).

4 Proof of Theorem 2.2

We use here the same line of argument used in the proof of Theorem 2.1. For the
moment, let us assume that the two communities have different sizes, and call them N1

and N2, respectively. We will specialize later on the case N1 = N2 = N . We will consider
the process having state space V = V1 t V2, where

V1 = {1, . . . , N1} , V2 = {N1 + 1, . . . , N1 +N2} ,

and generator

L(x, y) =


w1 if x 6= y and x, y in the same community

w2 if x 6= y and x, y not in the same community

−(N1 − 1)w1 −N2w2 if x = y and x ∈ V1

−(N2 − 1)w1 −N1w2 if x = y and x ∈ V2.

(4.1)

We now consider a killed LERW Γ, and we denote by Γi the set of points of the i-th
community belonging to Γ, i.e.6,

Γi = Γ ∩ Vi, i = 1, 2, (4.2)

We can write

PLEqx (|Γ1| = k1, |Γ2| = k2) =
∑

γ:|γ1|=k1,|γ2|=k2

PLEqx (γ), (4.3)

6Similarly, for every given self-avoiding path γ, we call γi = γ ∩ Vi, for i = 1, 2.

EJP 27 (2022), paper 67.
Page 17/35

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP792
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Loop-erased partitioning of a graph

and we assume, without loss of generality, that x ∈ V1; then, by conditioning, we get for
y 6= x with y ∈ Vj , j = 1, 2

Uq(x, y) =

N1−1j=1∑
k1=1

N2−1j=2∑
k2=0

PLEqx (|Γ1| = k1, |Γ2| = k2) · Py
(
Tq < TΓ

∣∣|Γ1| = k1, |Γ2| = k2

)
,

TΓ being the hitting time of Γ.

4.1 The LERW starting from x

A result due to Marchal [26] provides the following explicit expression for the proba-
bility of a loop erased trajectory:

PLEqx (Γ = γ) =

|γ|∏
i=1

w(xi−1, xi)
detV \γ (qI + L)

det (qI + L)
, (4.4)

where detV \γ(qI + L) denotes the determinant of the submatrix of (qI + L) in which the
rows and the columns relative to the vertices in γ have been removed. By looking closely
at the latter formula we distinguish two parts: a product over the weights of the edges of
the path, and an algebraic part containing the ratio of two determinants which encodes
the “loop-erased” feature of the process. In particular we notice that the former contains
all the details about the trajectory, while the latter only depends on the number of points
visited in each community. Let j1 (respectively, j2) be the number of jumps from the first
community to the second (from the second to the first, respectively) along the LE-path.
We have

PLEqx (|Γ1| = k1, |Γ2| = k2|x ∈ V1, y ∈ V2) =
∑

γ:|γ1|=k1,|γ2|=k2

PLEqx (Γ = γ)

=

(
N1 − 1

k1 − 1

)(
N2 − 1

k2

)
· (k1 − 1)!(k2)! ·

min{k1,k2}∑
j1=0

j1∑
j2=j1−1

(
k1 − 1

j1 − 1j1 6=j2

)(
k2 − 1

j2 − 1j1=j2

)
·

· wk1+k2−(j1+j2)−1
1 wj1+j2

2 q
detV \{1,2,...,k1,N1+1,N1+2,...,N1+k2}(qI + L)

det(qI + L)
(4.5)

where

• The first binomial coefficients stays for the k1 − 1 possible choices for the points in
V1 (one of those must be x) over the possible N1 − 1 points of the first community
(except x). In the second community we can choose any k2 vertices over the
possible N2 − 1 vertices of the second community (except y).

• The factorials stay for the possible ordering of the nodes covered in each community.
Notice that the path on the first community must start by x.

• We sum over all the possible jumps from the first community to the second, j1, and
from the second to the first, j2 (notice that if j2 must be equal or one smaller than
j1).

• For any choice over the product of the previous three terms we have a path that
has probability as given by the Marchal formula.
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In the case in which we condition on having both x and y in the same (first, say)
community we have

PLEqx (|Γ1| = k1, |Γ2| = k2|x ∈ V1, y ∈ V1) =
∑

γ:|γ1|=k1,|γ2|=k2

PLEqx (Γ = γ) (4.6)

=

(
N1 − 2

k1 − 1

)(
N2

k2

)
· (k1 − 1)!(k2)! ·

min{k1,k2}∑
j1=0

j1∑
j2=j1−1

(
k1 − 1

j1 − 1j1 6=j2

)(
k2 − 1

j2 − 1j1=j2

)
·

· wk1+k2−(j1+j2)−1
1 wj1+j2

2 q
detV \{1,2,...,k1,N1+1,N1+2,...,N1+k2}(qI + L)

det(qI + L)
.

Namely, only the first combinatorial term changes.

4.2 The ratio of determinants

In our mean-field setup, the terms in (4.5) and (4.6) coming from (4.4) can be
explicitly computed. We consider here the two communities case, i.e. V = V1 tV2, where
the communities possibly have different sizes, |V1| = N1 and |V2| = N2. Now, consider
the matrix obtained by erasing k1 (k2) rows and corresponding columns in the first
community (the second one, respectively) in −L. We are left with a square matrix made
of two square blocks on the diagonal of size N1 − k1 =: K1 (respectively N2 − k2 =: K2).
We will denote this matrix by

−M =



d1 · · · w1 w2 · · · w2

...
. . .

...
...

. . .
...

w1 · · · d1 w2 · · · w2

w2 · · · w2 d2 · · · w1

...
. . .

...
...

. . .
...

w2 · · · w2 w1 w1 d2


=

(
A1 B

BTr A2

)
, (4.7)

where the elements on the diagonal are given by

d1 = −((N1 − 1)w1 +N2w2), d2 = −((N2 − 1)w1 +N1w2). (4.8)

We want to find K1 +K2 solutions of the problem

−Mv = λv (4.9)

First we consider eigenvectors of the form v = (x1, x1, ..., x1, x2, ..., x2)Tr, where the upper
component has length K1 and the lower one has length K2. If we write explicitly (4.9)
we get the following linear system:

−
(
d1 + (K1 − 1)w1 K2w2

K1w2 d2 + (K2 − 1)w1

)(
x1

x2

)
= λ

(
x1

x2

)
, (4.10)

from which we get two eigenvalues, which we will refer to as λ1 and λ2.

Then we consider v = (x1, x2, ..., xK1 , 0, ..., 0)Tr; with this choice we are left with the
system

−

d1 · · · w1

...
. . .

...
w1 · · · d1


 x1

...
xK1

 = λ

 x1

...
xK1

 , w2(x1 + · · ·+ xK1
) = 0 (4.11)

EJP 27 (2022), paper 67.
Page 19/35

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP792
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Loop-erased partitioning of a graph

and we have to find K1 − 1 eigenvalues that are associated with eigenvector orthogonal
to constants. By direct computation, A1 has eigenvalue λ′1 := (N1w1 + N2w2) with
multiplicity K1 − 1. With the opposite choice, namely v = (0, ..., 0, x1, ..., xK2

)Tr, we get

−

d2 · · · w1

...
. . .

...
w1 · · · d2


 x1

...
xK2

 = λ

 x1

...
xK2

 , w2(x1 + · · ·+ xK2
) = 0. (4.12)

Namely, there is an eigenvalue λ′2 := (N2w1 + N1w2) with multiplicity K2 − 1. So the
spectrum of M is

spec(M) = (λ1, λ2, λ
′
1, λ
′
2) (4.13)

with multiplicity denoted by µM (·):

µM (λ1) = 1, µM (λ2) = 1, µM (λ′1) = K1 − 1, µM (λ′2) = K2 − 1. (4.14)

Therefore, we can see that the ratio of determinants in (4.5) and (4.6) can be written
explicitly. Indeed, at the denominator we have

det (qI + L) = q(q +Nw2)(q +N1w1 +N2w2)N1−1(q +N2w1 +N1w2)N2−1, (4.15)

while at the numerator we are left with

det
V \{1,2,...,k1,N1+1,N1+2,...,N1+k2}

(qI + L) = (q + λ1)(q + λ2)(q + λ′1)N1−k1−1(q + λ′2)N2−k2−1

where
λ′1 := N1w1 +N2w2, λ′2 := N1w2 +N2w1, (4.16)

while λ1 and λ2 are the two solutions of the system in (4.10). In particular, if we specialize
in the case N1 = N2 = N we can conclude that the ratio of determinants is given by

θ(k1, k2) :=
(q − λ1(k1, k2))(q − λ2(k1, k2))

q(q + 2Nw2)(q + a)k1+k2
(4.17)

where we defined
a := N(w1 + w2), (4.18)

and

λi(k1, k2) := −1

2

[
w1(k1 + k2) + 2Nw2 + (−1)i

√
w2

1(k1 − k2)2 + 4 (N − k1) (N − k1)w2
2

]
,

for i = 1, 2.

4.3 The path starting from y

Now we have to consider the second path starting from y which decides the root
at which y will be connected in the forest generated by the algorithm. The latter
corresponds to the second factor in (4). Notice that it is sufficient to consider such path
in the simpler fashion, i.e. without erasing the loops, since we are only concerned with
the absorption of the walker: either in γ or killed at rate q. Moreover, we can exploit
again the symmetry of the model to reduce it to a Markov chain X̄ with state space
{1̄, 2̄, 3̄, 4̄} corresponding to the sets {V1 \ γ1, V2 \ γ2, γ1 t γ2,∆}, where ∆ is again the
absorbing state, i.e., the “state-independent” exponential killing. We will assume that

|γi| = ki, |Vi| = Ni, i = 1, 2.
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Hence, the transition matrix we are interested in is given by

P̄ :=

(
Q R

0 I

)
, (4.19)

where

Q := D−1

(
(N1 − k1 − 1)w1 (N2 − k2 − 1)w2

(N1 − k1)w2 (N2 − k2)w1

)
, (4.20)

D−1 :=

(
(q + a1 − w1)−1 0

0 (q + a2 − w1)−1

)
, R := D−1

(
k1w1 + k2w2 q

k1w2 + k2w1 q

)
. (4.21)

with
a1 := N1w1 +N2w2, a2 := N1w2 +N2w1. (4.22)

The states represent:

(1̄) nodes of the 1st community that have not been covered by the LE-path started at x.

(2̄) nodes of the 2nd community that have not been covered by the LE-path started at
x.

(3̄) nodes of both communities that have been covered by the LE-path started at x.

(4̄) the absorbing state ∆.

Called Tabs the hitting time of the absorbing set {3̄, 4̄}, we want to compute the
probability that the process X̄ is absorbed in the state, 4̄ and not in 3̄. In terms of our
original process, this means that the process is killed before the hitting of the LE-path
starting at x. By direct computation

P2̄(X̄(Tabs) = 4̄) =

∞∑
k=0

P̄ k(2̄, 1̄)
q

q + a1 − w1
+

∞∑
k=0

P̄ k(2̄, 2̄)
q

q + a2 − w1

=

( ∞∑
k=0

Qk

)
D−1

(
q

q

)
(2̄)

=(I −Q)−1D−1

(
q

q

)
(2̄)

=:P †(2̄)

(4.23)

notice that the first component of the vector P † ∈ R2 corresponds to the intra-community
case {x, y} ∈ Vi for some i, i.e., Uq(in), while the second one to the inter-community case,
namely Uq(out).

If we now use the assumption that N1 = N2 = N , the steps above allow us to write
the following formulas

Uq(out) =

N∑
k1=1

N−1∑
k2=0

(
N − 1

k1 − 1

)(
N − 1

k2

)
(k1 − 1)!(k2)!θ(k1, k2)P †(2)·

·
min(k1,k2)∑
j1=0

j1∑
j2=j1−1

(
k1 − 1

f1(j1, j2)

)(
k2 − 1

f2(j1, j2)

)
wk1+k2−1−j1−j2

1 wj1+j2
2 q

(4.24)

Uq(in) =

N−1∑
k1=1

N∑
k2=0

(
N − 2

k1 − 1

)(
N

k2

)
(k1 − 1)!(k2)!θ(k1, k2)P †(1)·

·
min(k1,k2)∑
j1=0

j1∑
j2=j1−1

(
k1 − 1

f1(j1, j2)

)(
k2 − 1

f2(j1, j2)

)
wk1+k2−1−j1−j2

1 wj1+j2
2 q

(4.25)
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where
f1(j1, j2) := j1 − 1{j1 6=j2}, f2(j1, j2) := j2 − 1{j1=j2}, (4.26)

θ(k1, k2) as in (4.17) and

P † =
1

q + a− w1
(I −Q)−1

(
q

q

)
. (4.27)

By direct computation we see that

P † =
q

c

(
q + k2(w1 − w2) + 2w2N

q + k1(w1 − w2) + 2w2N

)
. (4.28)

where

c := (q + k1w1)(q + k2w1) +Nw2(2q + (k1 + k2)w1) + w2
2[N(k1 + k2)− k1k2]. (4.29)

4.4 Local time interpretation

Now consider the part of the formula concerning the jumps among the two communi-
ties of the killed-LE-path starting at x, i.e.

min(k1,k2)∑
j1=0

j1∑
j2=j1−1

(
k1 − 1

f1(j1, j2)

)(
k2 − 1

f2(j1, j2)

)
wk1+k2−1−j1−j2

1 wj1+j2
2 . (4.30)

The latter can be thought off as a function of a Markov Chain (X̃n)n∈N on the state space
{1, 2}, with transition matrix

P̃ =

(
p 1− p

1− p p

)
, p =

w1

w1 + w2
(4.31)

where the i-th state stays for the i-th community. Indeed, we can rewrite (4.30) as

(w1 + w2)k1+k2−1

min(k1,k2)∑
j1=0

j1∑
j2=j1−1

(
k1 − 1

f1(j1, j2)

)(
k2 − 1

f2(j1, j2)

)
·

·
(

w1

w1 + w2

)k1+k2−1−j1−j2 ( w2

w1 + w2

)j1+j2

= (w1 + w2)k1+k2−1P̃1(`(k1 + k2) = k1) (4.32)

with ` being the local time as in the statement of Theorem 2.2.

4.5 Geometric smoothing

From the previous steps we get the following expression

Uq(out) =

N∑
k1=1

N−1∑
k2=0

(N − 1)k1−1 (N − 1)k2

(q − λ1(k1, k2))(q − λ2(k1, k2))

q(q + 2Nw2)(q + a)k1+k2
·

· q(w1 + w2)k1+k2−1P̃1(`(k1 + k2) = k1)P †(2).

(4.33)

Next, we would like to make appear a geometric term as in the complete and uniform
case of Theorem 2.1. Notice that multiplying and dividing by Nk1+k2−1 one obtains

Uq(out) =

N∑
k1=1

N−1∑
k2=0

N−(k1+k2−1) (N − 1)k1−1 (N − 1)k2

(q − λ1(k1, k2))(q − λ2(k1, k2))

q(q + 2Nw2)
·

· q

q + a

(
a

q + a

)k1+k2−1

P̃1(`(k1 + k2) = k1)P †(2)

(4.34)
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we can then define

ξq,N :=
q

q + a
=

q

q +N(w1 + w2)
(4.35)

in order to obtain

Uq(out) =

N∑
k1=1

N−1∑
k2=0

N−(k1+k2−1) (N − 1)k1−1 (N − 1)k2
·

· (q − λ1(k1, k2))(q − λ2(k1, k2))

q(q + 2Nw2)
·

· P(Tq = k1 + k2)P̃1(`(k1 + k2) = k1)P †(2),

(4.36)

and

Uq(in) =

N−1∑
k1=1

N∑
k2=0

N−(k1+k2−1) (N − 2)k1−1 (N)k2
·

· (q − λ1(k1, k2))(q − λ2(k1, k2))

q(q + 2Nw2)
·

· P(Tq = k1 + k2)P̃1(`(k1 + k2) = k1)P †(1)

(4.37)

where Tq is an independent random variable with law Geom (ξq,N ).

4.6 Conclusions

One can ideally divide the formulas in (4.36) and (4.37) in five terms, namely

1. The entropic term

N−(k1+k2−1) (N − 2)k1−1 (N)k2
or N−(k1+k2−1) (N − 1)k1−1 (N − 1)k2

(4.38)

was already present in the complete and uniform case (see (2.1)). Indeed

k∏
h=2

(
1− h

N

)
= N−(k−1)(N − 2)k−2. (4.39)

2. The term related to the spectrum of the size 2 matrix presented in (4.10), i.e.

(q − λ1(k1, k2))(q − λ2(k1, k2))

q(q + 2Nw2)
(4.40)

which is the same in both in e out community cases. It can be rewritten as the ratio
between two parabolas in q, i.e.,

q2 + [(k1 + k2)w1 + 2Nw2]q + (w1 + w2)[(k1 + k2)Nw2 + k1k2(w1 − w2)]

q2 + 2Nw2q
(4.41)

3. The term related to the geometric random variable of parameter ξq,N , which was
present also in the case of the uniform graph, (2.1).

4. The term related to the local times of the 2-states Markov chain P̃ , in (4.31).

5. The term related to the absorption probability, i.e., to the quantity P †, see (4.23),
as a function of the process P̄ presented in (4.19).
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It is worth noticing that the P † above is slightly different from the P †? in the statement of
Theorem 2.2 which contains the extra factor η?. At this point by setting

g′out(k1, k2) := N−(k1+k2−1) (N − 1)k1−1 (N − 1)k2

(q − λ1(k1, k2))(q − λ2(k1, k2))

q(q + 2Nw2)
P †(2),

g′in(k1, k2) := N−(k1+k2−1) (N − 2)k1−1 (N)k2

(q − λ1(k1, k2))(q − λ2(k1, k2))

q(q + 2Nw2)
P †(1),

we can write

Uq(out) =

N∑
k1=1

N−1∑
k2=0

g′out(k1, k2)P(Tq = k1 + k2)P̃1(`(k1 + k2) = k1)

=

2N∑
n=1

∑
k1+k2=n

g′out(k1, k2)P(Tq = n)P̃1(`(n) = k1),

(4.42)

and

Uq(in) =

N−1∑
k1=1

N∑
k2=0

g′in(k1, k2)P(Tq = k1 + k2)P̃1(`(k1 + k2) = k1)

=

2N∑
n=1

∑
k1+k2=n

g′in(k1, k2)P(Tq = n)P̃1(`(n) = k1),

(4.43)

which is equivalent to the statement in Theorem 2.2.

4.7 Proof of Theorem 2.4

Proofs of (a) and (b): 1− β < α < (=) 1
2 (detectability). As expressed in the following

lemma in this regime the RW is confined to its starting community for the entire life-
time.

Lemma 4.1 (RW is confined to its community up to dying). Let 1 > α > 1 − β and for
x ∈ [2N ], consider the event

Ex := {Tq > T out
x }

where T out
x is the first time in which the RW moves out of the community in which x

lies.

Then, as N →∞,

Px(Ex) = o(1).

Proof. Let Z be a r.v. that can assume values in the set {out, in,∆} with probabilities:

P(Z = out) =
N1−β

Nα +N +N1−β =: aN ,

P(Z = in) =
N

Nα +N +N1−β =: bN and P(Z = ∆) = 1− (aN + bN ).

Let (Zn)n∈N be a sequence of i.i.d. r.v.s with the same law of Z and notice that

P(Tq < T out
x ) = P (min{n ≥ 0 | Zn = ∆} < min{n ≥ 0 | Zn = out}) .
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Therefore

Px(Ex) = Px(Tq > T out
x ) =

∞∑
n=1

Px(T out
x = n, Tq > n)

=

∞∑
n=1

bn−1
N aN

=
aNbN
1− bN

∼ N1−β−α,

from which the claim.

In view of the decomposition in (1.15) and the above lemma, we can write for any
x 6= y

Uq(x, y) =
∑
γ

PLEx (γ) [Py(Tγ > Tq | Ecx)Py(Ecx) + Py(Tγ > Tq | Ex)Py(Ex)]

=o(1) + (1− o(1))
∑
γ

PLEx (γ)Py(Tγ > Tq | Ecx)

∼
∑
γ

PLEx (γ)Py(Tγ > Tq | Ecx). (4.44)

Let us first consider Uq(out). In this case, by Lemma 4.1, for any α ≤ 1/2 and
uniformly in γ, we have that

Py(Tγ < Tq | Ecx) ≤Py(T out
y < Tq | Ecx) = Py(Ey) = o(1).

As a consequence Py(Tγ > Tq | Ecx) ≥ 1− o(1), and by plugging this estimate in (4.44),
we get Uq(out)→ 1.

Concerning Uq(in), one has to notice that, for every LERW γ starting from x and
ending at the absorbing state, we can consider the event

Eγ,y = {T out
y < min(Tγ , Tq)}.

Once more, uniformly in γ, we get by Lemma 4.1 that

Py(Eγ,y) ≤ Py(Ey) = o(1)

Thus, for x, y ∈ [N ], by 4.44, we can estimate

Uq(x, y) =o(1) + (1− o(1))
∑
γ

PLEx (γ | Ecx)Py(Tγ > Tq | Ecx, Ecγ,y)

Notice that, under such conditioning, the sum can be read as the probability that two
vertices in a complete graph with N vertices end up in two different trees. Therefore,
this reduces to (2.2), which in turns gives Uq(in) → 0 for α < 1/2 and Uq(in) → ε0(α)

otherwise.

Proof of (f) : α > 1
2 (high killing region). We will only show that Uq(in) → 1, this will

suffice since e.g. by direct computation one can check that Uq(in) ≥ Uq(out).
Observe first that being α > 1

2 , the length of the Loop-Erased path Γ must be “small”
with high probability. In particular we can bound

PLEqx

(
|Γ| >

√
N
)
≤P(Tq >

√
N) =

(
1− Nα

N +N1−β +Nα

)√N
= o(1),
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hence

Uq(in) =o(1) +
∑

γ: |γ|≤
√
n

PLEqx (Γ = γ)Py(Tγ > Tq)

≥
∑

γ: |γ|≤
√
N

PLEqx (Γ = γ)
Nα

√
N +Nα

=1− o(1).

4.8 Remaining proofs of Theorem 2.4

We next prove the remaining items in Theorem 2.4 for which we will implement a
similar strategy which we start explaining. In all remaining regimes we need to show
that Uq(?), ? ∈ {in, out} either vanishes or stays bounded away from zero. To this aim,
we will use the representation in (2.3).

Depending on the parameter regimes, we will split the sum over t in different pieces
to be treated according to the asymptotic behavior of the involved factors. To simplify
the exposition we will restrict in what follows to the positive quadrant α, β > 0. We stress
however that, as the reader can check, the following estimates hold true and actually
converge faster even outside of the positive quadrant.

Let us start with a few observations. We notice that f̂(n, k) ≤ 1 for every choice of
k,N, n, moreover f̂(t, n) = 0 if n ≥ N . Furthermore, for each N ,

∞∑
n=1

P(Tq = n)

n∑
k=1

P̃1(`(n) = k) =

∞∑
n=1

P(Tq = n) = 1, (4.45)

and while estimating the involved factors it will be crucial the behavior of the product(
f̂ θP †?

)
(n, k) for which we can in general observe the following facts.

(A) For any ε > 0, if n > N1/2+ε, then it follows from (3.23) that N 7→ f̂N decays to zero,
uniformly in k, faster than any polynomial as N →∞. For such n’s, since N 7→ θNP

†
?

is polynomially bounded (uniformly in n, k), the contribution in (2.3) of such terms
can be neglected.

(B) Whenever we consider n’s for which θP †? = o(1), because of (4.45) and the uniform
control on f̂ , the contribution of such terms in (2.3) can also be neglected.

(C) For n’s for which neither Item A nor Item B hold, we will estimate the asymptotics
of such part of the sum by controlling the mass of the geometric time Tq against
θP †? , and in the most delicate cases (on the separation lines in Figure 1), taking into
account the behavior of the local time too.

We are now ready to treat the remaining parameter regimes using such facts.

Proof of (d): α < min{ 1
2 , 1− β} (changing-communities before dying). In this regime,

the overall picture resembles the phenomenology of the complete graph. In partic-
ular, the RW will manage to change community before being killed and up to the killing
time scale, it will forget its starting community. Moreover, with high probability a single
tree of size 2N(1− o(1)) will be formed, so that, given any two points x, y, they will end
up in the same tree with high probability independently on their communities.

To prove the claim notice that, uniformly in n, k,

P †? (n, k) ∼ N1−β+α +Nαk?
2N1−β+α + nN1−β + k(n− k)

=
N1−β+α

2N1−β+α + nN1−β + k(n− k)
+O

(
1

N1−β−α

)
. (4.46)
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As a consequence the asymptotics of Uq(?) will be independent of ?. To show that such a
limit is zero we argue as follows. Within this parameter region:

θ(n, k) ∼ 1 +
nNα + 2k(n− k)

2N1−β+α
, (4.47)

which together with (4.46) leads to

θP †? (n, k) =
N1−β+α

2N1−β+α + nN1−β + k(n− k)
+

k(n− k)

2N1−β+α + nN1−β + k(n− k)

+O

(
k(n− k)

N2(1−β)

)
+O

(
nNα

N2(1−β)

)
=:θP †I (n, k) + θP †II(n, k) + θP †III(n, k) + θP †IV (n, k), (4.48)

We can now plug in this asymptotic representation of θP †? in (2.3), and separately treat
the four resulting terms.

For the first term, namely the sum in (2.3) with θP †I in place of θP †? , we split the sum
in n into two parts at Nα+ε, for small ε > 0, and show that they both goes to zero, by
using Items C and B, respectively In fact, with this “cut” we see that:

(I) :=

∞∑
n=1

P(Tq = n)

n∑
k=1

P̃1(`(n) = k)f̂(n, k)θP †I (n, k) (4.49)

=
∑

n<Nα+ε

P(Tq = n)

n∑
k=1

P̃1(`(n) = k) ·Θ(1) +
∑

n≥Nα+ε

P(Tq = n)

n∑
k=0

P̃1(`(n) = k) · o(1)

=Θ

( ∑
n<Nα+ε

P(Tq = n)

)
+ o(1) = o(1).

Analogously, for the second term we split the sum over n into two parts at N1/2+ε, with
small ε > 0. Using Item C for the first part and Item A for the second one, we see that

(II) :=

∞∑
n=1

P(Tq = n)

n∑
k=1

P̃1(`(n) = k)f̂(n, k)θP †II(n, k) (4.50)

=
∑

n<N1/2+ε

P(Tq = n)

n∑
k=1

P̃1(`(n) = k) · 1 ·O(1) + o(1) (4.51)

=O

 ∑
n<N1/2+ε

P(Tq = n)

+ o(1) (4.52)

=o(1). (4.53)

For the third term we need to split the corresponding sum into three parts at T1 :=

N1−β−ε and T2 := N1/2+ε, which will be controlled by Items B, C and A, respectively.
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That is

(III) :=

∞∑
n=1

P(Tq = n)

n∑
k=1

P̃1(`(n) = k)f̂(n, k)θP †III(n, k) (4.54)

≤
∑
n<T1

P(Tq = n)

n∑
k=1

P̃1(`(n) = k) · 1 · o(1) (4.55)

+

T2∑
n=T1

P(Tq = n))

n∑
k=1

P̃1(`(n) = k) · 1 ·O(N−1+2β+2ε) + o(1)

=o(1) +O
(
Nα−β−ε · 1 · 1 ·N−1+2β+2ε

)
+ o(1) (4.56)

=o(1). (4.57)

Finally, for the last term, we split the sum at N1/2+ε. Indeed we see that: on the one
hand, for n ≤ N1/2+ε, we can use Item C since

θP †IV (n, k) = O
(
N

1
2 +ε+α−2(1−β)

)
and P

(
Tq ≤ N

1
2 +ε
)

= O
(
N−

1
2 +α+ε

)
.

On the other hand, for n ≥ N1/2+ε, we can argue as in Item A. Hence,

(IV ) :=

∞∑
n=1

P(Tq = n)

n∑
k=1

P̃1(`(n) = k)f̂(n, k)θP †IV (n, k) (4.58)

≤
N1/2+ε∑
n=1

P(Tq = n)

n∑
k=1

P̃1(`(n) = k) · 1 ·O
(
N

1
2 +ε+α−2(1−β)

)
+ o(1) (4.59)

= O
(
N−

1
2 +α+ε · 1 · 1 ·N 1

2 +ε+α−2(1−β)
)

+ o(1) = o(1). (4.60)

Proofs of (c) and (e) (high-entropy separating lines). We start by proving (e), i.e.

if α =
1

2
< 1− β =⇒ ∃ε > 0 s.t. lim

N→∞
Uq(in) = Uq(out) = ε. (4.61)

Start noting that under our assumptions on α and β we have that

θ(n, k) ∼ n
√
N + 2N

3
2−β + 2k(n− k)

2N
3
2−β

, (4.62)

and

P †? (n, k) ∼ k?
√
N +N

3
2−β

2N
3
2−β + nN1−β + k(n− k)

. (4.63)

We are going to split the sum over n in (2.3) in three parts:

• n ≤ N 1
2−ε. For such n’s we have that the product θP †? (n, k) is of order 1. Hence we

can neglect this part by using Item C together with the estimate

P(Tq ≤ N
1
2−ε) = O

(
N−

1
2−α−ε

)
.

• n > N
1
2 +ε. Also this part can be neglected thanks to the argument of Item A.

• N
1
2−ε < n ≤ N

1
2 +ε. This is the delicate non-vanishing part. We start by noticing

that, due to (4.62) and (4.63), the leading term in θP †? does not involve k?, so that
—at first order— Uq(in) must equal Uq(out). In order to show that the latter two are
asymptotically bounded away from zero, we fix c ∈ (0, 1) and estimate:

Uq(?) ≥

√
N/c∑

n=c
√
N

P(Tq = n)

n∑
k=1

P̃1(`(n) = k)θ(n, k)P †? (n, k)f̂(n, k); (4.64)
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further, since f̂ = Θ(1) we can bound

Uq(?) =Ω

 √
N/c∑

n=c
√
N

P(Tq = n)

n∑
k=1

P̃1(`(n) = k)θ(t, k)P †? (n, k)

 ; (4.65)

finally, since

θP †? (n, k) ∈
[

1

2 + c−1
,

1

2 + c

]
, (4.66)

we conclude that

Uq(?) =Ω

 √
N/c∑

n=c
√
N

P(Tq = n)

 = Ω(1). (4.67)

Moreover, thanks to (4.66) we can easily deduce that the limit is strictly smaller
than 1

2 .

We next conclude by giving the proof of (e), i.e., we are going to show that

if α = 1− β < 1

2
=⇒ ∃ε > 0 s.t. lim

N→∞
Uq(in) = 0 while lim

N→∞
Uq(out) = ε. (4.68)

Observe that, under our assumptions on α and β, we have that

θ(n, k) ∼ 3N2α + nNα + 2k(n− k)

3N2α
, (4.69)

and

P †? (n, k) ∼ N2α + k?N
α

3N2α + 2nNα + k(n− k)
, (4.70)

hence, their product behaves asymptotically as

θP †? (n, k) = Θ

(
1 +

k?
Nα

)
. (4.71)

To evaluate the asymptotic behavior of Uq(?), we split the sum over n in (2.3) in three
pieces:

• n ≤ Nα+ε: where, thanks to (4.71), we know that θP †? (n, k) = O(Nε). We argue as
in Item C, obtaining

∑
n≤Nα+ε

P(Tq = n)

n∑
k=1

P̃1(`(n) = k)θ(n, k)P †? (n, k)f̂(n, k) =O

Nε
∑

n≤Nα+ε

P(Tq = n)


=O

(
N−1+2α

)
(4.72)

• n > N
1
2 +ε: in this case we can argue as in Item A.

• Nα+ε < n ≤ N 1
2 +ε: in this case we have to distinguish between Uq(in) and Uq(out).

Consider first Uq(in). We call En the following event concerning the Markov chain
(X̃n)n∈N

En := {At least one jump occurs before time n} . (4.73)

Notice that if Nα+ε < n ≤ N 1
2 +ε then the event Ecn occurs with high probability. Hence,

for any choice of n ∈ [1, N ] and k ∈ [1, n] we can write

P̃1 (`(n) = k) =P̃1(`(n) = k|Ecn)P̃1(Ecn) + P̃1(`(n) = k|En)P̃1(En) = δk,n + o(1),
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δk,n being the Kronecker delta. Hence

N1/2+ε∑
n=Nα+ε

P(Tq = n)

n∑
k=1

P̃1(`(n) = k)θP †in(n, k)f̂(n, k) =

=Θ

 N1/2+ε∑
n=Nα+ε

P(Tq = n)

n∑
k=1

δk,n

(
n− k
Nα

+ 1

)
=Θ

 N1/2+ε∑
n=Nα+ε

P(Tq = n)

 = o(1).

Concerning Uq(out), it is easy to get a lower bound via a soft argument by considering
the events

Bx = {The LERW starting at x never changes community} (4.74)

B′y = {The RW starting at y does not change community before dying} . (4.75)

Indeed,

Uq(out) ≥P (Bx)P
(
B′y
)

=

(
Nα

Nα +N1−β

)2

=
1

4
.

Finally, we are left to show that Uq(out) is asymptotically bounded away from 1. We
consider the further split

Uq(out) ≤ o(1) +

√
N∑

n=Nα+ε

P(Tq = n)

n∑
k=1

P̃1(`(n) = k)(f̂ θP †out)(n, k)+

+

N
1
2

+ε∑
n=
√
N

P(Tq = n)

n∑
k=1

P̃1(`(n) = k)(f̂ θP †out)(n, k).

Focusing on the first sum in the latter display, thanks to (4.71), we have that
√
N∑

n=Nα+ε

P(Tq = n)

n∑
k=1

P̃1(`(n) = k)(f̂ θP †out)(n, k)

≤
N1/2∑

n=Nα+ε

P(Tq = n)
n

Nα
+

N1/2∑
n=Nα+ε

P(Tq = n) =
1

N

N1/2∑
n=Nα+ε

(
1− 1

N1−α

)n
+ o(1)

≤ 1

N

(√
N(
√
N + 1)

2

)
∼ 1

2
.

Concerning the second sum, we have

N
1
2

+ε∑
n=
√
N

P(Tq = n)

n∑
k=1

P̃1(`(n) = k)(f̂ θP †out)(n, k) =O

N
1
2

+ε∑
n=
√
N

P(Tq = n)f̂(n, n)
n

Nα


=O

 1

N

N
1
2

+ε∑
n=
√
N

ne−
n2

2N


=O

(
1√
N

Nε∑
m=1

me−
m2

2

)

=O

(
Nε

√
N

∞∑
m=1

e−
m2

2

)
= o(1).
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4.9 Remaning proofs

Proof of Corollary 2.7. Let 0 = λ0 ≤ λ1 ≤ · · · ≤ λ2N−1 be the eigenvalues of −L. As
shown in [7, Prop. 2.1], the number of blocks of the induced partition, |Πq|, is distributed
as the sum of 2N independent Bernoulli random variables with success probabilities
q

q+λi
. That is

|Πq|
d∼

2N−1∑
i=0

X
(q)
i , with X

(q)
i

d∼ Bern

(
q

q + λi

)
, i ∈ {0, . . . , 2N − 1}

In case of the two-communities model we have

λ0 = 0, λ1 = 2N1−β , λi = N(1 +N−β), i ∈ {2, . . . , 2N − 1} .

Therefore

|Πq|
d∼ 1 +X +

2(N−1)∑
i=1

Yi

where

X
d∼ Bern

(
Nα

2N1−β +Nα

)
and Yi

d∼ Bern

(
Nα

N(1 +N−β) +Nα

)
, i ∈ {1, . . . , 2(N−1)}.

Hence

E|Πq| ∼ 1 +
Nα

N1−β +Nα
+

2Nα+1

Nα +N
= Θ(Nα∧1).

Moreover, we can prove the concentration result claimed in the first part of the statement
by using the multiplicative version of the Chernoff bound on the sum of the Yi’s. Indeed,
denoting by

S :=

2(N−1)∑
i=1

Yi

we have that

P (|S − ES| ≥ εES) ≤ 2 exp

(
−ε

2ES

3

)
,

and since

ES ∼ 2Nα+1

Nα +N
= ω(1)

we can deduce the concentration of |Πq|.
Notice also that the second part of the statement is a trivial consequence of the

detectability result of Theorem 2.4.

Proof of Lemma 2.8. In this proof we will consider the probability measure µq on the
space of rooted spanning forests studied defined in (1.2).

Call Bq the σ-field generated by the block structure Πq of the random forest Φq. By [7,
Proposition 6.4], we have

P (x, y ∈ ρ(Φq) | Bq) = 1{Bq(x)6=Bq(y)}
u(x)u(y)

u(Bq(x))u(Bq(y))
. (4.76)

Now we notice that by Definition 1.3 and the tower property,

Uq(x, y) = E

[
E

[
1{Bq(x)6=Bq(y)}

u(Bq(x))u(Bq(y))

∣∣∣∣Bq]] =
1

u(x)u(y)
P (x, y ∈ ρ(Φq)) . (4.77)
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We can now invoke [7, Theorem 3.4], stating that the set of roots is a determinantal
process with kernel Kq. As a consequence we obtain that

P (x, y ∈ ρ(Φq)) = Kq(x, x)Kq(y, y)−Kq(x, y)Kq(y, x), (4.78)

and the claim readily follows.

Proof of Proposition 2.9. We consider here the discrete time version of the process X as
presented in Theorem 2.1, see (3.6). As a warm-up, we start by computing the potential
in the complete graph with unitary weights. In this case,

Kq(x, y) = 1x=yP(Tq = 1) +
∑
t≥1

Px (Xt = y | Tq = t+ 1)P(Tq = t+ 1), (4.79)

where
rq :=

q

N + q
and P(Tq = t+ 1) = rq(1− rq)t, ∀t ∈ N0. (4.80)

Therefore,

Kq(x, y) = rq1x=y +
1

N

∑
t≥1

rq(1− rq)t = rqδx,y +
1

N
(1− rq) =

qδx,y + 1

q +N
. (4.81)

From which:

Uq(x, y) =

(
N

q +N

)2 (
q2 + 2q

)
. (4.82)

Thus, in order to have a non-degenerate potential on KN , we need to take q = Θ(1).
We next move to the mean-field-community model K2N (w1, w2) with w1 = 1, w2 =

N−β , β > 0 and arbitrary q. The corresponding discrete-time RW is killed at an indepen-

dent geometric time Tq
d∼ Geom(rq) with

rq :=
q

N +N1−β + q
. (4.83)

Denoting by Jt the random variable that counts the number of times, up to time t, in
which this random walk changes community, we notice that:

P(Jt = k | τ = t+ 1) =

(
t

k

)
(1− c)t−kck, ∀k ∈ [0, t], (4.84)

that is, conditioning on Tq = t + 1, Jt has binomial distribution Bin(t, c) with success
parameter

c :=
N1−β

N +N1−β . (4.85)

We are now in shape to compute the probability that x is absorbed in some y. Without
loss of generality we assume x ∈ [N ], so that y ∈ [N ] and y ∈ [2N ] \ [N ] determines the
in− and out−potential, respectively. Thus Kq(x, y) equals

Kq(x, y) =1x=yP (Tq = 1) + (4.86)

+
∑
t≥1

P(Tq = t+ 1)
∑
k≥0

Px(Xt = y | Jt = k; Tq = t+ 1)P(Jt = k | Tq = t+ 1)

and the double sum can be rewritten as

1

N

∑
t≥1

rq(1− rq)t
[
1y∈[N ]P (Bin(t, c) ∈ 2N0) + 1y∈[2N ]\[N ]P (Bin(t, c) ∈ 2N0 + 1)

]
. (4.87)
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Therefore from (4.86)-(4.87) we deduce

Kq(x, y) =1x=yrq +O
(
N−1

)
, (4.88)

where the last asymptotic identity is due to the fact that the sum in (4.87) is a probability
and hence bounded above by 1.
High killing: When q = Nα, with α > 0, rq = ω

(
N−1

)
, thus the O

(
N−1

)
term in (4.88)

is negligible, and Uq(in/out) ∼ N2r2
q . In particular, the potential diverges as N2 or N2α

depending on α ≥ 1 or α < 1, respectively.
Order one killing: In the regime q = O(1), the O(N−1) term in (4.88) is no longer
negligible and needs to be analyzed further. Let us first consider the sub-regime q = Θ(1).
Notice that, when t = Θ(1/rq),

E[Bin(t, c)] =
c

rq
=
N1−β

q
=

{
o(1) if β > 1

ω(1) if β < 1.
(4.89)

Clearly, E[Bin(t, c)] = o(1) implies that P (Bin(t, c) ∈ 2N0) = 1+o(1), while if E[Bin(t, c)] =

ω(1) then P (Bin(t, c) ∈ 2N0) = 1
2 + o(1). From which, if β > 1, then∑

t≥1

rq(1− rq)tP (Bin(t, c) ∈ 2N0) ∼1, (4.90)

while, for β < 1:∑
t≥1

rq(1− rq)tP (Bin(t, c) ∈ 2N0 + 1) ∼
∑
t≥1

rq(1− rq)tP (Bin(t, c) ∈ 2N0) ∼ 1

2
, (4.91)

where in (4.90)–(4.91) we used the fact that, in order to compute the first order, it is
sufficient to restrict the sum over t to the values on the scale Θ(1/rq). By (4.86)–(4.87)
and the above estimates, we conclude that, for β > 1:

Kq(x, y) ∼

{
1
N if y ∈ [N ] \ {x}
t·c
N = o(N−1) if y ∈ [2N ] \ [N ],

(4.92)

and Kq(x, x) ∼ q+1
N , which together with Definition 1.3 lead to:

β > 1 =⇒ Uq(?) ∼

{
4q2 + 8q if ? = in

4q2 + 8q + 4 if ? = out
. (4.93)

On the other hand, for β < 1, the estimate in (4.91) shows that, regardless of the
community of y, Kq(x, y) ∼ (1x=yq + 1/2)/N . Thus the in− and out− potentials are
asymptotically equivalent. In particular, Uq(in) ∼ Uq(in) ∼ 4q2 + 4q.
Vanishing killing: It remains to analyze the case when q = Nα for some negative α < 0.
In this case, we have that

E[Bin(t, c)] = N1−β−α =

{
o(1) if 1− α < β

ω(1) if 1− α > β.
(4.94)

We can then argue as in the case q = Θ(1) but distinguishing between β being bigger
or smaller than 1 − α. In particular, due to (4.94), when β < 1 − α the resulting in-
and out- potentials are asymptotically equivalent and decay as Nα. On the other hand,
for β > 1 − α > 1, rq ∼ Nα−1, which together with (4.94) and (4.86)–(4.87) lead to
the estimates: Kq(x, x) ∼ rq + N−1 ∼ N−1, Kq(x, y) ∼ N−1 for y ∈ [N ] \ {x} and
Kq(x, y) = o(N−1) for pairs (x, y) in different communities. By plugging these estimates
in Lemma 2.8 the statement follows.
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