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Abstract

On the lattice Z̃2
+ := {(x, y) ∈ Z × Z+ : x + y is even} we consider the following

oriented (northwest-northeast) site percolation: the lines Hi := {(x, y) ∈ Z̃2
+ : y = i}

are first declared to be bad or good with probabilities δ and 1 − δ respectively,
independently of each other. Given the configuration of lines, sites on good lines
are open with probability pG > pc, the critical probability for the standard oriented
site percolation on Z+ × Z+, and sites on bad lines are open with probability pB,
some small positive number, independently of each other. We show that given any
pair pG > pc and pB > 0, there exists a δ(pG, pB) > 0 small enough, so that for
δ ≤ δ(pG, pB) there is a strictly positive probability of oriented percolation to infinity
from the origin.
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1 Introduction

On the lattice Z̃2
+ := {(x, y) ∈ Z×Z+ : x+ y is even} with graph structure obtained

by placing edges between any two sites of Z̃2
+ at Euclidean distance

√
2 from each other,

we consider the following oriented (northwest-northeast) site percolation model: the
lines Hi := {(x, y) ∈ Z̃2

+ : y = i} are first declared to be bad or good with probabilities
δ and 1− δ respectively, independently of each other. Given the configuration of lines,
sites on good lines are open with probability pG, and sites on bad lines are open with
probability pB, independently of each other. More formally, on a suitable probability
space (Ω,F ,P), where P = PpG,pB ,δ, we consider a Bernoulli sequence ξ = (ξi : i ∈ Z+)

with P(ξi = 1) = δ = 1 − P(ξi = 0), which determines Hi to be bad or good, and
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Oriented percolation in a random environment

a family of occupation variables (ηz : z ∈ Z̃2
+) which are conditionally independent

given ξ, with P(ηz = 1 | ξ) = pB = 1 − P(ηz = 0 | ξ) if z ∈ Hi with ξi = 1, and
P(ηz = 1 | ξ) = pG = 1 − P(ηz = 0 | ξ) if z ∈ Hi with ξi = 0. If ηz = 1 the site z is open,
and otherwise it is closed. An open oriented path on the graph Z̃2

+ is a path along which
the second coordinate is strictly increasing and all of whose vertices are open. The open
cluster of a vertex z ∈ Z̃2

+ is the collection of sites which can be reached from z by an
oriented path for which all vertices are open except possibly the initial z. It is denoted
by Cz and the open cluster of the origin is denoted by C0. Thus, we always include z
itself in Cz, whether z is open or not. We say that percolation occurs if C0 is infinite with
positive probability. This description of percolation is of course obtained by rotating the
standard picture on Z+ ×Z+ by π/4 counterclockwise.

The interesting situation is when pG > pc, the critical probability for the standard
oriented site percolation on Z+ ×Z+, and pB is some small positive number. Given pG
and pB we ask if δ > 0 may be taken small enough so that there is a positive probability
of oriented percolation to infinity from the origin. We prove the answer to be positive,
provided pG > pc, as stated in the next theorem, which is the main result of this article.

Theorem 1.1. In the setup described above, let

Θ(pG, pB , δ) = P(C0 is infinite).

Then, if pG > pc and pB > 0, we can find δ0 = δ0(pG, pB) > 0 so that Θ(pG, pB , δ) > 0 for
all δ ≤ δ0. In fact, for δ ≤ δ0,

P(C0 is infinite|ξ) > 0 for almost all ξ. (1.1)

This work stems from attempts to understand and answer various questions which
were naturally raised in probability, theoretical computer science and statistical physics.
These questions lie on crossroads of various fields and have several quite distinct roots.
• Spatial growth processes such as percolation or contact process in random envi-

ronment is a very well established topic. The situation is reasonably well understood
when the environment has good space-time mixing properties. Much less is known for
environments with long range dependencies. One source of inspiration is [5], where
the contact process with spatial disorder persisting in time is considered. Shifting their
setup to oriented percolation, the difference is that the (good/bad ) layers in [5] are
parallel to the growth direction. Our environment varies in an “orthogonal” fashion and
it somehow generates more global effects. (See Figure 7.) It is worth comparing the
situation treated here with that in [5], where survival (or percolation) is achieved by
pushing the good lines to be good enough, given pB and the frequency δ of bad lines.
It is simple to see that this result cannot hold in the current situation, with the layers
being transversal to the growth. Indeed, using a Peierls-type argument, it may be shown
that there exist pB > 0 and δ > 0 such that for any pG, Θ(pG, pB , δ) = 0.
• In late sixties, McCoy and Wu ([21, 22, 19, 20]) started the study of a specific

class of disordered ferromagnets with random couplings that are constant along each
horizontal line, for instance with randomly located layers of strongly and weakly coupled
spin systems.
• A third set of questions comes from theoretical computer science. Among them,

the clairvoyant scheduling problem or coordinate percolation, introduced by P. Winkler
in early nineties: is it possible, in a complete graph with n vertices, to schedule two
independently sampled random walks (by suitably delaying jumps), so that they never
collide? This has a representation in terms of planar oriented percolation (due to Noga
Alon). For results in this direction see [25, 1, 10]. The answer is negative for n = 2 or
n = 3. Numerical simulations suggest a positive answer for n ≥ 4. Recent progress in
[3] gives a positive answer for n large enough.
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In parallel, several questions of similar nature, such as compatibility of binary
sequences, Lipshitz embedding and rough isometries of random one dimensional objects
have been considered and answered in [4], and recently extended to the case of random
fields [2]. We refer to the introduction of [2] for a more complete review of similar
questions. See also [11, 13, 23, 15].

The approach undertaken in [4] and [2] is, as ours, based on multi-scale analysis.
While the general concept is similar, both methods are quite different regarding technical
implementation. The scheme developed in [4] relies more on the fine probabilistic block
estimates. The approach taken in our work gives a precise geometric description of the
random environment, describing the global picture in terms of increasing hierarchies
and inter-relation between them. It is inspired by the much simpler situation of determin-
istic (hierarchical type) environments, as considered in [18] for two-dimensional bond
percolation, and discussed in the lecture notes [9, 24] for oriented site percolation. In
fact, [18] also describes a strategy to treat planar bond percolation in a class of random
environments using the results of this paper.

Another related and more recent result is [7], that deals with an interesting problem
for two-dimensional bond percolation in random environment. The proof therein indeed
uses the main result of the current paper (available as preprint on arXiv since 2012).

A big portion of the paper deals with the construction of suitable renormalized lattices
depending on the configuration of layers. For this, we let Γ = {x ∈ Z+ : ξx = 1} be
the set of indices that correspond to the bad layers, also called the environment. The
starting point is a convenient grouping procedure of bad layers into what we call blocks,
depending on a scale parameter L suitably related to the model parameter δ. This
construction might have independent interest (it was used in [15] too).

The paper has two basically distinct parts: Sections 2-4 are focused on the environ-
ment and the construction of renormalized lattices. Sections 5-8 deal with the percolation
issue.

Section 2 provides the details for the grouping procedure mentioned above, yielding
an infinite sequence (Ck)k≥0 of increasingly coarse (in k) partitions of Γ into finite
subsets. Lemma 2.3 gives a condition on δ for the convergence of this procedure,
yielding a final partition C∞. This allows to single out an event of positive probability of
convenient environment configurations, that we call L-spaced (Definition 2.9), described
by χ(Γ) = 0, where χ is an a.s. finite random variable under the conditions of Lemma 2.3.
In all the following sections we indeed work with a fixed L-spaced configuration. The
basic strategy consists in proving that given pG > pc and pB > 0 we can take L suitably
large so that the conditional probability P(C0 is infinite |Γ = γ) is a.s. positive on the
event {χ(Γ) = 0}. In combination with Lemma 2.8 this easily yields the proof of Theorem
1.1. (See the comment at the end of Section 2.)

In Section 3, and based on the partitions (Ck)k≥0, Z+ is split into a sequence of
partitions (Hk)k≥0, again increasingly coarse, and inducing partitions of Z̃2

+ into hori-
zontal layers at various scales. Notions of good and bad layers will be introduced. The
construction of the renormalized lattices is done in Section 4, and simply obtained by
suitable vertical split of the horizontal layers corresponding to the partition Hk into cells
{Sku,v}(u,v).

Sections 5-8 are dedicated to the study of the renormalized lattices. Depending on
the percolation configuration, the sites of the renormalized lattice are declared passable
or not. We state and prove Theorem 5.15, which describes the structure of passable sites
at all scales and implies that we may take p∗ < 1 so that given pB > 0 and pG > p∗, then
for all L suitably large P(C0 is infinite |Γ = γ) is a.s. positive on the event {χ(Γ) = 0}, as
stated in Corollary 5.16. As already indicated, this implies the conclusion of Theorem
1.1 provided pB > 0, pG > p∗. The proof of Theorem 5.15 is given in Sections 6-7. The
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extension of our argument to all pG > pc, pB > 0 requires a modification in the first scale
of the renormalization procedure. We deal with this in Section 8, through Theorem 8.1.

The Appendix collects the proofs of some basic estimates that are used in the paper.

2 Construction of renormalized lattices: grouping

Recall that Γ ≡ Γ(ω) = {x ∈ Z+ : ξx = 1} denotes the set of indices that correspond
to the bad layers. We label its elements in increasing order Γ = {xj}j≥1.

2.1 Definition of the grouping procedure

We will build an infinite sequence {Ck}k≥0 of partitions of Γ into finite subsets. These
partitions will be increasingly coarse in k (the grouping step) and will play a crucial
role in our renormalization procedure. The elements of each Ck are called blocks. The
construction will depend on a parameter parameter L, a positive integer which will be
fixed later so that Lemma 2.3 below holds. This Lemma guarantees the convergence
of the grouping procedure yielding the final partition C∞. We first set some general
notation.

Notation.

(a) For any finite set C ⊂ Z+, span(C) denotes the smallest interval (in Z+) that
contains C; min(C) (max(C)) denotes the minimum (maximum, resp.) element of
C; diam(C) = max{|x − y| : x, y ∈ C} denotes the diameter of C, and |C| denotes
its cardinality.

(b) We use d(D1, D2) to denote the usual Euclidean distance between two sets D1 and
D2.

The following will be the basic properties to hold for all blocks C at each grouping
step k and for the limiting partition C∞:

(i)
C = span(C) ∩ Γ. (2.1)

(ii) To each C ∈ Ck, we will attribute a mass m(C) = m in such a way that

d(C, C′) ≥ Lmin{m(C),m(C′),k}, for all 1 ≤ k ≤ ∞ and C, C′ ∈ Ck. (2.2)

(iii) If to each C ∈ Ck we define its level `(C), as the smallest j so that C ∈ Cj , then

`(C) < m(C) for all C ∈ Ck, for all k. (2.3)

The construction.

Step 0. The elements of C0 are simply the subsets {xj} of Γ of cardinality one. To each
of them we attribute mass one.

Step 1. For n ≥ 2, we say that xi, xi+1, . . . xi+n−1 form a 1-run of length n if

xj+1 − xj < L, j = i, . . . , i+ n− 2,

and

xj+1 − xj ≥ L

{
for j = i− 1, j = i+ n− 1, if i > 1

for j = i+ n− 1, if i = 1.

The elements of C0, {xi}, {xi+1}, . . . {xi+n−1} will be called constituents of the 1-run.
Note that there are no points in Γ between two consecutive points of a 1-run. Also note
that xj does not appear in any 1-run if and only if d({xj},Γ \ {xj}) ≥ L.

EJP 27 (2022), paper 82.
Page 4/49

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP791
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Oriented percolation in a random environment

Figure 1: Illustration of the grouping procedure.

The blocks of level 1 are the sets of the form C = {xi, xi+1, . . . , xi+n−1} for some 1-run.
To each such block we attribute the mass given by its cardinality.

It is obvious that P-a.s. all 1-runs are finite, and that infinitely many such runs exist.
The elements of C1 are the blocks of level 1 and those {xj} ∈ C0 such that xj does

not appear in any 1-run.
We automatically have the restriction of conditions (2.1) and (2.3) to C1. Condition

(2.2) restricted to k = 1 is also trivially verified.

Step k+1. Let k ≥ 1 and assume that the partitions Ck′ have been defined for k′ ≤ k

and that properties (2.1), (2.2) and (2.3) hold when restricted to k′ ≤ k.
We now consider (k + 1)-runs of large blocks in Ck: for this let us write C1, C2, . . . for

the sequence of all the blocks in Ck with mass at least k + 1, labeled in increasing order.
For n ≥ 2, we say that r = {Ci, Ci+1, . . . , Ci+n−1} forms a (k + 1)-run of length |r| = n if

d(Cj , Cj+1) < Lk+1, j = i, . . . , i+ n− 2,

and in addition

d(Cj , Cj+1) ≥ Lk+1

{
for j = i− 1, j = i+ n− 1, if i > 1

for j = i+ n− 1, if i = 1.

In this case we define a block of level k + 1 as any set of the form

C = span(
⋃
C∈r

C) ∩ Γ, (2.4)

where r is any (k + 1)-run as above. To C we attribute the mass

m(C) =
∑
C∈r

m(C)− k(|r| − 1). (2.5)

The blocks of Ck that form the (k + 1)-run in (2.4) are called constituents of C. This
grouping procedure is illustrated in Figure 1.

The partition Ck+1 is formed of the blocks of level k + 1 and of all the blocks in Ck

that are not contained in any block of level k + 1.

Remark 2.1. (a) Again it is immediate that P-a.s. all (k + 1)-runs are finite and that
infinitely many such runs exist.

(b) Notice that only the constituents of a block C contribute to its mass. For this
reason, all blocks contained in C that are not constituents of C will be called porous
medium.

At this point we need to check that (2.1), (2.2) and (2.3) hold up to k + 1. The first is
trivial, and so is (2.3). About (2.2), when min{m(C),m(C′)} ≥ k+1, it follows at once from
the definition of (k+ 1)-runs. On the other hand, if min{m(C),m(C′)} ≤ k we have that at
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least one of these blocks, say C, belongs to Ck and it is not incorporated into a block of
Ck+1, so that independently of C′ being obtained from a (k+1)-run of blocks in Ck, which
will imply m(C′) ≥ k + 1 > m(C), or when C′ ∈ Ck, we get d(C, C′) ≥ Lmin{m(C),m(C′)}.

Before proceeding to the next subsection, where we show the convergence of the
grouping procedure and study its main properties, we state and prove a simple propo-
sition. It is not essential here, but it will play a role to establish upper bounds on the
length of the renormalized layers in the next section.

Proposition 2.2. If C ∈ ∪`≥1C`, then

diam
(
C
)
≤ 3Lm(C)−1. (2.6)

Proof. The statement is trivially correct for m = 1, since a block of mass one must be
a singleton. We will use induction on m. Assume (2.6) holds for all blocks with mass
at most m − 1, where m ≥ 2. Let C be a block with m(C) = m and `(C) = `. Thus
1 ≤ ` ≤ m− 1, by virtue of (2.3). If ` = 1 then diam(C) ≤ (m− 1)L < 3Lm−1, for m ≥ 2,
provided we take L ≥ 2. If ` ≥ 2, then there exist n ≥ 2, and an `-run Ci1 , . . . Cin ∈ C`−1

which will be the constituents of C. In particular, if mj = m(Cij ), then mj ≥ `, and from
(2.5) we see that mj ≤ m− n+ 1 for each j. From this and the induction hypothesis we
get

diam(C) ≤
n∑
j=1

diam(Cij ) + (n− 1)L` < 3nLm−n + (n− 1)Lm−n+1 ≤ 3Lm−1 (2.7)

for all L ≥ 3 and n ≥ 2.

2.2 Properties of the grouping

From the construction of the (Ck)k as successively coarser partitions of the set Γ, it is
obvious that no x ∈ Γ can belong to two distinct blocks of the same level, though x might
belong to blocks of different levels, which occurs when a block of level ` containing x
is incorporated into part of a block of higher level `′. For the grouping to be useful, we
would like that this process stops, yielding a limiting partition C∞. Since the origin has
a special role, we indeed would like to have a bit more, controlling how close to the
origin can a block be in terms of its mass. For all this we need δ to be suitably small,
depending on L, as stated below.

Lemma 2.3. Let us assume that δ > 0 and 3 ≤ L < (64δ)−1/2. Under such conditions
there exist constants c1 > 0 and c2 > logL such that

P

∃ C ∈ ⋃
`≥1

C` : min(C) = z,m(C) = m

 ≤ c1e−c2m, (2.8)

for each m and each z. In particular we may assume

c1(Lm + 1)e−c2m ≤ 2c1e
−c3m (2.9)

for some constant c3 > 0.

Before proving the above lemma, we state and prove the following important conse-
quence.

Lemma 2.4. Let

χ(γ) = inf

k ≥ 0: min(C) ≥ Lm(C) for all C ∈
⋃
`≥1

C` with m(C) > k

 , (2.10)
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and set χ(γ) =∞ if the above set is empty. Under the conditions of Lemma 2.3 we have

P(χ <∞) = 1. (2.11)

Proof. In fact, (2.8) and (2.9) show that

P(χ(γ) ≥ k) ≤
∑
m>k

c1L
me−c2m → 0 as k →∞. (2.12)

For each x ∈ Γ, define the random index

κ(x) = sup

`(C) : x ∈ C ∈
⋃

0≤k<∞

Ck

 . (2.13)

Since m(C) > `(C) for each C as in (2.13), the corollary below is an immediate conse-
quence of Lemma 2.4.

Corollary 2.5. Let δ and L be as in Lemma 2.3. For each x ∈ Γ we have

P(κ(x) <∞) = 1. (2.14)

Remark 2.6. (Convergence of the grouping) The property described in Corollary 2.5 is
not the main point, as we indeed need something stronger. But it is useful to observe
that:

(i) Corollary 2.5 says that the grouping procedure stops a.s., yielding a natural defini-
tion of C∞. Indeed, it guarantees that on a set of probability one, for each x ∈ Γ,
there exists a unique block of level κ(x) ∈ Z+ which contains x. We may call it
the maximal block of x and denote it by C(x). Moreover, for x, x′ ∈ Γ, if x′ ∈ C(x),
then κ(x) = κ(x′) and C(x) = C(x′). This immediately allows us to set C∞ as the
partition of Γ into such maximal blocks. In other words, a block C ∈ Ck, for some
0 ≤ k <∞, belongs to C∞ if and only if it is not contained in any block of strictly
larger level. Thus, a.s. (in ξ), the blocks C ∈ C∞ form a partition of Γ into finite
sets, and conditions (2.1), (2.2), (2.3) are verified also for k =∞.

(ii) For the proof of (2.14), less than Lemma 2.3 is needed.1 It would suffice to have
(2.8) for some c2 > 0, as it follows from an application of the Borel-Cantelli lemma.

We now turn back to the proof of Lemma 2.3.

Proof of Lemma 2.3. Let m ≥ 2 and z ∈ Z+. (Of course it suffices to take m ≥ 2.)
To any given C ∈ ∪`≥1C` we associate a “genealogical weighted tree”. It describes

the successive merging processes which lead to the creation of C, i.e., it tells the levels at
which some blocks formed runs, merging into larger blocks and how many constituents
entered each run, down to level 1, and finally the masses of such level 1 blocks. We
represent it as a tree with the root corresponding to C; the leaves correspond to blocks
of level 1, which are the basic constituents at level 1. This weighted tree gives the basic
information on the block, neglecting what was incorporated as “porous medium”, on the
way.

More formally, we construct the tree iteratively. The root of the tree corresponds to
C. If this block is of level 1, the procedure is stopped. For notational consistency such a
tree will be called a 1-leaf tree. To the root we attribute the index 1, as well as another
index which equals the mass of the block.

If the resulting block C is of level ` > 1, we attribute to the root the index ` and add
to the graph n1 edges (children) going out from the root, where n1 ≥ 2 is the number of

1MEV thanks the referee for this remark.
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constituents which form the `-run leading to C. Each endvertex of a newly added edge
will correspond to a constituent of the run, i.e., if C has constituents Ci1 , . . . , Cin1

∈ C`−1,
for suitable i1, . . . , in1

, then there is a vertex at the end of an edge going out from the
root corresponding to Cij for each j = 1, . . . , n1. If the constituent corresponding to a
given endvertex is a level 1 block, the procedure at this endvertex is stopped (producing
a leaf on the tree), and to this leaf we attribute an index, which equals the mass of the
corresponding constituent.

If a given endvertex corresponds to a block C′ of level `′ with 1 < `′ < `, then to this
endvertex we attribute the index `′, and add to the graph n2 new edges going out of this
endvertex, where n2 is the number of constituents of C′ in C`′−1 which make up C′ at
step `.

The procedure continues until we reach the state that all constituents corresponding
to newly added edges are of level 1. In this way we obtain a tree with the following
properties:

i) each vertex of the tree has either 0 or at least two offspring; in case of 0 offspring
we say that the vertex is a leaf of the tree. Otherwise we call it a branch node.

ii) to each branch node we attribute an index `; these indices are strictly decreasing
to 1 along any self-avoiding path from the root to a leaf of the tree.

iii) to each leaf is associated a mass. This defines a map

g : C ∈ ∪`≥1C` 7→ g(C) ≡ (Υ(C), l̄(C),m(C)),

where Υ(C) is a finite tree with L(Υ(C)) leaves and N (Υ(C)) branching nodes. We use
the following notation:

l(C) = {`1(C), . . . , `N (Υ(C))(C)} is a multi-index with one component for each branching
node of Υ(C), which indicates the level at which branches “merge” into the block
corresponding to the node;

m(C) = {m1(C), . . . ,mL(Υ(C))(C)} a multi-index with one component for each leaf of
Υ(C), which gives the mass of the block corresponding to the leaf;

n̄(C) = {n1(C), . . . , nN (Υ(C))(C)} is a multi-index with one component for each vertex
of Υ(C), which gives the degree of the vertex minus 1. Note that n̄(C) is determined by
Υ(C).

To lighten the notation, we will omit the argument C in situations where confusion is
unlikely. Thus we occasionally write g(C) ≡ (Υ, l̄,m) instead of (Υ(C), l̄(C),m(C)).

In order to prove (2.8) we decompose the event[
∃ C ∈ ∪`≥1C` : min(C) = z,m(C) = m

]
(2.15)

according to the possible values for g(C); we shall abbreviate the number of leaves of
Υ(C) by L. Since the resulting block C, obtained after all merging process “along the
tree”, has mass m, it imposes the following relation between the multi-indices m and l̄:

L∑
i=1

mi −
N∑
j=1

(nj − 1)(`j − 1) = m. (2.16)

Here the first sum runs over all leaves, while the second sum runs over all branching
nodes. This relation follows from (2.5) by induction on the number of vertices, by writing
the tree as the “union” of the root and the subtrees which remain after removing the
root. We note that Υ also has to satisfy

N∑
j=1

(nj − 1) = L − 1, (2.17)
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because it is a tree, as one easily sees by induction on the number of leaves. This implies
the further restriction

L∑
i=1

mi ≥ m+ L − 1,

because `j ≥ 2 in each term of the second sum in (2.16) (recall that we stop our tree
construction at each node corresponding to a block of level 1). Thus the probability of
the event in (2.15) equals to

∑
r≥1

∑
Υ:

L(Υ)=r

∑
l̄,m

Υ
P
(
∃ C ∈ ∪`≥1C` : min(C) = z,m(C) = m, g(C) = (Υ, l̄,m)

)
, (2.18)

where the third sum
∑Υ
l̄,m is taken over all possible values of l̄, m, satisfying (2.16).

A decomposition according to the value of the sum
∑
imi, shows that the expression

(2.18) equals∑
r≥1

∑
Υ:

L(Υ)=r

∑
s≥r−1

∑
m:∑
imi

=m+s

∑
l̄

P
(
∃ C ∈ ∪

`≥1
C` : min(C) = z, m(C) = m, γ(C) = (Υ, l̄,m)

)
,

(2.19)
the sum

∑
l̄ being taken over possible choices of l̄ such that

∑
j(nj − 1)(`j − 1) = s. The

multiple sum in (2.19) can be bounded from above by∑
r≥1

∑
Υ:

L(Υ)=r

∑
s≥r−1

∑
m:∑

imi=m+s

∑
l̄

δm+sLm+2s. (2.20)

Indeed, for fixed z,m and (Υ, l̄,m), the probability

P
(
∃ C : min(C) = z, m(C) = m, g(C) = (Υ, l̄,m)

)
is easily estimated by the following argument: the probability to find a level 1 block
of mass mi which corresponds to some leaf of the tree, and which starts at a given
point x, is bounded from above by δmiLmi−1. Indeed, such a block has to come from
a 1-run xu, xu+1, . . . , xu+mi−1 of elements of Γ, with xu = x and xj+1 − xj ≤ L for
j = u, . . . , u+mi − 2. The number of choices for such a run is at most Lmi−1, and given
the xj , the probability that they all lie in Γ is δmi . Similarly, the probability to find two
level 1 blocks of mass mi1 and mi2 which merge at level `j can be bounded above by
δmi1Lmi1−1δmi2Lmi2−1L`j . The factor L`j here is an upper bound for the number of
choices for the distance between the two blocks; if they are to merge at level `j , their
distance can be at most L`j . Iterating this argument we get that

P
(
∃C ∈ ∪`≥1C` : min(C) = z, m(C) = m, g(C) = (Υ, l̄,m)

)
≤ δ

∑
imiL

∑
i(mi−1)L

∑
j(nj−1)`j ,

and taking into account that∑
i

(mi − 1) +
∑
j

(nj − 1)`j = m+ s+ s− r +
∑
j

(nj − 1),

as well as (2.17), we get the bound (2.20).
The number of terms in the sums over m and l̄ in (2.20) are respectively bounded by

2m+s and 2s (since
∑
j(`j − 1) ≤

∑
j(nj − 1)(`j − 1) = s and `j ≥ 2). Thus we can bound

(2.20) from above by ∑
r≥1

∑
Υ:L(Υ)=r

∑
s≥r−1 2m+s2sδm+sLm+2s

≤ (2δL)m
∑
r≥1

∑
Υ: L(Υ)=r

∑
s≥r−1(4δL2)s

≤ (2δL)m
∑
r≥1

∑
Υ:L(Υ)=r

(4δL2)r−1

1−4δL2 , (2.21)
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Oriented percolation in a random environment

provided we take 4δL2 < 1. Now the number of planted plane trees of u vertices is at
most 4u (see [12]). Our trees have r leaves, but all vertices which are not leaves have
degree at least 3 (except, possibly, the root). Thus, by virtue of (2.17), these trees have
at most 2r vertices. The number of possibilities for Υ in the last sum is therefore at most∑2r
u=r+1 4u ≤ 4

342r ≤ 2 · 42r. It follows that (2.21) is further bounded by

2
(2δL)m

1− 4δL2

∑
r≥1

42r(4δL2)r−1 =
32(2δL)m

1− 4δL2

∑
r≥1

(64δL2)r−1.

If we take 64δL2 < 1, this can be bounded by

32(2δL)m

(1− 4δL2)(1− 64δL2)
,

which proves (2.8) and (2.9) with c2 = − log(2δ)− logL > logL for our choice of δ, L.

Remark 2.7. Note that C∞ depends on the collection Γ only. We shall occasionally write
C∞(γ) for the partition C∞ at a sample point with Γ = γ.

Lemma 2.8. Under the conditions of Lemma 2.3, and for χ as in Lemma 2.4 we have

P(χ = 0) > 0. (2.22)

Proof. If χ(γ) is finite and non-zero, then there exists a unique block C∗ ∈ C∞(γ) such
that m(C∗) = χ(γ) and min(C∗) < Lχ(γ). The existence of C∗ follows at once from the
definition of χ. For the uniqueness we observe that if two such blocks, say C′ and C′′,
would exist, then they would have to satisfy d(C′, C′′) < Lχ(γ) = Lmin{m(C′),m(C′′)}, which
contradicts (2.2) by virtue of the assumption C′, C′′ ∈ C∞.

We use C∗ to construct a new environment γ̃ corresponding to the following sequence
{ξ̃}i≥0 of zeroes and ones:

if χ(γ) = 0, then ξ̃i = ξi for all i ≥ 0;

if 0 < χ(γ) <∞, then ξ̃i =

{
0 if i ≤ max(C∗)
ξi if i > max(C∗).

(2.23)

We shall now show that

χ(γ̃) = 0. (2.24)

Of course we only have to check this in the case 0 < χ(γ) <∞. We claim that in this case
all blocks in Ck(γ̃) (which are of course located in [max(C∗) + 1,∞)) belong also to Ck(γ)

for all k, and the masses of such blocks in the two environments γ and γ̃ are the same.
To check the claim we simply run through the construction of ∪`≥1C`(γ̃), until we

would see an element that wouldn’t be a block the environment γ. We apply induction
with respect to the level of the blocks. Clearly any block of level 0 in γ̃ is simply a single
point of Γ which lies in [max(C∗) + 1,∞), and has mass 1. This is also a block of level
0 and mass 1 in γ. Since ξi = 0 for i ≤ max(C∗) in the environment γ̃, the span of any
k-run in γ̃ has to be contained in [max(C∗) + 1,∞), for any k ≥ 1. Therefore the span
of any block of level k in environment γ̃ also has to be contained in [max(C∗) + 1,∞).
In addition, since the two environments γ and γ̃ agree in this interval, a difference in
the constructions or masses of some block of level k can arise only because in γ there
is a k-run which contains blocks of level k − 1 which lie in [max(C∗) + 1,∞) as well
as blocks which intersect [0,max(C∗)]. But then these blocks will be constituents of a
single C ∈ Ck(γ) say, and span(C) has to contain points in both intervals [0,max(C∗)] and
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Oriented percolation in a random environment

[max(C∗) + 1,∞) in γ, which is in clear contradiction with the fact that C∗ ∈ C∞ and
establishes our last claim.

Now, by definition of χ, (2.24) is equivalent to

min(C) ≥ Lm(C) (2.25)

for all C in C∞(γ̃). In view of our claim this will be implied by (2.25) for all C in C∞(γ)

located in [max(C∗),∞). Now, if C is such a block with m(C) ≤ m(C∗), then (2.25) holds,
because, by virtue of (2.3),

min(C) ≥ min(C)−max(C∗) = d(C, C∗) ≥ Lm(C).

On the other hand, if m(C) > m(C∗) = χ(γ), then the definition of χ shows that we have
min(C) ≥ Lm(C). This proves (2.25) in all cases, and therefore also proves (2.24).

We now have

1 = P(χ(Γ) <∞) ≤ P(χ(Γ) = 0) +

∞∑
n=0

P(max(C∗) = n, χ(Γ(n)) = 0),

where C∗ is as above with γ denoting the value of Γ, and if Γ corresponds to the sequence
{ξi}, then Γ(n) corresponds to the sequence ξ(n)

i given by

ξ
(n)
i =

{
0 if i ≤ n
ξi if i > n.

Thus, either P(χ(Γ) = 0) > 0 or there is some non-random n ∈ Z+ for which P (χ(Γ(n)) =

0) > 0. However,

P(χ(Γ) = 0) ≥ P(χ(Γ) = 0, ξi = 0 for 0 ≤ i ≤ n)

= P(χ(Γ(n)) = 0, ξi = 0 for 0 ≤ i ≤ n)

= P(ξi = 0 for 0 ≤ i ≤ n)P(χ(Γ(n)) = 0)

(since Γ(n) is determined by (ξi; i > n)). This proves the validity of (2.22) and concludes
the argument.

Definition 2.9. Given L ≥ 3 an integer, an environment configuration γ is said to be
L-spaced if χ(γ) = 0 for the given choice of scale parameter L.

A comment on the proof strategy. Since the environment is given by an i.i.d. sequence
and the event {ξ : P(C0 is infinite|ξ) > 0} is a tail event in the ξ sequence, Lemma 2.8
implies that, in order to prove (1.1) in Theorem 1.1, it suffices to show that given pG, pB
as in the statement, L = L(pG, pB) may be taken so that P(C0 is infinite |γ) > 0 for
each L-spaced environment γ. All the construction that follows is done for a fixed L-
spaced environment, and we consider the percolation problem in terms of the conditional
probability P(·|γ), which we shall denote by P γ(·) simply.

3 Construction of renormalized lattices: Layers

Assumptions. From now on we restrict ourselves to δ and L as in Lemma 2.3, with
environments γ such that χ(γ) = 0. For the construction below, we also assume L ≥ 36

and (for convenience) divisible by 3.
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Oriented percolation in a random environment

3.1 Partitions

Having fixed an L-spaced environment, we have not only that the blocks are suitably
separated, but also that there is enough space between the origin and the first block
of any given mass. Later on we may need to increase L (and therefore reduce δ). Our
first goal is now to reach a definition of renormalized sites on Z̃2

+ suitably adapted to our
environment γ. This is done through the construction below.

We start by recursively defining a sequence (Hk)k≥0 of partitions of Z+ determined
by the environment through the blocks (Ck)k≥0. To achieve a convenient regularity,
we might split the space in between consecutive blocks. These partitions of Z+ will
correspond to the horizontal layers at all scales. During the construction, each Hk will
be shown to have the following properties:

1. the elements of Hk are finite intervals of Z+;
2. the partitions Hk are increasingly coarse in k;
3. each block of Ck is contained in an element of Hk;
4. an element of Hk may contain zero, one, or several blocks of Ck; it will contain at

most one block of Ck of mass larger than or equal to k;
5. if C ∈ Ck and m(C) > k, then span(C) ∈ Hk. Such C are called large (at scale k);
6. the cardinality of blocks of Hk not in point 5 is at most Lk.

Definition 3.1. We again refer to the elements of Hk as blocks, also called k-blocks.
Those blocks in point 5 above are called bad. The others, except the block that contains
{0}, are said to be good; a good block in Hk is called good of type 1 if it contains a
block of Ck of mass k, and good of type 2 otherwise.

Remark: As it will follow from the construction, a good block of type 1 of Hk will contain
a unique C ∈ Ck with m(C) = k and possibly several blocks of Ck of smaller masses.

Since Hk will be a partition of Z+ into finite intervals, we define at each step the set
of all right endpoints of the intervals Hi ∈ Hk. Properties 1, . . . , 6 will be checked by
induction on k.

Though it is not truly relevant we may think of H0 as the partition ofZ+ into singletons
{i}, which are good or bad according to ξi = 0 or ξi = 1, respectively.

Step 1. We define the set X ⊂ Z+ containing the right endpoints of the intervals in the
partition H1. It contains three types of points, reflecting the three types of blocks:
• start and endpoints of large blocks of C1; all points of the form min C − 1 and max C,

for C ∈ C1 with m(C) > 1;
• approximate endpoints of blocks with mass one in C1: all points of the form

max C + 3, for C ∈ C1 with m(C) = 1;
• points between the blocks of C1: enumerating the elements of C1 from left to right

as C1, C2, . . . , and setting C0 = {0} the set X contains all points of the form

max Ci + jL/3, for i ≥ 0 and 1 ≤ j < bmin Ci+1 −max Ci
L/3

c. (3.1)

For convenience we take the first (exceptional) block as H1 = {0, 1}, so that we also
add x1 = 1 to the set X which we now write X = {x1 < x2 < . . . }, and setting x0 = −1

the partition H1 is formed by the intervals (see Figure 2).

Hi = (xi−1, xi] ∩Z, for i ≥ 1. (3.2)

We see at once that H1 satisfies properties 1, 3, 4, 5 for k = 1. Property 2 is also
trivial with the previous definition of H0. About property 6, the construction shows that
the cardinality of a good block of H1 is at most 2L/3 + 4 ≤ L for any L ≥ 12.
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0

L/3 ∈ [L/3, 2L/3)

m(C) = 3 m(C̃) = 4

points separating the blocks of H1

large blocks of C1

Figure 2: Illustration of the blocks in H1.

Definition 3.2. If H is a good 1-block we set D(H) = {maxH − 1,maxH}. When it is
good of type 1, i.e. H = [minH, z + 3] ∩ Z with {z} = C ∈ C1 with m(C) = 1, we write
K(H) = [minH, z − 1] ∩Z and distinguish DK(H) = {z − 1}.

Step k. Let k ≥ 2. To recursively define the partition Hk we again identify the right
endpoints of its elements, calling once more X ⊂ Z+ the set of such points. The partition
Hk will be coarser than Hk−1. So we start with Y the set of right endpoints of the blocks
in Hk−1, here listed as Y = {y1 < y2 < . . . }, and need to determine X ⊂ Y. For the
construction we bring in all the elements of Ck with mass at least k. Let these be listed
in increasing order as C1, C2, . . . . Let us also assume the validity of properties 1-6 up to
scale k − 1.

We begin by pointing out that {min Ci − 1,max Ci} ⊂ Y for all i, a property needed in
the construction. Indeed, when `(Ci) < k we have that Ci ∈ Ck−1 and therefore span(Ci)
is a bad block in Hk−1 which implies that min Ci− 1 and max Ci belong to Y. On the other
hand, if `(Ci) = k, it means that Ci was formed from a (k − 1)-run of blocks in Ck−1 with
mass at least k, implying that max Ci is the maximum of a bad block in Hk−1 and min Ci
is the minimum of a bad block in Hk−1 and the conclusion follows.

To define the set X we proceed as follows:
(a) The leftmost element of X is x1 = y3. Also add to X all the points of the form

yus , where yus−1 < sLk/3 ≤ yus , 1 ≤ s < b
min C1
Lk/3

c, (3.3)

i.e. yus is the right endpoint of the (k − 1)-block that contains sLk/3.
(b) If m(Ci) = k and max Ci = yj , we add yj+3 to X , and also all the points of the form:

yus , where yus−1 < yj + sLk/3 ≤ yus , 1 ≤ s < bmin Ci+1 −max Ci
Lk/3

c =: b, (3.4)

i.e. yus is the right endpoint of the (k − 1)-block that contains yj + sLk/3.
(c) If m(Ci) > k and max Ci = yj , we add yj and min Ci − 1 to X , as well the points yus

defined as in (3.4).
Remarks.
(i) We could unify (a) and (b) by thinking of an artificial C0 = {0} with mass k.
(ii) For the above construction to make sense, we need y3 < yu1

in (a), and yj+3 < yu1

in (b) above. This is fine under our assumption, as we see from the upper bound of Lk−1

for the cardinality of any good block of Hk−1, as stated in point 6.
(iii) Since d(Ci+1, Ci) ≥ Lk one sees that b ≥ 3. This implies the existence of at least

two good k-blocks of type 2 contained in the interval [max Ci + 1,min Ci+1 − 1]. Indeed
all the selected points yus ∈ Y are distinct i.e. j + 3 < u1 < u2 < · · · < ub−1. This

follows from the same upper bound used in (ii) above. In particular, yj + sL
k

3 ≤ yus ≤
yj + sL

k

3 + Lk−1 + 1 < yj + (s+ 1)L
k

3 for 1 ≤ s ≤ b− 1.
(iv) As defined above, when m(Ci+1) > k, there is also a good type 2 k-block that

ends at min Ci+1 − 1. Otherwise the interval starting at yub−1
+ 1 is incorporated as
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0

y3

1st block of Hk
formed by 3 blocks of Hk−1

C ∈ Ck−1

m(C) = k

good block of Hk

d ∈ [Lk/3, 2Lk/3)

C′ ∈ Ck−1

m(C′) ≥ k
C′′ ∈ Ck−1

m(C′′) ≥ k

bad block of Hk

C̃ ∈ Ck, m(C̃) > k

Figure 3: Illustration of the construction of Hk. The small arrows indicate the right
endpoints of the blocks in Hk−1. The environment within the good blocks in Hk−1 is not
marked in this picture.

part of a good k block of type 1 with right endpoint yl+3, where yl = max Ci+1. Also, all
(k − 1)-blocks in between yj = max Ci and min Ci+1 − 1 are good, and there are least L/3
of them, as we see at once from d(Ci+1, Ci) ≥ Lk and the upper bound for the cardinality
of a good block in Hk−1, as in (ii).

Now, writing X = {x1 < x2 < . . . } and setting x0 = −1, the partition Hk is defined
through the blocks (see Figure 3).

Hi = (xi−1, xi] ∩Z, i ≥ 1. (3.5)

It remains to check that Hk satisfies properties 1-6 listed before. For this we proceed by
induction, assuming they hold up to Hk−1

Properties 1 and 2 are immediate from the above construction. We now verify
property 5. If C ∈ Ck with m(C) > k, we consider the two possibilities: when `(C) < k,
then by induction we see that span(C) ∈ Hk−1 and the above construction shows that it
is kept in Hk. When `(C) = k the construction shows that span(C) ∈ Hk. Property 3 is
again an almost immediate consequence of the construction and property 2. It follows
from property 5 in the case of a block C ∈ Ck with `(C) = k. On the other hand, if C ∈ Ck

and `(C) < k, we have C ∈ Ck−1, so that by induction C ⊂ H for some H ∈ Hk−1 and
the conclusion follows due to property 2. We now verify property 4: when a block H in
Hk contains C ∈ Ck of `(C) = k then H = span(C). The remaining case follows at once
from the above construction, when examining the two consecutive blocks Ci ad Ci+1 with
min{m(Ci),m(Ci+1)} ≥ k. It remains to check property 6. From the construction, and
writing

Ak := max{|H| : H ∈ Hk is a good k-block}, (3.6)

we have

Ak ≤ 2Lk/3 + max{diam(C) : C ∈ Ck,m(C) = k}+ 1 + 3Ak−1, (3.7)

from which we easily obtain Ak ≤ Lk for all L ≥ 36. This concludes the proof of the
properties 1,..., 6 at all scales.

We now extend Definition 3.2 to scales k ≥ 2.

Definition 3.3. Let H be a good k-block with k ≥ 2 as defined above and let Y = {y1 <

y2 < ...} be the set of right endpoints of the blocks in Hk−1. We define four subintervals
K(H), DK(H), D(H) and F(H) of H as follows:

(a) IfH is good of type 1, which means that we may writeH = (ys, yt+3]∩Z, for suitable
s and t, where (yt−1, yt]∩Z = span(C), C being the unique block in Ck contained inH with
m(C) = k, we set: K(H) = (ys, yt−1]∩Z, DK(H) = (yt−2, yt−1]∩Z, D(H) = (yt+1, yt+3]∩Z,
and F(H) = (ys, ys+1] ∩Z, i.e. K(H) denotes the part of the block that stays to the left of
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C, DK(H) the last (k− 1)-block of K(H), D(H) the two rightmost (k− 1)-blocks of H, and
F(H) the leftmost (k − 1)-block in H.

(b) If H is good of type 2, we set K(H) = H, keep the same definition for F(H), we
still call D(H) the interval that corresponds to the two rightmost (k−1)-blocks contained
in H, and DK(H) is the rightmost block of Hk−1 contained in H.

The lemma below is stated for convenience.

Lemma 3.4. Let L ≥ 36 and let γ be an environment with χ(γ) = 0. The following
properties hold for all k ≥ 1: Let Ak be defined as in (3.6) and

ak := min{|H| : H ∈ Hk is a good k-block}. (3.8)

Then,
Lk/4 ≤ ak ≤ Ak ≤ Lk. (3.9)

Proof. The upper bound for Ak has already been proved as property 6 above. We now
prove the lower estimate in (3.9). Consider first the block immediately to the right of the
one that contains the origin. In this case we get the lower bound Lk/3− 3Lk−1 ≥ Lk/4
for all L ≥ 36. The same estimate works for all other good k-blocks as easily seen from
the construction and the upper bound for Ak−1.

Remark 3.5. Recall that the block of Hk which contains the origin (call it Hk1) is excep-
tional and it has not been classified as good or bad. There would be no true harm in
calling it good (of type 2). Its length is shorter, as for k = 1 we took it as {0, 1} simply,
and at each step the first k-layer is formed by the first three k − 1-layers. In particular,
under the same assumptions of Lemma 3.4 one has:

|Hk1 | ≤ 2

k−1∑
j=0

Lj ≤ 3Lk−1. (3.10)

Remark 3.6. Recalling the construction of Hk and considering two consecutive blocks
Ci and Ci+1 of Ck with mass at least k, it follows that the number of (k − 1)-blocks
contained in the interval (max Ci,min Ci+1) is at least L/4 under our assumptions.

The proposition below was indeed proven during the construction of the partitions
Hk. We state it here in order to facilitate its later usage.

Proposition 3.7. (a) Let H ∈ Hk, with K(H) as in Definition 3.3. All the (k − 1)-blocks
contained in K(H) are good.

(b) Let H ∈ Hk be good of type 1 and let C be the unique block of Ck of mass k
contained in H. Then min C − 1 is the right endpoint of a good (k − 1)-block of type 2
contained in H.

3.2 Reverse partitions

The good k-blocks were defined with a clear orientation in mind. It will be relevant to
consider an appropriate modification of layers that reverses the orientation. This will be
denoted by Ĥk and will be used later in the paper when estimating crossing probabilities
over bad layers. A sufficiently long good layer allows the percolation process to grow
before facing a bad layer. We use this in both directions benefiting from the planarity of
our graph. The reverse blocks are taken as close as possible to the Hk and also satisfy
the same properties 1-6. The main difference comes from the k-blocks around a C ∈ Ck

with m(C) = k, for all k ≥ 1.
As before, and though not relevant we may set Ĥ0 = H0, the partition of Z+ into

singletons.
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Step 1. Let us recall the construction of H1. At this scale the only blocks that change
when passing to Ĥ1 are those around each C ∈ C1 with m(C) = 1. For H1, they have
the form Hi = (y, z + 3] ∩ Z and Hi+1 = (z + 3, ȳ] ∩ Z, for some i, where C = {z}, and
where L/3 < z − y < 2L/3 and ȳ = z + L/3. In the partition Ĥ1, we replace these two
blocks by Ĥi = (y, z − 4] ∩ Z and Ĥi+1 = (z − 4, ȳ] ∩ Z. Each of the other blocks of Ĥ1

coincides with the corresponding one of H1; those that coincide with span(C) for some
C ∈ C1 with m(C) > 1 and all the other intermediate blocks.

Step k. Assume Ĥk−1 already settled. First of all, the bad k-blocks coincide in both
partitions. Following what was done for Ĥ1, we imitate the definition of Hk except that
whenever we have a C in Ck with m(C) = k the “approximate endpoint” stay now to the
left of C, and to the right of C the block extends for at least Lk/3. For each such C, we
focus on the two blocks around C. Continuing what was done before and for the partition
Hk, let C̃ be the rightmost element of Ck to the left of C, with m(C̃) ≥ k (i.e. C̃ and C are
two consecutive blocks in Ck with mass at least k). Let Ŷ = {ŷ1 < ŷ2 < . . . } be the right
endpoints of the blocks in Ĥk−1. Thus, max C = ŷv ∈ Ŷ and min C − 1 = ŷv−1 ∈ Ŷ for
some v. Similarly max C̃ ∈ Ŷ. The rule for Ĥk follows the method indicated above: we set
Ĥi+1 = (ŷv−4, ŷu] ∩Z where ŷu = min{x ∈ Ŷ : x ≥ max C + Lk/3}, and Ĥi = (y, ŷv−4] ∩Z,

where y = min{x ∈ Ŷ, : x ≥ max C̃ + (b̄ − 1)Lk/3}, with b̄ = bmin C−max C̃
L/3 c. The label i is

irrelevant, but we include it just to indicate the correspondence in the two partitions, i.e.
in the direct partition Hi will be the layer of Hk that contains C, while Hi+1 is the one
immediately to the right of C.

The next lemma shows the relation between the partitions Hk and Ĥk. Each interval
in one of these partitions differs not too much from one (and only one) of the intervals in
the other partition.

Lemma 3.8. Write Hk = {Hki , i ≥ 1} and Ĥk = {Ĥki , i ≥ 1} with the intervals labelled in
increasing order. There exists a universal constant C so that for all k ≥ 1,

|Hki4Ĥki | ≤ CLk−1, (3.11)

where 4 denotes symmetric difference and | · | the cardinality.

Proof. It follows from the construction that the symmetric difference is contained in
the union of eight good blocks of Hk−1 ∪ Ĥk−1 and a bad (k − 1)-block which coincides
with span(C), where C ∈ Ck has mass k. The estimate then follows from (2.6) and the
rightmost inequality in (3.9).

Remark. Proposition 3.7 has a clear analogue (with the same proof) for reverse
partitions.

4 Construction of renormalized lattices: sites

Recall that we work under the assumptions stated at the beginning of Section 3, with
fixed L and γ (L-spaced environment), and the partitions Ck and Hk defined for such
fixed L, γ. We now complete the construction of the renormalized lattices. For this, we
also fix a small positive constant c to be made explicit later (depending on the parameter
pG). For the moment we simply assume:

1/c ∈ N and cL/2 ∈ N. (4.1)

Let Hk = {Hk1 ,Hk2 , . . . }, with the blocks Hki listed in increasing order. For later use,
we write

Hk
i = {(x, y) ∈ Z̃2

+ : y ∈ Hki }, (4.2)
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Figure 4: Illustration of a good 1-site of type 1.

for the corresponding horizontal layer defined by the k-block Hki , also called k-layer.
When the scale k is clearly understood, we may omit it from the notation.

We then define the renormalized k-sites Sku,v as follows:

Step 0. S0
u,v = (u, v), for (u, v) ∈ Z̃2

+;

Step k. For k ≥ 1, (u, v) ∈ Z̃2
+, with v ≥ 2

Sku,v =

((
u− 1

2
(cL)k,

u+ 1

2
(cL)k

]
×Hkv

) ⋂
Z̃2

+, (4.3)

also called a k-site. (See Figure 4 for the case k = 1.)

Remark. Since Hk is a partition of Z+, it is obvious that for any fixed k ≥ 1, the sets Sku,v
just defined form a partition of Z̃2

+ \Hk
1 , in the notation (4.2). We also see that for any

k ≥ 2, a k-site Sku,v differs from the union of the (k − 1)-sites that it contains. Defining

S̊ku,v :=
⋃
Sk−1
x,y , (4.4)

where the union runs over all (x, y) such that Sk−1
x,y ⊂ Sku,v, we have that Sku,v \ S̊ku,v is

contained in a strip of width (cL)k−1 along the vertical boundary of the k-site. There is
no true nuisance from the fact that the partitions in k-sites are not exactly coarser as k
increases.

Definition 4.1. A renormalized site Sku,v with v ≥ 2 is called good of type 1 (type 2)
when the corresponding k-block Hkv is good of type 1 (type 2 respectively).

The next properties follow at once from the definition and the properties of Hk:
i) the number of horizontal (k − 1)-layers intersecting a good k-site Sku,v obviously

does not depend on u, and it is between L/4 and 8L. A good k-site intersects at most one
bad (k − 1)-layer.

ii) for k ≥ 2, the intersection of Sku,v with a (k− 1)-layer, if not empty, contains exactly

cL (k − 1)-sites. Each horizontal line of a 1-site S1
u,v contains cL/2 sites of Z̃2

+.
Recall that

Hk1 = Hk−1
1 ∪Hk−1

2 ∪Hk−1
3 .
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Thus, by iterating this relation we see that for any k ≥ 1, the layer Hk
1 is the union of

the layers Ht
2 ∪Ht

3 for 1 ≤ t ≤ k − 1 and of H1
1 = {(x, y) ∈ Z̃2

+ : y ∈ {0, 1}}.
Structure of good sites.
If Sku,v is a good k-site we let

Dl(S
k
u,v) =

[(
u− 1

2
+

1

12

)
(cL)k,

(
u

2
− 1

3

)
(cL)k

]
×Dkv ,

Dr(S
k
u,v) =

[(
u

2
+

1

3

)
(cL)k,

(
u+ 1

2
− 1

12

)
(cL)k

]
×Dkv ,

as well as

DK,l(S
k
u,v) =

[(
u− 1

2
+

1

12

)
(cL)k,

(
u

2
− 1

3

)
(cL)k

]
×DkK,v,

DK,r(S
k
u,v) =

[(
u

2
+

1

3

)
(cL)k,

(
u+ 1

2
− 1

12

)
(cL)k

]
×DkK,v, (4.5)

where Dkv = D(Hkv) and DkK,v = DK(Hkv) (see Definition 3.3).
We next define

Ker(Sku,v) = Sku,v ∩ (Z×K(Hkv)). (4.6)

This set is called the kernel of Sku,v. Note that Ker(Sku,v) equals Sku,v if this site is good of
type 2, but is a strict subset if Sku,v is good of type 1. If Sku,v is a good k-site of type 1,
then its projection on the vertical axis, Hkv , contains exactly one block C of Ck of mass k
(and none of mass greater than k). The kernel is then the portion of Sku,v that stays just
below Z× C. Thus, if Hk

v is a good layer and k ≥ 1, then

top line of Ker(Sku,v) = top line of DkK,v = top line of DK,ϑ(Sku,v), (4.7)

for ϑ = l or r, coinciding with the intersection of each of these sets with the horizontal
line {(x, y) : x ∈ Z}, where y is the right endpoint of Hkv .

Finally,

F (Sku,v) = [(u/2− 1/6)(cL)k, (u/2 + 1/6)(cL)k]×F(Hkv), (4.8)

which is, roughly speaking, the middle third of the lowest (k − 1)-layer in Sku,v. The
(k − 1)-sites contained in F (Sku,v) are said to be centrally located in Sku,v. (See Figure 5
for a schematic illustration of a good k-site Sk = Sku,v where the regions F (Sk), DK,l(Sk),
DK,r(S

k), Dl(S
k), Dr(S

k) and Ker(Sk) are all marked. Further details in the picture will
play a role in the next section.)

The reversed sites Ŝku,v are defined as in (4.3), with Hkv replaced by Ĥkv .

Remark 4.2. In view of Lemma 3.8, it becomes natural to write Ŝ(Sku,v) := Ŝku,v as well

as S(Ŝku,v) := Sku,v for all (u, v).

Before proceeding to the next section, where we start examining the events that
describe percolation, we briefly discuss the general motivation behind what has been
done so far.

The goal of our renormalization procedure is to have a successive way to define the
notion that corresponds to being open at all scales, and which we shall call passable.
The crucial thing is that the existence of a passable path at any scale should imply the
existence of open paths on the original lattice, at scale 0. Two general comments:

• For a fixed L-spaced environment γ, the definition of the renormalized layers Hk

had the purpose of dividing the space in a way that for an oriented path moving
upwards there is enough space before it meets the bad layer of the previous scale.
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Figure 5: A good k-site with marked regions and illustration of the procedure. On the
top part of the picture we see a very schematic representation of matching pairs and
of the event related to property (bk) in the statement of Theorem 5.15. It is properly
constructed in Section 6 and its probability under P γ (γ being L-spaced) is estimated in
Section 7. In order to mark the special regions DK,l, DK,r, etc., the picture was drawn
much wider than the true k-site really is; the ratio between length and width of a good
k-site quickly increases with k since c < 1 is kept fixed in our argument.

• When meeting the bad layer, many of the available paths should fail to percolate.
On the other hand, we need not only to find a successful path, but we need that
such path should connect back to a percolative path at scale k. It is at this point
that we look at the other side of the bad layer and consider the reverse site that
follows it. Being on a planar graph will be crucial for this strategy. (See detail on
the upper left part of Figure 5.)

For this approach to work, besides assuming that L is sufficiently large (depending on
the two parameters pG, pB), we need to have two things:

(a) The constant c in (4.1) should be related to the percolation model, so as to
guarantee a good density of open paths within the renormalized site, just below the
bad layer. Starting with k = 1 this is just the original percolation model within a spatial
region where p = pG, in this case the kernel of a good 1-site. Therefore we should relate
c to the asymptotic shape of the oriented site percolation on Z̃2

+ (assuming that L has
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been sufficiently large) so as to guarantee a good density of paths. As we move to larger
scales the notion of a site being open is replaced by that of what we call passable; the
corresponding probability should suitably increases with the scale and we may hope for
the same behavior to be preserved at larger scales k with the same large L and c. We
recall again that the relation between δ and L is given by Lemma 2.3 so that the event of
L-spaced environments has positive probability (Lemma 2.8) and, as already mentioned,
we work for such a fixed environment configuration.

(b) Considering the just mentioned strategy to deal with the crossing of a bad
layer of previous scale (with paths from both directions), it will be convenient to make
sure that there is a positive density of matching (on opposite sides of the bad layer)
passable sites. This demands the asymptotic density of the percolation cluster in a totally
good environment, ρ(pG), to be larger than 1/2 as our main extra condition on pG. As
mentioned at the end of the Introduction, the extra conditions will be released in Section
8.

5 Passable sites. Probability estimates for large pG

Having fixed the environment γ, which we assume to be L-spaced (for L suitably
large) and the parameters pG, pB of our main theorem, i.e. pG > pc > pB > 0, the first
goal of this section is to set various notions that involve the percolation configuration,
and which should be suitably defined at all scales. We then state probability estimates
which, once verified at all scales, will imply:

P(C0 is infinite|γ) > 0. (5.1)

Notation: Recall that P γ will be used for the conditional probability given {Γ = γ}, i.e.
P(·|γ).

The probability estimates will involve a multiscale argument which is simpler if
pG > p∗ for a suitable p∗ < 1 and pB > 0. Under these conditions, (5.1) will be proven
provided L ≥ L1 = L1(pG, pB). This will be the content of Theorem 5.15. Its proof will
take most of our efforts during this and the next two sections. The extension to all
pG > pc, pB > 0 (and L ≥ L0(pG, pB)) will be treated in Section 8.

Before setting all these notions mentioned above, we make the following assumptions:
Let Pp denote the homogeneous Bernoulli oriented site percolation model on Z̃2

+, and let
θ(p) denote its percolation probability,

θ(p) := Pp(C0 is infinite), (5.2)

so that pc = inf{p ∈ (0, 1) : θ(p) > 0} and θ(p) ↑ 1 as p ↑ 1. For p > pc we also write
s(p) ∈ (0, 1] for the asymptotic edge speed for Pp, as defined in Sec. 3 in [8], where it is
denoted by α(p). 2

Assumption 5.1. i) We first take pG large enough so that θ(pG) > 1/2, and ρ will be
some fixed number in the interval (1/2, θ(pG)).

ii) Regarding the constant c in (4.1), we add:

c <
3

14
s(pG). (5.3)

5.1 Definitions: s-passable and c-passable sites. Rooted seed

We remind the reader that Z̃2
+ is oriented upwards in the second coordinate. We shall

therefore say that A is connected to B by an open path π only if π is an open path which

2In [8], the author considers oriented bond percolation, but the same definition and basic properties apply
to the case of supercritical oriented site percolation.
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respects the orientation and with initial and endpoint in A and B, respectively. We call
such a path simply an open path from A to B. As in (4.7), for A ⊂ Z̃2

+, we call top line of
A the subset {(x, y) ∈ A : y = y0}, where y0 has the maximal value for which this subset
is nonempty. If y0 takes the smallest value for which {(x, y) ∈ A : y = y0} is non empty,
then we call this subset the bottom line of A. Note that these are not complete lines, not
even intervals, in general.

Step 0. A 0-site is called s-passable if and only it is open.

Rooted 0-seed. The rooted 0-seed Q
(0)
u,v, with root at (u, v), is the set of three open

0-sites in Z̃2
+:

Q(0) = Q(0)
u,v = {(u, v), (u+ 1, v + 1), (u− 1, v + 1)}.

The site (u, v) is called the root of Q(0)
u,v, and we write R(Q(0)) = {(u, v)}; the sites

(u− 1, v + 1) and (u+ 1, v + 1) are called the active sites of Q(0), and we set A(Q(0)) =

{(u − 1, v + 1), (u + 1, v + 1)}. (When the location of the seed is not important we will
suppress the subscript.)

Open cluster of a rooted 0-seed. (a) The open cluster of a rooted 0-seed Q(0) = Q
(0)
u,v

is the collection of 0-sites w for which there exists an open path of 0-sites from A(Q(0))

to w. It is denoted by U(Q(0)).
(b) We also need the definition of open cluster of a 0-seed Q(0) restricted to the kernel

of a 1-site S1 located in such a way that all 0-sites of A(Q(0)) are below and adjacent to
F (S1). (See Figure 4.) This is simply the collection of good 0-sites w for which there
exists an open path of (good) 0-sites entirely contained in S1, from a 0-site adjacent to
A(Q(0)) to w.

We next define open clusters, passability and rooted seeds for a general k ≥ 1. These
definitions have to be used in sequence. Having defined a rooted 0-seed and open cluster
of a 0-site, we can define passability of a good 1-site, then a rooted 1-seed and the open
cluster of a 1-site; next passability of a good 2-site and a rooted 2-seed, and so on.

s-Passable k-site. A good k-site Sk is said to be s-passable from a rooted (k − 1)-seed
Q(k−1) if the following conditions (s1), (s2) and (s3) are satisfied:

(s1) All 0-sites of A(Q(k−1)) are below and adjacent to the middle third of the bottom
layer of Sk, i.e., adjacent to F (Sk) (see (4.8) for the definition of F (Sk)).

(s2) There exist two rooted (k − 1)-seeds, Q̃(k−1)
l and Q̃

(k−1)
r say, such that their top

lines are contained in the top line of Dl(S
k) and the top line of Dr(S

k), respectively,
and such that there exist open 3 paths of 0-sites, entirely contained in Sk, from
0-sites adjacent to A(Q(k−1)) to R(Q̃

(k−1)
l ) and to R(Q̃

(k−1)
r ).

(s3) If k ≥ 2, the number of (k − 1)-sites in the open cluster of Q(k−1) restricted to
Ker(Sk) that lie on each of DK,l(Sk) and DK,r(Sk) is not smaller than ρcL/12 (see
(4.5) for the definition). When k = 1 we have a similar condition, but ρcL/12 is
replaced by ρcL/24.

Definition 5.2. In the previous setup, we say that Sk has s-dense kernel from Q(k−1) if
the above condition (s3) holds.

Notation. We shall denote the leftmost rooted (k−1)-seed which fulfills the requirements

for Q̃(k−1)
l in (s2) as Ql(Sk). Similarly Qr(Sk) denotes the rightmost rooted (k − 1)-seed

which fulfills the requirements for Q̃(k−1)
r . We further define A(Sk) = A(Ql(S

k)) ∪
A(Qr(S

k)) and call the sites in this set the active sites of Sk. Note that in these
definitions Ql(Sk), Qr(S

k) and A(Sk) also depend on Q(k−1), even though the notation

3always oriented
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does not indicate this. However, in the definition of the open cluster of a rooted k seed
we shall use the more explicit notation Qϑ(Sk, Q(k−1)) with ϑ = l or r to indicate this
dependence.

Rooted k-seed. A rooted k-seed is formed by a rooted (k − 1)-seed Q(k−1) and three
good k-sites

Sku,v, S
k
u−1,v+1 and Sku+1,v+1,

such that

• (i) Sku,v is s-passable from Q(k−1),

• (ii) Sku−1,v+1 and Sku+1,v+1 are passable from Ql(S
k
u,v) and Qr(Sku,v), respectively.

The corresponding k-seed is denoted by

Q(k) = Sku,v ∪ Sku−1,v+1 ∪ Sku+1,v+1 ∪Q(k−1). (5.4)

We set

R(Q(k)) = R(Q(k−1)),

A(Q(k)) = A(Ql(S
k
u−1,v+1)) ∪A(Qr(S

k
u−1,v+1))

∪A(Ql(S
k
u+1,v+1)) ∪A(Qr(S

k
u+1,v+1)).

The 0-site R(Q(k)) is called the root of Q(k); the sites in A(Q(k)) are called the active
sites of Q(k).

Remark. We point out that the locations of Dl(S
k
u,v) and Dr(S

k
u,v) are such that the

definition of a rooted k-seed makes sense. Specifically, the top line of Dl(S
k
u,v) is adjacent

to and just below F (Sku−1,v+1) and so, if Sku,v is s-passable, then also Ql(Sku,v) is adjacent
to and just below F (Sku−1,v+1). Thus, it makes sense to speak of s-passability of Sku−1,v+1

from Ql(S
k
u,v). Similar statements hold for Sku+1,v+1 and Qr(Sku,v).

Remark. Note that in the definition of a rooted 0-seed we required the three 0-sites
which make up the seed to be open. Starting from this fact we deduce the following
lemma.

Lemma 5.3. In a rooted k-seed Q(k) there exists, for each x ∈ A(Qk)), an open oriented
path of 0-sites lying in Q(k), and going from R(Q(k)) to x.

Proof. We use a proof by induction on k. For k = 0 the conclusion of the lemma is
obvious. For the induction step, let k ≥ 1 and assume that the conclusion of the lemma
with k replaced by k − 1 has already been proven. Let further Q(k) = Sku,v ∪ Sku−1,v+1 ∪
Sku+1,v+1 ∪ Q(k−1) be a rooted k-seed and let x ∈ A(Ql(S

k
u−1,v+1)). The other possible

locations for x in A(Q(k)) can be handled in the same way. Then there exist open paths
of 0-sites πi as follows:

π1 from y := R(Ql(S
k
u−1,v+1)) to x (by the induction hypothesis);

π2 from some point z in A(Ql(S
k
u,v)) to y (because Sku−1,v+1 is s-passable from

Ql(S
k
u,v));
π3 from w := R(Ql(S

k
u,v)) to z (by the induction hypothesis again);

π4 from some point a in A(Q(k−1)) to w (because Sku,v is s-passable from Q(k−1));

π5 from R(Q(k−1)) to a (by the induction hypothesis once more).
Now concatenation of the paths π5, π4, . . . , π1 gives an open path of 0-sites from

R(Q(k−1)) to x, as desired, noticing that all these paths can be taken entirely lying in
Q(k).
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Remark. If the origin is connected to R(Q(k−1)) by an open path, and Sk is s-passable
from Q(k−1), it follows that the origin is connected by an open path of 0-sites to all sites
in A(Sk).

Open cluster of a rooted k-seed with k ≥ 1. (a) The open cluster of a rooted k-seed
Q(k) = Sku,v ∪Sku−1,v+1 ∪Sku+1,v+1 ∪Q(k−1) as in (5.4) is defined as the collection of k-sites
consisting of Sku,v, S

k
u−1,v+1, S

k
u+1,v+1 and the k-sites S for which there exists a sequence

S(1), . . . , S(n) of k-sites with the following properties:

each S(j) is good, (5.5)

S(n) = S, (5.6)

for 0 ≤ j ≤ n, S(j) is s-passable from a rooted (k − 1)-seed Q̃(j − 1), (5.7)

where, in the notation of the remark following condition (s3), (5.8)

Q̃(j − 1) = Q
(k−1)
ϑ(j−1)

(
S(j − 1), Q

(k−1)
ϑ(j−2)(S(j − 2)

)
. (5.9)

Here ϑ(i) can be l or r, independently of each other, and S(−1) = Sku,v, and S(0) =

Sku+φ,v+1 with φ = −1 if ϑ(0) = l and φ = +1 if ϑ(0) = r. Also, Q̃(−1) = Q(k−1).

(b) We define the open cluster of the rooted k-seed Q(k) restricted to Ker(Sk+1) as
in (a), but now with the added restriction that all S(j), 1 ≤ j ≤ n, are contained in
Ker(Sk+1)∩ S̊k+1 (see (4.4) and (4.6)), and we remove Q(k) from this restricted cluster.4

c-Passable k-site. A good 0-site is said to be c-passable if it is open. For k ≥ 1, a good
k-site Sk is said to be c-passable if:

(c1) There exist two rooted (k − 1)-seeds, Q̃(k−1)
l and Q̃

(k−1)
r say, such that their top

lines are contained in the top line of Dl(S
k) and the top line of Dr(S

k), respectively,
and such that there exist open oriented paths of 0-sites, entirely contained in Sk,
from the lowest 0-level layer of F (Sk) to R(Q̃

(k−1)
l ) and to R(Q̃

(k−1)
r ).

(c2) If k ≥ 2, the number of (k − 1)-sites in the open cluster of F (Sk) restricted to
Ker(Sk) that lie on each of DK,l(Sk) and DK,r(Sk) is not smaller than ρcL/12 (see
(4.5)). When k = 1 we have a similar condition, but ρcL/12 is replaced by ρcL/24.

Definition 5.4. In the above setup, we say that Sk has c-dense kernel if condition (c2)
holds.

Remark 5.5. Taking into account the reversed partition, we analogously define the
notions of ĉ- and ŝ-passable sites.

Lemma 5.6. Let k ≥ 1. If a good k-site Sk has an s-dense kernel from a rooted
seed Q(k−1), then A(Q(k−1)) is connected by open paths of 0-sites to at least n(k) :=

dρcL/24edρcL/12ek−1 0-sites in the top line of DK,ϑ(Sk), for ϑ = l and ϑ = r, i.e. to the
left and to the right of the middle third of the top line of Ker(Sk). Except for each initial
site (in A(Q(k−1))), these open paths are contained in Ker(Sk).

Proof. The proof goes by induction on k. Start with k = 1. If S1 has an s-dense kernel
from the 0-rooted seed Q(0), then there are at least n(1) 0-sites in the open cluster of
Q(0) restricted to Ker(S1) which belong to DK,ϑ(S1), for ϑ = l, r. Each such 0-site is just
a vertex w ∈ DK,ϑ(S1) for which there is a path in Ker(S1) of open good 0-sites starting
at a site adjacent to A(Q(0)) and ending at w. Moreover, such w automatically stays in
the top line of Ker(S1

u,v), because (since k = 1) the cardinality of DK(H1
v) equals 1 in this

4This does not affect the construction. It is just for consistency with the case k = 0.
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case. Thus, for k = 1, the conclusion of the lemma is immediate from the definitions of
an s-dense kernel and of the open cluster of Q(0).

Now assume that the lemma has already been proven for k replaced by k− 1. Assume
further that Sk has an s-dense kernel from the rooted seed Q(k−1) = Sk−1

u,v ∪ Sk−1
u−1,v+1 ∪

Sk−1
u+1,v+1 ∪Q(k−2). Let S̃k−1 be a (k − 1)-site which belongs to the open cluster of Q(k−1).

Further, for the sake of argument, let S̃k−1 lie in DK,l(Sk). Then there exists some n and
sequences Sk−1(0), . . . , Sk−1(n) and ϑ(0), . . . , ϑ(n) such that (5.5)-(5.9) with k replaced
by k − 1 and S by S̃k−1 hold. In particular, Sk−1(j) is passable from the rooted (k − 2)-

seed Q̃(j − 1) = Q
(k−2)
ϑ(j−1)(S

k−1(j − 1), Q
(k−2)
ϑ(j−2)(S

k−1(j − 2)). Also, part of the definition of

s-passability gives that the top line of Q̃(j − 1) will be equal to the top line of Sk−1(j − 1).
A simple induction argument (with respect to j), similar to the proof of Lemma 5.3,
then shows that there exists a path of open 0-sites in Ker(Sk) from a site adjacent to
A(Q(k−1)) to R(Q̃(j)). For j = n, an application of Lemma 5.3 then shows that for each
vertex x in A(Q̃(n)) there exists an open path of 0-sites from A(Q(k−1)) to x. Since Sk

has a dense kernel there are at least dρcL/12e choices for S̃k−1 which are contained in
DK,l(S

k) (respectively in DK,r(Sk)). Since different (k − 1)-sites are disjoint, there are

at least dρcL/12e disjoint choices for S̃k−1 in each of DK,l(Sk) and DK,r(Sk). Moreover,

if S̃k−1 = Sk−1(n) is any fixed one of the possible choices, then S̃k−1 is s-passable from
a rooted seed Q̃(n− 1), as we just showed. By the induction hypothesis, there exist at
least n(k − 1) 0-sites y in the top line of Ker(S̃k−1), with the property that there exists
an open path in Ker(S̃k−1) from some x adjacent to A(Q̃(n− 1)) to y. Such a connection
can be concatenated with the connection from A(Q(k−1)) to x, to obtain an open path
in Ker(Sk) from a vertex adjacent to A(Q(k−1)) to y. But then there at least n(k − 1)

choices for y in each possible S̃k−1 and ρcL/12 choices for S̃k−1. In total this gives at
least n(k) 0-sites with the required open connection from R(A(k−1)).

The 0-sites y constructed in the preceding paragraph lie in the top line of Ker(S̃k−1)

for some S̃k−1, which itself lies in DK,l(Sk) ∪DK,r(Sk). It remains to show that these y
lie in the top line of Ker(Sk) itself. However, as recalled in Proposition 3.7,

each of the possible S̃k−1 is a good (k − 1)-site of type 2. (5.10)

As observed right after the definition (4.6), the validity of (5.10) implies Ker(S̃k−1) =

S̃k−1. Thus (5.10) implies that the possible y lie in the top lines of the possible S̃k−1 and
these latter top lines are contained in the top line of Ker(Sk). This is so because, by
construction, the projections of the sets S̃k−1 and DK,ϑ(Sk), for ϑ = l or r, on the vertical
axis coincide with a same interval H ∈ Hk−1. The induction step easily follows.

Notation. For C ⊂ Z+ we write

B(C) = {(x, y) ∈ Z̃2
+ : y ∈ span(C)}. (5.11)

Definition 5.7. (Matching pair) Let C ∈ C` be such that `(C) = ` and m(C) = m.
Since C is formed at level ` there are two blocks C1 and C2 in C`−1 with m(Ci) ≥ `,
i = 1, 2, which are respectively the leftmost and rightmost constituents of C. Thus
span(C) = [min C1,max C2] ∩Z. In particular, for each k ∈ {` − 1, . . . ,m − 1}, there is a
k-block Hkv−1 with maxHkv−1 = min C1 − 1 and a k-block Ĥkv′+1 ∈ Ĥk so that min Ĥkv′+1 =

max C2 + 1. Note that Hkv−1 and Ĥkv′+1 are good k-blocks (of type 2). We then say that

two k-sites Sk(u,v−1), Ŝ
k
(u′,v′+1) form a matching pair with respect to B(C) if either u′ = u

or u′ = u± 1, according as v′ − v is even or odd.

Remark. For k = ` − 1, Hkv = span(C1) and Ĥkv′ = span(C2). On the other hand, for
k ∈ {`, ...,m− 1} we simply have v = v′, corresponding to the bad k-block that coincides
with span(C). (Figure 5 contains an illustration of this last situation.)
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5.2 Some classical estimates

Before formulating our basic set of estimates we state a number of properties of
supercritical oriented site percolation on Z̃2

+. We start with a simple observation which
holds for any Bernoulli percolation as an immediate consequence of coupling.

Lemma 5.8. Consider site percolation on a graph G (possibly partially oriented). Denote
the probability measure under which all sites are independently open with probability p
by Pp, and let E be some increasing event. If p0, p

′
0 ∈ [0, 1] and p̃ = 1− (1− p0)(1− p′0),

then
Pp{E} ≥ 1− (1− Pp0{E})(1− Pp′0{E}) for all p ≥ p̃. (5.12)

Now let us go back to oriented site percolation on Z̃2
+ and let Pp be as in the preceding

lemma. For A ⊂ Z̃2
+ define

Θ(A) = {all vertices in A are open} (5.13)

and let |A| denotes the cardinality of A.

Lemma 5.9. There exists p̃ ∈ (0, 1) and a universal constant c5 < ∞ such that for all
p ≥ p̃ and all subsets A of 2Z× {0} it holds

Pp{there is an open path from A to∞
∣∣Θ(A)} ≥ 1− c5[9(1− p)]|A|+1. (5.14)

This is a well-known argument in percolation. For sake of completeness we give the
proof in the Appendix.

Again consider oriented site percolation on Z̃2
+. Write 0 for the origin and define

rn := sup{x : (x, n) ∈ Z̃2
+ and there exists an open path from 0 to (x, n)}, (5.15)

`n := − inf{x : (x, n) ∈ Z̃2
+ and there exists an open path from 0 to (x, n)},

rn = `n = 0 if there is no open path from 0 to Z× n.

We further remind the reader that the percolation probability θ(p) was defined in (5.2).
It is known (see [8]) that for all p ≥ p̃ > pc we have θ(p) ≥ θ(p̃) > 0 and there exists
s(p) ∈ (0,+∞) for which

limn→∞
1
nrn = limn→∞− 1

n`n = s(p) a.s. [Pp] on the event (5.16)

Ω0 := {there exists an open path from 0 to∞};

s(p) is called the edge-speed (see [8] or [17]).
Finally we need the existence of a positive density in [−ns(p), ns(p)] × {n} of sites

which have an open connection from a fixed finite nonempty set. The next lemma gives
the precise meaning of this statement. We need the following definition: Let α ≤ β and
η > 0. Also let A = {0, 2, 4, . . . 2a − 2} be some nonempty interval of a even integers.
Then

νn(α, β) = νn(α, β,A, η) := number of points (x, n) with αn ≤ x ≤ βn, (5.17)

x+ n even, for which there exists an open path from

A× {0} to (x, n) which stays inside [−ηn, ηn]× [0, n].

Lemma 5.10. Let 0 < ε, η ≤ 1. There exists some p̄ = p̄(ε, η) < 1 such that for p ≥ p̄

there exists an n0 = n0(ε, η, p), such that for n ≥ n0 and −s(p) ≤ α ≤ β ≤ s(p),

Pp

(
1

n
νn(α, β,A, η) ≥ [θ(p)(β − α)− ε] η

17
for all − s(p) ≤ α ≤ β ≤ s(p)

)
≥ 1− ε.(5.18)
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The proof of this lemma is shifted to the Appendix.

Corollary 5.11. Let Θ(A) be as in (5.13) and

Ω(A) := {there is an open path from A to infinity}.

Then under the conditions of Lemma 5.10, if n≥ n0, it holds for any finite set A ⊂ Z̃2
+

Pp

(
1

n
νn(α, β,A, η) ≥ [θ(p)(β − α)− ε] η

17
for all − s(p) ≤ α ≤ β ≤ s(p)

∣∣∣Θ(A)

)
≥ 1− ε. (5.19)

and

Pp

(
1

n
νn(α, β,A, η) ≥ [θ(p)(β − α)− ε] η

17
for all − s(p) ≤ α ≤ β ≤ s(p)

∣∣∣Ω(A)

)
≥ 1− ε. (5.20)

Proof. Since Θ(A) and Ω(A) are increasing events of the environment, these inequalities
are immediate from (5.18) and the Harris-FKG inequality.

Comment: The previous lemma is used in order to achieve the dense kernel property
when growing a cluster constrained to stay in a site. To understand it, it suffices
to consider the first scale. Since the sites S1 have dimension cL/2 × L′ where L′ is
determined by the length of the corresponding H1 block, and can vary between L/4 and
2L/3 + 4, we need a restriction to stay within S1 reaching the required density at the top
line of Ker(S1). Thus, we apply the lemma for an initial growth (for a suitable fraction
of the total height) and then release the restriction to reach the desired density ρ, using
standard results in oriented percolation, for all suitably large L. Recall that we are using
L as a parameter and then δ is taken suitably small, according to Lemma 2.3.

We now state and give a sketchy proof of another estimate that will be used in
Section 7.

For n ≥ 1 a large integer, consider the “rectangle” Rn = ([0, n] × [0, n2]) ∩ Z̃2
+, let

x = (x, k),y = (y, n2) ∈ Rn be such that |x − n/2|, |y − n/2| ≤ n/10, and define the
following event of vertical crossing:

V (x,y, Rn) = {there exists an open oriented path from x to y lying entirely in Rn}.

Lemma 5.12. There exist n0 ≥ 1, 0 < p̃ < 1 and κ′ > 0, such that for any n ≥ n0 and
p ≥ p̃ we have

Pp(V (x,y, Rn)) ≥ pκ
′
.

Proof. The proof of the above inequality is rather standard. We sketch it briefly. Let
an = b 4n

10 c and let A be the event that there is an open oriented path from (x, k) to the

horizontal segment {(z, k + an) ∈ Z̃2
+ : z ∈ [0, n]} and that on this segment the open

cluster from (x, k) is close to its asymptotic shape and asymptotic density. We can
chose n0, κ′′ and p̃ so that Pp(A) ≥ pκ

′′
for all p ≥ p̃ and all n ≥ n0. Similarly define B

for a downward oriented cluster starting from (y, n2) and going down to the segment
{(z, n2 − an) ∈ Z̃2

+ : z ∈ [0, n]}, so that Pp(B) ≥ pκ′′ for all p ≥ p̃. If k + an ≥ n2 it follows
at once from the planarity of the graph (concatenation of paths) that the occurrence of
A ∩B implies the existence of a path from (x, k) to (y, n2) contained in Rn. Otherwise, if
A occurs, we can restart, but now from order c̃n points centrally located in the segment
at height k+ an and repeat the argument for successive rectangles of height an, until we
reach height at least n2. The probability of succeeding in each of them will be bounded
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from below by 1− exp(−c1n), with constant c1 > 0, and uniformly bounded away from 0,
for such p. Putting them together and using the concatenation of paths we construct an
open path lying in Rn that goes from (x, k) to (y, n2). The lemma follows for κ′ > 2κ′′.

Remark 5.13. It is obvious that by increasing κ′ the above statement extends uniformly
on p ≥ p′, for any fixed p′ > pc.

5.3 Basic step

At this point we are ready to give a more detailed description of the inductive step.
Recall that the environment will be a fixed γ with χ(γ) = 0.

As already explained, and seen from the construction made in Section 3, our option
has been to use the same renormalization procedure for all scales. The authors believed
this simplifies a bit the whole structure of the proof. On the other hand, it demands pG
to be larger than what is truly needed. We shall collect such needed assumptions in the
main statement in this section (Theorem 5.15). In Section 8 we will discuss how to relax
it to pG > pc. Thus, complementing Assumptions 5.1, we add

Assumption 5.14. Assume pG > 2/3 and that N is a fixed integer for which

[3(1− pG)]N/5−2 ≤ 1/72.

From Assumption 5.14 we then have

8(1− p3)N/5 ≤ (1− p)2, for all p ≥ pG. (5.21)

If k ≥ 1 and Sk is a good k-site of type 1 we will be looking at a very particular way to
obtain its s-passability from a given (k − 1)-seed Q(k−1)

0 . It will turn out to be enough for
Theorem 1.1 to consider the situation when Sk is good of type 1 and the bad (k− 1)-sites
contained in Sk lie in a layer B(C), where C is a bad block with `(C) = ` < k and m(C) = k.
Thus, the projection of B(C) on the vertical axis equals Hk−1

v for some v. The top line of
the kernel of Sk is contained in the line y = min(Hk−1

v ) − 1. The (k − 1)-sites with the
same top line are those (k − 1)-sites with projection onto the vertical axis equal to Hk−1

v−1,

i.e. of the form Sk−1
u,v−1 for some suitable u.

In each case, passability of Sk will be built from the occurrence of three events
W k

1 ,W
k
2 and W k

3 which we define now. Further properties of these W k
i will be given in

Theorem 5.15 at the end of this section.
For k ≥ 1

W k
1 (s) = W k

1 (s, Sk, Q
(k−1)
0 ) = {Sk has s-dense kernel from a seed Q(k−1)

0 },

where Q(k−1)
0 is a given rooted (k − 1)-seed which fulfills condition (s1) for s-passability

of Sk. If W k
1 (s) occurs, then there exists for ϑ = l (left) and for ϑ = r (right) in DK,ϑ(Sk)

a collection Rk−1
ϑ with at least5 dρcL/12e (k − 1)-sites Sk−1 in the open cluster of Q(k−1)

0

restricted to Ker(Sk). Each of these is s-passable from some rooted (k − 2)-seed. We
remind the reader that this implies that each of these Sk−1 in Rk−1

ϑ contains for λ = l

and for λ = r a rooted (k − 2)-seed Q
(k−2)
λ = Qk−2

λ (Sk−1) with top line contained in
DK,λ(Sk−1) for which there exists an open path of 0-sites in Ker(Sk) from a site adjacent

to A(Q
(k−1)
0 ) to R(Q

(k−2)
λ ) (see the proof of Lemma 4.3). The union of the active sites of

Q
(k−2)
l (Sk−1) and Q(k−2)

r (Sk−1) is denoted by A(Sk−1).
For k ≥ 2 the event W k

2 (s) occurs if and only if W k
1 (s) occurs and for ϑ = l and for

ϑ = r there exist a collection Lk−1
ϑ of (k − 1)-sites with the following properties:

5 For k = 1 one needs to replace 12 by 24 here.
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• (i) Lk−1
ϑ ⊂ Rk−1

ϑ and the cardinality of Lϑ is at least N ;

• (ii) for each Sk−1 = Sk−1
u,v−1 ∈ Lθ there exists an index ũ with |ũ − u| ≤ 2 and

a rooted (k − 2)-seed Q(k−2)(ũ) say, in Sk−1
ũ,v+1 and with top line contained in the

Dl(S
k−1
ũ,v+1)∪Dr(S

k−1
ũ,v+1) and such that there is an open path inside Sk from A(Sk−1))

to R(Q(k−2)(ũ)).

When k = 1 we modify (ii) somewhat. Recall that a 0-site is just a vertex of Z̃2
+. For k = 1,

R0
ϑ will just be taken as the collection of 0-sites (u, v − 1) in DK,θ for which there exists

an open path in Ker(Sk) from a site adjacent to A(Qk−1
0 ) to (u, v − 1). We then replace

(ii) by
(ii, k=1) for each S0

u,v−1 = (u, v − 1) ∈ Lθ, there exists a ũ with |ũ− u| ≤ 2 such that
there is an open path in S1 from (u, v − 1) to S0

ũ,v+1 = (ũ, v + 1).
Finally, if W k

2 (s) occurs, and k ≥ 2, then W k
3 (s) occurs if and only if there exist (at

least) two rooted (k − 1)-seeds in Sk, Qk−1
l,1 with top line in Dl(S

k) and Qk−1
r,1 with top

line in Dr(S
k), and open connections of 0-sites in Sk from the collection of the rooted

(k − 2)-seeds Q(k−2)(ũ) mentioned in (ii) above to R(Qk−1
l,1 ) as well as to R(Qk−1

r,1 ). When

k = 1 we merely replace the collection of rooted (k − 2)-seeds Q(k−2)(ũ) here by the
collection of 0-sites S0

ũ,v+1 mentioned in (ii,k=1).
The definitions of the W k

i are unfortunately quite involved due to the multi-scale
argument. The reader should think of W k

1 as providing open connections from the middle
third of the bottom of Sk to the top of its kernel; then W k

2 will provide open connections
from the top of the kernel to the top of the bad layer, and finally W k

3 from the top of the
bad layer to the top of Sk. The connections required for W k

2 from the bottom of the bad
layer to its top are the most difficult to come by. They will be constructed in the next
section.

With the definitions just described we now state

Theorem 5.15. There exists p∗ < 1 so that for all pG ≥ p∗, pB > 0, one can find
L1 = L1(pG, pB) such that for every L ≥ L1, every k ≥ 1, and good k-site of type 1 which
intersects a bad layer B(C) with C ∈ C` with `(C) = ` and m(C) = k for some ` ≤ k − 1,
the following bounds hold for any environment γ with χ(γ) = 0:

(a) If Q(k−1) is a rooted (k − 1)-seed and Sk a good k-site of type 1 which satisfy
condition (s1) for an s-passable k-site, then

P γ(W k
1 (s) | Q(k−1) is a rooted (k − 1)-seed ) ≥ 1− (1− pG)k+1

4
. (5.22)

(b)

P γ(W k
2 |W k

1 ) ≥ 1− (1− pG)k+1

4
. (5.23)

(c)

P γ(W k
3 |W k

2 ) ≥ 1− (1− pG)k+1

4
. (5.24)

(d)

P γ(Sk is s-passable from Q(k−1)
∣∣Q(k−1)is a rooted (k − 1)− seed)

≥ 1− (1− pG)k+1,

P γ(Sk is c-passable) ≥ 1− (1− pG)k+1. (5.25)

The following is an immediate consequence of Theorem 5.15.
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Corollary 5.16. Let pB , pG and L ≥ L1(pG, pB) as in the statement of Theorem 5.15.
Then

P γ(C0 is infinite) > 0, (5.26)

provided the environment γ is L-spaced.

Proof. One simply recursively uses the lower bounds for conditional probabilities in
(5.25) and notice that their product over all k ≥ 1 is positive. The conclusion follows
immediately.

Outline of the proof of Theorem 5.15. The proof goes by induction. For simplicity we
write (ak), (bk), (ck) and (dk) for the corresponding statement at level k. We shall prove
(a1), (b1) and (c1) and the following implications:

(ak), (bk) and (ck) together =⇒ (dk); (5.27)

(dk) =⇒ (ak+1) and (ck+1). (5.28)

(aj)j≤k+1, (bj)j≤k and (cj)j≤k =⇒ (bk+1) (5.29)

We first observe that (5.27) is immediate from the definitions. The most difficult and
involved step is (5.29). This is indeed the core of the proof and will be concluded in
Section 7. Before proving (5.28) we focus on the proof of (a1), (b1) and (c1).

For (a1), assume for the sake of argument that S1 = S1
0,v =

(
(−cL/2, cL/2] ×H1

v

)
∩ Z̃2

+

(see (4.3)) with Ker(S1) ∩ (Z×K1
v) (see (4.6)).

Since S1 is assumed to be good of type 1, it intersects a unique bad layer, which
indeed corresponds to a block in C1 of mass 1, i.e. a singleton. Let this be {z} so that
H1
v = [minH1, z + 3] =: [y0, z + 3] and K1

v = [y0, z − 1] and |K1
v| ≥ L/4 for all L under

consideration. Moreover all the lines that lie in Ker(S1) are good lines.
The condition thatQ(0) is a rooted 0-seed gives us two adjacent open vertices (x, y0−1)

and (x + 2, y0 − 1) for some x ∈ [−cL/6 − 1, cL/6 + 1]. For W 1(s, S1, Q(0)) to hold
it suffices to have open paths in Ker(S1) from sites adjacent to a site in A(Q(0)) =

{(x, y0 − 1), (x+ 2, y0 − 1)} to at least dρcL/24e 0-sites in DKϑ for ϑ = l and ϑ = r. In the
simple case of k = 1 these are just open paths in S1 to ([− 5

12cL,−
1
3cL]× {z − 1}) ∩ Z̃2

+

(if ϑ = l) and to ([ 1
3cL,

5
12cL]× {z − 1}) ∩ Z̃2

+. Thus (5.22) for k = 1 can now be satisfied
for large L by an application of Lemma 5.10 that guarantees positive density of the open
oriented cluster restricted to S1 at a suitable height proportional to L, and then using
unrestricted growth to achieve density ρ in DKϑ for ϑ = l and ϑ = r.

Next, (5.23) for k = 1 is easy. If W 1
1 (s) occurs, then for ϑ = l, r there exist sets

R0
ϑ containing at least dρcL/24e open 0-sites which have an open connection from the

origin. These sets are contained in the top line of Ker(S1), that is, in the horizontal
line {y = z − 1}. It is important that these sets R0

ϑ are determined by the occupation
variables η(a,b) with b ≤ z − 1. For W 1

2 (s) to occur, there should be at least N (see (5.21))
sites (a, z−1) in each of R0

ϑ, ϑ = l, r which have an open connection to (x, z+ 1) (which is
on the line just above the bad line {y = z}) for some x ∈ [a− 2, a+ 2]. But the cardinality
of R0

ϑ is at least dρcL/24e and hence goes to infinity with L. Thus if we keep 0 < pB , pG
and N fixed, then the conditional probability in the left hand side of (5.23) tends to 1
as L → ∞. Indeed, given W 0

1 (s), the event that (a, z − 1) has an open connection to
[a− 2, a+ 2]× {z + 1} has a strictly positive conditional probability, and these events for
a = a′ and a = a′′ are conditionally independent when |a′ − a′′| ≥ 5. Thus, by raising L1

if necessary, (5.23) for k = 1 follows.
We turn to (5.24) for k = 1. If W 1

2 (s) occurs, then let L0
ϑ be the subset of 0-sites

(a, z − 1) in R0
ϑ which have an open connection to (x, z + 1) for some x ∈ [a − 2, a + 2].
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On the event W 1
2 (s) the cardinality of L0

ϑ is at least N . Denote by L̃0
ϑ the collection of

0-sites (x, z + 1) with an open connection from some (a, z − 1) ∈ L0
ϑ, with separated

values a as just mentioned. On the event W 1
2 (s), the cardinality of L̃0

ϑ is at least N/5.
Then W 1

3 (s) occurs if for ϑ = l as well as ϑ = r, there is a (x, z + 1) ∈ L̃0
ϑ which has an

open connection to a rooted 0-seed with top line in the top line of S1. Note that the
top line of S1 is contained in the line {y = z + 3}. Therefore, if (x, z + 1) ∈ L̃0

ϑ, then
the conditional probability that it has such an open connection is bounded below by
p3
G. Since the cardinality of L̃0

ϑ is at least N/5, we see at once that (5.21) suffices to
guarantee (5.24) when k = 1. Thus, having pG > 2/3 and such that Lemma 5.10 applies,
N as in Assumption 5.14 (so that (5.21) holds), we then have L1 = L1(pG, pB) so that
both (5.23) and (5.24) are valid for k = 1.

The implication (5.28) is also simple. If pG > 2/3 and N has been chosen as above,
we see at once from (5.21) that (dk) implies (ck+1). The coupling argument given in
Lemma 5.8 easily shows that (ak+1) follows from (dk).

As already mentioned, we postpone the proof of (5.29). It requires a more detailed
study of blocks introduced in Section 2, and which is the object of the next section.
Figure 6 illustrates the drilling process, for which the fact that we deal with a planar
graph plays a crucial role.

6 Towards drilling. Structure of bad layers

Lemma 6.1. If C ∈ C` is a block of mass m and level `, then it has at most m − ` + 1

constituents.

Proof. C is formed from an `-run of r constituents: C1, . . . , Cr, r ≥ 2, each Ci being of level
`i < `, and mass mi ≥ `, i = 1, . . . , r. On the other hand, using the definition of the mass
of a block, see (2.5) we see that m ≥ m1 + (r − 1). The statement follows at once.

Notation. Given Γ(ω) = {x ∈ Z+ : ξx = 1} and an interval 6 [a, b] we set Γ[a,b] ≡
Γ[a,b](ω) = Γ(ω) ∩ [a, b]. Equivalently, ξ[a,b](x) = ξx if x ∈ [a, b], and equal zero otherwise.

Definition 6.2. (Porous medium) We say that a segment [a, b] ⊂ Z+ is porous medium of
level k (with respect to Γ) if:

1) C∞(Γ[a,b]) contains no blocks of mass strictly larger than k;
2) for any C ∈ C∞(Γ[a,b]) we have:

d(C, a) ≥ Lm(C) − 1 and d(C, b) ≥ Lm(C) − 1.

In particular, a, b 6∈ Γ. When k = 0 the definition reduces to Γ ∩ [a, b] = ∅.
Lemma 6.3. a) If ` ≥ 1 and C, C̃ ∈ C`−1(Γ) are two consecutive constituents of an `-run,
then the interval [max(C) + 1,min(C̃)− 1] is porous medium of level `− 1 with respect to
Γ.

b) If k ≥ 1 and C, C̃ ∈ C∞(Γ) are two consecutive blocks of mass at least k, then the
interval [max(C) + 1,min(C̃)− 1] is porous medium of level k − 1 with respect to Γ.

Proof. It follows at once from the construction of C`−1 and C∞.

Lemma 6.4. (Descending decomposition) Each block C ∈
⋃
` C`(Γ) of mass m ≥ 2 has

the following representation: there exists an increasing sequence of integers

min(C) = f1 < g1 < f2 < g2 < · · · < fv < gv ≤ max(C)− 1,

6For simplicity, we shall from now on denote [a, b] ∩Z+ by [a, b] simply.
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Figure 6: Schematic illustration of matching pairs and the drilling process. In the picture
we represent a bad layer of mass k. Call it B(C), where m(C) = k. It corresponds to a bad
block of Hk−1 that we label as Hk−1

v = Ĥk−1
v . The (k− 1)-sites Sk−1

u,v−1 and Ŝk−1
u,v+1 are then

good of type 2 and form a matching pair with respect to B(C). In order to investigate
the percolation through this bad layer, we first examine matching pairs of smaller scales,
depending on the level `(C); these are represented by the smaller colored sites around
B(C). Then one moves to smaller scales which enter the bad layer through a selection of
well positioned sets, have their connections checked as explained in Section 6, and their
probabilities (under P γ) estimated in Section 7. The use of forward and reverse paths,
represented respectively in black and blue, is crucial to keep good crossing properties.
As one may guess from the picture, this depends heavily on the fact that we have a
planar graph. The choice of the positions of the regions F (Sj), DK,l(Sj), DK,r(Sj) for all
j and all good j-sites Sj enforces the crossing of the corresponding paths at scale 0. A
few neighboring (k − 1)-sites are also drawn (in black for the forward partition and in
blue for the reverse partition).
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so that for each 1 ≤ s ≤ v, the partition C∞(Γ[fs,gs]) consists of the unique block [fs, gs]∩Γ

denoted by C̃s, and the following holds:

1) m(C̃1) = m− 1, m(C̃s) = m̃s for 2 ≤ s ≤ v, where m− 1 ≡ m̃1 > m̃2 > · · · > m̃v;

2) the intervals [gs−1 + 1, fs − 1] are porous media of level m̃s with respect to Γ,
2 ≤ s ≤ v, and

Lm̃s ≤ fs − gs−1 ≤ Lm̃s+1; (6.1)

max(C)− L < gv, [gv + 1,max(C)− 1] ∩ Γ = ∅. (6.2)

Proof. Observe that the statement is obvious for blocks of level 1 and mass m ≥ 2, in
which case v = 1. We therefore consider blocks of level at least 2. The proof uses
induction on the mass. Assuming the statement to be true for every block of mass at
most m we prove it for mass m+ 1. Fix C ∈

⋃
` C`(Γ), such that m(C) = m+ 1. We split

the proof in two sub-cases.

Case ` ≡ `(C) = m. In this case it follows from Lemma 6.1 that C is formed as an
m-run of only two constituents, C1 and C2, where we assume C1 to the left of C2, with
m(C1) = m(C2) = m, and we take f1 = min(C) and g1 = max(C1). By Lemma 6.3 we have
that [max(C1) + 1,min(C2) − 1] is porous media of level m − 1, and from the definition
of the run we have that Lm−1 ≤ min(C2)−max(C1) < Lm. On the other hand, from the
induction assumption we know that there exists a sequence of integers

min(C2) = f ′1 < g′1 < f ′2 < g′2 < · · · < f ′v′ < g′v′ ≤ max(C2)− 1,

such that for each 1 ≤ s ≤ v′ the partition C∞(Γ[f ′s,g
′
s]

) consists of unique block, denoted

by C̃′s with min(C̃′s) = fs and max(C̃′s) = gs, with

m(C̃′1) = m− 1, and m(C̃′s) = m̃′s, 2 ≤ s ≤ v′,

and the intervals [gs−1 + 1, fs − 1] are porous media with respect to Γ of level m̃′s, 2 ≤
s ≤ v′, and

Lm̃
′
s ≤ fs − gs−1 ≤ Lm̃

′
s+1. (6.3)

Taking fs = f ′s−1 and gs = g′s−1, 2 ≤ s ≤ v′, we get the desired representation of C.

Case 2 ≤ ` ≡ `(C) < m. In this case C is formed as an `-run of r constituents C1, . . . , Cr,
2 ≤ r ≤ m− `+ 2, with m(Ci) ≥ `, 1 ≤ i ≤ r, and so C∞(Γ[min(C1),max(Cr−1)]) consists of a

unique block which we denote by Ĉ.
If m(Ĉ ) = m, from the construction in Section 2 we know that m(Cr) = ` < m. In this

case we set g1 = max(Cr−1), and using the inductive assumption for Cr, we complete the
representation as in the previous case.

If m(Ĉ ) < m, we have that ` + 1 ≤ m(Cr) = m − m(Ĉ ) + ` ≤ m. By the induc-
tive assumption applied to Cr as the unique element of C∞(Γ[min(Cr),max(Cr)]) there are
integers

min(Cr) = f̃1 < g̃1 < f̃2 < g̃2 < · · · < f̃ṽ < g̃ṽ ≤ max(Cr)− 1

for which properties 1) − 2) of the lemma hold. Moreover, the unique block C̃1 of
C∞(Γ[f̃1,g̃1]) has mass m −m(Ĉ ) + ` − 1 ≥ `. In the configuration Γ[α(C1),g̃1] the blocks

C1, . . . , Cr−1 and C̃1 will form an `-run, producing a block of mass m. Therefore, taking
fs = f̃s, s ≥ 2 and gs = g̃s, 1 ≤ s ≤ ṽ, we get the desired representation of C.

Definition 6.5. (Itinerary of a bad layer) In the notation of the previous lemma, the
sequence {m̃s}vs=1 will be called the itinerary of the descending decomposition.
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It follows from the construction that if C ∈ C` is such that `(C) = ` and m(C) = m,
then for any k ≤ m− 1 one can find ik ≤ i′k so that B(C) = ∪ik≤s≤i′kH

k
s , and if ` ≤ k we

have ik = i′k. In particular it exists j so that B(C) = Hm−1
j . (For ` = 0 this is a single bad

line, and m = 1.) We keep this in mind while setting the next definitions that will play an
important role in the proof.

Definition 6.6. (Zones and tunnels) If Sk(i,ik−1), Ŝ
k
(i′,i′k+1) form a matching pair with

respect to B(C), where C is a block of mass m and level `, we set

Z(Sk(i,ik−1), Ŝ
k
(i′,i′k+1)) =

[
(cL)k

(
i− L1/2

2

)
, (cL)k

(
i+ L1/2

2

)]
×Hm−1

j ,

which will be called the zone associated to Sk(i,ik−1) and Ŝk(i′,i′k+1).

For k ≥ 1 and if i = i′, we set

T (Sk(i,ik−1), Ŝ
k
(i′,i′k+1)) =

[
i− 1

2
(cL)k,

i+ 1

2
(cL)k

]
×Hm−1

j ,

which we call the tunnel associated to Sk(i,ik−1) and Ŝk(i′,i′k+1).

If |i′ − i| = 1, the tunnel associated with Sk(i,ik−1) and Ŝk(i′,i′k+1) is defined in the
following way:

T (Sk(i,ik−1), Ŝ
k
(i′,i′k+1)) =

[
i ∧ i′

2
(cL)k,

i ∨ i′

2
(cL)k

]
×Hm−1

j .

And finally, when k = 0 we set

T ((i, i0 − 1), (i′, i′0 + 1)) =

{
[i− 1, i]×Hm−1

j if i = i′

[i ∧ i′, i ∨ i′]×Hm−1
j if |i− i′| = 1.

Remark. Notice `− 1 ≤ k ≤ m− 1 in the previous definition. For k ≥ `, it is always the
case that i′ = i; the case i′ = i± 1 may occur only for k = `− 1. (See Definition 5.7 and
the remark that follows it.)

Definition 6.7. (Vertical sequences) A collection of k-sites {Sk(us,vs)}
r
s=1, with vn+1 =

vn + 1, n = 1, . . . , r − 1, is called a vertical sequence if |u1 − us| ≤ 1 for all 1 < s < r.

Definition 6.8. We say that the k-site Sk(u2,v2) lies above Sk(u1,v1), or, equivalently, Sk(u1,v1)

lies below Sk(u2,v2), if v1 < v2, and |u1 − u2| ≤ 1.

We will use the above definition also in the case of sequences of reversed sites.

Definition 6.9. (Separated pairs) Two matching pairs Sk(i,ik−1), Ŝ
k
(i′,i′k+1) and Sk(j,ik−1),

Ŝk(j′,i′k+1) are said to be separated if |j − i| > 2L1/2.

Notice that if two matching pairs are separated, their corresponding zones do not
intersect.

Notation. For an horizontal segment I = {(x, y) ∈ Z̃2
+ : a ≤ x ≤ b} we denote

I� = {(x, y) ∈ Z̃2
+ : a+ b(b− a)/12c+ 1 ≤ x ≤ a+ 2b(b− a)/12c − 1},

I� = {(x, y) ∈ Z̃2
+ : a+ 10b(b− a)/12c+ 1 ≤ x ≤ a+ 11b(b− a)/12c − 1}.

Definition 6.10. An horizontal segment I = {(x, y) ∈ Z̃2
+ : a ≤ x ≤ b} with b− a = (cL)k

is called k-segment either if it is contained in some good k-site Sk, or if there is C a block
in C` with level ` < k and two good k-sites Sk, Ŝk forming a matching pair with respect
to B(C) such that I ⊂ T(Sk,Ŝk). We denote a k-segment I by Ik.
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Definition 6.11. (Hierarchical k-set) Given a k-segment Ik, a collection Ik of `-segments
{I`j}j , ` = 0, . . . , k, contained in Ik is a hierarchical k-set associated with Ik if:

i) Ik is the unique k-segment in the collection;
ii) I`j ∩ I`j′ = ∅ if j 6= j′, for any ` ∈ {0, . . . , k − 1};
iii) for k ≥ 1 and ` ∈ {1, . . . , k}, each interval (I`j )� and (I`j )� contains at least 1

12ρcL

(`− 1)-segments in Ik.

When k = 0 we simply have I0 = {I0} = {S0} for a 0-site S0 and we identify I0 with
I0. For k ≥ 1 and having fixed Ik, it is convenient to label the elements of Ik: going
down, from ` = k − 1 to ` = 0, we label all `-segments contained in each I`+1 from left
to right, starting the numbering within each I`+1 every time from 1. Proceeding in this
way, we have a multi-index µ〈k,`〉 = 〈µk−1, µk−2, . . . , µ`〉 which indicates the “genealogical
tree” down to scale `. We denote the corresponding `-segment with this index by I`

µ〈k,`〉
.

We shall also use the following convention. If µ` = j, we will write:

〈µk−1, . . . , µ`+1, j〉 = 〈µ〈k,`+1〉, j〉. (6.4)

Definition 6.12. (a) For any type 2 good k-site Sk, k ≥ 1, Ψk(Sk) denotes its top 0-layer.
Analogously, if Ŝk is a good reverse k-site of type 2, Υk(Ŝk) denotes its bottom 0-layer.
When k = 0, we set Ψ0(S0) = S0 and Υ0(Ŝ0) = Ŝ0.

(b) If two k-sites Sk and Ŝk form a matching pair with respect to B(C) in the sense of
Definition 5.7, where C ∈ C` has mass m and level `, and `− 1 ≤ k ≤ m− 1, we say that
Ψk(Sk) and Υk(Ŝk) also form a matching pair with respect to B(C).

(c) Two hierarchical k-sets Ψk and Υk whose k-segments Ψk and Υk form a matching
pair with respect to B(C) as in (b) are also called a matching pair with respect to B(C).

For the proof in Section 7 we shall use the following hierarchical k-sets: let Sk be a
good k-site with dense kernel. In this case, there will be at least d 1

12ρcLe (k − 1)-sites7

in DK,l(S
k) and DK,r(S

k) respectively, and each of them will have dense kernel. The
same happens at all smaller scales. The top 0-layers of the kernel of these dense kernel
sites at all scales form a hierarchical k-set, which we denote as Ψk(Sk). The analogous
hierarchical k-set for a reverse k-site Ŝk we will denote by Υk(Ŝk). We shall use this in
the case when Sk is of type 2, lying immediately below a bad layer of mass larger than k
(so that Sk coincides with its kernel) or when it contains a bad layer of mass k (type 1).

Notation. It will be convenient to single out the class of bad 1-layers B(C) that consist
of m consecutive bad lines. We call such bad layers monolithic, and refer to them as bad
1M -layers, writing B(m) for B(C) in this particular case.

The following concept of chaining plays an important role in the proof in Section
7. We split it into two definitions, for large and small hierarchical sets, where the
distinction has to do with the level of the bad layer, as made precise below.

Definition 6.13. (Large chained hierarchical k-sets) Let C ∈ C` with `(C) = ` and
m(C) = m > `, and let k ∈ {`− 1, . . . ,m− 1}. Two hierarchical k-sets Ψk and Υk forming
a matching pair with respect to B(C) are said to be chained through B(C) if the following
holds:

The case k = 0. In this situation ` = 1, and we distinguish the 1M -layers.
• Monolithic layer. We say that Ψ0 and Υ0 are chained if there exists an open vertical

path of 0-sites from a nearest neighbor of Ψ0 to nearest neighbor of Υ0.
• Non-monolithic layer. In this case B(C) is formed by m bad lines grouped into r > 1

1M -layers8, separated among themselves by at most L− 1 good lines. We denote these

7For k = 1 this number is replaced by d 1
24
ρcLe.

8this is slight abuse of our previous notation
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parts by Bv(mv), 1 ≤ v ≤ r, where mv is the number of bad lines it contains. We say that
Ψ0 and Υ0 are chained through B(C) if there exist a vertical sequence of hierarchical
0-sets

Ŝ0(1), S0(2), Ŝ0(2), . . . , S0(r),

such that
a) all sites S0(v), v = 2, . . . , r, and Ŝ0(s), v = 1, . . . , r − 1, are passable;
b) the sites S0(v) and Ŝ0(v), v = 2, . . . , r − 1, form a matching pair with respect to

Bv(mv);
c) Ψ0 and S0(1) are chained through B1(m1); S0(v) and Ŝ0(v) are chained through

Bv(mv), for each v = 2, . . . , r − 1; S0(r) and Υ0 are chained through Br(mr).
d) each pair of sites Ŝ0(s) and S0(s+ 1), 1 ≤ s ≤ r − 1, is connected by an open path

of 0-sites lying within Z(S0
(i,ik−1), Ŝ

0
(i′,i′k+1)).

The case k ≥ 1. Again we distinguish two cases:
• k ≥ `. Since ρ > 1/2, letting ρ̂ = ρ− 1/2, the definition of hierarchical set implies

the existence of at least ρ̂ c6L matching pairs Ψk−1, Υk−1 with respect to B(C), with

Ψk−1 ⊂ Ψk and Υk−1 ⊂ Υk. Let M be the set formed by the first (from left to right)
bρ̂ c

48L
1/2c such pairs which are separated. We say that Ψk and Υk are chained if at least

one matching pair inM is chained through B(C).
• k = ` − 1. Assume that C has r > 1 constituents of masses mv and levels `v < `,

hereby denoted as Cv, v = 1, . . . , r. We say that Ψk and Υk are chained if there exist a
vertical sequence of good k-sites

Ŝk(1), Sk(2), Ŝk(2), . . . , Sk(r),

such that
a) For each 1 ≤ v ≤ r − 1, S(Ŝk(v)) and Sk(v + 1) are connected by a passable

k-path, lying entirely in Z(Sk(i,ik−1), Ŝ
k
(i′,i′k+1)). (In particular, Sk(v) has s-dense kernel,

v = 2, . . . , r.)
b) Ŝk(v) has c-dense kernel (reversed), v = 1, . . . , r − 1.
c) Sk(v) and Ŝk(v) form a matching pair which respect to B(Cv), v = 2, . . . , r − 1.
d) Ψk and Υk(Ŝk(1)) are chained through B(C1); Ψk(Sk(v)) and Υk(Ŝk(v)) are chained

through B(Cv), v = 2, . . . , r − 1; and finally Ψk(Sk(r)) and Υk are chained through B(Cr).
The connections by open oriented paths that are examined using the iterative proce-

dure just defined will be called restricted.

Notation. For easiness of notation we shall write J = bρ̂ c
48L

1/2c.

Remarks.
a) Let C ∈ C` with level ` and mass m, and ` − 1 ≤ k ≤ m − 1. If a matching

pair of hierarchical k-sets as above Ψk and Υk is chained through B(C) and k ≥ `,
there must exist an open oriented (restricted) path of 0-sites crossing B(C) and lying in
T (Sk(i,ik−1), Ŝ

k
(i′,i′k+1)); if k = `− 1 such a path exists in Z(Sk(i,ik−1), Ŝ

k
(i′,i′k+1)).

b) Notice that in Definition 6.13, for each j ∈ {0, . . . , k − 1}, we examine at each step
(according to the setM in Definition 6.13) exactly J j-segments within each checked
j + 1-segment in Υk, and similarly for Ψk; each checked to be connected to different
j-segments within B(C). The algorithm for selectingM at each smaller scale depends
(except in the trivial case of monolithic layers) on what happens within B(C) as explained
therein. With some abuse of notation we callM(Υk) and similarlyM(Ψk) the collection
of these checked segments at all scales (J at each scale).

c) The estimates in the next section become easier to formulate once the number
of j-segments to be examined within a j + 1-segment is fixed at all times. The exact
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algorithm to define the setM is not so relevant. For the construction in Section 7 this
will be slightly different then the one used in the above definition, though we shall use
the same notation.

Definition 6.14. (Small chained hierarchical sets) Let C ∈ C` be a block of mass m
and level ` ≥ 2. Let k ∈ {` − 1, . . . ,m − 1} and let Ψk and Υk form a matching pair of
hierarchical k-sets, which we assume to be chained (according to Definition 6.13).

a) We say that a 0-site Υ0
µ〈k,0〉

∈ M(Υk) is chained to Ψk, if there exists a 0-site

Ψ0
µ〈k,0〉

∈ M(Ψk), and a restricted open path from a nearest neighbor (from above) of

Ψ0
µ〈k,0〉

to a nearest neighbor of Υ0
µ〈k,0〉

from below.

b) We say that the r-segment Υr
µ〈k,r〉

∈ M(Υk), 0 < r < ` − 1, is chained to Ψk if it

contains an (r − 1)-segment Υr−1
µ〈k,r−1〉

∈M(Υk) which is chained to Ψk.

Remark. A 0-path as in a) above will be open, oriented, and will lie entirely in the tunnel
T (Υk,Ψk) when k ≥ `, and for k = `− 1 it will lie in Z(Υ`−1,Ψ`−1). 9

Definition 6.15. (Chained k-sites) Let C ∈ C` with level ` and mass m. For k ∈ {` −
1, . . . ,m− 1}, two k-sites Sk and Ŝk that form a matching pair with respect to B(C) are
said to be chained through B(C) if the corresponding hierarchical k-sets Ψk(Sk) and
Υk(Ŝk) are chained through B(C), as defined above.

Notation. The event of two hierarchical k-sets Ψk, Υk, or analogously two k-sites Sk,
Ŝk being chained through B(C) is denoted by

Ψk !
B(C) Υk (6.5)

and respectively
Sk !

B(C) Ŝ
k. (6.6)

7 Proof of (5.29). Proof of Theorem 5.15

This section is dedicated to the conclusion of the proof of Theorem 5.15. Following
the outline presented in Section 5.3, it remains to verify (5.29), i.e. that property (bm+1)

follows from (aj), (bj), (cj), (dj) for all j ≤ m and (am+1), where m ≥ 1. This is indeed
the most delicate step, and we need a careful analysis of the bad layers. The ingredients
started being developed in the last section, and the procedure will be completed now
with the help of Proposition 7.1, which includes a more detailed description that leads to
property (bm). Its proof will also be done by induction.

Notation. Let κ = κ′ + 2 with κ′ as in Lemma 5.12. We recursively define for all
m ≥ 1:

p0,m := pm
B
pκ(m−1)
G

,

pj,m := (1− (1− pj−1,m)J)p
κ(m−j−1)
j , 1 ≤ j ≤ m− 1, (7.1)

pm,m := 1− (1− pm−1,m)J ,

where J = bρ̂ c
48L

1/2c, ρ̂ = ρ − 1/2 as in Definition 6.13, pj = 1 − qj , qj = qj+1
0 , p0 =

p
G
, q0 = 1− pG, as in Theorem 5.15.
For m ≥ 1 and pj,m given as above, we set:
(bm)′ For every block C ∈ C` of mass m and level `, every j ∈ {`− 1, . . . ,m− 1} and

every choice of hierarchical j-sets Ψj ,Υj that form a matching pair with respect to the
bad layer B(C), one has

P γ(Ψj !
B(C) Υj) ≥ pj,m. (7.2)

9Defined analogously to T (S, Ŝ) and Z(S, Ŝ).
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For m ≥ 2:
(bm)′′ For every B(C), j and Ψj ,Υj as in (bm)′, and every s ∈ {0, . . . , j − 1}, the

conditional distribution (under P γ) of the number of Υs
〈µ〈j,s+1〉,i〉 ∈ M(Υj) that are

chained to Ψj , given that Υs+1
µ〈j,s+1〉

is chained to Ψj , is stochastically larger than Fps,m ,
where Fp denotes the distribution of a Binomial random variable with J trials and success
probability p, conditioned to have at least one success. That is,

|{i : Υs
〈µ〈j,s+1〉,i〉 ∈M(Υj) : Υs

〈µ〈j,s+1〉,i〉chained to Ψj}|
∣∣∣[Υs+1

µ〈j,s+1〉
chained to Ψj

]
� Fps,m ,(7.3)

with � standing for stochastically larger in the usual sense.

Proposition 7.1. Under the same conditions of Theorem 5.15, and for any k ≥ 1, the
validity of properties (am) and (dm) for all m ≤ k implies the validity of properties (bm)′

for all 1 ≤ m ≤ k + 1 and (bm)′′ for all 2 ≤ m ≤ k + 1.

Proof. We first observe that properties (a1) and (d1) are indeed true, that (b1)′ follows
directly from the definitions and that (b2)′ and (b2)′′ are simple to verify from (a1) and
(d1). We may also see this as a brutal simplification of the inductive argument in this
proof considering the simplicity of a block C ∈ C1 with m(C) = 2.

Induction step. It suffices to show that if k ≥ 1 is given, if (aj), (dj) hold for all 1 ≤ j ≤ k,
1 ≤ m ≤ k and (bm)′ and (bm)′′ hold, then also (bm+1)′ and (bm+1)′′ hold.

We will first establish (bm+1)′. Let C ∈ C` be a block of mass m + 1 and level `.
Throughout the proof we consider its descending decomposition representation and
construct a class of particularly chosen hierarchical sets that will play a role in the
induction.

Construction for the induction step.
Let (Ψm,Υm) form a matching pair with respect to the bad layer B(C), and let

{m̃s}vs=1 denote the itinerary of the descending decomposition of C, with {C̃s}vs=1 its
corresponding blocks, and {B(C̃s)}vs=1 the corresponding bad layers. Recall that (Lemma
6.4) the interval between any two consecutive blocks C̃s and C̃s+1 is always porous media
of level m̃s+1.

An entrance set Ψm(s), s = 2, . . . , v, will be a suitable hierarchical m-set located at
the 0-layer just below B(C̃s), and an exit set Υm(s), s = 1, . . . , v, a suitable hierarchical
m-set located at the 0-layer just above B(C̃s) for s = 1, . . . , v − 1, with Υm(v) located
at the 0-layer just above B(C̃v), or at its last 0-layer, according to gv < max(C) − 1 or
gv = max(C)− 1 (Lemma 6.4).

Large segments of exit and entrance sets. For each s = 1, . . . , v − 1, the m-segment
Υm(s) and all j-segments Υj

µ〈m,j〉
(s), m̃s+1 ≤ j < m, in Υm(s), are obtained by taking the

corresponding segments Υm and Υj
µ〈m,j〉

and projecting them vertically on the 0-layer

located just above B(C̃s), and then by taking as Υj
µ〈m,j〉

(s) a j-segment which intersects
this projection: when there are two such j-segments, to avoid ambiguities we take the
one which intersects the left half of the projection. For s = v the only difference is that
when gv = max(C)− 1 the segments will be located at the last 0-layer of B(C̃v).

For the entrance sets Ψm(s) with s = 2, . . . , v we proceed in the same way: the
m-segment Ψm(s) and all j-segments Ψj

µ〈m,j〉
(s), m̃s ≤ j < m, in Ψm(s), are obtained by

taking the corresponding segments Υm, and Υj
µ〈m,j〉

and projecting them vertically on

the 0-layer located just below B(C̃s), with the same selection rule as above in case there
are two such j-segments.

Construction of the exit sets Υm(s). Consider first the case 1 ≤ s < v. To continue
the construction of the j-segments at scales smaller than m̃s+1, we consider, for each
already defined m̃s+1-segment of this collection, the reversed m̃s+1-site for which this
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segment is the last 0-layer, i.e. Ŝm̃s+1 such that Υ(Ŝm̃s+1) = Υ
m̃s+1
µ〈m,m̃s+1〉

(s), and check if

this site has c-(reverse) dense kernel. If the answer is affirmative, we take Υj
µ〈m,j〉

(1), j =

0, . . . , m̃s+1 − 1 as the bottom 0-layers of the reverse dense kernel sites of Ŝm̃s+1 , or in
other words all the scales from m̃s+1 down to zero correspond to Υm̃s+1(Ŝm̃s+1). These
are called “compatible” segments. For those sites Ŝm̃s+1 that do not have c-(reverse)
dense kernel, we select the Υj

µ〈m,j〉
(s), j = 0, . . . , m̃s+1 − 1 in an arbitrary way among

the correspondent sub-segments of bottom 0-layers of the site. We call such choice of
segments “incompatible” with the process. Only compatible segments will play a role in
the construction.

In the case s = v we make essentially the same construction, as if m̃s+1 = 0, with
the difference that when max(C) = max(C̃v) + 1 we locate the hierarchical set at the last
0-layer of B(C̃v).

Observe that the construction of Υm(s) and the compatibility of its segments depend
on Γ and on the occupation variables in between B(C̃s) and B(C̃s+1).

Step 1, part 1. We check if at least one among the pairs of hierarchical (m − 1)-sets

Ψm−1
µ〈m,m−1〉 and Υm−1

µ〈m,m−1〉(1) is chained through B(C̃1). If so, we move to the next item;
otherwise we stop the procedure and say that Ψm and Υm are not chained through B(C).

Step 1, part 2. (Zooming) For each pair of hierarchical (m − 1)-sets Ψm−1
µ〈m,m−1〉 and

Υm−1
µ〈m,m−1〉(1) chained through B(C̃1) we select all multi-indices µ〈m,m̃2〉 and the corre-

sponding m̃2-segments Υm̃2
µ〈m,m̃2〉

(1), which are compatible and from which there exists

an open oriented 0-level path that connects to Ψm−1
µ〈m,m−1〉

through B(C̃1).

Step 1, part 3. (Transfer) For the m̃2-segments Υm̃2
µ〈m,m̃2〉

(1) selected in the previous item,
we first check whether

(i) the corresponding forward site S(Ŝm̃2
x ) is c-(forward) passable.

If the answer is positive, it implies that at least one of the seeds of Ql(S(Ŝm̃2
x )) or

Qr(S(Ŝm̃2
x )) is also connected to Ψm−1 (we may call it “active”). This gives us a way of

completing the construction of the hierarchical set Ψm(2) at scales smaller than m̃2:

Construction of the entrance set Ψm(2). Take Sm̃2

x′ such that Ψ(Sm̃2

x′ ) = Ψm̃2
µ〈m,m̃2〉

(2), and
check whether

(ii) there exists an oriented passable m̃2-path starting from the m̃2-site which is s-
passable from the active seed of S(Ŝm̃2

x ) to Sm̃2

x′ , and entirely contained in Z(S(Ŝm̃2
x ), Sm̃2

x′ ).

If the answer to (i) and (ii) is positive we say that Υm̃2

µ〈m,m̃2
〉(1) and Ψm̃2

µ〈m,m̃2
〉(2) are

active. Otherwise the procedure of building connection from Υm̃2

µ〈m,m̃2
〉(1) is stopped. This

completes Step 1.

Remark 7.2. Notice that Ψm(2) lies just below B(C̃2), but a positive answer to (i) and
(ii) above, besides guaranteeing the connection of Ψm̃2(2) to the corresponding Υm̃2(1)

(and therefore to Ψm−1 by force of the previous sub-step) also gives connection by open
oriented path of 0-sites to suitable sites at the top 0-layer of B(C̃2) (according to the
definition of passability at the scale m̃2), which then implies the existence of an open path
to a 0-site in B(C̃2) which is nearest neighbor of a corresponding m̃2-segment Υm̃2

µ〈m,m̃2〉
(2).

The first part does not depend on the occupation variables in B(C̃2), and one might
find convenient to think of the event in (ii) as the intersection of these two conditions
involving disjoint sets of 0-sites.

Step s, 1 < s ≤ v. Having determined the active Υm̃s
µ〈m,m̃s 〉

(s − 1) and Ψm̃s
µ〈m,m̃s 〉

(s), the

process continues only from the compatible corresponding sub-segments Υ
m̃s+1
µ〈m,m̃s+1〉

(s).
Sub-case s < v. The construction repeats what was done above for s = 1:
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• We check if Ψm̃s
µ〈m,m̃s〉

(s) and Υm̃s
µ〈m,m̃s〉

(s) are chained through B(C̃s);

• For each pair of hierarchical (m̃s − 1)-sets Ψm̃s−1
µ〈m,m̃s−1〉(s) and Υm̃s−1

µ〈m,m̃s−1〉(s) chained

through B(C̃s), we select all multi-indices µ〈m,m̃s+1〉 and corresponding m̃s+1-

segments Υ
m̃s+1
µ〈m,m̃s+1〉

(s) which are compatible and for which there exists a 0-level

path (open, oriented) connecting them to Ψm̃s−1
µ〈m̃s,m̃s−1〉

through B(C̃s).

• item 2, called transfer, and the construction of Ψm(s + 1) both follow the same

procedure as when s = 1, replacing m̃2 by m̃s+1. We then say that Υ
m̃s+1
µ〈m,m̃s+1〉

(s)

and Ψ
m̃s+1
µ〈m,m̃s+1〉

(s+ 1) are active if the analogue of the previous (i)–(ii) both hold.

Sub-case s = v. This splits into two situations:
a) max(C) > max(C̃v) + 1. In this case we act as if m̃s+1 = 0, i.e. we first of all

perform zooming by selecting all active elements down to 0 level, and repeat the transfer
procedure.

b) max(C) = max(C̃v) + 1. In this case we act as if m̃s+1 = 0, i.e. we first of all perform
the zooming by selecting all active elements down to 0 level, however the transfer
procedure reduces to connecting over the last bad line of B(C).

Estimates needed for the induction step.
At this point we recall Lemma 5.12, which will be repeatedly used below.

Remark 7.3. Lemma 5.12 is used in the part of the procedure called transfer above. It
will be used at the various scales j ≤ m, with p̃ = pj , and n of order

√
L which we may

assume large enough so that the estimate applies.

Let (Ψm,Υm) be a matching pair with respect to the B(C) under consideration. By
the induction assumption (bm)′, we have that for each pair of indices µ〈m,m−1〉

P
(

Υm−1
µ〈m,m−1〉(1) !

B(C̃1)
Ψm−1
µ〈m,m−1〉

)
≥ pm−1,m. (7.4)

For a fixed family of hierarchical (m − 1)-sets, the events in (7.4) are (conditionally)
independent, so that the distribution of the number of chained pairs, given that at least
one of them is chained, is stochastically larger than Fpm−1,m

.
On the other hand, from the induction assumption (bm)′′ we have that for each

0 ≤ j < m− 1 and each pair µ〈m,j+1〉

|{i : Υj
〈µ〈m,j+1〉,i〉(1) !

B(C̃1)
Ψm−1
µ〈m,m−1〉}|

∣∣∣[Υj+1
µ〈m,j+1〉(1) !

B(C̃1)
Ψm−1
µ〈m,m−1〉 ] � Fpj,m , (7.5)

i.e. conditioned on Υj+1
µ〈m,j+1〉(1) being chained to Ψm−1

µ〈m,m−1〉 , the number of indices i so

that Υj
〈µ〈m,j+1〉,i〉(1) is chained to Ψm−1

µ〈m,m−1〉 is stochastically larger than Fpj,m . We shall

use (7.5) for j going down to j = m̃2.
Assume m̃2 ≥ 1, i.e. v ≥ 2. For each index µ〈m,m̃2〉 which yields a chained set at all

steps from m− 1 down to m̃2 one now checks if the m̃2-set Υm̃2
µ〈m,m̃2〉

is “compatible” and
if the conditions (i) and (ii) described in the previous construction hold. We use the
induction assumption, which guarantees the validity of conditions (ai)− (di) for all i ≤ m.
Applying this and Lemma 5.12, we get for each such index µ〈m,m̃2〉:

P
(

Υm̃2

µ〈m,m̃2
〉(1) and Ψm̃2

µ〈m,m̃2
〉(2) are “active”

)
≥ pκm̃2

(7.6)

where κ = κ′ + 2 as defined just before (7.1) (the +2 appears since we need to check
that the starting m̃2-site at the bottom has reverse c-dense kernel (compatible), and is
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forward c-passable). Using (am) we then get that for all the previous indices µ〈m,m̃2〉 as

above (for them we have Υm̃2
µ〈m,m̃2〉

(1) is chained to Ψm−1
µ〈m,m−1〉):

P
(
∃i : Υm̃2−1

µ〈〈m,m̃2〉,i〉
(2) !

B(C̃2)
Ψm̃2−1
µ〈〈m,m̃2〉,i〉

(2)
)
≥ pm̃2,m̃2

. (7.7)

The event on the l.h.s. of (7.7) we naturally denote as[
Υm̃2
µ〈m,m̃2〉

(2) !
B(C̃2)

Ψm̃2
µ〈m,m̃2〉

(2)
]

and by the induction assumption we can write, analogously to (7.5), for each j < m̃2 − 1:

|{i : Υj
〈µ〈m,j+1〉,i〉(1) !

B(C̃2)
Ψm̃2−1
µ〈m,m̃2−1〉(2)}|

∣∣∣[Υj+1
µ〈m,j+1〉(2) !

B(C̃2)
Ψm̃2−1
µ〈m,m̃2−1〉(2)] � Fpj,m̃2

. (7.8)

It is simple to check that Fp � Fp̃ when 1 ≥ p ≥ p̃ > 0, and we may therefore replace
pj,m̃2

by pj,m on the r.h.s. of (7.8):

|{i : Υj
〈µ〈m,j+1〉,i〉(1) !

B(C̃2)
Ψm̃2−1
µ〈m,m̃2−1〉(2)}|

∣∣∣[Υj+1
µ〈m,j+1〉(2) !

B(C̃2)
Ψm̃2−1
µ〈m,m̃2−1〉(2)] � Fpj,m . (7.9)

Again we shall use (7.9) for all j down to m̃3.
Continuing for s ≤ v − 1 we extend the lower bounds for the probability of an active

Υ
m̃s+1
µ〈m,m̃s+1〉

(s) given the indices µ〈m,m̃s+1〉 yielded “active” hierarchical sets in the previous
steps.

The construction at the final step s = v is slightly different as remarked above, and
we consider two cases: a) max(C) > max(C̃v) + 1; b) max(C) = max(C̃v) + 1.

In both cases we proceed as before as if m̃s+1 = 0, so that we use the analogue of
(7.8) all the way down to j = 0. The only difference is that in case a) we again have a
transfer operation, and we once more use Lemma 5.12, this time at scale 0, but in a
space without bad layers and of vertical length at least L. In case b) we do not have the
transfer operation, and the hierarchical set Υm(v) stays on the last bad layer of BC̃v .

In both cases, the final step to connect each final Υ0
µ〈m,0〉

(v) to the matching Υ0
µ〈m,0〉

has probability bounded from below by pκGpB.

Computing the probability. Verification of (bm+1)′. It is useful to establish a comparison
with the following simple auxiliary scheme. Consider the following system of boxes: a
unique (m+ 1)-box (or box of scale m+ 1) contains J m-boxes, each of them containing
J boxes of scale m− 1, and so on down to scale 1: each 1-box contains J boxes of scale
0, thought as points.

Definition 7.4. Checking procedure:
(a) Each 0-box is “good” with probability pmκ

G pm+1
B , all independently.

(b) For each k = 1, . . . ,m− 1 a k-box is “good” if:

• it contains at least one “good” (k − 1)-box;

• it is “approved” at k-step, which happens with probability pκ(m−k)
k independently

of everything else.

(c) For k = m,m+ 1 a k-box is “good” if it contains at least one “good” (k − 1)-box.

With all “approvals” taken independently, and independent of the initial assignments
(good/ not good), it is straightforward to see that for each k = 0, . . . ,m+ 1, each k-box
will be “good” with probability pk,m+1.

Of course we could think of the previous procedure in two stages:

Stage 1
(a) Each 0-box is “pre-good” with probability p(m−1)κ

G pmB .
(b) For each k = 1, . . . ,m− 1, a k-box is “pre-good” if:
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• it contains at least one “pre-good” (k − 1)-box;

• it is “pre-approved” at k-step, which happens with probability pκ(m−k−1)
k indepen-

dently of everything else.

(c) For k = m,m + 1 a k-box is “pre-good” if it contains at least one “pre-good”
(k − 1)-box.

Stage 2 Each “pre-good” 0-box is “tested” again with probability pκGpB; if successful, it
is declared “good”. In increasing order each k-box (k = 1, . . .m − 1) is “tested” again
with probability pκk , all “tests” being independently; if test is successful and if it contains
at least one “good” (k − 1)-box, it is then declared “good”. For k = m,m+ 1, a k-box is
declared “good” if it contains at least one “good” (k − 1)-box.

After taking into account the estimates obtained with the procedure based on the
itinerary of the descending decomposition of the block C with mass m+ 1 and level `, we
see that it is comparable (dominates, in the sense of stochastic order) with the previous
“auxiliary scheme” with two stages: the first corresponds to the estimates provided
by (7.5), (7.9) (at all steps s = 1, . . . , v), and the “testing at stage 2” comes from the
“transfer” part, with the difference that the “test” with probability pκj takes place only at
j = m̃s+1, for s = 1, . . . , v along the itinerary (recall m̃v+1 = 0). At the scales which do
not appear in the itinerary, the “test” is automatically successful with probability one.

Verification of (bm+1)′′. The scheme used to define when a matching pair of j + 1-sets
is chained, by taking at each step J separated matching j-sets then yields (conditional)
independence (at each step), and allows to easily conclude (bm+1)′′ from (bm+1)′.

This concludes the proof of Proposition 7.1.
To conclude the proof of Theorem 5.15 as stated in Section 5, i.e. for pG close enough

to 1, it remains essentially to show that by taking L large one can compare the numbers
pm−1,m given by (7.1) with pm defined immediately after (7.1) for all m. This will allow
to conclude the induction step for (bm) given by (5.23). The details are given below.

Conclusion of the proof of Theorem 5.15.
It remains to prove (5.29). Let us assume m ≥ 2 and the validity of (aj), (bj), (cj), (dj)

for all j ≤ m− 1 and (am) as well.
Taking into account what has been proven earlier in this section, it remains to verify

that
8N(1− pm−1,m)ρ

c
12

L
N ≤ qm, for all m ≥ 2, (7.10)

where N is given by (5.21), and pm−1,m, qm, pm are as in (7.1) and the line that follows
it.

For this, and since L will be taken large it suffices to obtain

pm,m ≥ pm, ∀m ≥ 2. (7.11)

Let

Θ =

∞∏
k=0

pk > 0,

which is an increasing function of pG = p0, as also ρ = ρ(pG).
We recall the interpretation of pm,m given in Definition 7.4 (with m+ 1 now replaced

by m), and proceed with a similar checking procedure, leaving the pmB -probability for the
final step of the 0-boxes, i.e. with the trivial observation that if one has t (a fixed integer)
independent Bernoulli random variables with probability of success given by pp̃, then
the probability of no success is bounded from above by

(1− p̃)btp/2c + e−tIp(p/2)
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where Ip(x) = x log(x/p) + (1 − x) log((1 − x)/(1 − p)), for x ∈ (0, 1), is the Cramér
transform. (This follows at once from the decomposition of the Bernoulli essays into two
independent ones, of probabilities p̃ and p respectively, and Cramér Theorem for the
second one.)

At all steps i from 0 to m − 2 each i-box is tested independently of anything else
with probability pκ(m−i−1)

i , and at the end the 0-box has to be approved with probability
p̃ = pmB .10 Using Cramér Theorem we can then estimate from above the probability that
the m-box is not “good”, by splitting it into cases: (a) for each i, the number of tested
i− 1-boxes which are successful is not smaller then half of its expected number; (b) the
event in (a) fails at some step i. Thus,

1− pm,m ≤ (1− pmB )4(J/2)m
∏m−2
i=0 p

κ(m−i−1)
i +

m−1∑
i=1

e−4(J/2)i+1 ∏i
j=2 p

κ(j−1)
m−j f(piκm−i−1) (7.12)

with

f(p) = Ip(p/2) = (1− p

2
) log(

2− p
1− p

)− log 2. (7.13)

It follows at once that L0 large can be taken so that for all m ≥ 2, and all L ≥
L0(pG, pB),

(1− pmB )4(J/2)m
∏m−2
i=0 p

κ(m−i−1)
i ≤ (1− pmB )4(J/2)m(Θκ)m−1

≤ 1

2
qm.

For the second term in (7.12), we split it into two pieces. For the piece corresponding
to large values of i we use

m−1∑
i=bm/2c

e−2(J/2)i+1 ∏i
j=2 p

κ(j−1)
m−j f(piκm−i−1) ≤ m

2
exp

{
−2(

J

2
)m/2Θκmf(p

κ(m−1)
G )

}

which we can bound from above by 1
4qm for all m ≥ 2, provided L ≥ L′0 similarly as above.

It remains to estimate

bm/2c−1∑
i=1

e−4(J/2)i
∏i
j=2 p

κ(j−1)
m−j f(piκm−i−1).

Since we may assume (by taking L large) that JΘκ > 2, this last term is bounded from
above by

(
m

2
− 1) exp{−2JΘκf(p

κm/2
m/2 )} ≤ m

2
exp{−4f(p

κm/2
m/2 )}.

To have this bounded from above by 1
4qm we need 4f(p

κm/2
m/2 ) > (m+1) log q−1

0 +log(2m),
and a simple analysis of f given by (7.13) shows this is the case provided q0 = 1− pG is
chosen sufficiently small. Indeed, writing for convenience q0 = e−y, it remains to check

− log(1− pκm/2m/2 ) ≥ 1

4
(log(4m) + (m+ 1)y) (7.14)

10the m box and its m− 1 boxes are not tested, according to (7.1)
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Assuming κm/2 is an integer (small modification otherwise)

1− pκm/2m/2 =1−
κm/2∑
i=0

(
κm/2
i

)
(−1)ie−i(m/2+1)y

=

κm/2∑
i=1

(
κm/2
i

)
(−1)i+1e−i(m/2+1)y

≤
κm/2∑
i=1

(
κm/2
i

)
e−i(m/2+1)y

≤2κm/2e−(m/2+1)y

Thus for all such m

− log(1− pκm/2m/2 ) ≥ −κm
2

log 2 + (
m

2
+ 1)y ≥ 1

4
(m+ 1)y,

provided κ
2 ln 2 < y, which holds for pG sufficiently close to 1.

8 Extension to pG > pc

Theorem 8.1. Let pB > 0 and pG > pc. Then there exists L0(pG, pB) finite so that for all
L ≥ L0(pG, pB), (5.26) holds for all γ which is L-spaced.

Proof. It suffices to prove an extension of Theorem 5.15 applicable to pG > pc, pB > 0.

Some modifications of the scheme described in the previous sections are needed. The
main point is a modification of the renormalized lattice at scale 1 in such a way that for
passability of good S1 sites we already have a probability that is larger than the previous
p∗. 11 Having this we can use essentially the same argument as in the proof of Theorem
5.15. We now explain the main points, though omitting full details:

• The parameters ρ and c in Assumption 5.1 are suitably modified: we replace ρ by
ρ′ ∈ (0, θ(pG)) and we keep (ii), recalling that this implies a smaller value for c′ instead
of the value that we had fixed. (The change of c is not so important as a smaller but fixed
positive value does not create any problem, and the same c′ could be used at all scales.
But we may as well use c′ for the first scale and the previous c for all other scales.)

• We now complete the modifications of the blocks H1
v (and Ĥ1

v) and the 1-sites
S1

(u,v). Given pG > pc, we may take K large enough so that the probability of an infinite
oriented path in the homogeneous percolation model PpG starting with K sites is at least
1 − (1 − p∗)/4. With such a K, we change the definition of the approximate endpoints
in the good type one blocks H1

v, replacing 3 by K + 1. This is not a problem as we may
assume that our scale parameter L is large enough. We then enlarge the size of the
0-seeds Q(0): it keeps the triangular shape but has K sites at its top line. To simplify we
say that the seed is open is all its sites are open. Of course this will have a much smaller
probability, but it is used only at scale 1.

• Given these modifications, we may also chose L large enough so that conditions
(c1) and (d1) become satisfied when at scale 1 with ρ in Assumption 5.1 replaced by
ρ′ ∈ (0, θ(pG)).

• Increasing L if needed L ≥ L0(pG, pB), one can check that the conditional probabil-
ity of S1 being s− passable given Q(0) is larger p∗, where the notion of passability at the
level 1 includes two enlarged 0-seeds on the top left and top right parts of S1.

11Or even larger than the previous lower bound for p1, i.e. 1− (1− p∗)2.
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Figure 7: A simulation on a finite grid of Z̃2
+, with pG = 0.88, pB = 0.22, δ = 0.125. In red,

the model studied in this paper. In blue, with orientation along the layers, a discrete
analogue of the contact process in [5].

• The blocks Hkv and Ĥkv and renormalized sites Sk(u,v) for k ≥ 2 and renormalization
scheme keep the same definition as before. In particular, the k-seeds, contain only three
passable sites of scales 1 ≤ j ≤ k − 1.

• At this point the only non-trivial modification involves the induction step for (bm)

done in Sections 6 and 7. Going down to level 1 we follow the same procedure as before.
The key change is in the definition of a pair of good (type 2) 1-sites, say S1 and Ŝ1, being
chained through a bad layer B(C), where C ∈ C1 has mass m ≥ 2 and level 1, and in
the corresponding probability estimate of such event. Assume that two sites S1 and Ŝ1

have s-dense kernel (here the kernel coincide with the site) and respectively reverse
ĉ-dense kernel. To concatenate open 0-sites in the cluster within S1 to some open 0-site
in the reverse cluster within Ŝ1, we of course need to act differently from the case of
large pG since the 0-sites of the top line of S1 have no reason to be straight below one
of those of the reverse cluster in bottom line of Ŝ1, as the density can now be arbitrary
small. We just consider a number (order

√
L) of separated such sites in the central part

of the top line of S1 and examine those for which we have an open path within its zone
(a rectangle of width of order

√
L through B(C), so that separated sites have disjoint

zones) that crosses the bad layer and reaches the first line of Ŝ1. This is done in the
same fashion as before, recalling Lemma 5.12 and Remark 5.13. All we need is that from
one of these points we have an open oriented path that crosses the bad layer within its
zone and connects to the reverse cluster in Ŝ1 anywhere within Ŝ1, as we may again use
the planarity. From this we see that the probability estimates are compatible with those
that we had in Section 7 and the proof extends.

A comment. It would be interesting to be able to say something about the shape of the
cluster. Within the current approach, this would involve being able to let the parameter
c = ck grow with the scale k. It is conceivable that one may indeed be able to pursue
this.
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A Appendix

Proof of Lemma 5.9. We shall only need the statement if A is an interval of a integers,
and therefore we shall prove (5.14) only in this case. However [8] (p. 1029) proves that
this is the worst case, i.e., that if (5.14) holds for A an interval, then it holds in general.
([8] discusses bond percolation, but a small modification of his argument works for site
percolation.)

Now let A = {0, 2, . . . , 2(a− 1)} × {0} and let F be the collection of sites (x, y) ∈ Z̃2
+

for which there exists an open path from A to (x, y) (with (x, y) itself also open). Then

1− Pp(there is an open path from A to∞
∣∣ all of A is open) ≤ Pp

(⋃
F

{F = F}

)
, (A.1)

where the union runs over all finite connected subsets F of Z̃2
+ which contain all of

A. We bound the right hand side of (A.1) by the usual contour method, as we explain
now. As in Section 10 of [8] or [17], let D be the diamond {(x, y) : |x| + |y| ≤ 1} ⊂ R2.
For F a finite connected subset of Z̃2

+ which contains A, we define F̃ = F + D and

Γ(F ) = the topological boundary of the infinite component of R2 \ F̃ . Then Γ(F ) is
made up of edges of the lattice Z2

odd := {(x, y) ∈ Z2 x + y is odd} and it separates
A ⊂ F from infinity. Suppose that F = F occurs and that e is an edge between two
vertices of {(x, y) ∈ Z2 : x + y is even} which crosses one of the sides of one of the
diamonds v +D, v ∈ F . In fact we must then have that one endpoint of e equals v and
the other endpoint, w say, lies in the unbounded component of R2 \ F̃ . There are then
two possibilities. Either

w lies below v, (A.2)

so that a path on Z̃2
+ is prevented from going from v to w by the orientation of Z̃2

+. Or,

w lies above v, (A.3)

in which case w must be closed (otherwise w would belong to F , since an open path to v
can be continued by going along e from v to w). It follows from this argument that the
event ∪F {F = F} is contained in the event that there exists some contour Γ made up of
sides of the diamonds u+D,u ∈ Z̃2

+, which separates A from infinity, and which has the
following property: if the edge {v, w} crosses one of the sides which make up Γ and v ∈
interior (Γ) and w ∈ exterior (Γ) ∩ Z̃2

+ and (A.3) holds, then w is closed. Consequently,
the right hand side of (A.1) is bounded by∑

Γ

Pp(each w ∈ Z̃2
+ as above for which (A.3) holds is vacant). (A.4)

It is shown in [17] and [8] that the number of w for which (A.3) holds is at least
|Γ|/2, where |Γ| denotes the number of edges in Γ. Moreover, as one traverses the line
{x = y + 2i}, starting at (2i, 0) ∈ A and increasing x (and y), the first vertex w ∈ Z̃2

+

in the unbounded component of R2 \ Γ which one meets has to be closed. Since this
holds for every 0 ≤ i ≤ a− 1, the number of w for which (A.3) holds is at least a. In fact,
there have to be at least a + 1 such vertices w, because the first vertex w on the line
x = −y which lies in the unbounded component of R2 \ F also satisfies (A.3), but does
not lie on any of the lines x = y + 2i. It follows that the term in (A.4) for a specific Γ is at
most (1− p)(|Γ|/2)∨(a+1). Moreover, the number of possible Γ with |Γ| = n is at most 3n−1,
because each possible Γ which separates A from infinity must contain the lower left
edge of the diamond (0, 0) +D, centered at the origin. It follows that (A.4), and hence
also the right hand side of (A.1) is bounded by

∞∑
n=1

3n−1(1− p)(n/2)∨(a+1).

EJP 27 (2022), paper 82.
Page 45/49

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP791
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Oriented percolation in a random environment

The lemma follows.

Proof of Lemma 5.10. In general, and in particular in the definitions (5.16) and (5.18)
of νn, an open path has to have its initial point and its endpoint open. For the sake of
the proof of the present lemma we shall call a path open if all its vertices other than its
initial point are open. Until the last three sentences of the proof we allow its initial point
to be open or closed.

Clearly νn(α, β,A, η) is increasing in A, so that it suffices to prove (5.18) for A = the
origin. We shall restrict ourselves to p ≥ p̃ as in Lemma 5.9. By obvious monotonicity
we then have θ(p) ≥ θ(p̃) > 0. In addition it is immediate from the definition (5.17) that
s(p) ≤ 1. In fact

rn ≤ n and `n ≤ n for all n. (A.5)

Thus, it holds
θ(p) ≥ θ(p̃) > 0 and 0 < s(p̃) ≤ s(p) ≤ 1 (A.6)

for the p which we are considering.
Now let ε > 0 and η > 0 be given. We define

m = m(n, η) =
⌊η

8
n
⌋
, k0 = k0(η) =

⌊ n
m

⌋
− 1,m′ = n− k0m. (A.7)

Finally, we choose ε1 such that

0 < ε1 ≤
ε

2k0
. (A.8)

and then p̄ = p̄(ε, η) < 1 so that p̄ ≥ p̃ ∨ (1− ε/2) and

θ(p̄) := Pp̄(Ω0) ≥ 1− ε1. (A.9)

Such a p̄ < 1 exists by (5.14).
First we observe that (5.17) implies that for every p ≥ p̄ and η1 > 0 there exists a

constant c6 = c6(ε1, η1, p) such that

Pp ({|rt − ts(p)| > c6 + η1t or |`t + ts(p)| > c6 + η1t for some t ∈ Z+}) (A.10)

≤ Pp ({|rt − ts(p)| > c6 + η1t or |`t + ts(p)| > c6 + η1t for some t ∈ Z+} ∩ Ω0) + Pp(Ω
c
0)

≤ 2ε1.

We observe next that if Ω0 occurs, then rt and `t are well defined for all t. Furthermore,
for any m there must exist open paths π` = π`(·) and πr = πr(·) from the origin to (`m,m)

and to (rm,m), respectively, and these paths must lie in [−m,m] × [0,m] (see (A.5)).
Next let x ∈ Z with x + m even be such that −`m ≤ x ≤ rm. Consider the open paths
starting at (x,m) going downwards, that is against the orientation on Z̃2

+ assumed so
far. Assume that for a given x ∈ [−`m, rm] there exists an infinite downward open path,
π̃x say, starting at (x,m). Since this path starts between (−`m,m) and (rm,m), it must
hit πl ∪ πr. Furthermore, the path π̃x necessarily stays in [x−m,x+m]× [0,m] up till
time m. For the sake of argument, let π̃x first intersect π` in a point (y, q) with 0 ≤ q ≤ m.
Then the piece of π` from the origin to (y, q), followed by the piece of π̃x, traversed in the
forward direction, from (y, q) to (x,m) forms an open oriented path from the origin to
(x,m). A similar argument applies if π̃x hits πr. Thus, if there exists a downward infinite
open path from (x,m), then there exists an open path from the origin to (x,m). By the
estimates on the locations of π`, πr and of π̃x which we have just given, this path must be
contained in [−2m, 2m]× [0,m].

Let us write Jx for the indicator function of the event that there is an open path
contained in [−2m, 2m] × [0,m] from the origin to (x,m). Also, let Ĩx and Ix be the
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indicator functions of the events that there exists an infinite open backwards path from
(x,m), respectively an infinite open forwards path from (x, 0), which stays in [−2m, 2m]

during [0,m]. The preceding argument shows that for any M ≥ 0, on the event

E(M,m) := {−`m ≤ −2M ≤ 2M ≤ rm}, (A.11)

it holds

ν̃m(M,0) := number of points (x,m) with x ∈ [−2M, 2M ], (A.12)

x+m even, for which there exists an open path from 0

to (x,m) which stays inside [−2m, 2m]× [0,m]

≥
∑
−2M≤x≤2M
x+m even

Jx ≥
∑
−2M≤x≤2M
x+m even

Ĩx.

Now, the monotonicity of s(·) and (A.6) and (5.17) imply that for each fixed M > 0 there
exists an m1 = m1(ε1,M) such that for m ≥ m1 and p ≥ p̄

Pp{E(M,m) fails} ≤ Pp̄{E(M,m) fails} ≤ ε1. (A.13)

Further, the joint distribution of the Ĩx, x+m even is the same as the joint distribution
of the Ix, x even. Also, if

M + c6 ≤
m

2
and |x| ≤ m

2
, (A.14)

then

Ix ≥ Kx := I[there exists an open path π from (x, 0) to infinity so that

π(t) ∈ [x−M − c6 − t, x+M + c6 + t] for all t ≥ 0].

By the ergodic theorem (see (5.2) for θ)

lim inf
M→∞

1

M

∑
x∈[−2M,2M ],

x even

Ix ≥ lim
M→∞

1

M

∑
x∈[−2M,2M ],

x even

Kx ≥ 2θ(p) a.s. [Pp]. (A.15)

Thus there exists an M0 = M0(ε1) such that for all p ∈ [p̄, 1)

Pp

(
Ĩx = 1 for some x ∈ [−2M0, 2M0]

)
≥ Pp̄

(
1
M0

∑
x∈[−2M0,2M0]
x+m even

Ĩx ≥ (2− ε1)θ

)
≥ 1− ε1. (A.16)

We take m2 = m2(ε1) such that m2/2 ≥ 2M0 + c6. Then (A.14) with M0 for M holds
true for any |x| ≤ 2M0,m ≥ m2. We now apply (A.13) and (A.16) to obtain for all
m ≥ m2, p ≥ p3

Pp(there is at least one x ∈ [−2M0, 2M0] with an open path from

0 to (x,m) which is contained in [−2m, 2m]× [0,m])

≥ 1− 2ε1.

In other words, if we first determine the state of all vertices (x, y) with 0 ≤ y ≤ m, we
will find with probability 1−2ε1 at least one vertex (x1,m) with x1 ∈ [−2M0, 2M0], x1 +m

even and with an open connection from 0 to (x1,m) which stays in [−2m, 2m] × [0,m].
On the event that such an x exists, let x1 be the smallest x in [−2M0, 2M0] with these
properties. We can then repeat the argument (after a shift by (x1,m)), to find that
with a further conditional probability of at least 1 − 2ε1, there exists an x2 ∈ [x1 −
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2M0, x1 + 2M0] ⊂ [−4M0, 4M0] with an open path from (x1,m) to (x2, 2m) which stays
in [x1 − 2m,x1 + 2m] ⊂ [−4m, 4m] during [m, 2m]. Concatenation of the open path from
0 to (x1,m) and the path from (x1,m) to (x2, 2m) gives an open path from 0 to (x2, 2m)

which stays in [−4m, 4m] during [0, 2m]. Similarly, we find by repeating the argument
k0 times that there is a probability of at least (1− 2ε1)k0 that 0 is connected by an open
path which stays in [−2k0m, 2k0m]× [0, k0m] to a vertex (xk0 , k0m) with |xk0 | ≤ 2k0M0.

We need to concatenate paths once more. This time we replace m by m′ ∈ [m, 2m]

(see (A.7)) and the sum over −2M0 ≤ x ≤ 2M0 in (A.15) by the sum over αm′ ≤ x ≤ βm′
for some fixed −s(p) ≤ α ≤ β ≤ s(p). In essentially the same way as before we conclude
that for p ≥ p̄ and m ≥ m3 = m3(ε1, p) (suitable)

Pp
(
for all −s(p) ≤ α ≤ β ≤ s(p) there are at least [θ(p)(β − α)/2− ε1]m′

values of x with αm′ ≤ x ≤ βm′, x+m′ even, for which there

is an open path from 0 to (x,m′) which stays inside

[−2m′, 2m′]× [0,m′] during [0,m′]
)

≥ 1− 2ε1.

If xk0 as described above exists, then there is a conditional probability, given the state of
all vertices (x, y) ∈ Z̃2

+ with y ≤ k0m, of at least (1− 2ε1) that (xk0 , k0m) is connected to
at least

[θ(β − α)/2− ε1]m′ ≥ [θ(β − α)/2− ε1]m ≥ [θ(β − α)/2− ε1]
⌊η

8
n
⌋

vertices (x′, km+m′) = (x′, n) in [αm′ − 2k0m,βm
′ + 2k0m]× {n} by open paths which

stay in

[−2k0M0 − 2m′, 2k0M0 + 2m′]× [0, n] during [0, k0m+m′] = [0, n].

But by (A.7) there exists some n0 = n0(ε, η) such that for n ≥ n0 it holds m ≥ m1∨m2∨m3

and

2k0M0 + 2m′ ≤ 2k0M0 + 4m ≤ 2
n

m
M0 + 4

η

8
n ≤ ηn,

so that the constructed paths stay in [−ηn, ηn] × [0, n], as is required for them to be
counted in νn. Also, by our choice of ε1 in (A.8)

(1− 2ε1)k0+1 ≥ 1− 2(k0 + 1)ε1 ≥ 1− ε/2.

We had to concatenate k0 + 1 paths, each of which existed with a conditional probability
of at least 1− 2ε1, given the previously chosen paths. Thus the whole construction works
with a probability of at least (1− 2ε1)k0+1 ≥ 1− ε/2. This proves (5.18) when A = 0. As
pointed out before this proves the lemma if we do not insist that the starting point of
an open path is open. However, if we revert to our previous convention that an open
path must have an open initial and final point, then our construction of open paths from
0 to the horizontal line {y = n} is valid only on the event {0 is open}. We therefore
have to discard the event {0 is closed}. Correspondingly, the probability of finding the
required open paths is at least (1− ε1)k0+1 − (1− p) ≥ 1− ε/2− ε/2 = 1− ε (recall that
p ≥ p̄ ≥ 1− ε/2; see the line before (A.9)).
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