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On the quadratic random matching problem in
two-dimensional domains*
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Abstract

We investigate the average minimum cost of a bipartite matching, with respect to
the squared Euclidean distance, between two samples of n i.i.d. random points on a
bounded Lipschitz domain in the Euclidean plane, whose common law is absolutely
continuous with strictly positive Hölder continuous density. We confirm in particular
the validity of a conjecture by D. Benedetto and E. Caglioti stating that the asymptotic
cost as n grows is given by the logarithm of n multiplied by an explicit constant
times the volume of the domain. Our proof relies on a reduction to the optimal
transport problem between the associated empirical measures and a Whitney-type
decomposition of the domain, together with suitable upper and lower bounds for local
and global contributions, both ultimately based on PDE tools. We further show how to
extend our results to more general settings, including Riemannian manifolds, and also
give an application to the asymptotic cost of the random quadratic bipartite travelling
salesperson problem.
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1 Introduction

The minimum weight perfect matching problem on bipartite graphs, also called
assignment problem, is a combinatorial optimization problem which has been historically
subject of intense research by several communities, well beyond operation research
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On the quadratic random matching problem in two-dimensional domains

and algorithm theory, including combinatorics and graph theory [29], probability and
statistics [43] and even theoretical physics [32, 31]. Applications related to planning
and allocation of resources are classical, but recently they have seen an increased
interest, e.g. in the online version of the problem, related to Internet advertising [30].
The assignment problem and its common linear programming relaxation, the optimal
transport problem, provide also useful tools in machine learning and data science [5, 34],
mostly because of its efficiency and versatility at discriminating between empirical
distributions.

In this article, we focus on the Euclidean formulation of the problem, where we are
given two finite families of points (xi)

n
i=1, (yj)

m
j=1 ⊆ R

d, with m ≥ n, and the matching
cost is defined, for a given parameter p > 0,

min
σ∈Sn,m

n∑
i=1

|xi − yσ(i)|p, (1.1)

where Sn,m denotes the set of injective maps σ : {1, . . . , n} → {1, . . . ,m}. This corre-
sponds to a minimum weight perfect matching problem on the complete bipartite graph
and edge weights wij = |xi − yj |p. In particular, when n = m, Sn,n = Sn is the symmetric
group of permutations over n elements.

A linear programming approximation of (1.1) is given by the Monge-Kantorovich
optimal transport problem, where σ is replaced by a transport plan or coupling, i.e., a
matrix (πij)

j=1,...,m
i=1,...,n ∈ [0, 1]n×m with

∑
i πij = 1/m,

∑
j πij = 1/n. Minimization among all

couplings yields a particular instance of the Wasserstein cost of order p > 0 between the
empirical measures 1

n

∑n
i=1 δxi and 1

m

∑m
j=1 δyj ,

min
π

n∑
i=1

m∑
j=1

πij |xi − yj |p = W p
p

 1

n

n∑
i=1

δxi ,
1

m

m∑
j=1

δyj

 . (1.2)

The Birkhoff-von Neumann theorem [29] provides an exact correspondence between
(1.1) and (1.2) when n = m, i.e., both the costs and optimizers are the same, an optimal
plan is as a permutation matrix (both up to a factor 1/n). As a consequence, one can
exploit the rich analytic structure of optimal transport and use tools from convex analysis
and partial differential equations.

We further assume that the points xi = Xi, yj = Yj are samples of independent
identically distributed (i.i.d.) random variables with a common law. This is the paradigm
of many problems in geometric probability, in particular related to the theory of Euclidean
additive functionals [40, 49]. The random Euclidean bipartite matching problem is in
fact known to be quite challenging: general results and techniques that give precise
results in similar problems (e.g. the non-bipartite matching problem) fail here, most
notably when the dimension of the space is small.

The “critical” case turns out to be d = 2, which we also consider in this work. In this
case, Ajtai, Komlós and Tusnády [1] first showed that for i.i.d. uniform samples on the
square (0, 1)2 the asymptotics in the case n = m→∞ reads, for1 p ≥ 1,

E

[
W p
p

(
1

n

n∑
i=1

δXi ,
1

n

n∑
i=1

δYi

)]
∼
(

log n

n

)p/2
. (1.3)

Talagrand [44] subsequently investigated the case of general laws, possibly not even
absolutely continuous, providing a universal upper bound for p = 1, with the same rate.

1We use the notation A ∼ B if both A . B and B . A hold, where in turn A . B means that there exists a
global constant C = C(d, p,Ω) > 0 depending only on the dimension d, p ≥ 1 and on the fixed domain Ω such
that A ≤ CB.
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On the quadratic random matching problem in two-dimensional domains

The parameter p > 0 plays a relevant role, since the solution to both problems (1.1)
and (1.2) in general depends on p, and for d = 2, p < 1 the correct rate in (1.3) turns out
to be n−p/2, i.e. no logarithmic corrections appear [7]. The classical literature focused
mostly on the case p = 1 – but also on the case p =∞, see [28, 46].

A recent breakthrough in the quadratic case p = 2 was obtained by the statistical
physics community, starting from the seminal work [15] and further developed in [16, 39].
By formally linearising the Monge-Ampère equation around the constant density to obtain
the Poisson equation, they argued in particular that the optimal transport cost should
be well-approximated by a negative Sobolev norm of the difference of the empirical
measures. After a renormalization procedure to cut-off divergences, this led for uniform
points on (0, 1)2 to the conjecture

lim
n→∞

n

log n
E

[
W 2

2

(
1

n

n∑
i=1

δXi ,
1

n

n∑
i=1

δYi

)]
=

1

2π
. (1.4)

A rigorous mathematical proof of (1.4) was later obtained in [3]. Further simplifications
and improvements of this method have been done in [2], leading to quantitative bounds
for optimizers [4]. See also [20] for a justification of the linearisation ansatz of [15] down
to mesoscopic scales based on a large-scale regularity theory for the Monge-Ampère
equation [21]. Let us point out that for p ≥ 1, with the exception of p = 2, even in
the case of uniform points on (0, 1)2 it is still an open problem [43, Section 4.3.3] to
determine if the limit in (1.3) exists, i.e. prove the existence of

lim
n→∞

(
n

log n

)p/2
E

[
W p
p

(
1

n

n∑
i=1

δXi ,
1

n

n∑
i=1

δYi

)]
.

A natural question is how (1.4) should be modified when the uniform law is replaced
by a different density. As a first step in this direction, it is proven in [2, 3] that (1.4) holds
on general closed compact Riemannian manifolds (M, g), when the cost is the square
of the Riemannian distance and the law of the samples is the normalized Riemannian
volume measure. This however does not even cover the case of a uniform measure
on a general convex set M = Ω ⊆ R2, because of the presence of the boundary. For
non-convex sets, an additional problem is that the Riemannian distance is different from
the Euclidean one. On the other side, it was recently predicted in [9, Conjecture 2] that
for every bounded connected open set Ω ⊂ R2 with smooth boundary and every smooth,
uniformly positive and bounded density with respect to the Lebesgue measure, the limit
(1.4) holds true with the right-hand side multiplied by |Ω|. A rigorous proof of the upper
bound

lim sup
n→∞

n

log n
E

[
W 2

2

(
1

n

n∑
i=1

δXi ,
1

n

n∑
i=1

δYi

)]
≤ |Ω|

2π
, (1.5)

has been obtained in [9, Theorem 1] under the hypothesis that Ω = (0, 1)2 and that the
common law of the points is absolutely continuous with a uniformly strictly positive
and bounded Lipschitz density. Further conjectures on higher order terms in the
asymptotic expansion of (1.4) can be found in [10], relying on a clever comparison
between the expansions in any two smooth compact manifolds. Unfortunately, a rigorous
mathematical justification of these predictions seems currently out of reach.

Main results

Our main results fully settle the validity of [9, Conjecture 2], allowing in fact for
densities that are not necessarily smooth, but only Hölder continuous and strictly positive
on a bounded connected domain with Lipschitz boundary. We state and prove separately
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On the quadratic random matching problem in two-dimensional domains

first the case of the quadratic Wasserstein distance between an empirical measure and
the common law of the sampled points, and then that of optimal transport between two
independent samples. In the former setting we have the following

Theorem 1.1. Let Ω ⊆ R2 be a bounded connected domain, with Lipschitz boundary
and ρ be a Hölder continuous probability density on Ω uniformly strictly positive and
bounded from above. Given i.i.d. random variables (Xi)

∞
i=1 with common distribution ρ,

we have

lim
n→∞

n

log n
E

[
W 2

2

(
1

n

n∑
i=1

δXi , ρ

)]
=
|Ω|
4π

.

In the latter case, we also allow for possibly a different number of points n, m among
two (jointly) i.i.d. families of random variables, extending [2, Remark 7.1].

Theorem 1.2. Let Ω ⊆ R2 be a bounded connected domain with Lipschitz boundary
and ρ be a Hölder continuous probability density on Ω uniformly strictly positive and
bounded from above. Given i.i.d. random variables (Xi, Yi)

∞
i=1 with common distribution

ρ, for every q ∈ [1,∞],

lim
n,m→∞
m/n→q

n

log n
E

W 2
2

 1

n

n∑
i=1

δXi ,
1

m

m∑
j=1

δYj

 =
|Ω|
4π

(
1 +

1

q

)
.

Building on these results for Euclidean planar domains, it is possible using similar
sub-additivity arguments to generalize them to some metric measure spaces, including
e.g., smooth connected domains of two dimensional Riemannian manifolds with densities,
see Section 6 for more precise statements.

Notice that when q →∞ we obtain in Theorem 1.2 the same limit as in Theorem 1.1.
When n = m, Theorem 1.2 gives the asymptotic value of the minimum bipartite matching.
In fact, using simple upper and lower bounds we can obtain a related result for n, m→∞
with m− n that does not grow too fast.

Corollary 1.3. Let Ω ⊆ R2 be a bounded connected domain, with Lipschitz boundary
and ρ be a Hölder continuous probability density on Ω uniformly strictly positive and
bounded from above. Given i.i.d. random variables (Xi, Yi)

∞
i=1 with common distribution

ρ, for any sequence m = m(n) ≥ n with limn→∞(m− n)/ log n = 0, it holds

lim
n→∞

1

log n
E

[
min

σ∈Sn,m

n∑
i=1

|Xi − Yσ(i)|2
]

=
|Ω|
2π

.

We further deduce a result for the average cost of the random quadratic Euclidean
bipartite travelling salesperson problem. The Euclidean travelling salesperson problem
searches for the shortest cycle that visits a given set of points in Rd, and the study of its
random version is classical [8, 36, 51, 50]. Its random bipartite variant requires that the
cycle must alternatively connect points from two given sets of points. By extending the
argument from [14] from the case of the square to a general domain, we deduce that the
cost of the random quadratic Euclidean bipartite travelling salesperson problem in two
dimensions is asymptotically twice that of the bipartite matching problem.

Corollary 1.4. Let Ω ⊆ R2 be a bounded connected domain, with Lipschitz boundary
and ρ be a Hölder continuous probability density on Ω uniformly strictly positive and
bounded from above. Given i.i.d. random variables (Xi, Yi)

∞
i=1 with common distribution

ρ, then

lim
n→∞

1

log n
E

[
min
σ,τ∈Sn

n∑
i=1

|Xσ(i) − Yτ(i)|2 + |Yτ(i) −Xσ(i+1)|2
]

=
|Ω|
π
,

where we use the convention σ(n+ 1) = σ(1), for σ ∈ Sn.
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On the quadratic random matching problem in two-dimensional domains

Finally, let us comment that our main focus on limit results for the expected costs
is justified by general concentration arguments that can improve to convergence in
probability of the sequence of renormalized cost – see [3, Remark 4.7], where the only
assumption is the validity of a L2-Poincaré-Wirtinger inequality, satisfied on such regular
domains.

Idea of the proof

We follow the sub-additivity method introduced in this context in [7, 18] and later
improved in [9, 22]. This splits the energy in a local and a global part. A central point is to
prove that the global part, which encodes the defect in sub-additivity, has asymptotically
only a vanishing contribution. While this method has already been implemented in [9]
to obtain the upper bound (1.5) one of our main achievements is to prove that it may
indeed be used also to get the corresponding lower bound. To this aim, we rely on
a “boundary” variant of the optimal transport which has super-additivity properties.
Similar functionals have been widely used in the theory of Euclidean additive functionals
[7, 49]. The main point is to prove that when Ω = (0, 1)2 and the law is the uniform one,
the asymptotic costs for the usual optimal transport and the “boundary” versions are
equal (see Proposition 3.1 and Proposition 3.2). Our proof relies on the PDE approach
from [2, 3]. To the best of our knowledge, this is the first example where the so-called
Dirichlet-Neumann bracketing method is used in the context of optimal transport (see
[6] for a recent application of these ideas for Coulomb gases).

On a more technical side, we introduce two main ideas. First, in order to deal with
domains which are not (0, 1)2 or a finite union of cube, we consider a Whitney partition
of our domain. While this does not affect too much the treatment of the local term, it
requires a finer estimate of the global one. Indeed, as in [9, 22] (see also [35, 3, 21, 26])
we first rely on the estimate

W 2
2 (f, 1) . ‖f − 1‖2H−1

to reduce ourselves to an estimate in H−1. In [9, 22] (and also [21]) the right-hand
side is then estimated thanks to Poincaré inequality by an L2 norm. A quick look at [9]
shows that for fixed number of points n, this yields an error which is proportional to the
number of cubes in the partition of our domain. Since a Whitney partition is made of
infinitely many such cubes (or in any case a very large number of them, see Lemma 5.1)
this would lead to a very bad estimate. This is due to the fact that a function with rapid
oscillations typically has large L2 norm but small H−1 norm. To capture this, we prove in
Lemma 2.1 a finer estimate for functions with “small” support. This gives an error term
which, up to logarithm, does not depend on the mesh-size of our partition (see (4.10)).
In order to deal with Hölder continuous densities instead of Lipschitz ones as in [9],
the second idea is to replace the Knothe map used in [9, Lemma 1] by a transport map
constructed via heat flow interpolation in the spirit of the Dacorogna-Moser construction
(see Lemma 2.5). This might be of independent interest and may be related to similar
constructions in the literature, e.g. [25, 33].

Further questions

We mention here some open problems related to our results:

1. In [4] and [20] quantitative rates of convergence for the optimal transport map
have been obtained. It may be worth exploring whether similar quantitative rates
still hold in the general setting addressed in this article.

2. We expect that our results may be extended to the case of less regular domains
and densities, with a similar asymptotic cost. However, the validity of (1.5) must
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On the quadratic random matching problem in two-dimensional domains

require some condition on the support of ρ, such as connectedness [9, Remark 2],
which is in contrast with the universal upper bounds obtained by Talagrand [42]
for the case p = 1.

3. The case of unbounded domains may be treated with similar techniques, possibly
leading to sharper limit results for a wide class densities, e.g. Gaussian ones
[26, 27, 45], where existence of a limit is an open question. We mention in this
regard that the case d = 1 already rises yields some interesting problems, see
[12, 17, 11].

4. Finally, it may be worth exploring how large the difference m − n can be in
Corollary 1.3 so that (1.3) still holds true.

Structure of the paper

In Section 2 we fix our notation and provide some general results about negative
Sobolev norms, classical optimal transport and its “boundary” version and finally a
construction of a transport map from a Hölder density to the uniform one via heat flow
on the cube. Section 3 is devoted to the extension of the PDE approach from [2, 3]
to the “boundary” transport cost on the square. In Section 4 and Section 5 we prove
respectively Theorem 1.1 and Theorem 1.2. Section 6 describes how similar techniques
allow to consider more general settings, including Riemannian manifolds. Section 7
and Section 8 contain respectively the proof of Corollary 1.3 and Corollary 1.4. Two
appendices include technical results about decomposition of a domain into sets with
certain properties that may be well-known in the literature, but we did not find exactly
stated in a version useful for our purposes.

2 Notation and preliminary results

We write |A| for the Lebesgue measure of a Borel set A ⊆ Rd, and
∫
A
f for the integral

of an integrable function f on A. If a measure is absolutely continuous with respect to
the Lebesgue measure, we always identify it with its density. A cube Q ⊆ Rd of side
length ` is a set of the form Q =

∏d
i=1(vi, vi + `) with (vi)

d
i=1 ∈ Rd and ` > 0. We note

`(Q) the sidelength of a cube Q. By a partition of Ω ⊆ Rd, we always mean in fact that
Ω is covered up to Lebesgue negligible sets. We denote by |v| the Euclidean norm of a
vector v ∈ Rd. We use the letters C, c for positive constants whose value may vary from
one line to the next and ω for a generic decreasing rate function with limt→∞ ω(t) = 0.
In this paper the domain Ω is fixed and we write A . B if there is C > 0 depending
only on Ω (and potentially on d and p if we consider the p-Wasserstein distance in Rd)
such that A ≤ CB. For a function f , we use the notation ∇f for its gradient, ∇ · f for
its divergence, ∆f = ∇ · ∇f for its Laplacian. The push-forward of a measure µ with
respect to a map f is denoted f]µ, i.e., f]µ(A) = µ(f−1(A)).

For f : Ω ⊆ Rd → Rk, we write ‖f‖Lp(Ω) =
(∫

Ω
|f |p

)1/p
, ‖f‖L∞(Ω) = supx∈Ω |f(x)| and

‖f‖Cα(Ω) = ‖f‖L∞(Ω) + sup
x,y∈Ω
x6=y

|f(y)− f(x)|
|x− y|α

,

for α ∈ (0, 1] for the α-Hölder norm of f (when α = 1 we obtain its Lipschitz norm). We
also write

LipΩ f = sup
x,y∈Ω
x 6=y

|f(y)− f(x)|
|x− y|

.

We omit to specify Ω when it is clear from the context and write ‖f‖p, ‖f‖∞, ‖f‖Cα and
Lip f .
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On the quadratic random matching problem in two-dimensional domains

We collect below some general facts useful to prove our main results. For possible
future reference we state and prove them in a slightly more general form, e.g., in general
dimensions or for general, non quadratic, costs.

2.1 Negative Sobolev norms

Let Ω ⊆ Rd be a bounded connected open set with Lipschitz boundary. We denote the
negative Sobolev norm by

‖f‖W−1,p(Ω) = sup
|∇φ|Lq(Ω)≤1

∫
Ω

fφ,

where q is the Hölder conjugate of p (i.e. 1 = 1
p + 1

q ). For p = 2 we simply write H−1(Ω).

Notice in particular that in order to have ‖f‖W−1,p(Ω) <∞ we must have
∫

Ω
f = 0. In this

case we may also restrict the supremum to functions φ having also average zero. When
it is clear from the context, we will drop the explicit dependence on Ω in the norms.

The heat semi-group with null Neumann boundary conditions on Ω is well-defined as
the symmetric Markov semi-group of operators (Pt)t≥0 arising as the L2 gradient flow of
the Dirichlet energy ‖∇f‖22 on the Sobolev space f ∈ H1(Ω). It is well-known [47] that
the validity of L2-Poincaré-Wirtinger inequality on Ω is equivalent to a spectral gap, i.e.,
for some constant c > 0, for every f ∈ L2(Ω) with

∫
Ω
f = 0,

‖Ptf‖2 ≤ e
−ct ‖f‖2 , for t ≥ 0. (2.1)

In particular, one has the integral representation

∆−1f =

∫ ∞
0

Ptfdt

for the solution to the elliptic PDE, ∆u = f in Ω with null Neumann boundary conditions
and also, for the negative Sobolev norm,

‖f‖2H−1 =

∫
Ω

f∆−1f =

∫ ∞
0

∫
Ω

fPtfdt =

∫ ∞
0

∫
Ω

(Pt/2f)2dt. (2.2)

Sobolev inequality instead is equivalent to ultracontractivity: for every t ∈ [0, 1] and
f ∈ L1 with

∫
Ω
f = 0,

‖Ptf‖∞ . t−d/2 ‖f‖1 . (2.3)

In terms of the symmetric heat kernel pt(x, y) = pt(y, x) (defined by the equality Ptf(x) =∫
Ω
pt(x, y)f(y)dy), it reads ‖pt‖∞ . t−d/2. This inequality can be easily combined with

(2.1) to obtain the stronger inequality

‖Ptf‖∞ . t−d/2e−ct ‖f‖1 . (2.4)

The following lemma will be used to bound the negative Sobolev norm of functions
supported on subsets A ⊆ Ω.

Lemma 2.1. Let d ≥ 2, Ω ⊆ Rd be a bounded connected Lipschitz domain. For every
f ∈ L∞(Ω) with

∫
Ω
f = 0,

‖f‖H−1 .

‖f‖L1

√∣∣∣log
‖f‖1
‖f‖∞

∣∣∣+ 1 if d = 2,

‖f‖
1
2 + 1

d
1 ‖f‖

1
2−

1
d

∞ if d > 2.
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Proof. By (2.2)

‖f‖2H−1 =

∫ ∞
0

∫
Ω

fPtfdt.

By (2.4) and ‖Ptf‖∞ ≤ ‖f‖∞, for every t > 0,∫
Ω

fPtf ≤ ‖f‖1 ‖Ptf‖∞ . ‖f‖1 min(‖f‖∞ , t−
d
2 exp(−ct) ‖f‖1).

By integration we obtain for every t0 > 0,

‖f‖2H−1 . ‖f‖1

(
t0 ‖f‖∞ + ‖f‖1

{
| log t0| if d = 2,

t
1−d/2
0 if d > 2

)
.

Optimizing in t0 by setting t0 = ‖f‖d/21 ‖f‖−d/2∞ concludes the proof.

2.2 Optimal transport

We introduce some notation for the Wasserstein distance and recall few simple
properties that will be used throughout. Proofs can be found in any of the monographs
[48, 38].

Let p ≥ 1 and µ, λ be positive Borel measures with finite p-th moments and equal
mass µ(Rd) = λ(Rd). The Wasserstein distance of order p between µ and λ is defined as

Wp(µ, λ) =

(
min

π∈C(µ,λ)

∫
Rd×Rd

|x− y|pdπ(x, y)

) 1
p

,

where C(µ, λ) is the set of couplings between µ and λ. For a Borel subset Ω ⊆ Rd, we
also write

WΩ,p(µ, λ) = Wp(µ
¬
Ω, λ

¬
Ω),

which implicitly assumes that µ(Ω) = ν(Ω).
Let us recall that Wp is a distance, in particular the triangle inequality holds:

Wp(µ, ν) ≤Wp(µ, λ) +Wp(ν, λ).

We will also use the classical sub-additivity inequality

W p
p

(∑
k

µk,
∑
k

λk

)
≤
∑
k

W p
p (µk, λk), (2.5)

for a finite set of positive measures µk, λk. A simple combination of the two properties
above and Young inequality yield a geometric subadditivity property [22, Lemma 3.1],
that we report here for the reader’s convenience: there exists a constant C = C(p) > 0

such that, for every Borel partition (Ωk)k∈N of Ω, and every ε ∈ (0, 1),

W p
Ω,p

(
µ,
µ(Ω)

λ(Ω)
λ

)
≤ (1+ε)

∑
k

W p
Ωk,p

(
µ,
µ(Ωk)

λ(Ωk)
λ

)
+

C

εp−1
W p

Ω,p

(∑
k

µ(Ωk)

λ(Ωk)
χΩkλ,

µ(Ω)

λ(Ω)
λ

)
.

(2.6)
If we assume that Ω is sufficiently regular, then we may use the Benamou-Brenier

formula in a similar fashion as in [22, Lemma 3.4] (see also [35, Corollary 3]) to bound
from above the Wasserstein distance by the negative Sobolev norm. Notice that we use
the fact that the Euclidean distance is bounded from above by the geodesic distance in
Ω (they coincide if Ω is convex).
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On the quadratic random matching problem in two-dimensional domains

Lemma 2.2. Assume that Ω ⊆ Rd is a bounded connected open set with Lipschitz
boundary. If µ and λ are measures on Ω with µ(Ω) = λ(Ω), absolutely continuous with
respect to the Lebesgue measure and infΩ λ > 0, then, for every p ≥ 1,

W p
Ω,p(µ, λ) .

1

infΩ λp−1
‖µ− λ‖pW−1,p(Ω) . (2.7)

To deal with lower bounds, we rely on a “boundary” variant of the optimal transport,
introduced in [19], but also independently studied in the setting of Euclidean bipartite
matching problems, see [7, 18]. Here, one is allowed to transport any amount of mass
from and to the boundary of an open set Ω ⊆ Rd. We write, for finite positive measures µ
and ν with finite p-th moment,

WbpΩ,p(µ, λ) =

(
min

π∈CbΩ(µ,λ)

∫
Ω×Ω

|x− y|pdπ(x, y)

) 1
p

,

where CbΩ(µ, λ) is the set of positive measures π on Ω× Ω such that π1
¬
Ω = µ

¬
Ω and

π2
¬
Ω = λ

¬
Ω (π1, π2 denoting respectively the first and second marginals of π).

The triangle inequality holds,

WbΩ,p(µ, ν) ≤WbΩ,p(µ, λ) +WbΩ,p(ν, λ).

A geometric superadditivity property also holds: for every disjoint family (Ωk)k∈N of
open subsets of Ω,

WbpΩ,p(µ, ν) ≥
∑
k

WbpΩk,p(µ, ν).

The intuition behind this property is quite clear. Given any plan on Ω, one should be
able to suitably restrict it on each Ωk by stopping the transport at each boundary. To
prove it rigorously, it is sufficient to argue in the case of discrete measures µ =

∑
i µiδxi ,

ν =
∑
i νiδyi . The general case follows by approximation. Given π ∈ CbΩ,p(µ, ν), we

define (πk)k∈N with πk ∈ CbΩk,p(µ, ν) such that∫
Ω×Ω

|x− y|pdπ(x, y) ≥
∑
k

∫
Ωk×Ωk

|x− y|pdπk(x, y). (2.8)

Again by approximation, we may also assume that π =
∑
` π`δ(x`,y`) is discrete, with

(x`, y`) ∈ Ω× Ω. The following algorithm can be used to define the sequence (πk)k. Set
initially πk = 0 for every k. For every `, consider the pair (x`, y`). If x`, y` ∈ Ωk, then add
π`δ(x`,y`) to πk. If x` ∈ Ωk and y` ∈ Ωj with k 6= j, let

t− = inf {t ∈ [0, 1] : (1− t)x` + ty` /∈ Ωk}

t+ = inf {t ∈ [0, 1] : tx` + (1− t)y` /∈ Ωj} ,

and define y−` = (1 − t−)x` + t−y` ∈ ∂Ωk, x
+
` = t+x` + (1 − t+)y` ∈ ∂Ωj . Then, add

respectively π`δ(x`,y−` ) to πk and π`δ(x+
` ,y`)

to πj . If x ∈ Ωk for some k and y ∈ Ω \
⋃
j Ωj ,

set t− and y−` as the previous case and add π`δ(x`,y−` ) to πk. Similarly, if x ∈ Ω \
⋃
j Ωj

and y ∈ Ωk then add π`δ(x+
` ,y) to πk. In all the other cases, i.e., if x`, y` ∈ Ω \

⋃
k Ωk, do

nothing. It is not difficult to check that (πk)k thus defined indeed satisfies πk ∈ CbΩk and
(2.8) holds (using in particular that p ≥ 1 to argue that |x`− y`|p ≥ |x`− y−` |p+ |x+

` − y`|p).
Arguing similarly as in the proof of (2.6) we obtain a symmetric inequality: there

exists a constant C(p) > 0 such that, for every Borel partition (Ωk)k∈N of Ω, and every
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On the quadratic random matching problem in two-dimensional domains

ε ∈ (0, 1),

WbpΩ,p

(
µ,
µ(Ω)

λ(Ω)
λ

)
≥(1− ε)

∑
k

WbpΩk,p

(
µ,
µ(Ωk)

λ(Ωk)
λ

)

− C

εp−1
WbpΩ,p

(∑
k

µ(Ωk)

λ(Ωk)
χΩkλ,

µ(Ω)

λ(Ω)
λ

)
.

(2.9)

To obtain lower bounds, we will also rely on the dual formulation of WbΩ,p that reads

WbpΩ,p(µ, ν) =

sup

{∫
Ω

fdµ+

∫
Ω

gdν : f(x) + g(y) ≤ |x− y|p for x, y ∈ Ω, f = g = 0 on ∂Ω

}
.

(2.10)

In fact, only the inequality ≥ will be used, which is immediate to check.

Remark 2.3. Many of the above properties, in particular (2.6) and (2.9), hold for the
Wasserstein distance defined over any length metric space, in particular on a Riemannian
manifold.

2.3 A transport map via heat flow

The following result yields a Lipschitz map on the cube (0, 1)d transporting a given
Hölder probability density to the uniform one. The main point here is that the Lipschitz
constant of the map is very close to 1. This construction, possibly interesting on its
own, allows us to avoid the use of general boundary regularity theory for the optimal
transport map with respect to the squared distance cost [13], as it does not seem to be
applicable to the case of the cube (it requires strictly convex and C2 boundary). Notice
that for Hölder continuous densities, counterexamples can be constructed if we work
with the Knothe map as in [9].

Proposition 2.4. For d ≥ 1, α ∈ (0, 1], there exists C > 0 depending on d and α only
such that the following holds: for any ρ : (0, 1)d → (0,∞) with∫

(0,1)d
ρ = 1 and ‖ρ− 1‖Cα ≤ 1/2,

there exists T : (0, 1)d → (0, 1)d such that T]ρ = 1, with

LipT,LipT−1 ≤ 1 + C ‖ρ− 1‖Cα and T (∂(0, 1)d) = ∂(0, 1)d.

Proof. Using the Neumann heat semi-group, we define ρt = Ptρ, so that, for t ≥ 0, the
weak formulation of the heat equation reads, for every for every f ∈ H1((0, 1)d),∫

(0,1)d
fρt =

∫
(0,1)d

fρ−
∫ t

0

∫
(0,1)d

∇f ∇ρtdt, for every t ≥ 0.

We notice first that the assumption gives inf(0,1)d ρ ≥ 1/2 so that, for every t ≥ 0,
inf(0,1)d ρt ≥ 1/2 as well, hence ∥∥ρ−1

t

∥∥
∞ . 1.

By standard heat kernel estimates (one has in fact an explicit representation of pt(x, y),
see [2, Appendix A] for the case d = 2) we have, for every t > 0,

‖∇ρt‖∞ . t−
1
2 +α

2 e−ct ‖ρ− 1‖Cα and
∥∥∇2ρt

∥∥
∞ . t−1+α

2 e−ct ‖ρ− 1‖Cα .

We thus define the time-dependent vector field (bt)t>0, on (0, 1)d,

bt(x) = −∇ log ρt(x) = −∇ρt(x)

ρt(x)
, with ∇bt(x) = −∇

2ρt(x)

ρt(x)
+
∇ρt(x)⊗∇ρt(x)

ρ2
t (x)

.
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Using the previous estimates, it follows that

‖bt‖∞ . t−
1
2 +α

2 e−ct ‖ρ− 1‖Cα and ‖∇bt‖∞ . t−1+α
2 e−ct ‖ρ− 1‖Cα .

Since the right-hand sides are integrable functions with respect to t ∈ (0,∞), standard
arguments yield that the associated flow X(t, x), i.e., the solution to

X(t, x) = x+

∫ t

0

bs(X(s, x))ds for t ≥ 0, x ∈ (0, 1)d

is well-defined and Lipschitz continuous:

LipX(t, ·) ≤ exp

(∫ t

0

‖∇bs‖∞ ds

)
≤ exp

(
Ct

α
2 e−ct ‖ρ− 1‖Cα

)
. (2.11)

Because of the homogeneous Neumann boundary condition, bt is tangent to the boundary
∂(0, 1)d, hence X(t, x) ∈ (0, 1)d for every t ≥ 0. Moreover, limt→∞X(t, x) ∈ (0, 1)d exists
for every x ∈ (0, 1)d, since, for s ≤ t,

|X(t, x)−X(s, x)| ≤
∫ t

s

‖br‖∞ dr . s
α
2 e−cs ‖ρ− 1‖Cα ,

which yields that t 7→ X(t, x) is Cauchy as t→∞. We thus define T (x) = limt→∞X(t, x).
Letting t→∞ in (2.11), we have

LipT ≤ exp (C ‖ρ− 1‖Cα) ≤ 1 + C ‖ρ− 1‖Cα .

To prove that T is invertible, we simply notice that for every t > 0 the inverse map of
x 7→ X(t, x) is given by y 7→ Y t(t, y), Y t being the flow of the “backward” in time vector
field (bts)s∈[0,t], b

t
s(y) = −b(t−s)(y). Writing the analogue of (2.11) for y 7→ Y t(t, y) and

letting t→∞ yields the claimed bound on LipT−1.
To conclude, we need to argue that T]ρ = 1. This follows quite classically from the

fact that ρ̃t = X(t, ·)]ρ and ρt both solve the same continuity equation for the vector field
(bt)t>0. Since bt is locally Lipschitz continuous, with Lipschitz norm that is integrable
in time, uniqueness holds for the Cauchy problem (this follows for example by a slight
adaptation of [38, Theorem 4.4]). Therefore, ρt = ρ̃t and T]ρ = limt→∞ ρ̃t = limt→∞ ρt =

1.

In general, if Ω ⊆ Rd is open and T : Ω→ Ω is Lipschitz, then for any pair of measures
µ, λ with µ(Ω) = λ(Ω),

WΩ,p(T](µ
¬
Ω), T](λ

¬
Ω)) ≤ (LipT )WΩ,p(µ, λ), (2.12)

since any coupling π between µ
¬
Ω and λ

¬
Ω induces the coupling (T, T )]π. For the

“boundary” optimal transport a similar inequality holds provided that T : Ω→ Ω is such
that T (Ω) ⊆ Ω and T (∂Ω) ⊆ ∂Ω:

WbΩ,p(T](µ
¬
Ω), T](λ

¬
Ω)) ≤ (LipT )WbΩ,p(µ, λ). (2.13)

Combining these observations with Proposition 2.4, we obtain the following result for the
bipartite matching problem, extending [9, Lemma 1] to the case of Hölder continuous
densities.

Lemma 2.5. Let d ≥ 1, α ∈ (0, 1], p ≥ 1 and let ρ be a uniformly positive and α-Hölder
continuous function on a domain Ω ⊆ Rd. Then, there exists a constant c = C(p, ρ) > 0

such that, for every cube Q ⊆ Ω with side length r < c, the following holds:
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On the quadratic random matching problem in two-dimensional domains

1. if (Xi)
n
i=1 are i.i.d. onQwith common density ρ/ρ(Q) and (Xr

i )ni=1 are i.i.d. uniformly
distributed on [0, r]d, then

∣∣∣∣∣E
[
W p
∗

(
1

n

n∑
i=1

δXi ,
ρ

ρ(Q)

)]
− E

[
W p
∗

(
1

n

n∑
i=1

δXri ,
1

|Q|

)]∣∣∣∣∣
. rαE

[
W p
∗

(
1

n

n∑
i=1

δXri ,
1

|Q|

)]
, (2.14)

where W∗ ∈ {WQ,p,WbQ,p};

2. with the same notation, if (Xi)
n
i=1, (Yj)

m
j=1 are (jointly) i.i.d. on Q with common

density ρ/ρ(Q) and (Xr
i )ni=1, (Y rj )mj=1 are (jointly) i.i.d. and uniformly distributed on

[0, r]d, then

∣∣∣∣∣∣E
W p

∗

 1

n

n∑
i=1

δXi ,
1

m

m∑
j=1

δYj

− E
W p

∗

 1

n

n∑
i=1

δXri ,
1

m

m∑
j=1

δY rj

∣∣∣∣∣∣
. rαE

W p
∗

 1

n

n∑
i=1

δXri ,
1

m

m∑
j=1

δY rj

 . (2.15)

Proof. The proof is identical to the proof of [9, Lemma 1] but we include it for the
reader’s convenience. We only prove that for r small enough,

(1− Crα)E

[
W p
∗

(
1

n

n∑
i=1

δXri ,
1

|Q|

)]
≤ E

[
W p
∗

(
1

n

n∑
i=1

δXi ,
ρ

ρ(Q)

)]

since the other inequalities may be proven in the same way. Without loss of generality we
assume Q = (0, r)d. Let also ρ̄ = minΩ ρ. We define ρr(x) = ρ(rx)rd/ρ(Q) for x ∈ (0, 1)d,
so that

∫
(0,1)d

ρr = 1, and for every x, y ∈ (0, 1)d,

ρr(x)− ρr(y) ≤
‖ρ‖Cα
ρ̄

rα|x− y|α,

thus ‖ρr − 1‖Cα ≤ 1/2 if r is sufficiently small. We define S : Q→ Q as S(x) = rT (x/r),
where T is the map provided by Proposition 2.4. It holds LipS = LipT and LipS−1 =

LipT−1, S]ρ/ρ(Q) = 1/|Q| is uniform, hence the variables (S(Xi))
n
i=1 have the same law

as (Xr
i )ni=1. Moreover,

S]

(
1

n

n∑
i=1

δXi

)
=

1

n

n∑
i=1

δS(Xi)

has the same law as 1
n

∑n
i=1 δXri . Since S(∂Q) = ∂Q and S(Q) = Q, it follows from (2.12)

and (2.13) that

E

[
W p
∗

(
1

n

n∑
i=1

δXri ,
1

|Q|

)]
≤ (LipT )pE

[
W p
∗

(
1

n

n∑
i=1

δXi ,
ρ

ρ(Q)

)]
,

This proves the claim provided r is small enough so that (LipT )p ≤ (1− Crα)−1.
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3 Asymptotic equivalence of the usual and boundary costs for uni-
form points on the square

In this section we show how to modify the proofs from [3], using also ideas from [2],
to obtain the analogue for Wb of the limits

lim
n→∞

n

log n
E

[
W 2

2

(
1

n

n∑
i=1

δXi , 1

)]
=

1

4π
, (3.1)

and

lim
n→∞

n

log n
E

[
W 2

2

(
1

n

n∑
i=1

δXi ,
1

n

n∑
i=1

δYi

)]
=

1

2π
,

where (Xi, Yi)
∞
i=1 are i.i.d. uniformly distributed on (0, 1)d. We deal first with the simpler

case of matching to the reference measure.

Proposition 3.1. Let (Xi)
∞
i=1 be i.i.d. uniformly distributed on (0, 1)2. Then

lim
n→∞

n

log n
E

[
Wb2(0,1)2,2

(
1

n

n∑
i=1

δXi , 1

)]
=

1

4π
.

Proof. To simplify the notation, we write Wb instead of Wb(0,1)2,2 and W instead of
W(0,1)2,2. Since Wb ≤W , it is sufficient to prove that

lim inf
n→∞

n

log n
E

[
Wb2

(
1

n

n∑
i=1

δXi , 1

)]
≥ 1

4π
. (3.2)

We do it in several steps.
Step 1 (Regularization). Write µn = 1

n

∑n
i=1 δXi , and for t ≥ 0,

µtn(x) = Ptµn =
1

n

n∑
i=1

pt(x,Xi),

where we recall that (Pt)t≥0 denotes the Neumann heat semi-group on (0, 1)d with kernel
pt(x, y). The triangle inequality for Wb and the inequality Wb ≤W give

Wb2
(
µtn, 1

)
≤
(
Wb(µn, 1) +W (µn, µ

t
n)
)2

≤Wb2(µn, 1) +W (µn, µ
t
n)
(
W (µn, µ

t
n) + 2W (µn, 1)

)
.

We choose t = (log n)4/n, so that, the refined contractivity estimate [2, Theorem 5.2]
gives

E
[
W 2(µn, µ

t
n)
]
.

log log n

n
.

Together with the upper bound

E
[
W 2(µn, 1)

]
.

log n

n
,

which follows from (3.1), we obtain that for n large enough,

E
[
Wb2(µn, 1)

]
≥ E

[
Wb2

(
µtn, 1

)]
− C
√

log n log log n

n
. (3.3)

Thus, it is sufficient to prove (3.2) with µtn instead of µn.
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On the quadratic random matching problem in two-dimensional domains

Step 2 (PDE and energy estimates). Let f tn be the solution to −∆f tn = µtn− 1 with null
Neumann boundary conditions, i.e., since Psµtn = µn,t+s,

f tn =

∫ ∞
t

(µsn − 1)ds.

Recall that, as proved in [3] and [2, Lemma 3.14],

E

[∫
(0,1)2

∣∣∇f tn∣∣2
]

=
log n

4πn
+O

(
1

n

)
(3.4)

and

E

[∫
(0,1)2

∣∣∇f tn∣∣4
]
.

(
log n

n

)2

. (3.5)

In addition to these gradient estimates, we will also need the upper bounds

E

[∫
(0,1)2

∣∣f tn∣∣2
]
.

1

n
, and E

[∫
(0,1)2

∣∣f tn∣∣4
]
.

1

n2
, (3.6)

which can be proved in a similar way. Indeed, for every x ∈ (0, 1)2,

µsn(x)− 1 =
1

n

n∑
i=1

(ps(x,Xi)− 1) =
1

n

n∑
i=1

ξi

is a sum of centered i.i.d. random variables (ξi)
n
i=1. For s ∈ (0, 1), we bound from above

E
[
ξ2
i

]
=

∫
(0,1)2

p2
s(x, y)− 1 = p2s(x, x)− 1 . s−1

where we used the ultracontractivity (2.3) for the heat kernel and similarly

E
[
ξ4
i

]
.
∫

(0,1)2

p4
s(x, y) + 1 . s−2

∫
(0,1)2

p2
s(x, y) + 1 . s−3.

This yields immediately that ∫
(0,1)2

E
[
(µsn(x)− 1)

2
]
.

1

ns
.

Using Rosenthal’s inequality [37] (see also [26]) we also get∫
(0,1)2

E
[
(µsn(x)− 1)4

]
.

1

n3s3
+

1

n2s2
.

For s > 1, we use (2.4), and p ∈ {2, 4},

‖µsn − 1‖p ≤ ‖µ
s
n − 1‖∞ . e−cs/2s−d/2

∥∥∥µs/2n − 1
∥∥∥

1
≤ e−cs/2s−d/2

∥∥∥µs/2n − 1
∥∥∥
p

. e−cs/2‖µ1/2
n − 1‖p.

Taking expectation and using also the upper bounds above for s = 1/2, it follows that for
some constant c > 0, ∫

(0,1)2

E [(µsn(x)− 1)
p
] .

e−cs

np/2
.
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For p = 2, we obtain∫ ∞
t

E
[
(µsn(x)− 1)

2
]1/2

.
∫ 1

t

1√
ns
ds+

∫ ∞
1

e−cs/2√
n

ds .
1√
n
,

and, for p = 4,∫ ∞
t

E
[
(µsn(x)− 1)

4
]1/4

.
∫ 1

t

(
1

n3s3
+

1

n2s2

)1/4

ds+

∫ ∞
1

e−cs/4√
n

ds .
1√
n
.

We conclude, for p = 2 that

E

[∫
(0,1)2

|f tn|2
]

=

∫ ∞
t

∫ ∞
t

E

[∫
(0,1)2

(µn,s1 − 1)(µn,s2 − 1)

]
ds1ds2

≤
∫ ∞
t

∫ ∞
t

E

[∫
(0,1)2

(µn,s1(x)− 1)
2

]1/2

E

[∫
(0,1)2

(µn,s2(x)− 1)
2

]1/2

ds1ds2,

≤

∫ ∞
t

E

[∫
(0,1)2

(µsn(x)− 1)
2

]1/2

ds

2

.
1

n
,

and similarly for p = 4,

E

[∫
(0,1)2

|f tn|4
]
≤

∫ ∞
t

E

[∫
(0,1)2

(µsn(x)− 1)
4

]1/4

ds

4

.
1

n2
.

Step 3 (Dual potential). For η ∈ (0, 1) we introduce a smooth cut-off function χη :

(0, 1)2 → [0, 1] such that χη(x) = 1 on [η, 1− η]2, χη(x) = 0 on (0, 1)2 \ [η/2, 1− η/2]2, with

‖∇χη‖∞ . η−1,
∥∥∇2χη

∥∥
∞ . η−2.

The function fn = f tnχη can be extended by periodicity to a function on the flat torus T2.
By [3, Corollary 3.3] applied to T2, there exists gn ∈ C(T2) such that for x, y ∈ T2,

fn(x) + gn(y) ≤ dT2(x, y)2

2
, and

∫
T2

(fn + gn) ≥ −e‖∆fn‖∞
∫
T2

|∇fn|2.

We may naturally interpret gn as being defined on (0, 1)2, so that using dT2(x, y) ≤ |x−y|2,
we have for x, y ∈ (0, 1)2,

fn(x) + gn(y) ≤ |x− y|
2

2
.

To prove that gn(x) = 0 on ∂(0, 1)2, we recall that [3, Remark 3.4] gn is also the unique
viscosity solution to the Hamilton-Jacobi equation ∂tu+ 1

2 |∇u|
2 = 0 with initial condition

−fn, hence, it coincides with the Hopf-Lax solution

gn(x) = inf
y∈(0,1)2

{
−fn(y) +

dT2(x, y)2

2

}
.

From this representation, we see at once that, if

‖fn‖∞ ≤
η2

8
(3.7)

then gn(x) = 0 on ∂(0, 1)2, because that fn(y) = f tn(y)χη(y) = 0 if x ∈ ∂(0, 1)2 and
dT2(x, y) < η/2.
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On the quadratic random matching problem in two-dimensional domains

Let us also notice that, since ∇fn = ∇f tnχη + f tn∇χη, we have by Young and Cauchy-
Schwarz ∫

(0,1)2

∣∣∇fn −∇f tn∣∣2 .
∫

(0,1)2

|∇f tn|2(1− χη)2 +

∫
(0,1)2

∣∣f tn∇χη∣∣2
.

(∫
(0,1)2

|∇f tn|4
)1/2

η1/2 +

∫
(0,1)2

|f tn|2η−2,

which in expectation gives by (3.5) and (3.6)

E

[∫
(0,1)2

∣∣∇fn −∇f tn∣∣2
]
.

log n

n
η1/2 +

1

n
η−2. (3.8)

Using (3.4) and Young inequality we find for every ε > 0,

lim sup
n→∞

∣∣∣∣∣ n

log n
E

[∫
(0,1)2

|∇fn|2
]
− 1

4π

∣∣∣∣∣ . ε+
C

ε
η1/2.

Choosing ε = η1/4 we conclude

lim sup
n→∞

∣∣∣∣∣ n

log n
E

[∫
(0,1)2

|∇fn|2
]
− 1

4π

∣∣∣∣∣ . η1/4. (3.9)

Arguing similarly, we have(
n

log n

)2

E

[∫
|∇fn|4

]
. 1 +

1

η4(log n)2
. (3.10)

Let us finally argue that∥∥f tn∥∥∞ +
∥∥∇f tn∥∥∞ +

∥∥∆f tn
∥∥
∞ .

∥∥∇2f tn
∥∥
∞ . (3.11)

Since the estimate ‖∆f tn‖∞ .
∥∥∇2f tn

∥∥
∞ is clear and ‖f tn‖∞ . ‖∇f tn‖∞ follows from∫

(0,1)2 f
t
n = 0, we are left with the proof of ‖∇f tn‖∞ .

∥∥∇2f tn
∥∥
∞. Fix x2 ∈ (0, 1) and

consider the function φ(x1) = f tn(x1, x2). We have φ′(x1) = ∇f tn(x1, x2) · e1 (here (e1, e2)

is the canonical basis of R2). By the Neumann boundary conditions, φ′(0) = φ′(1) = 0,
so that ‖φ′‖∞ ≤ ‖φ′′‖∞ .

∥∥∇2f tn
∥∥
∞ and thus ‖∇f tn · e1‖∞ .

∥∥∇2f tn
∥∥
∞. Exchanging the

roles of x1 and x2 concludes the proof of the claim.
Step 4 (Conclusion) In the event An =

{∥∥∇2f tn
∥∥
∞ < 1/ log n

}
we use (fn, gn), as

defined in the previous step, in the duality (2.10). The event An has large probability, i.e.

P (Acn) . n−k, (3.12)

for every k > 0 (with an implicit constant depending on k only, see [2]), hence it is
sufficient to bound from below the expectation of Wb2(µtn, 1) on An (using the trivial
bound Wb2(µtn, 1) ≤ 2 on Acn). If An occurs, we have by (3.11),∥∥f tn∥∥∞ +

∥∥∇f tn∥∥∞ +
∥∥∆f tn

∥∥
∞ .

1

log n
,

so that (3.7) holds if n is sufficiently large (for fixed η) and

‖∆fn‖∞ .
∥∥∇2(f tnχη)

∥∥
∞ .

1

η2 log n
= ωη(n),
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On the quadratic random matching problem in two-dimensional domains

where for fixed η, limn→∞ ωη(n) = 0. Thus,

1

2
Wb2(µtn, 1) ≥

∫
(0,1)2

(fn + gn) +

∫
fn(µtn − 1)

≥ −eωη(n)

∫
(0,1)2

|∇fn|2

2
−
∫

(0,1)2

fn∆f tn

=

(
1− eωη(n)

2

)∫
(0,1)2

|∇fn|2 +

∫
(0,1)2

∇fn ·
(
∇f tn −∇fn

)
.

Taking expectations, we bound the second term in the right-hand side using (3.8) and
(3.9),

lim sup
n→∞

n

log n
E

[∫
(0,1)2

∣∣∇fn · (∇f tn −∇fn)∣∣
]
. η1/4.

For the first term, we have

lim inf
n→∞

n

log n
E

[
(2− eωη(n))χAn

∫
(0,1)2

|∇fn|2
]

≥ lim inf
n→∞

n

log n
E

[∫
(0,1)2

|∇fn|2
]
− lim sup

n→∞

n

log n
E

[
χAcn

∫
(0,1)2

|∇fn|2
]

(3.9)
=

1

4π
− Cη1/4,

where we used in the last line that

lim sup
n→∞

n

log n
E

[
χAcn

∫
(0,1)2

|∇fn|2
]
≤ lim sup

n→∞
P(Acn)1/2 n

log n
E

[∫
(0,1)2

|∇fn|4
]1/2

(3.12)&(3.10)
= 0.

Letting η → 0 we finally obtain the thesis.

Next, we deal with the analogue result for the bipartite matching. In fact, we even
consider the case of different number of points. Let us point out that we only prove
a lower bound since this is what we will later use in the proof of Theorem 1.2. The
corresponding upper bound may be obtained as a corollary of that theorem or more
elementarily by arguing as in (5.2).

Proposition 3.2. Let (Xi, Yi)
∞
i=1 be i.i.d uniformly distributed in (0, 1)2, then there exists

a rate function2 ω such that for every n ≤ m,

E

[
Wb2(0,1)2,2

(
1

n

n∑
i=1

δXi ,
1

m

m∑
i=1

δYi

)]
≥ log n

4πn

(
1 +

n

m
− ω(n)

)
.

Proof. The proof is very similar to the lower bound in the previous Proposition 3.1 so we
only sketch it. Define µn = 1

n

∑n
i=1 δXi and λm = 1

m

∑m
i=1 δYi , and write W for W(0,1)2,2

and similarly for Wb. We denote by µtn and λtm the Neumann heat-kernel regularizations
of µn and λm. We define f tn as the solution to −∆f tn = µtn − 1 and f tm the solution of
−∆f tm = λtm − 1. We finally set f tn,m = f tn − f tm, and choose t = (log n)4/n. Notice that if
tm = (logm)4/m then tm ≤ t.

2recall that a rate function is a generic decreasing function ω such that limt→∞ ω(t) = 0.
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Repeating Step 1 of the proof of Proposition 3.1 we have, by the triangle inequality
and Wb ≤W ,

Wb2
(
µtn, λ

t
m

)
−Wb2(µn, λm)

≤
(
W (µtn, µn) +Wb(µn, λm) +W (λtm, λm)

)2 −Wb2(µn, λm)

.W 2(µtn, µn) +W 2(λtm, λm) +W (µn, λm)
(
W (µtn, µn) +W (λtm, λm)

)
.

The refined contractivity estimate [2, Theorem 5.2] gives

E
[
W 2(µtn, µn)

]
.

log log n

n
,

and moreover, since t = (log n)4/n = γ/m with γ = (log n)4(m/n) � logm, applying
again [2, Theorem 5.2] we have

E
[
W 2(λtm, λm)

]
.

log γ

m
.

log log n+ log
(
m
n

)
m

.
log log n

n
,

where we used that m ≥ n and thus n
m log

(
m
n

)
is bounded. Using also that

E
[
W 2(µn, λm)

]
. E

[
W 2(µn, 1)

]
+ E

[
W 2(λm, 1)

]
.

log n

n
+

logm

m
.

log n

n

we find the analogously to (3.3) that for some constant C > 0,

E
[
Wb2(µn, λm)

]
≥ E

[
Wb2(µtn, λ

t
m)
]
− C
√

log n log log n

n
.

Turning now to Steps 2-4, we see that the proof can be repeated verbatim using f tn,m
instead of f tn and the triangle inequality to obtain the various estimates from the corre-
sponding ones on f tn and f tm. The only additional ingredient is that using integration by
parts and independence, we have the following orthogonality property

E

[∫
(0,1)2

∇f tn · ∇f tm

]
= −E

[∫
(0,1)2

f tn∆f tm

]
= −

∫
(0,1)2

E
[
f tn
]
E
[
λtm
]

= 0.

Therefore, appealing once again to [2, Lemma 3.14],

E

[∫
(0,1)2

|∇f tn,m|2
]

= E

[∫
(0,1)2

|∇f tn|2
]

+ E

[∫
(0,1)2

|∇f tm|2
]

+ 2E

[∫
(0,1)2

∇f tn · ∇f tm

]

= E

[∫
(0,1)2

|∇f tn|2
]

+ E

[∫
(0,1)2

|∇f tm|2
]

=
| log t|
4πn

+
| log t|
4πm

+O

(
1

n

)
=

log n

4πn

(
1 +

n

m
+ ω(n)

)
.

Remark 3.3. Arguing as in [3, Theorem 5.2], we can also provide a lower bound for the
Wasserstein distance of order 1:

lim inf
n→∞

1√
log n

E

[
Wb(0,1)2,1

(
1

n

n∑
i=1

δXi ,
1

n

n∑
i=1

δYi

)]
> 0.

The proof is exactly as in [3, Theorem 5.2]. The only difference lies in the choice of the
Lipschitz function in the dual description of the Wasserstein distance. The function φ

from [3, Theorem 5.2] must be replaced by φχη where χη is defined in the proof above.
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On the quadratic random matching problem in two-dimensional domains

4 Proof of Theorem 1.1

We recall that for a given Lipschitz and connected domain Ω and a Hölder continuous
and uniformly strictly positive probability density ρ on Ω, we consider (Xi)

∞
i=1 i.i.d.

random variables with common distribution ρ. Letting

µn =
1

n

n∑
i=1

δXi ,

we want to prove that

lim
n→∞

n

log n
E
[
W 2

2 (µn, ρ)
]

=
|Ω|
4π

. (4.1)

Without loss of generality, we assume that |Ω| = 1. We also omit to specify p = 2 and
simply write WQ = WQ,2 and WbQ = WbQ,2 for Q ⊆ Ω. Let us introduce some further
notation: for r > 0 we consider (Xr

i )∞i=1, i.i.d. uniformly distributed random variables in
[0, r]2. We then define the average cost functions

Fr(n) = E

[
W 2

[0,r]2

(
1

n

n∑
i=1

δXri ,
1

r2

)]
, F br(n) = E

[
Wb2[0,r]2

(
1

n

n∑
i=1

δXri ,
1

r2

)]

By scaling, (3.1) and Proposition 3.1, we have

Fr(n) = r2F1(n) ≤ r2 log n

4πn
(1 + ω(n)) , and Fbr(n) = r2Fb1(n) ≥ r2 log n

4πn
(1− ω(n)) .

(4.2)
Step 1 (Whitney decomposition). We consider {Qk}k a Whitney decomposition of Ω, see
[41, Chapter 6]. For δ = δ(n) > 0 to be chosen below we set Uδ = {Qk : diam(Qk) ≥ δ}
and Vδ = {Qk : diam(Qk) < δ}. For r > 0 dyadic and small enough so that Lemma 2.5
applies with r diam(Ω), we split each Qk into r−2 sub-cubes. We let V rδ be the union
of these cubes. Up to relabeling we have Uδ ∪ V rδ = {Ωk}k. We finally define κk =

µn(Ωk)/ρ(Ωk).
For ε > 0, we estimate by the subadditivity inequality (2.5)

E
[
W 2

Ω(µn, ρ)
]
≤ (1 + ε)

∑
k

E
[
W 2

Ωk
(µn, κkρ)

]
+
C

ε
E

[
W 2

(∑
k

κkρχΩk , ρ

)]
(4.3)

and the superadditivity inequality (2.9)

E
[
Wb2Ω(µn, ρ)

]
≥ (1− ε)

∑
k

E
[
Wb2Ωk(µn, κkρ)

]
− C

ε
E

[
Wb2Ω

(∑
k

κkρχΩk , ρ

)]
. (4.4)

In both expressions, we recognize in the right-hand sides a sum of “local” contributions
and an additional “global” term. We consider these contributions separately in the next
two steps and show in particular that the global term does not contribute in the limit.

Step 2 (Local term). We let Nk = nµn(Ωk) be the number of points Xi which belong
to the cube Ωk. This is a random variable with binomial law and parameters (n, ρ(Ωk)).
We decompose the sum in the right-hand side of (4.3) as∑

k

E
[
W 2

Ωk
(µn, κkρ)

]
=
∑
Uδ

E
[
W 2

Ωk
(µn, κkρ)

]
+
∑
V rδ

E
[
W 2

Ωk
(µn, κkρ)

]
.

For the first term we use the naive estimate

E
[
W 2

Ωk
(µn, κkρ)

]
. diam2(Ωk)E [µn(Ωk)] ≤ δ2ρ(Ωk),
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to get ∑
Uδ

E
[
W 2

Ωk
(µn, κkρ)

]
. δ2

∑
Uδ

ρ(Ωk) . δ2 |d(·, ∂Ω) . δ| . δ3. (4.5)

As for the second term, we use (2.14) from Lemma 2.5 to infer that for every Ωk ∈ V rδ ,

E
[
W 2

Ωk
(µn, κkρ)

]
= E

[
E
[
W 2

Ωk
(µn, κkρ)|Nk

]]
≤ (1 + Crα)E

[
Nk
n
F√|Ωk|(Nk)

]
(4.2)
≤ (1 + Crα)

|Ωk|
4πn

E [log(Nk)(1 + ω(Nk))] .

Using the concentration properties of the binomial random variable Nk and the fact that
δ = δ(n) satisfies limn→∞ nδ2 =∞, we see that

E [log(Nk)(1 + ω(Nk))] = log(nρ(Ωk))(1 + ω(nr2δ2)) (4.6)

and we find

E
[
W 2

Ωk
(µn, κkρ)

]
≤ (1 + Crα)

log(nρ(Ωk))

4πn
|Ωk|(1 + ω(nr2δ2)). (4.7)

We now claim that ∑
k

|Ωk|| log |Ωk|| . | log r|. (4.8)

Indeed,∑
k

|Ωk|| log |Ωk|| =
∑
Uδ

|Ωk|| log |Ωk||+
∑
V rδ

|Ωk|| log |Ωk||

=
∑
Uδ

|Qk|| log |Qk||+
∑
Vδ

|Qk|| log |Qk|+ log r|

.
∑
k

|Qk|| log |Qk||+
∑
Vδ

|Qk|| log r| . 1 + | log r| . | log r|,

where we used that (notice that the finiteness of the integral below is ensured, for
instance, by the finiteness of the Minkowski content of Ω, in turn ensured by Lipschitz
regularity) ∑

k

|Qk|| log |Qk|| .
∫

Ω

| log d(·, ∂Ω)| <∞.

Thus, from (4.7) and (4.8),∑
k

E
[
W 2

Ωk
(µn, κkρ)

]
≤ (1 + Crα)

log n

n

1

4π
+ C

(
| log r|
n

+
log n

n
ω(nr2δ2) + δ3

)
. (4.9)

For the analogue term in (4.4), we simply discard the terms with Ωk ∈ Uδ and for the
remaining ones use again (2.14) from Lemma 2.5 and the function Fbr instead of Fr to
obtain∑

k

E
[
Wb2Ωk(µn, κkρ)

]
≥ (1− Crα)

log n

n

1− Cδ
4π

− C
(
| log r|
n

+
log n

n
ω(nr2δ2)

)
.

Step 3 (Global term). We now turn to the second term in the right-hand side of (4.3),
for which we show that

E

[
W 2

Ω

(∑
k

κkρχΩk , ρ

)]
.
| log r|
n

. (4.10)
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Notice that the inequality Wb ≤W gives an inequality also for the corresponding term
in (4.4).

We first use Lemma 2.2 to deduce

W 2
Ω

(∑
k

κkρχΩk , ρ

)
.

∥∥∥∥∥∑
k

(κk − 1)ρχΩk

∥∥∥∥∥
2

H−1

=

∥∥∥∥∥∑
k

(κk − 1) (ρχΩk − ρ(Ωk)χΩ)

∥∥∥∥∥
2

H−1

=

∥∥∥∥∥∑
k

(κk − 1)fk

∥∥∥∥∥
2

H−1

,

where
fk = ρχΩk − ρ(Ωk)χΩ.

Taking expectation and expanding the squares we have∥∥∥∥∥∑
k

(κk − 1)fk

∥∥∥∥∥
2

H−1

=
∑
k

E[(κk − 1)2]‖fk‖2H−1 +
∑
j 6=k

E[(κj − 1)(κk − 1)]〈fj , fk〉H−1 .

For the first sum, we use that

E[(κk − 1)2] =
1

ρ2(Ωk)
E
[
(µn(Ωk)− ρ(Ωk))

2
]
≤ 1

nρ(Ωk)
.

1

n|Ωk|

and, by Lemma 2.1 with f = fk, since ‖fk‖∞ . 1 and ‖fk‖1 ∼ ρ(Ωk),

‖fk‖2H−1 . ρ(Ωk)2| log ρ(Ωk)| . |Ωk|2 |log |Ωk|| (4.11)

to get

∑
k

E[(κk − 1)2]‖fk‖2H−1 .
1

n

∑
k

|Ωk|| log |Ωk|| .
1

n

∑
k

|Ωk|| log |Ωk||
(4.8)

.
| log r|
n

.

For the second sum, we use that if j 6= k,

E[(κj − 1)(κk − 1)] =
E [µn(Ωj)µn(Ωk)]

ρ(Ωj)ρ(Ωk)
− 1 = − 1

n

together with (4.11) and Cauchy-Schwarz inequality to conclude∑
j 6=k

E[(κj − 1)(κk − 1)]〈fj , fk〉H−1 .
1

n

∑
j 6=k

‖fj‖H−1 ‖fk‖H−1

.
1

n

∑
j 6=k

|Ωj || log |Ωj ||1/2|Ωk|| log |Ωk||1/2

.
1

n

(∑
k

|Ωk|| log |Ωk||1/2
)2

.
| log r|
n

,

where we argued as above to bound
∑
k |Ωk|| log |Ωk||1/2 . | log r|1/2. This proves (4.10).

Step 4 (Conclusion). Putting together (4.9) and (4.10), we conclude that

E[W 2(µn, ρ)] ≤ (1 + ε)(1 + Crα)
log n

n

1

4π
+ C

(
log n

n
ω(nr2δ2) + δ3 +

1

ε

| log r|
n

)
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and similarly

E[Wb2(µn, ρ)] ≥ (1− ε)(1− Crα)
log n

n

1− Cδ
4π

−
(

log n

n
ω(nr2δ2) +

1

ε

| log r|
n

)
.

We now choose δ = δ(n) = n−β with β ∈ ( 1
3 ,

1
2 ), so that the condition limn→∞ nδ2 = ∞

holds but also limn→∞ nδ3/ log n = 0. This yields

(1 + ε)(1 + Crα)
1

4π
≥ lim sup

n→∞

n

log n
E[W 2(µn, ρ)] ≥ lim inf

n→∞

n

log n
E[Wb2(µn, ρ)]

≥ (1− ε)(1− Crα)
1

4π
.

Letting finally r → 0 and ε→ 0 we conclude the proof of (4.1).

5 Proof of Theorem 1.2

For (Xi, Yi)
∞
i=1 i.i.d. random variables with common distribution ρ in Ω, we write

µn =
1

n

n∑
i=1

δXi and λm =
1

m

m∑
j=1

δYj .

We now prove that

lim
n,m→∞
m/n→q

n

log n
E
[
W 2

2 (µn, λm)
]

=
|Ω|
4π

(
1 +

1

q

)
.

As above, we may assume by scaling that |Ω| = 1 and we will omit to specify p = 2, simply
writing WQ = WQ,2 and WbQ = WbQ,2 for Q ⊆ Ω. For n ≤ m, we will mostly focus on the
lower bound,

E
[
Wb2Ω(µn, λm)

]
≥ log n

4πn

(
1 +

n

m
− ω(n)

)
. (5.1)

Indeed, we first show how the upper bound,

E
[
W 2

Ω(µn, λm)
]
≤ log n

4πn

(
1 +

n

m
+ ω(n)

)
, (5.2)

can be then quickly obtained as a consequence of [3, Proposition 4.9]3. Letting Tµn

(respectively Tλm) be the optimal transport maps between ρ and µn (respectively λm),
by independence we have

E
[
W 2

Ω (µn, λm)
]
≤ E

[∫
Ω

|Tµn − Tλm |2ρ
]

= E
[
W 2

Ω (µn, ρ)
]

+ E
[
W 2

Ω (λm, ρ)
]

− 2

∫
Ω

E [(Tµn − x)] · E
[
(Tλm − x)

]
ρ.

(5.3)

We start with the case n = m. In this case µn and λm have the same law, hence the last
term above becomes∫

Ω

E [(Tµn − x)] · E
[
(Tλm − x)

]
ρ =

∫
(0,1)2

|E [(Tµn − x)]|2 ρ.

3in fact the statement there wrongly contains an equality that should be instead an inequality ≤
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By (5.1) and Theorem 1.1 (recall (4.1)) we get

lim sup
n→∞

n

log n

∫
Ω

|E [(Tµn − x)]|2 ρ ≤ lim
n→∞

n

log n

(
E
[
W 2

Ω (µn, ρ)
]
− 1

2
E
[
W 2

Ω (µn, λn)
])

= 0.

Therefore,

E
[
W 2

Ω (µn, ρ)
]

+

∫
Ω

|E [(Tµn − x)]|2 ρ ≤ log n

4πn
(1 + ω(n)) .

We now turn to the general case n ≤ m. Using the inequality −2ab ≤ a2 + b2 for the last
term in (5.3), we obtain (here we use that ω(m) ≤ ω(n) and logm = log m

n + log n)

E
[
W 2

Ω (µn, λm)
]
≤ log n

4πn
(1 + ω(n)) +

logm

4πm
(1 + ω(m))

=
log n

4πn

(
1 +

n

m
+

(
logm

log n
− 1

)
n

m
+
n

m

logm

log n
ω(m) + ω(n)

)
≤ log n

4πn

(
1 +

n

m
+

1

log n

log m
n

m
n

(1 + ω(n)) +
( n
m

+ 1
)
ω(n)

)
≤ log n

4πn

(
1 +

n

m
+ ω(n)

)
.

This proves (5.2).
We thus focus on the proof of (5.1). For this we follow the same steps as in The-

orem 1.1. However, we need to be more careful when estimating the “global” term.
Indeed, we cannot apply directly Lemma 2.2 since the measure λm is singular. To fix this
issue, we first slightly modify the Whitney decomposition to avoid cubes whose measure
is too small. This guarantees that with overwhelming probability, every element of the
partition contains many points so that we may argue as in [22, Proposition 5.2]. Notice
that of course we could have used Lemma 5.1 also in the proof of Theorem 1.1.

To simplify the exposition, we postpone the proof of the following geometric result to
Appendix A.

Lemma 5.1. Let Ω ⊂ Rd be a bounded open set with Lipschitz boundary, let {Qk}k be
a Whitney decomposition of Ω. For every δ > 0 small enough (depending on Ω), letting
Vδ = {Qk : diam(Qk) ≥ δ}, there exists a family Uδ = {Ωk}k of disjoint open sets such
that diam(Ωk) . δ, |Ωk| ∼ δd and Uδ ∪ Vδ is a partition of Ω.

Step 1 (Whitney-type decomposition and reduction to a good event). For δ = δ(n) > 0

to be specified below, let Uδ and Vδ be given by Lemma 5.1. For r > 0 dyadic we divide
each cube Qk ∈ Vδ in r−2 equal sub-cubes of sidelength r`(Qk). We let V rδ be their
collection and relabel Uδ ∪ V rδ = {Ωk}k. We set

θ =
1√

log n
(5.4)

and for every k such that λm(Ωk) 6= 0

κk =
µn(Ωk)

λm(Ωk)
.

If instead λm(Ωk) = 0 we arbitrarily set κk = 0. Define the event

A =

{
∀Ωk ∈ V rδ ∪ Uδ,

∣∣∣∣1− µn(Ωk)

ρ(Ωk)

∣∣∣∣+

∣∣∣∣1− λm(Ωk)

ρ(Ωk)

∣∣∣∣ ≤ θ

4

}
.

Notice that if |1− µn(Ωk)
ρ(Ωk) |+ |1−

λm(Ωk)
ρ(Ωk) | ≤

θ
4 then

|1− κk| ≤
θ

2
. (5.5)
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We claim that if

δ =
1

nβ
, for some β ∈ (0, 1/2), r ∼ 1

log(n)
,

then

P(Ac) . exp

(
−c n

1−2β

(log n)3

)
, (5.6)

so that we can restrict ourselves to the event A in the following steps. By a union bound,
to prove the claim, we bound

P(Ac) ≤
∑
k

P

(∣∣∣∣1− µn(Ωk)

ρ(Ωk)

∣∣∣∣ ≥ θ)+
∑
k

P

(∣∣∣∣1− λm(Ωk)

ρ(Ωk)

∣∣∣∣ ≥ θ) .
We focus only on the terms involving µn (those with λm are analogous, recalling that
n ≤ m). For every k, the number of points nµn(Ωk) is a binomial random variable with
parameters (n, ρ(Ωk)). Hence, by Chernoff bounds

P

(∣∣∣∣1− µn(Ωk)

ρ(Ωk)

∣∣∣∣ ≥ θ) ≤ exp

(
−nρ(Ωk)

2 log n

)
.

Summing this over k and using that by definition of a Whitney partition, for every j ∈ N
such that 2−j ≥ δ,

#{Ωk ∈ V rδ : `(Ωk) ∈ r(2−(j+1), 2−j ]} . r−22j ,

we find∑
k

P

(∣∣∣∣1− µn(Ωk)

ρ(Ωk)

∣∣∣∣ ≥ θ) ≤∑
V rδ

exp

(
−nρ(Ωk)

2 log n

)
+
∑
Uδ

exp

(
−nρ(Ωk)

2 log n

)

.
∑

2−j≥δ

r−22j exp

(
−cnr

22−2j

log n

)
+ δ−1 exp

(
−c nδ

2

log n

)

. r−2δ−1 exp

(
−cnr

2δ2

log n

)
+ δ−1 exp

(
−c nδ

2

log n

)
. r−2δ−1 exp

(
−cnr

2δ2

log n

)
.

Up to replacing the constant c > 0 with a smaller one, to control the terms r−2δ−1 .
nβ(log n)2, we obtain (5.6). We end this step applying (2.9) and using Wb ≤W to get for
every ε > 0,

Wb2Ω(µn, λm) ≥ (1− ε)
∑
k

Wb2Ωk(µn, κkλm)− C

ε
W 2

Ω

(∑
k

κkχΩkλm, λm

)

≥ (1− ε)
∑
V rδ

Wb2Ωk(µn, κkλm)− C

ε
W 2

Ω

(∑
k

κkχΩkλm, λm

)
.

Step 2 (Local term). For r > 0 let (Xr
i , Y

r
i ) be i.i.d uniformly distributed random variables

in [0, r]2 and for n ≤ m let

Fbr(n,m) = E

[
Wb2[0,r]2

(
1

n

n∑
i=1

δXri ,
1

m

m∑
i=1

δY ri

)]
so that by scaling and Proposition 3.2,

Fbr(n,m) = r2Fb1(n,m) ≥ r2 log n

4πn

(
1 +

n

m
− ω(n)

)
.
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Define Nk = nµn(Ωk) (respectively Mk = mλm(Ωk)) to be the number of points Xi

(respectively Yi) in Ωk so that in particular κk = Nk/Mk. For every given k, the random
variables Nk and Mk are independent binomial random variables with parameters
respectively (n, ρ(Ωk)) and (m, ρ(Ωk)). We then define the random variables N∗k =

min(Nk,Mk) and M∗k = max(Nk,Mk).
For every fixed Ωk ∈ V rδ , recalling that Ωk is a cube of sidelength at most of order r,

and using (2.15), we have

E
[
Wb2Ωk(µn, κkλm)

]
≥ (1− Crα)E

[
N∗k
n
Fb√|Ωk|(N

∗
k ,M

∗
k )

]
≥ (1− Crα)

1

4πn
|Ωk|E

[
logN∗k

(
1 +

N∗k
M∗k
− ω(N∗k )

)]
≥ (1− Crα)

log(nρ(Ωk))

4πn
|Ωk|

(
1 +

n

m
− ω(nr2δ2)

)
,

where in the last line one can argue as for (4.6). Summing over k and using (4.8) we find

E

∑
V rδ

Wb2Ωk(µn, κkλm)

 ≥ (1−Crα)
log n

n

1− Cδ
4π

(
1 +

n

m
− ω(nr2δ2)

)
−C | log r|

n
. (5.7)

Step 3 (Global term). We claim that for δ = n−β with β ∈
(

1
3 ,

1
2

)
,

n

log n
E

[
W 2

Ω

(∑
k

κkχΩkλm, λm

)
χA

]
.

log log n√
log n

. (5.8)

For this we argue along the lines of [22, Proposition 5.2]. We define

θk = 1− κk + θ

and recall that if (5.5) holds (which is the case if A occurs) then 3
2θ ≥ θk ≥

1
2θ. We now

use triangle inequality to write

W 2
Ω

(∑
k

κkχΩkλm, λm

)

.W 2
Ω

(∑
k

κkχΩkλm,
∑
k

[
(1− θk)λm + θ

λm(Ωk)

ρ(Ωk)
ρ

]
χΩk

)

+W 2
Ω

(∑
k

[
(1− θk)λm + θ

λm(Ωk)

ρ(Ωk)
ρ

]
χΩk ,

∑
k

[
(1− θk)λm + θk

λm(Ωk)

ρ(Ωk)
ρ

]
χΩk

)

+W 2
Ω

(∑
k

[
(1− θk)λm + θk

λm(Ωk)

ρ(Ωk)
ρ

]
χΩk , λm

)
.

The first and last terms are estimated in a similar way so we only estimate the first one.
We use the fact that 1− θk = κk − θ and subadditivity (2.5) to bound from above

W 2
Ω

(∑
k

κkχΩkλm,
∑
k

[
(κk − θ)λm + θ

λm(Ωk)

ρ(Ωk)
ρ

]
χΩk

)

≤
∑
k

W 2
Ωk

(
((κk − θ) + θ)λm, (κk − θ)λm + θ

λm(Ωk)

ρ(Ωk)
ρ

)
(2.5)
≤ θ

∑
k

W 2
Ωk

(
λm,

λm(Ωk)

ρ(Ωk)
ρ

)
.
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By (4.5) and (4.7), we get

E

[
W 2

Ω

(∑
k

κkχΩkλm,
∑
k

[
(κk − θ)λm + θ

λm(Ωk)

ρ(Ωk)
ρ

]
χΩk

])
. θ

(
logm

m
+ δ3

)
.

For the middle term, we use again subadditivity together with Lemma 2.2 and the fact
that λm(Ωk)/ρ(Ωk) ∼ 1 in the event A, to infer

W 2
Ω

(∑
k

[
(1− θk)λm + θ

λm(Ωk)

ρ(Ωk)
ρ

]
χΩk ,

∑
k

[
(1− θk)λm + θk

λm(Ωk)

ρ(Ωk)
ρ

]
χΩk

)

≤W 2
Ω

(∑
k

θ
λm(Ωk)

ρ(Ωk)
χΩkρ,

∑
k

θk
λm(Ωk)

ρ(Ωk)
χΩkρ

)

.
1

θ

∥∥∥∥∥∑
k

(θ − θk)
λm(Ωk)

ρ(Ωk)
χΩkρ

∥∥∥∥∥
2

H−1

=
1

θ

∥∥∥∥∥∑
k

(κk − 1)
λm(Ωk)

ρ(Ωk)
χΩkρ

∥∥∥∥∥
2

H−1

.
1

θ

∥∥∥∥∥∑
k

(
µn(Ωk)

ρ(Ωk)
− 1

)
χΩkρ

∥∥∥∥∥
2

H−1

+
1

θ

∥∥∥∥∥∑
k

(
λm(Ωk)

ρ(Ωk)
− 1

)
χΩkρ

∥∥∥∥∥
2

H−1

,

where in the last line we used that (κk − 1)λm(Ωk)
ρ(Ωk) = (µn(Ωk)

ρ(Ωk) − 1) − (λm(Ωk)
ρ(Ωk) − 1) and

triangle inequality in H−1. By (4.10) we obtain

E

∥∥∥∥∥∑
i

(1− κk)
λm(Ωk)

ρ(Ωk)
χΩkρ

∥∥∥∥∥
2

H−1

 .
| log r|
n

.

This proves

E

[
W 2

Ω

(∑
i

κkχΩkλm, λm

)
χA

]
. θ

(
log n

n
+ δ3

)
+

1

θ

| log r|
n

,

which recalling the choice (5.4) of θ, δ and r concludes the proof of (5.8).
Step 4 (Conclusion). Putting together (5.7) and (5.8) and using (5.6), we find that

n

log n
E
[
Wb2Ω(µn, λm)

]
≥ (1− ε)(1− Crα)

1− Cδ
4π

(
1 +

n

m
− ω(nr2δ2)

)
− C

ε

(
log log n√

log n
+ exp

(
−c n

1−2β

(log n)3

))
≥ 1

4π

(
1 +

m

n
+ ω(n)

)
,

where in the last line we chose ε = ε(n)→ 0 as n→∞ with ε� log log n/
√

log n.

6 Extension to general settings

In this section we show that the techniques developed above lead to extensions of
Theorem 1.1 and Theorem 1.2 to more general settings, including Riemannian manifolds.
Let us give the following definition (see also [46, Definition 3.1]).

Definition 6.1. We say that a metric measure space (Ω, d,m) with m(Ω) = 1 is well-
decomposable if for every ε > 0 there exist a finite family, that we call ε-decomposition,
(Uk,Ωk, Tk)k, such that, for every k,
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1. Uk ⊆ Ω is open and m(Uk ∩ Uk′) = 0 for k 6= k′, m(
⋃
k Uk) = 1,

2. Ωk ⊆ R2 is open, bounded and connected, with Lipschitz boundary,

3. Tk : Uk → Ωk, is invertible with Tk(Uk) = Ωk and Tk(∂Uk) = ∂Ωk and

LipTk,LipT−1
k ≤ (1 + ε),

4. (Tk)](m
¬
Uk) has Hölder continuous density, uniformly positive and bounded.

If (Ω, d,m) is well-decomposable we define

|Ω| = inf
ε>0

{∑
k

|Ωk| : (Uk,Ωk, Tk)k is an ε-decomposition of Ω

}
.

Remark 6.2. Notice that the quantity inside the brackets is a decreasing function of ε
and that if Ω is a Riemannian manifold it coincides with its (Riemannian) volume.

In addition to such decomposability assumption, we need to assume the validity of
the inequality:

W 2
2 (fm,m) . ‖f − 1‖2L2(m) , for every probability density f . (6.1)

This estimate is analog to the weaker form of the combination of (2.7) with Lemma 2.1
used in [9, 22] and is intimately connected to the validity of an L2-Poincaré-Wirtinger
inequality (see e.g. [22, Lemma 3.4]).

Theorem 6.3. Let (M,d) be a length space and Ω ⊆M be open with diam(Ω) <∞. Let
m be a probability measure on M with m(Ω) = 1, such that (6.1) holds and (Ω, d,m) is
well-decomposable and consider (Xi, Yi)

∞
i=1 be i.i.d. with common density m. Then, for

every q ∈ [1,∞],

lim
n,m→∞
m/n→q

n

log n
E

W 2
2

 1

n

n∑
i=1

δXi ,
1

m

m∑
j=1

δYj

 =
|Ω|
4π

(
1 +

1

q

)
, (6.2)

and

lim
n→∞

n

log n
E

[
W 2

2

(
1

n

n∑
i=1

δXi ,m

)]
=
|Ω|
4π

. (6.3)

Examples of metric measure spaces for which the result apply include smooth domains
in two-dimensional Riemannian manifolds with boundary, as shown in Appendix B. But
also other, less regular cases, may be included, e.g. polyhedral surfaces.

Proof of Theorem 6.3. As usual, we simply write W = W2 and Wb = Wb2. We write
µn = 1

n

∑n
i=1 δXi , λm = 1

m

∑m
j=1 δYj . For ε > 0, let (Uk,Ωk, Tk)k be an ε-decomposition

and let κk = µn(Uk)/λm(Uk). In both cases, after an application of the sub-additivity and
super-additivity inequalities (2.6), (2.9) we are reduced to estimate separately a finite
sum of “local” terms, one for each Uk, and the global terms (using that Wb ≤ W ) that
are respectively

E

[
W 2

2

(∑
k

κkχUkλm, λm

)]
and E

[
W 2

2

(∑
k

µn(Uk)

m(Uk)
χUkm,m

)]
. (6.4)

Local terms. Using (2.12) with T−1
k and (2.12) with Tk and taking expectation give

respectively

E
[
W 2 (µn

¬
Uk, κkλm

¬
Uk)
]
≤ (1 + ε)2E

NW 2

 1

N

N∑
i=1

δXk,i ,
1

M

M∑
j=1

δYk,j

 ,
EJP 27 (2022), paper 54.

Page 27/35
https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP784
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


On the quadratic random matching problem in two-dimensional domains

and

E
[
Wb2Ui (µn

¬
Uk, κkλm

¬
Uk)
]
≥ (1 + ε)−2E

NWb2Ωi

 1

N

N∑
i=1

δXk,i ,
1

M

M∑
j=1

δYk,j

 ,
where, for every k, we consider i.i.d. random variables (Xk,i, Yk,i)

∞
i=1 with common law

ρk given by (Tk)]m normalized to a probability measure on Ωk and N , M are further
independent random variables with binomial laws of parameters respectively (n,m(Uk)),
(m,m(Uk)). For each k, by conditioning upon N , M , and by (5.1), (5.2) with (Xk,i, Yk,i)

∞
i=1,

we obtain that, letting N∗ = min {N,M}, M∗ = max {N,M}

E

NW 2

 1

N

N∑
i=1

δXk,i ,
1

M

M∑
j=1

δYk,j

 ≤ E [N |Ωk| logN∗

4πN∗

(
1 +

N∗

M∗
+ ωk(N∗)

)]
,

and similarly

E

NWb2Ωk

 1

N

N∑
i=1

δXk,i ,
1

M

M∑
j=1

δYk,j

 ≥ E [N |Ωk| logN∗

4πN∗

(
1 +

N∗

M∗
− ωk(N∗)

)]
.

As n→∞ with m/n→ q ∈ [1,∞], we have

N/n→ m(Uk), M/m→ m(Uk) and N∗/N → 1, M∗/N → q,

with the usual concentration inequalities which eventually give

lim
n→∞

n

log n
E

[
N
|Ωk| logN∗

4πN∗

(
1 +

N∗

M∗
− ωk(N∗)

)]
=
|Ωk|
4π

(
1 +

1

q

)
.

A similar argument gives

lim
n→∞

n

log n
E

[
W 2
Uk

(
µn(Uk)

m(Uk)
m,m

)]
=
|Ωk|
4π

. (6.5)

Global term. We consider the second term in (6.4), for which we apply (6.1) obtaining

E

[
W 2

2

(∑
k

µn(Uk)

m(Uk)
χUkm,m

)]
.
∑
k

E

[(
µn(Uk)

m(Uk)
− 1

)2
]
m(Uk) .

C(ε)

n
.

After multiplying by n/ log n and letting first n→∞ and then ε→ 0, the validity of (6.2)
is thus settled.

To bound (6.4), we let κ = mink κk − ε, so that, as n→∞, κ→ 1− ε and using union
and Chernoff bounds we have the crude estimate (but sufficient for our purposes)

P (∀k, |κ− κk| > 2ε) .
C(ε)

n
. (6.6)

We bound from above, using the subadditivity inequality (2.5) and the triangle inequality

E

[
W 2

2

(∑
k

κkχUkλm, λm

)]
≤ E

[
W 2

2

(∑
k

(κk − κ)χUkλm, (1− κ)λm

)]

≤ E

[
W 2

2

(∑
k

(κk − κ)χUkλm,
∑
k

(κk − κ)
λm(Uk)

m(Uk)
χUkm

)]

+ E

[
W 2

2

(∑
k

(κk − κ)
λm(Uk)

m(Uk)
χUkm, (1− κ)m

)]
+ E

[
W 2

2 ((1− κ)m, (1− κ)λm)
]
.

(6.7)
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For the first term, we use again subadditivity (2.5),

E

[
W 2

2

(∑
k

(κk − κ)χUkλm,
∑
k

(κk − κ)
λm(Uk)

m(Uk)
χUkm

)]

≤
∑
k

E

[
W 2
Uk

(
(κk − κ)λm, (κk − κ)

λm(Uk)

m(Uk)
m

)]
≤
∑
k

C(ε)
diam(E)2

n4
+ εE

[
W 2
Uk

(
λm,

λm(Uk)

m(Uk)
m

)]
. C(ε)

diam(E)2

n
+ ε

∑
k

|Ωk|
logm

m
,

having used (6.6) and (6.5) with λm instead of µn. For the second term in (6.7), we use
(6.1),

E

[
W 2

2

(∑
k

(κk − κ)
λm(Uk)

m(Uk)
χUkm, (1− κ)m

)]

.
∑
k

E

[(
(κk − κ)

λm(Uk)

m(Uk)
− (1− κ)

)2
]
m(Uk)

.
C(ε)

n
,

having used the variance bounds

E

[(
λm(Uk)

m(Uk)
− 1

)2
]

+ E
[
(κk − 1)2

]
.
C(ε)

n
.

For the third term in (6.7), we use that 1− κ > 2ε with probability smaller than C(ε)/n

and then, on the complementary event, the already settled (6.3), to obtain

E
[
W 2

2 ((1− κ)m, (1− κ)λm)
]
.
C(ε)

n
+ ε

m

logm
.

After collecting all these bounds, we multiply by n/ log n and let first n → ∞ and then
ε→ 0 to conclude.

7 Proof of Corollary 1.3

We recall that with our usual notation, we want to prove that for any sequence
m = m(n) ≥ n with limn→∞(m− n)/ log n = 0, it holds

lim
n→∞

1

log n
E

[
min

σ∈Sn,m

n∑
i=1

|Xi − Yσ(i)|2
]

=
|Ω|
2π

.

The inclusion Sn ⊆ Sn,m yields immediately

min
σ∈Sn,m

n∑
i=1

|Xi − Yσ(i)|2 ≤ min
σ∈Sn

n∑
i=1

|Xi − Yσ(i)|2,

so that it always holds, for any sequence m = m(n) ≥ n,

lim sup
n→∞

1

log n
E

[
min

σ∈Sn,m

n∑
i=1

|Xi − Yσ(i)|2
]
≤ lim
n→∞

1

log n
E

[
min
σ∈Sn

n∑
i=1

|Xi − Yσ(i)|2
]

=
|Ω|
2π

.
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To show the converse inequality, given σ ∈ Sn,m we induce a matching between
(Xi)

m
i=1 and (Yj)

m
j=1 by pairing the points (Xi)

m
i=n+1 to those in (Yj)

m
j=1 \

(
Yσ(i)

)n
i=1

. Since
Ω is bounded, we obtain the inequality

min
σ∈Sm

m∑
i=1

|Xi − Yσ(i)|2 ≤ min
σ∈Sn,m

n∑
i=1

|Xi − Yσ(i)|2 + diam(Ω)2(m− n).

Taking expectation and using the assumption (m − n)/ log n → 0, which in particular
gives log n/ logm→ 1 yields

|Ω|
2π

= lim
m→∞

1

logm
E

[
min
σ∈Sm

m∑
i=1

|Xi − Yσ(i)|2
]
≤ lim inf

n→∞

1

log n
E

[
min

σ∈Sn,m

n∑
i=1

|Xi − Yσ(i)|2
]
.

8 Proof of Corollary 1.4

Given (xi)
n
i=1 , (yi)

n
i=1 ⊆ R2, we introduce the notation

C2
TSP ((xi)

n
i=1) = min

τ∈Sn

n∑
i=1

|xτ(i) − xτ(i+1)|2

for the costs of the Euclidean travelling salesperson problem and

C2
bTSP((xi)

n
i=1 , (yi)

n
i=1) = min

τ,τ ′∈Sn

n∑
i=1

|xτ(i) − yτ ′(i)|2 + |yτ ′(i) − xτ(i+1)|2

for the cost of its bipartite variant (writing τ(n+ 1) = τ(1) for permutations τ ∈ Sn).
The proof of the lower bound follows straightforwardly taking expectation in the

inequality

C2
bTSP((Xi)

n
i=1 , (Yi)

n
i=1) ≥ 2 min

σ∈Sn

n∑
i=1

|Xi − Yσ(i)|2. (8.1)

Using Theorem 1.2, we have then

lim inf
n→∞

1

log n
E
[
C2
bTSP ((Xi)

n
i=1 , (Yi)

n
i=1)

]
≥ |Ω|

π
.

To prove the converse inequality, let τ ∈ Sn be a minimizer for C2
TSP((Xi)

n
i=1) and

let σ ∈ Sn be an optimal matching between (Xi)
n
i=1 and (Yi)

n
i=1, with respect to the

quadratic cost. We let τ ′ = σ ◦ τ ∈ Sn, so that

C2
bTSP((Xi)

n
i=1 , (Yi)

n
i=1) ≤

n∑
i=1

|Xτ(i) − Yσ(τ(i))|2 + |Yσ(τ(i)) −Xτ(i+1)|2.

For every ε > 0, using the inequality |a+ b|2 ≤ (1 + ε)|a|2 + (1 + ε−1)|b|2, we bound from
above, for every i ∈ {1, . . . , n},

|Yσ(τ(i)) −Xτ(i+1)|2 = |(Yσ(τ(i)) −Xτ(i)) + (Xτ(i) −Xτ(i+1))|2

≤ (1 + ε)|Yσ(τ(i)) −Xτ(i)|2 + (1 + ε−1)|Xτ(i) −Xτ(i+1)|2.

Summing upon i gives

C2
bTSP((Xi)

n
i=1 , (Yi)

n
i=1) ≤(2 + ε) min

σ∈Sn

n∑
i=1

|Xi − Yσ(i)|2

+ (1 + ε−1)C2
TSP,2((Xi)

n
i=1).
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We claim that

lim sup
n→∞

1

log n
E
[
C2

TSP((Xi)
n
i=1)

]
= 0, (8.2)

so that we obtain, again by Theorem 1.2,

lim sup
n→∞

1

log n
E
[
C2
bTSP ((Xi)

n
i=1 , (Yi)

n
i=1)

]
≤ (2 + ε)

|Ω|
2π

.

The thesis follows letting ε→ 0.
To prove (8.2), we rely on the known (deterministic) bound

sup
(xi)

n
i=1⊆Ω

C2
TSP((xi)

n
i=1) . 1,

where the implicit constant depends on Ω only. We briefly recall here a proof, for the
reader convenience, based on the space-filling curve heuristic [40, Section 2.6]. Without
loss of generality, we consider the case Ω = Q a square. Consider a Peano curve
ψ : [0, 1] → Q, that is surjective and 1/2-Hölder continuous. Let ti ∈ [0, 1] be such that
ψ(ti) = xi and choose τ ∈ Sn such that (tτ(i))

n
i=1 are in increasing order. Then,

C2
TSP((xi)

n
i=1) ≤

n∑
i=1

|ψ(tτ(i))− ψ(tτ(i+1))|2 ≤ ‖ψ‖C1/2

n∑
i=1

|tτ(i) − tτ(i+1)| ≤ 2 ‖ψ‖C1/2 .

Remark 8.1. The argument above is in fact rather general and it applies on general
metric spaces provided that the cost of the quadratic bipartite matching problem is
asymptotically larger than that of the travelling salesperson problem. Also, already in
the Euclidean setting, it seems possible to adapt it to the case p 6= 2, but existence of
the limit for the asymptotic cost of the bipartite matching problem is not known. Finally,
exactly as in [14], the argument applies as well for the random bipartite quadratic
2-factor problem, i.e., for the relaxation where the single tour is replaced by a collection
of disjoint ones: indeed, since the cost becomes smaller, it is sufficient to notice that the
lower bound (8.1) still holds.

A Proof of Lemma 5.1

Let us recall that given a bounded open set Ω with Lipschitz boundary, and {Qk}k
a Whitney decomposition of Ω we want to construct for every δ > 0 small enough
(depending on Ω), a partition of Uδ ∪ Vδ of Ω such that Vδ = {Qk : diam(Qk) ≥ δ}, and
Uδ = {Ωk}k with Ωk open, diam(Ωk) . δ and |Ωk| ∼ δd.

We start by constructing a partition of the set Aδ = {d(·,Ωc) <
√
dδ} by open sets

Ω̃k satisfying diam(Ω̃k) . δ, |Ω̃k| ∼ δd. For this we first consider a δ−net {xk}k of ∂Ω,
that is a family satisfying ∂Ω ⊂ ∪iBδ(xi) and mini6=j |xi − xj | ≥ δ

2 . Such a family can
be for instance constructed by choosing any starting point x1 ∈ ∂Ω and then setting
xk ∈ argmax∂Ωd(x,∪k−1

i=1 {xi}) as long as ∂Ω is not covered by ∪k−1
i=1 Bδ(xi). We then set

Ω̃k = {x ∈ Ω : |x− xk| < |x− xi| ∀i 6= k} ∩Aδ.

Notice that since {|x − xk| = |x − xi|} is a hyperplane and thus of Lebesgue measure
zero, {Ω̃k}k is indeed a partition of Aδ in disjoint open sets. Notice also that by definition
of a Whitney partition, if Qk ∈ Vδ then Qk ∩ Aδ = ∅. Now on the one hand, by triangle
inequality it is immediate that diam(Ω̃k) . δ and thus also |Ω̃k| . δd. On the other hand,
still by triangle inequality, B δ

4
(xk) ∩ Ω ⊂ Ω̃k so that by Lipschitz regularity of Ω, we also

obtain |Ω̃k| & δd.
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We finally define Uδ = ∪k{Qk /∈ Vδ : d(Qk,Ω
c) >

√
dδ} ∪k {Ωk} where

Ωk = Ω̃k ∪
⋃
j

{
Qj : d(Qj ,Ω

c) <
√
dδ, Qj ∩Acδ 6= ∅ and k = argmin{i : Ω̃i ∩Qj 6= ∅}

}
.

In words this means that we consider in Uδ either cubes which are at distance greater
than

√
dδ from Ωc but which are not in Vδ or we combine the sets Ω̃k with the cubes

which intersect both Aδ and its complement. The choice to which Ω̃k we associate Qi is
arbitrary (as long as they intersect). The sets Ωk satisfy both diam(Ωk) . δ and |Ωk| ∼ δd
since for every j such that d(Qj ,Ω

c) <
√
dδ and Qj ∩Acδ 6= ∅, we have `(Qj) ∼ δ and thus

the number of such cubes which can intersect Ωk is uniformly bounded with respect to δ.

B Decomposition of Riemannian manifolds

We show that Theorem 6.3 applies to compact connected smooth Riemannian mani-
folds (M, g), possibly with boundary. In fact, we argue in the case of bounded connected
domains Ω ⊆M with smooth boundary (so that M itself does not need to be compact).
Notice that Ω with the restriction of the metric g is also a compact connected smooth
Riemannian manifolds with boundary, but the induced distance would then be larger (and
different, in general) than the restriction of the one on M , exactly as in the Euclidean
case.

Lemma B.1. Let (M, g) be a two-dimensional Riemannian manifold with (possibly empty)
boundary ∂M and let Ω ⊆M be open, bounded, connected, with smooth boundary. Let
also ρ be a Hölder continuous probability density on Ω (with respect to the Riemannian
volume) uniformly strictly positive and bounded from above. Then, (Ω, d, ρ), where d is
the restriction of the Riemannian distance on M , is well-decomposable and (6.1) holds.

Proof. To show that Ω is well-decomposable, we modify the well-known argument to
obtain a decomposition of M into geodesic triangles, see e.g. [24, Theorem 2.3.A.1],
to take into account also the presence of the boundary ∂Ω. To simplify the exposition,
assume first that ∂M = ∅. Then, by compactness, ∂Ω is the union of a finite family
of closed simple C1 curves, and to simplify again let us assume that there is only one
such curve γ : S1 → M parametrized so that γ̇(t) 6= 0 for every t ∈ S1. Consider also a
parametrization of the tubular neighbourhood of γ(S1), i.e., a map Γ : S1× (−r0, r0)→M ,

Γ(t, r) = expγ(t)(rγ̇(t)⊥),

where γ̇(t)⊥ denotes the inward unit normal to ∂Ω at γ(t). By compactness, if r0 is
sufficiently small, such a parametrization exist, is smooth (in particular Lipschitz) and

Γ(S1 × (0, r0)) ⊆ Ω while Γ(S1 × (−r0, 0)) ⊆ Ωc.

Let us also assume that r0 is sufficiently small so that expp is well-defined and invertible

on a ball Bp(r0) for every p ∈ Ω and with Lipschitz constant smaller than 1 + ε (together
with its inverse). Then, normal coordinates Tp = exp−1

p are well defined on the image
expp (Bp(r0)).

Consider a finite mesh {ti}i ⊆ S1 with d(ti, ti+1) < r0/Lip(Γ) and let pi = γ(ti) and
qi = Γ(ti, r0/2) ∈ Ω. Then, d(qi, qi+1) ≤ Lip(Γ)|ti − ti+1| < r0/4. On the other side,
d(qi, ∂Ω) ≥ r0/2, so that B(qi, r0/4) ∩ ∂Ω = ∅ and in particular the geodesic segment
connecting qi to qi+1 does not intersect ∂Ω. We define Ui to be the rectangle-like region
with boundaries given by the geodesic segments connecting pi to qi, then qi to qi+1 and
qi+1 and pi, together with the piece of boundary between pi and pi+1 (i.e., Γ(0, s) with
s ∈ [ti, ti+1]. We also notice that the boundary is piecewise C1 (with non-tangential
intersections of different pieces), hence when transformed by Tpi it is Lipschitz regular.

EJP 27 (2022), paper 54.
Page 32/35

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP784
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


On the quadratic random matching problem in two-dimensional domains

This settles the tubular neighbourhood of ∂Ω. To complete the construction we then
consider a finite set of points {pj} ⊆ Ω \ Γ(S1, (0, r0/2)) such that for every q ∈ Ω there
exist pj with d(pj , q) < r0 and for every pj there are distinct points pk, p` such that

max {d(pj , pk), d(pk, p`), d(pj , p`)} < r0/2.

We connect with geodesic segments all points pj , pk with d(pj , pk) < r0/2 as well as pj ,
q+
i with d(pj , q

+
i ) < r0/2. Notice that none of these segments intersects ∂Ω. As in the

proof of [24, Theorem 2.3.A.1], up to enlarging the family to include intersections of
these segments, we obtain a decomposition into geodesic polygons. To conclude the
construction of the ε-decomposition it is sufficient to add these polygons to the sets Ui
obtained above.

In the case of non-empty ∂M , the only difference is that the notion of tubular
neighbourhood must take into account points p = γ(t) ∈ Ω ∩ ∂M , hence Γ(t, r) is defined
only for r ∈ [0, r0).

Finally, inequality (6.1) follows from the validity of an L2-Poincaré-Wirtinger inequality
on Ω, adapting the proof of [22, Lemma 3.4] to the Riemannian setting. In turn, the
validity of Poincaré-Wirtinger inequality seems to be folklore on smooth connected
compact Riemannian manifolds and a full proof, also in presence of a smooth boundary,
may be given by gluing local inequalities [23, Section 10.1].
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