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Abstract

Consider the long-range percolation model on the integer lattice Zd in which all
nearest-neighbour edges are present and otherwise x and y are connected with
probability qx,y := 1 − exp(−|x − y|−s), independently of the state of other edges.
Throughout the regime where the model yields a locally-finite graph, (i.e. for s > d,)
we determine the spectral dimension of the associated simple random walk, apart from
at the exceptional value d = 1, s = 2, where the spectral dimension is discontinuous.
Towards this end, we present various on-diagonal heat kernel bounds, a number of
which are new. In particular, the lower bounds are derived through the application of
a general technique that utilises the translation invariance of the model. We highlight
that, applying this general technique, we are able to partially extend our main result
beyond the nearest-neighbour setting, and establish lower heat kernel bounds over
the range of parameters s ∈ (d, 2d). We further note that our approach is applicable
to short-range models as well.
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Spectral dimension of SRW on a long-range percolation cluster

1 Introduction

The study of random walks on percolation clusters on the integer lattice Zd goes back
a long way, at least as far as de Gennes’ 1976 description of such a process as an ‘ant
in a labyrinth’ [27]. Mathematically, diffusive scaling limits were first established with
respect to the so-called annealed/averaged law, under which both the random process and
environment are integrated out [25]. More recently, building on the Gaussian heat kernel
estimates of [2], scaling limits under the quenched law (that is, for typical realisations of
the environment) have also been obtained [11, 34, 35]. When the random walk is strongly
recurrent, some general theory has been established to obtain on-diagonal heat kernel
estimates, and such methods have been used to identify the spectral dimension, which is
the exponent governing the on-diagonal decay of the heat kernel, of the random walk on
critical percolation clusters conditioned to be infinite (see for example [6, 7, 29, 31, 30]).
Whilst the works cited so far have dealt with the nearest-neighbour case, in which
only edges between points in Zd a unit Euclidean distance apart are considered, it is
natural to generalise the model to allow the possibility of edges spanning arbitrarily
large distances. In the last decade, substantial progress has been made in understanding
random walks on such long-range percolation models, most notably in [17, 18], some of
the main results of which are recalled below. Our contribution in this paper is twofold:

(i) To give general sufficient conditions for an on-diagonal lower bound of the heat
kernel for random walk under both the quenched and annealed laws on stationary
random media (see Theorem 2.3 and Corollary 2.6 below);

(ii) To determine the spectral dimension of random walk on a long-range percolation
cluster, under both the quenched and annealed laws, throughout (almost) the entire
range of parameters for which the model is defined (see Theorems 1.3, 1.5 and
Corollary 1.7).

Concerning (i), we note that the previous work in [6, 31, 30] applies only for strongly
recurrent random walks, and the sufficient conditions the latter articles describe for heat
kernel lower bounds are rather complicated. Instead, we use stationarity of the model
and a useful estimate from [32, Theorem 3.7], which was motivated by the problem of
understanding the behaviour of the random walk on certain planar random graphs, such
as the uniform infinite planar triangulation/quadrangulation. Details are discussed in
Section 2. Although the techniques we develop are principally targeted at understanding
random walk on long-range percolation clusters, we note they are also applicable to
short-range models. As a basic example of such, we discuss their use for studying the
random walk on the integer lattice in Section 6.1.

To present the background and results concerning (ii) more precisely, we proceed
to introduce the main application of interest in this paper. Specifically, we consider a
long-range percolation model with vertex set Zd, where d ≥ 1. For simplicity, in the
introduction we suppose that all nearest-neighbour edges are present, although we will
later discuss a generalisation of this. For any x, y ∈ Zd with |x− y| > 1, we suppose the
edge between them appears with probability

qx,y = 1− exp(−|x− y|−s), (1.1)

independently of the state of other edges. (For most of the subsequent discussion,
we could weaken the tail assumption on qx,y. Indeed, for our heat kernel estimates in
Theorems 1.3 and 1.5 below, it would be enough to assume that c1|x−y|−s ≤ qx,y ≤ c2|x−
y|−s. We choose to restrict to the specific choice of qx,y above simply for convenience.)
The parameter s is called the exponent of the long-range percolation model. In order
to ensure that each vertex is directly connected by an edge to only a finite number of
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Spectral dimension of SRW on a long-range percolation cluster

Figure 1: Heat kernel regimes for the long-range percolation model studied in this article.
The two pink regions correspond to the Gaussian regime, that is s > min{d + 2, 2d}.
Gaussian scaling limits are known to hold in the lighter pink region (s > 2d). Our results
provide new heat kernel lower bounds in the darker pink region (d ≥ 2 and s ∈ (min{d+

2, 2d}, 2d]), and establish that the spectral dimension is d throughout both regions. The
two grey regions correspond to the stable regime, that is s ∈ (d,min{d+ 2, 2d}). Stable
scaling limits are known to hold in the lighter grey region (s ∈ (d, d+ 1)). We give new
heat kernel lower bounds in the darker grey region (s ∈ [d+ 1, d+ 2)), and establish that
the spectral dimension of the model is given by 2d/(s− d) throughout both regions. As
confirmed by Corollary 1.7, when d = 1, there is a discontinuity in the spectral dimension
at s = 2. Apart from when d = 1, we also provide estimates along the critical line
s = min{d+ 2, 2d}.

vertices (as is required to define the associated discrete-time random walk), we assume
that s takes a value strictly greater than d. We denote the resulting random graph by
G = (V,E), and take the root ρ to be the origin in Zd. Moreover, we will use the notation
LRP(d, s) to represent this model, and suppose it is built on a probability space with
probability measure P and expectation E.

Providing some context for our results, the following summarises scaling limits that
are known to hold for the discrete-time simple random walk on LRP(d,s). Given the
environment G, this process, which we will denote by (Xn)n≥0, jumps on each time
step from its current location to a uniformly-chosen neighbour in the graph G. In the
subsequent theorem, it is further assumed that X0 = ρ. Part (a), which concerns the
stable regime, was established in [18, Theorem 1.1]. As for the Gaussian regime of part
(b), the d = 1 case was dealt with in [18, Theorem 1.2] (see also [36]), and the d ≥ 2 case
in [14]. (We give a new argument for d = 1, s > 2 in Section 6.3 below.) Note that both
the stable and Gaussian regimes are thought to be incomplete (see discussion in [17, 18]
and [14, Problem 2.9]), and our heat kernel bounds support conjectures about how they
extend. Figure 1 gives a graphical overview of the situation.

Theorem 1.1 (Long-range percolation, scaling limits, [14, 18, 36]).
(a) If d ≥ 1 and s ∈ (d, d+ 1), then for P-a.e. realisation of LRP(d, s) and every p ∈ [1,∞),
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the law of (
n−

1
s−dXnt

)
t∈[0,1]

on Lp([0, 1]) converges weakly to the law of an isotropic α-stable Lévy process with
α = s− d.
(b) If d ≥ 1 and s > 2d, then for P-a.e. realisation of LRP(d, s), the law of(

n−
1
2Xnt

)
t≥0

on C([0,∞)) converges weakly to that of (Bσ2t)t≥0, where (Bt)t≥0 is standard Brownian
motion on Rd, and σ2 ∈ (0,∞) is a deterministic constant.

Remark 1.2. (i) To make the statement of the above theorem completely accurate, we
need to describe a convention for determining the value of (Xt)t≥0 between integer times.
For both parts above, the result would hold if one were to do this by linear interpolation.
Alternatively, using the J1 topology on the Skorohod space D([0,∞)) for part (b) above,
one could consider Xbtc in place of Xt. In this article, we will henceforth adopt the latter
approach; that is, if we write a continuous variable, x say, where a discrete argument is
required, we suppose it should be treated as bxc.

(ii) Note that part (a) above is proved in [18] without the assumption of nearest-
neighbour edges being present, which requires a substantial amount of extra work to
deal with the percolation issues involved.

We next set out our heat kernel estimates for LRP(d,s). Given G, the (quenched) heat
kernel/transition density of X is defined by setting

pGt (x, y) :=
PGx (Xt = y)

degG(y)
, ∀x, y ∈ Zd, t ≥ 0,

where PGx is the (quenched) law of X started from X0 = x, and degG(y) is the usual
graph degree of y in G. For typical realisations of the environment, we have the following
bounds. The constants ci and δi are deterministic, and the δi in particular are discussed
in the subsequent remark. We further highlight that, in the parameter regimes where
scaling limits are known, the lower heat kernel bounds follow from a general argument
adapted from [13] (see Lemma 6.2 below). The main contribution of this article is in
establishing the remaining lower bounds, which we do by developing [32, Theorem 3.7]
(cited below as Proposition 2.1). As for the upper bounds, the result in the stable case
was previously known from [17, Theorem 1]. This was based on a general argument for
checking quenched heat kernel upper bounds on random media, which we believe would
also be appropriate in the Gaussian case. However, we use another argument based on
comparison with a simple random walk and a time change, which more easily adapts to
the annealed case, and allows us to remove the logarithmic terms there. For discussion
of the case d = 1, s = 2, see Remark 1.8 below.

Theorem 1.3 (Long-range percolation, quenched bounds).
(a) If d ≥ 1 and s ∈ (d,min{d+ 2, 2d}), then LRP(d, s) satisfies, P-a.s., for all t ∈ N large
enough,

c1t
− d
s−d (log t)

−δ1 ≤ pG2t(ρ, ρ) ≤ c2t−
d
s−d (log t)

δ2 . (1.2)

(b) If d = 1 and s > 2, then LRP(d, s) satisfies, P-a.s., for all t ∈ N large enough,

c3t
− 1

2 ≤ pG2t(ρ, ρ) ≤ c4t−
1
2 . (1.3)

The upper bound holds for d = 1 and s = 2 as well. (c) If d ≥ 2 and s ≥ d + 2, then
LRP(d, s) satisfies, P-a.s., for all t ∈ N large enough,

c5t
− d2 (log t)

−δ3 ≤ pG2t(ρ, ρ) ≤ c6t−
d
2 (log t)

δ4 . (1.4)
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Remark 1.4. In the above result, we can take

δ1 :=

(
4s

s− d
+ ε

)
I{s∈[d+1,d+2)};

note that this means we do not need a log term in the regime where there is a scaling
limit. As indicated above, the upper bound in (1.2) is essentially due to [17], with δ2
being as given by the δ of [17, Theorem 1], which is not explicit. Similarly to Remark 1.2
above, the result of [17] does not require nearest-neighbour bonds to be present in the
model. For s ∈ (d, 2d), which includes the entire stable regime, we explain how to extend
the lower bounds of Theorem 1.3 (and Theorem 1.5 below) to the non-nearest-neighbour
setting in Section 6.4.

The article [31] gives upper and lower bounds with logs in the case d = 1 and s > 2;
the above theorem improves on this. (In this case, the assumption of nearest-neighbour
bonds is not purely for convenience – see the discussion preceding [18, Theorem 1.2].)

We further have

δ3 :=

(
5d

2
+ 4 + ε

)
I{s=d+2} + (2d+ 4 + ε) I{d+2<s≤2d};

again this is zero where we have a scaling limit. And also,

δ4 :=
d− 1

2
.

We do not expect any of the δis to be the best possible constants. For discussion
concerning the removal of the log term in the upper bound of (1.4) in particular, see
Remark 4.3 below.

As for the annealed heat kernel, which is obtained by integrating out the randomness
of the environment, we have the following.

Theorem 1.5 (Long-range percolation, annealed bounds).
(a) If d ≥ 1 and s ∈ (d,min{d+ 2, 2d}), then LRP(d, s) satisfies, for all t ∈ N,

c1t
− d
s−d ≤ E

(
pG2t(ρ, ρ)

)
≤ c2t−

d
s−d (log t)

δ2 . (1.5)

(b) If d ≥ 2 and s = d+ 2, then LRP(d, s) satisfies, for all t ∈ N,

c3t
− d2 (log t)

−δ5 ≤ E
(
pG2t(ρ, ρ)

)
≤ c4t−

d
2 . (1.6)

(c) If d ≥ 1 and s > min{d+ 2, 2d}, then LRP(d, s) satisfies, for all t ∈ N,

c5t
− d2 ≤ E

(
pG2t(ρ, ρ)

)
≤ c6t−

d
2 . (1.7)

The upper bound holds for d = 1 and s = 2 as well.

Remark 1.6. We can take the same δ2 as in Theorem 1.3, and

δ5 :=
d

2
+ ε.

For d = 1 and s > 2, the bounds of (1.7) are obtained in [31, Section 2]. For (1.6), we
conjecture that some log correction is necessary, i.e. the upper bound is not sharp. We
also anticipate that the upper bound in (1.5) is not sharp, in that no log term is required
in this case.
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Figure 2: Spectral dimension as a function of s for d = 1 (left) and d ≥ 2 (right). The
existence and value of the spectral dimension is not yet known for d = 1, s = 2, see
Remark 1.8 for discussion of this case.

As a straightforward consequence of Theorems 1.3 and 1.5, we can read off the
spectral dimension of LRP(d, s) for d ≥ 1, s > d, apart from at the value d = 1, s = 2.
Precisely, the quenched spectral dimension is defined to be the P-a.s. limit

d(q)
s (d, s) := − lim

t→∞

2 log pG2t(ρ, ρ)

log t
,

and the corresponding annealed spectral dimension is the limit

d(a)
s (d, s) := − lim

t→∞

2 logE
(
pG2t(ρ, ρ)

)
log t

.

See Figure 2 for an illustration of the following result.

Corollary 1.7 (Long-range percolation, quenched and annealed spectral dimension).
(a) If d ≥ 1 and s ∈ (d,min{d+ 2, 2d}), then, P-a.s.,

d(a)
s (d, s) = d(q)

s (d, s) =
2d

s− d
.

(b) If d ≥ 1 and s > min{d+ 2, 2d} or d ≥ 2 and s = d+ 2, then, P-a.s.,

d(a)
s (d, s) = d(q)

s (d, s) = d.

Remark 1.8. As shown by Corollary 1.7 (and Figure 2), there is a discontinuity in the
spectral dimension at d = 1, s = 2. Whilst it might be possible to argue from the
techniques of this article that, if it exists, the spectral dimension lies in the interval
[1,2], determining the exact value seems highly non-trivial. See the discussion of [8], [14,
Problem 2.10], [26] and [31, Remark 2.3(2)] for further background on the difficulties
found in this case.

The remainder of the article is organised as follows. In Section 2, we present our
general approach for establishing quenched and annealed heat kernel lower bounds on
random media, see Theorem 2.3 and Corollary 2.6, and also discuss the related upper
bound of [17]. The various assumptions required to apply these results are checked
for long-range percolation in Section 3. Then, in Section 4, we put the pieces together
to deduce the lower heat kernel bounds of Theorems 1.3 and 1.5, and also give an
argument for the corresponding upper heat kernel bounds. Finally, Section 5 lists some
questions left open by this work, and Section 6 is an appendix in which we: explain
how the lower heat kernel bound applies to the simpler setting of random walk on Zd;
describe how a quenched scaling limit automatically implies a quenched lower heat
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kernel bound; present an alternative proof of a quenched invariance principle for long-
range percolation in the one-dimensional setting; and describe an extension of our lower
heat kernel bounds to a long-range percolation model in which non-nearest-neighbour
bonds are not necessarily present.

Concerning notational conventions, we write x∧y := min{x, y} and x∨y := max{x, y}.
For non-negative sequences f(n) and g(n), we define f(n) � g(n) to mean that there exist
strictly positive constants c1 and c2 such that c1f(n) ≤ g(n) ≤ c2f(n), and f(n) � g(n) to
mean that there exists a strictly positive constant c such that f(n) ≤ cg(n). We write c, C
for deterministic constants that might change value from line to line.

2 Heat kernel estimates

2.1 Lower heat kernel bound

Towards establishing our lower heat kernel bounds, we present a result from [32] that
shows a lower heat kernel bound must hold on some proportion of vertices in a graph,
as determined by the sizes and capacities of the pieces in a suitable decomposition of
the graph. The latter result is given for an arbitrary connected, finite graph G = (V,E),
where V is a set of vertices and E is a set of bonds. We set π̃(x) = degG(x) for all x ∈ V ,
and define π to be a version of π̃ normalised to be a probability measure, namely

π(x) =
degG(x)

2|E|
, ∀x ∈ V,

where for a set A, we denote by |A| the number of elements of A. Note that π is the
stationary probability measure for the discrete-time simple random walk associated with
G. We further write, for any ε > 0,

π?(ε) = max {π(W ) : |W | ≤ ε|V |} . (2.1)

The (on-diagonal part of the) natural Dirichlet form on G is defined for functions ψ : V →
R as follows:

E(ψ) =
1

2

∑
x,y: x∼y

(ψ(x)− ψ(y))2, (2.2)

where we write x ∼ y to mean that x and y are connected by an edge in E. As a final
piece of notation needed to state the result of [32], let us call a pair (A,Ω) of subsets
A ⊆ Ω ⊆ V a capacitor, and define the capacity of (A,Ω) by

capΩ(A) := inf
ψ:V :→[0,1]

{2E(ψ) : ψ|A = 1, supp(ψ) ⊆ Ω} ,

where supp(ψ) := {x ∈ V : ψ(x) 6= 0}. Note that our definition of capacity differs from
the definition in [32] by a factor of 2|E|.
Proposition 2.1 ([32, Theorem 3.7]). Let G = (V,E) be a connected, finite graph,
and M ∈ (0,∞) a constant. Suppose that for some k ≤ |V |, there are capacitors
(A1,Ω1), . . . , (Ak,Ωk) such that (Ωi)

k
i=1 are pairwise disjoint and |Ωi| ≤ M for all i =

1, . . . , k. Then, for all ε > 0 and t ∈ N,

π

({
x ∈ V : pG2t(x, x) ≥ ε|V |

8M |E|

})
≥ −2π?(ε) +

k∑
i=1

π(Ai)−
t

|E|

k∑
i=1

capΩi(Ai).

Remark 2.2. The appearance of the above result in [32] is slightly different, as it is
expressed in terms of the transition probability, rather than the heat kernel/transition
density.
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We will apply this result to sequences of graphs that converge in the sense of
Benjamini-Schramm [9]. In particular, for the limit of the sequence, we take G to be
a random connected, locally-finite graph, rooted at a distinguished vertex ρ. For each
n ≥ 1, Gn will be a random connected, finite graph, rooted at a uniformly chosen vertex
ρn. Given any k ≥ 1, we suppose that the ball in Gn of radius k (according to the usual
shortest path graph distance) centred at the root ρn converges in distribution to the
ball in G of radius k centred at the root ρ (see [9, Section 1.2] for details). To apply
Proposition 2.1 to such a sequence, for given non-negative constants α, (δi)

3
i=0 and γ,

and deterministic function λ : (0,∞)→ [1,∞), we consider the following conditions (that
are in fact relevant to any sequence of connected, finite graphs).

(A1) For all n ∈ N,

E

(
|En|2

|Vn|2

)
≤ α,

where En and Vn are the edge and vertex set of Gn, respectively.

(A2) For all ε > 0, if n is large enough, then

E
(
π?n(ε)2

)
≤ αε,

where π?n is defined as at (2.1) from πn, the stationary probability measure of simple
random walk on Gn.

(A3) For each t ∈ N, there exists an integer n0 = n0(t) such that for each n ≥ n0, with
probability at least 1− λ(t)−δ0 , there are k ≤ |Vn| capacitors (A1,Ω1), . . . , (Ak,Ωk)

for the graph Gn such that (Ωi)
k
i=1 are pairwise disjoint and also

(a) maxi=1,...,k |Ωi| ≤ αtγλ(t)δ1 ;

(b)
∑k
i=1 πn(Ai) ≥ 1− αλ(t)−δ2 ;

(c)
∑k
i=1 capΩi(Ai) ≤ 2α|En|t−1λ(t)−δ3 .

We are now ready to state the main result of this section. The assumptions (A1), (A2)
and (A3) are clearly designed to feed into the bound of Proposition 2.1.

Theorem 2.3. Assume that (G, ρ) is the Benjamini-Schramm limit of the sequence
(Gn, ρn), n ≥ 1, which satisfies (A1), (A2), (A3) for some positive constants α, (δi)

3
i=0 and

γ, and deterministic function λ : (0,∞)→ [1,∞). There then exists a constant Cα only
depending on α such that, for all t ∈ N large enough,

P

(
pG2t(ρ, ρ) ≥ 1

tγλ(t)δ1+2(δ2∧δ3)

)
≥ 1− Cαλ(t)−

δ0∧δ2∧δ3
2 .

Proof. Since (Gn, ρn) converges in a Benjamini-Schramm sense to (G, ρ), and pG2t(ρ, ρ)

only depends on the ball of radius 2t about ρ, it holds that, for each fixed t,

lim
n→∞

P

(
pGn2t (ρn, ρn) <

1

tγλ(t)δ1+2(δ2∧δ3)

)
= P

(
pG2t(ρ, ρ) <

1

tγλ(t)δ1+2(δ2∧δ3)

)
.

Hence, for each fixed t and δ, if n is large, then∣∣∣∣P(pGn2t (ρn, ρn) <
1

tγλ(t)δ1+2(δ2∧δ3)

)
−P

(
pG2t(ρ, ρ) <

1

tγλ(t)δ1+2(δ2∧δ3)

)∣∣∣∣ ≤ λ(t)−δ.

(2.3)
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Moreover, writing I for an indicator function,

P

(
pGn2t (ρn, ρn) <

1

tγλ(t)δ1+2(δ2∧δ3)

)
= E

[
P

(
pGn2t (ρn, ρn) <

1

tγλ(t)δ1+2(δ2∧δ3)
Gn

)]
= E

[
1

|Vn|
∑
x∈Vn

I

({
pGn2t (x, x) <

1

tγλ(t)δ1+2(δ2∧δ3)

})]

≤ E

[
2|En|
|Vn|

∑
x∈Vn

degGn(x)

2|En|
I

(
pGn2t (x, x) <

1

tγλ(t)δ1+2(δ2∧δ3)

)]

= 2E

[
|En|
|Vn|

πn

({
x ∈ Vn : pGn2t (x, x) <

1

tγλ(t)δ1+2(δ2∧δ3)

})]

≤ 2E

[
|En|2

|Vn|2

]1/2

E

[
πn

({
x ∈ Vn : pGn2t (x, x) <

1

tγλ(t)δ1+2(δ2∧δ3)

})2
]1/2

≤ 2
√
αE

[
πn

({
x ∈ Vn : pGn2t (x, x) <

1

tγλ(t)δ1+2(δ2∧δ3)

})2
]1/2

, (2.4)

where we have applied (A1) to deduce the final inequality. Now, suppose n0 = n0(t)

is an integer as in (A3). Applying (A3) and Proposition 2.1 with M = αtγλ(t)δ1 and
ε = 8αλ(t)−(δ2∧δ3), we obtain that, for n ≥ n0, on an event of probability at least
1− λ(t)−δ0 ,

πn

({
x ∈ Vn : pGn2t (x, x) <

1

tγλ(t)δ1+2(δ2∧δ3)

})
I

(
|En|
|Vn|

≤ λ(t)δ2∧δ3
)

≤ 2π?n(ε) + Cαλ(t)−(δ2∧δ3),

where Cα is a constant that only depends on α. Therefore, by (A1) and (A2), for large n,

E

[
πn

({
x ∈ Vn : pGn2t (x, x) <

1

tγλ(t)δ1+2(δ2∧δ3)

})2
]1/2

≤ C ′α

(
E[π?n(ε)2] + λ(t)−2(δ2∧δ3) + λ(t)−δ0

)1/2

≤ C ′′αλ(t)−
δ0∧δ2∧δ3

2 . (2.5)

Combining (2.3), (2.4) and (2.5), we get that, for all t large enough,

P

(
pG2t(ρ, ρ) <

1

tγλ(t)δ1+2(δ2∧δ3)

)
≤ C ′′′α λ(t)−

δ0∧δ2∧δ3
2 ,

which implies the desired result.

Remark 2.4. When the assumption (A3) is hard to check for all integers n, we could
replace (A3) by (A3’): There exists an integer n1 = n1(t) such that for n = n1, the
conditions (A3)(a)-(c) hold and, moreover,

P

(
pGn2t (ρn, ρn) <

1

tγλ(t)δ1+2(δ2∧δ3)

)
≤ P

(
pG2t(ρ, ρ) <

2

tγλ(t)δ1+2(δ2∧δ3)

)
+ λ(t)−δ0 .

The above condition gives a replacement of (2.3); the other parts of the proof of
Lemma 2.3 are exactly the same.
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Remark 2.5. We note that Benjamini-Schramm convergence is a key input into the
proof, allowing us to transfer a heat kernel estimate from a large, but unspecified, set to
a single specified point. This is somewhat analogous to the approach used to understand
the on-diagonal part of the annealed heat kernel of Brownian motion on stable trees in
[22, 23], whereby random re-rooting was used to obtain point-wise asymptotics for the
heat kernel from the asymptotics of the trace of the heat semigroup, which is typically a
smoother object.

To complete the section, we give a corollary that explains how the distributional
bound of Theorem 2.3 can be applied to yield quenched and annealed lower heat kernel
bounds.

Corollary 2.6. Suppose that (G, ρ) is the Benjamini-Schramm limit of the sequence
(Gn, ρn), n ≥ 1.
(a) Assume that (A1),(A2), (A3) hold for some positive constants α, (δi)

3
i=0 and γ, and

deterministic function λ : (0,∞) → [1,∞) satisfying
∑∞
i=1 λ(ei)−

δ0∧δ2∧δ3
2 < ∞ and c1 ≤

λ(t)/λ(ei+1) for all ei ≤ t ≤ ei+1 and all i ∈ N. Then, P-a.s., for all t ∈ N large enough

pG2t(ρ, ρ) ≥ c2
tγλ(t)δ1+2(δ2∧δ3)

.

(b) Assume that (A1),(A2), (A3) hold for some positive constants α, (δi)
3
i=0 and γ, and

constant function λ : (0,∞) → [1,∞) given by λ(t) = λ0, where 1 − Cαλ
− δ0∧δ2∧δ32
0 > 0.

Then

E
(
pG2t(ρ, ρ)

)
≥ c(α, λ0)

tγ
, ∀t ∈ N,

where c(α, λ0) is a constant depending on the values of α and λ0.

Proof. (a) Given Theorem 2.3, this follows from the Borel-Cantelli lemma and the mono-
tonicity of the on-diagonal part of the heat kernel pG2t(ρ, ρ). (That the latter quantity is
decreasing in t can be seen from [4, Lemma 4.1] and [21, Equation (15)], for example.)

(b) This is an obvious consequence of Theorem 2.3.

2.2 Upper heat kernel bound

In [17, Lemma 3.1], a general heat kernel upper bound was given. For comparison
with the approach of the previous subsection, we summarize it here. In both [17] and
this article, a key aspect of the required input is that we can decompose a large part of
the graph in question into suitably-sized pieces that behave well in some way. Here, the
focus is on the capacity of the pieces; in [17], it is their spectral gap that plays a central
role.

To present the setting of [17, Section 3], let G be a connected, locally-finite graph,
and (Yt)t≥0 be the continuous-time random walk on G with unit mean holding times. For
any connected, finite subgraph H ⊆ G and any vertex x ∈ H, we denote by degH(x) the
degree of x within H. The stationary measure of the random walk on H is given by

πH(x) =
degH(x)∑
y∈H degH(y)

.

Moreover, the spectral gap of H is defined as

GapH = inf

{∑
x,y∈H:x∼y(f(x)− f(y))2

2
∑
x∈H f(x)2πH(x)

: f : H → R non-constant,
∑
x∈H

f(x)πH(x) = 0

}
.

For given constants T1 ≤ T2 and γ > 0, and distinguished vertex ρ ∈ G, the following
assumption is then considered in [17]. There exist
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• two positive functions λs, Vs : s ∈ [T1/2, T2/2] 7→ R+ such that λs is decreasing and
Vs is increasing,

• a family of universal constants {ci, Ci}1≤i≤4 and δ1,

• for each s ∈ [T1/2, T2/2], a distinguished connected set B(s) containing ρ and a
partition Ps of B(s) into connected sets {H : H ∈ Ps},

such that the following holds:

(B1) for all H ∈ Ps,
GapH ≥ λs,

(B2) for all H ∈ Ps,
c1Vs ≤ |H| ≤ C1Vs,

(B3)

c2V
−1/γ
s log−δ1 Vs ≤ λs,

(B4)

∆Ps := inf
x∈B(s)

degH(x)

degG(x)
≥ c3 log−1 Vs,

(B5)

PGρ (Ys ∈ B(s)c) ≤ C3V
−1
s log Vs,

(B6)

1 + C3 + 1/(c1c3) ≤ ψs(ρ)Vs log−1 Vs ≤ C4,

where ψs(ρ) = PGρ (Y2s = ρ)/ degG(ρ).

Applying these, the following result is proved in [17].

Theorem 2.7. [17, Lemma 3.1] Assume the conditions (B1)–(B6) are satisfied. Then for
δ = δ1 + 1/γ and t ∈ [T1, T2], we have that

ψt(ρ) ≤ ψT1
(ρ) ∧ C5(1 + C6(t− T1))−γ | log(1 + C6(t− T1))|δγ ,

where C5 and C6 are universal constants.

Roughly speaking, the above theorem states that if, for all s large enough, we can
find a connected subgraph B(s) ⊆ G containing ρ and a partition of this, {H : H ∈ Ps},
such that:

(B1’) for all H,

|H| � sγ log−δ1 s,

(B2’) for all H,

GapH � 1/(s logδ2 s),

(B3’)

∆Ps � 1/ log s,

(B4’)

PGρ (Ys ∈ B(s)c) � s−γ logδ3 s,
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then
ψs(ρ) � s−γ logδ4 s.

We observe that, in the choice of exponents and the quantities of interest, the condition
(B1’) is similar to (A3)(a) and the condition (B2’) is related to (A3)(c). The remaining
conditions, (B3’) and (B4’), are more technical, and ensure the behaviour of the random
walk on the subgraph suitably captures that on the entire graph. As (a simplification of)
the main result of [17], we state the following. We highlight that, although set-out here
in terms of the continuous-time random walk, the conclusion is readily transferred to the
discrete-time random walk by applying the argument used in the proof of [4, Theorem
5.14], for example.

Theorem 2.8. [17, Theorem 1] If d ≥ 1 and s ∈ (d,min{d+ 2, 2d}), then the continuous-
time simple random walk on the long-range percolation cluster described in the introduc-
tion satisfies the conditions (B1)–(B6) with the exponent γ = d/(s−d). As a consequence,
with probability one, the upper heat kernel bound

ψT (ρ) ≤ CT−d/(s−d) logδ T

holds for all large T , where C, δ are deterministic constants.

3 Application to long-range percolation

In this section, we prepare the ground for deriving the lower heat kernel bounds
for the long-range percolation model LRP(d,s). Given a parameter q ∈ [0, 1], we slightly
generalise the setting presented in the introduction around (1.1) by supposing: for
x, y ∈ Zd, the edge between them appears with probability

qx,y =

{
q if |x− y| = 1,

1− exp(−|x− y|s) if |x− y| > 1,

independently of the state of other edges. In particular, when q = 1, we assume nearest-
neighbour edges are present. Note that we only allow q < 1 in this section, where we
discuss the verification of the conditions (A1)–(A3) for the more general model.

It was shown in [1] that LRP(d,s) admits an infinite cluster with probability 0 or 1, and
has at most one infinite cluster almost-surely. We will suppose that LRP(d,s) percolates,
i.e. it has an unique infinite cluster, which we denote by G = (V,E); clearly this includes
the q = 1 setting, and indeed any q above the nearest-neighbour percolation threshold for
Zd. For each n, we let Gn = (Vn, En) be the largest connected component of G∩ [−n, n]d,
and assume the following.

(V) There exists a universal constant c > 0, such that for all n ≥ 1,

P(|Vn| ≥ cnd) ≥ 1− exp(−c(log n)2).

When q = 1, the condition (V) is trivial, since Vn = [−n, n]d. Applying an estimate from
[12], we can also check it in the case s ∈ (d, 2d), see Lemma 6.6 below.

In the subsequent three subsections, we take the condition (V) as given, and proceed
to check each of the assumptions (A1), (A2) and (A3). Thus we reduce the problem of
obtaining heat kernel lower bounds to that of checking Benjamini-Schramm convergence
and (V).

3.1 Checking (A1) for long-range percolation under (V)

The assumption (A1) is straightforward to handle for all cases simultaneously.
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Lemma 3.1. For any d ≥ 1 and s > d, the random graph Gn satisfies (A1).

Proof. By applying the Cauchy-Schwarz inequality and (V), we have for some c > 0,

E

((
|En|
|Vn|

)2
)
≤ c−2n−2dE[|En|2] + E[|En|2I(|Vn| < cnd)]

≤ c−2n−2dE[|En|2] + (E[|En|4])1/2(P[|Vn| < cnd])1/2. (3.1)

In addition, writing V ∗n = [−n, n]d,

E[|En|2] ≤ E


 ∑
x,y∈V ∗n

I(x ∼ y)

2
 =

∑
x,y,u,v∈V ∗n

P[x ∼ y, u ∼ v]

�
∑

x,y,u,v∈V ∗n

(1 + |x− y|s)−1(1 + |u− v|s)−1 � n2d. (3.2)

Similarly,

E[|En|4] � n4d, (3.3)

Combining (3.1), (3.2) and (3.3) with (V), we obtain that E[(|En|/|Vn|)2] � 1, as desired.

3.2 Checking (A2) for long-range percolation under (V)

For assumption (A2), we can also deal with all cases simultaneously.

Lemma 3.2. For any d ≥ 1 and s > d, the random graph Gn satisfies (A2).

Proof. Since |En| ≥ |Vn| − 1, it follows from (V) that

P[|En| ≥ cnd] ≥ 1− exp(−c(log n)2),

for some c > 0. Therefore,

E
[
π?n(ε)2

]
= E

[
sup

|W |≤ε|Vn|

(∑
x∈W degGn(x)

2|En|

)2
]

≤ c−2ε+ exp(−c(log n)2) + P

(
sup

|W |≤ε|Vn|

∑
x∈W

degGn(x) ≥
√
εnd

)
. (3.4)

Since Vn ⊆ V ∗n := [−n, n]d, applying the union bound and Markov’s inequality yields that

P

(
sup

|W |≤ε|Vn|

∑
x∈W

degGn(x) ≥
√
εnd

)

≤
∑

|W |≤ε|V ∗n |

P

(∑
x∈W

degGn(x) ≥
√
εnd

)

≤
∑

|W |≤ε|V ∗n |

e−
√
εndE

[
exp

(∑
x∈W

deg(x)

)]
, (3.5)
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where deg(x) :=
∑
y∈Zd I(x ∼ y). Uniformly in n and W with |W | ≤ ε|V ∗n |, we have

E

[
exp

(∑
x∈W

deg(x)

)]
= E

exp

∑
x∈W

∑
y∈Zd

I(x ∼ y)


=

∏
y∈Zd

∏
x∈W

E (exp (I(x ∼ y))) =
∏
y∈Zd

∏
x∈W

(1− qx,y + qx,ye)

≤
∏
y∈Zd

∏
x∈W

exp(2qx,y) = exp

2
∑
x∈W

∑
y∈Zd

P(x ∼ y)


= exp

(
2
∑
x∈W

E(deg(x))

)
≤ exp

(
Cεnd

)
. (3.6)

Combining (3.5) and (3.6), and applying Stirling’s formula, we obtain, for all n large,

P

(
sup

|W |≤ε|Vn|

∑
x∈W

degG(x) ≥
√
εnd

)
≤

(
|V ∗n |
ε|V ∗n |

)
exp

(
−
√
εnd + Cεnd

)
≤ exp

(
CI(ε)nd −

√
εnd + Cεnd

)
, (3.7)

where I(ε) := −ε log(ε)−(1−ε) log(1−ε). Now, if ε ∈ (0, ε0) for suitably small ε0 > 0, then
C(ε+I(ε))−

√
ε < 0, and we assume that this is the case. Putting (3.4) and (3.7) together,

we thus deduce that, for all n large, E[π?n(ε)2] ≤ Cε, as desired. Since E[π?n(ε)2] ≤ 1, the
result is obviously true for ε ∈ [ε0,∞), and so the proof is complete.

3.3 Checking (A3) for long-range percolation under (V)

Recall that to verify the assumption (A3), we have to describe within the random
graph Gn a sequence of disjoint capacitors {(Ai,Ωi)}ki=1. Specifically, for (A3)(c), we
need to establish an upper bound for the sum of the associated capacities in terms of
|En|. Hence we should find an upper bound for the capacities and a lower bound for
|En|. The condition (V) guarantees a lower bound on the number of edges. For the upper
bound on the capacities, we will use the following observation. By the definition of the
capacity and the Dirichlet form on the finite graph Gn, we have: for any function ϕ(i)

taking value 0 outside Ωi and value 1 inside Ai,

capΩi(Ai) ≤ 2EGn(ϕ(i)) ≤ 2E(ϕ(i)),

where E is defined by setting

E(f) :=
1

2

∑
x,y∈Zd
x∼y

(f(x)− f(y))2

for f : Zd → R. Since its definition does not involve summing over vertices in the largest
percolation cluster in [−n, n]d, computing with respect to E is more convenient than
doing so for EGn . In the next two results, Lemma 3.3 and Proposition 3.4, we obtain
some useful estimates on the covariance between E(f) and E(g) for suitable functions
f, g, and the expectation of E(f) for suitable f , respectively.

Lemma 3.3. Let N ≥ 1 be an integer and a, b ∈ Zd satisfy |a − b| ≥ 2N . Suppose
that fa, fb are two bounded functions with supp(fa) ⊆ Ωa and supp(fb) ⊆ Ωb, where
Ωa = a + [−N,N ]d and Ωb = b + [−N,N ]d. Then there exists an universal constant C
such that

Cov (E(fa), E(fb)) ≤
CN4d|fa|2|fb|2

(|a− b| − 2N)2s + 1
,
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where we write |f | := supx∈Zd |f(x)| for f : Zd → R.

Proof. Since supp(fa) ⊆ Ωa,

E(fa) =
∑

{x,y}: x∈Ωa, y∈Zd,
x∼y

(fa(x)− fa(y))2

=
∑

{x,y}: x∈Ωa, y∈Ωb
x∼y

(fa(x)− fa(y))2 +
∑

{x,y}: x∈Ωa, y∈Ωcb
x∼y

(fa(x)− fa(y))2

=: Ea,1 + Ea,2.

Similarly,

E(fb) =
∑

{x,y}: x∈Ωb, y∈Ωa
x∼y

(fb(x)− fb(y))2 +
∑

{x,y}: x∈Ωb, y∈Ωca
x∼y

(fb(x)− fb(y))2

=: Eb,1 + Eb,2.

By construction, Ea,2 is independent of Eb,1 and Eb,2, and Eb,2 is independent of Ea,1 and
Ea,2. Therefore,

Cov (E(fa), E(fb)) = Cov (Ea,1, Eb,1) ≤ E (Ea,1Eb,1) ≤ |fa|2|fb|2E
(
e(Ωa,Ωb)

2
)
, (3.8)

where
e(Ωa,Ωb) :=

∑
{x,y}: x∈Ωb, y∈Ωa

I(x ∼ y).

Writing . for stochastic domination and Bin(m, p) for a binomial random variable with
parameters m ∈ N and p ∈ [0, 1], we clearly have that

e(Ωa,Ωb) . Bin(|Ωa||Ωb|, pa,b),

where
pa,b := max

x∈Ωa,y∈Ωb
qx,y.

Since |Ωa||Ωb| � N2d and pa,b � ((|a− b| − 2N)s + 1)−1,

E
(
e(Ωa,Ωb)

2
)
≤ E

(
Bin(|Ωa||Ωb|, pa,b)2

)
� N4d

(|a− b| − 2N)2s + 1
. (3.9)

Combining (3.8) and (3.9), we arrive at the desired result.

For the next step, we will need to be careful about the distinction between the stable,
Gaussian, and critical settings. In particular, the capacity estimate we require differs
between the three cases. Towards deriving this, we introduce a linear cut-off function,
and estimate the expected value of its energy. For N ≥M , set

ϕN,M (x) =


1, if |x| ≤ N −M,
N−|x|
M , if N −M < |x| ≤ N,

0, if |x| > N.

Moreover, for a given sequence (βN )N≥1 in [2,∞), define ϕN := ϕN,M , where M :=

N/βN . Note that the following result does not cover the part of the Gaussian regime
corresponding to parameters d = 1 and s > 2, for which we deduce the lower heat kernel
bound from the scaling limit of Theorem 1.1(b).
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Proposition 3.4. (a) Fix d ≥ 1 and s ∈ (d,min{d + 2, 2d}). There exists a positive
constant c such that, for any sequence (βN )N≥1 in [2,∞) such that βN = o(N), for all
large N ,

cN2d−s ≤ E (E(ϕN )) ≤ N2d−sβN/c.

(b) Fix d ≥ 2 and s > d+ 2. The statement of part (a) holds with the following bound:

cNd−2βN ≤ E (E(ϕN )) ≤ Nd−2βN/c.

(c) Fix d ≥ 2 and s = d+ 2. The statement of part (a) holds with the following bound:

cNd−2βN log(N/βN ) ≤ E (E(ϕN )) ≤ Nd−2βN log(N/βN )/c.

Proof. (a) By definition of ϕN ,

2E(ϕN ) =
∑

|x|≤N−M
|y|>N

I(x ∼ y) +
∑

|x|≤N−M
N−M<|y|≤N

I(x ∼ y)

(
N −M − |y|

M

)2

+
∑
|x|>N

N−M<|y|≤N

I(x ∼ y)

(
N − |y|
M

)2

+
∑

N−M<|x|,|y|≤N

I(x ∼ y)

(
|x| − |y|
M

)2

=: S1 + S2 + S3 + S4,

Using qx,y � |x− y|−s for |x− y| ≥ 1, we have

E(S1) �
∑

|x|≤N−M
|y|>N

|x− y|−s =
∑

|x|≤N−M

∑
k>N−|x|

k−s#{y : |y| > N, |x− y| = k}

�
∑

|x|≤N−M

∑
k∈[N−|x|,2N−|x|]

kd−1−s �
∑

|x|≤N−M

(N − |x|)d−s

�
N−M∑
`=0

(N − `)d−s`d−1 �
∫ N−M

1

(N − `)d−s`d−1d`

� N2d−s
∫ 1−(1/N)

1/βN

ud−s(1− u)d−1du, (3.10)

where we used the fact that #{y : |y − x| = k} � kd−1 in the second and third lines.
Observe that

∫ 1−(1/N)

1/βN

ud−s(1− u)d−1du �


1, if d+ 1− s > 0,

log(βN ), if d+ 1− s = 0,

βs−d−1
N , if d+ 1− s < 0.

(3.11)

Combining (3.10) and (3.11) yields that

E(S1) �


N2d−s, if d+ 1− s > 0,

N2d−s log(βN ), if d+ 1− s = 0,

N2d−sβs−d−1
N , if d+ 1− s < 0.

(3.12)

We next estimate E(S4). Using the inequality ||x| − |y|| ≤ |x − y|, we have, for all
N −M ≤ |x|, |y| ≤ N , (

|x| − |y|
M

)2

≤ |x− y|
2

M2
∧ 1. (3.13)
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Therefore,

E(S4) =
1

2

∑
N−M<|x|,|y|≤N

qx,y

(
|x| − |y|
M

)2

�
∑

N−M<|x|≤N

 1

M2

∑
y:|y−x|≤M

|x− y|2−s +
∑

y:|y−x|>M

|x− y|−s


�
∑

N−M<|x|≤N

[
1

M2

M∑
k=1

k2−skd−1 +
∑
k>M

k−skd−1

]

�
∑

N−M<|x|≤N

Md−s � Nd−1Md+1−s = N2d−sβs−d−1
N . (3.14)

Note that for the second line we used the fact that #{y : |y − x| = k} � kd−1 and for the
last line we used #{x : N −M < |x| ≤ N} � Nd−1M . To estimate E(S3), we observe
that for |x| > N and N −M < |y| ≤ N ,(

N − |y|
M

)2

≤ |x− y|
2

M2
∧ 1. (3.15)

Hence, using the same argument for as (3.14), with (3.15) playing the role of (3.13), we
can prove that

E(S3) � N2d−sβs−d−1
N . (3.16)

The term E(S2) can be also bounded in the same way as E(S3) or E(S4). Indeed, for
|x| ≤ N −M and N −M < |y| ≤ N ,(

N −M − |y|
M

)2

≤ |x− y|
2

M2
∧ 1.

Hence, using the argument that was used to obtain (3.14) and (3.16), we find

E(S2) � N2d−sβs−d−1
N . (3.17)

Using (3.12), (3.14), (3.16) and (3.17), we have max{E(S2),E(S3),E(S4)} � E(S1), and
so

E (E(ϕN )) � E(S1),

which together with (3.12) implies that

N2d−s � E (E(ϕN )) � N2d−sβN .

(b) Repeating the above argument yields

E(S1) � N2d−sβs−d−1
N .

However, this is no longer the dominant term. Specifically, for s > d+ 2, we have that

E(S4) �
∑

N−M<|x|,|y|≤N

|x− y|−s
(
|x| − |y|
M

)2

�
∑

N−M<|x|≤N

∑
k≥1

k−s
(
k2

M2
∧ 1

)
kd−1

�
∑

N−M<|x|≤N

(
M∑
k=1

M−2kd+1−s +
∑
k>M

kd−1−s

)
� Nd−1M−1 = Nd−2βN .
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Similar considerations yield a lower bound of the same form, i.e. E(S4) � Nd−2βN .
Moreover, again arguing similarly, we find that

E(S2) + E(S3) � Nd−2βN .

Therefore,

E (E(ϕN )) � E(S4) � Nd−2βN .

(c) The final case d ≥ 2 and s = d+ 2. The proof is similar to that of (b). The additional
log term appears since for s = d+ 2 it holds that

∑M
k=1 k

d+1−s � log(M).

We are now ready to check (A3), and we start with the stable case.

Lemma 3.5. (a) Fix d ≥ 1 and s ∈ (d,min{d+ 2, 2d}). For κ > 0, LRP(d, s) satisfies (A3)
with δ1 = 2dκ

s−d , δ2 = δ3 = κ, δ0 arbitrarily large, and λ(t) = max{1, log(t)}.
(b) Fix d ≥ 1 and s ∈ (d,min{d+2, 2d}). LRP(d, s) satisfies (A3) with δ1 = 2d

s−d , δ2 = δ3 = 1,
δ0 arbitrarily large, and λ(t) = λ0. Moreover, the constants α and λ0 can be chosen so

that, taking Cα as the constant of Theorem 2.3, it holds that 1− Cαλ−1/2
0 > 0.

Proof. (a) We will verify the condition with n0 := n0(t) = t∆ suitably large ∆. To do so,
first define

N := t
1
s−d (log t)

2κ
s−d , (3.18)

where κ > 0 is some constant. For n ≥ n0, we then cover [−n + N,n −N ]d by disjoint
boxes of side-length 2N , the intersections of which with Vn we will denote by (Ωi)

k
i=1.

Writing xi for the center of the box containing Ωi, so Ωi = Bxi(N) ∩ Vn (where Bx(r) is
the `∞-ball of radius r centred at x), we also introduce Ai := Bxi(N −M) ∩ Vn, where
M := N/(logN)κ. Now, by construction, the sets (Ωi)

k
i=1 are disjoint, and moreover

satisfy

max
i=1,...,k

|Ωi| � Nd = t
d
s−d (log t)

2dκ
s−d = tγ(log t)δ1 ,

where δ1 := 2dκ/(s− d). Thus (A3)(a) is satisfied for capacitors (Ai,Ωi), i = 1, . . . , k.

For verifying (A3)(b), define

W = {x : n−N ≤ |x| ≤ n} ∪ (∪ki=1Wi),

where Wi = {x : N −M ≤ |x− xi| ≤ N}, and observe that

k∑
i=1

πn(Ai) ≥ 1− πn(W ∩ Vn).

Now, for any C, εn and suitably small constant c, we have

P (πn(W ∩ Vn) ≥ Cεn) ≤ P

(∑
x∈W

degGn(x) ≥ Ccεnnd
)

+ P(|En| ≤ cnd)

≤ P

(∑
x∈W

deg(x) ≥ Ccεnnd
)

+ P(|Vn| ≤ cnd + 1)

≤ exp(−Ccεnnd)E

(
exp

(∑
x∈W

deg(x)

))
+ exp(−c(log n)2)

≤ exp
(
−Ccεnnd + 2|W |E(deg(ρ))

)
+ exp(−c(log n)2),
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where for the second and third inequalities we use |Vn| ≤ |En|+ 1 and (V), and for the
last one we follow the argument leading to (3.6). Furthermore, noting that the number

of boxes satisfies k �
(
n
N

)d
, we have

|W | = |{x : n−N ≤ |x| ≤ n}|+
k∑
i=1

|Wi| � nd−1N + kNd−1M � nd(logN)−κ,

where we have used that N = o(n1/2) (for suitably large ∆). Hence, by taking εn =

(logN)−κ and C sufficiently large, we find that

P
(
πn(W ∩ Vn) ≥ C(logN)−κ

)
≤ exp(−nd(logN)−κ) + exp(−c(log n)2) ≤ (log t)−δ

for any δ > 0 (once t is large). Reformulating this bound, we find that

P

(
k∑
i=1

πn(Ai) ≥ 1− α(log t)−κ

)
≥ 1− (log t)−δ,

which confirms (A3)(b) with δ2 = κ.
Finally, to check (A3)(c), we start by defining a collection of functions (ϕ(i))ki=1 by

setting

ϕ(i)(x) = ϕN (x− xi).

Uniformly in 1 ≤ i ≤ k,

E
(
E(ϕ(i))2

)
≤ E

(∑
x∈Ωi

deg(x)

)2
 ≤ |Ωi|E(∑

x∈Ωi

(deg(x))2

)
� |Ωi|2 � N2d.

By Lemma 3.3, uniformly in all pairs i 6= j,

Cov
(
E(ϕ(i)), E(ϕ(j))

)
� N4d

(|xi − xj | − 2N)2s + 1
.

Therefore,

Var

(
k∑
i=1

E(ϕ(i))

)
� kN2d +

∑
1≤i 6=j≤k

N4d

(|xi − xj | − 2N)2s + 1
.

In addition, ∑
1≤i 6=j≤k

1

(|xi − xj | − 2N)2s + 1
=

∑
1≤i 6=j≤k

(2N)−2s(
|xi−xj2N | − 1

)2s

+ (2N)−2s

�
∑

x,y∈[− n
2N ,

n
2N ]d∩Zd: x 6=y

(2N)−2s

(|x− y| − 1)
2s

+ (2N)−2s
�
( n
N

)d
� k,

and so

Var

(
k∑
i=1

E(ϕ(i))

)
� kN4d. (3.19)

By Proposition 3.4 (a), we also have that

kN2d−s � E

(
k∑
i=1

E(ϕ(i))

)
� kN2d−sβN � ndNd−s(logN)κ � ndt−1(log t)−κ, (3.20)
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where βN = N/M = (logN)κ and Nd−s(logN)κ � t−1(log t)−κ by (3.18). Using the
variance bound (3.19), the lower bound for the expectation of (3.20), and Chebyshev’s
inequality, we thus obtain

P

(
k∑
i=1

E(ϕ(i)) ≥ 2

k∑
i=1

E[E(ϕ(i))]

)
� kN4d

(kN2d−s)2
=
N2s

k
� k−1/2,

provided that N4s � k, or equivalently N1+4s/d � n (which holds for ∆ large). Since
it is the case that supp(ϕ(i)) = Ωi, ϕ(i)|Ai = 1 and 0 ≤ ϕ(i) ≤ 1, we have capΩi(Ai) ≤
2EGn(ϕ(i)) ≤ 2E(ϕ(i)). Hence,

k∑
i=1

capΩi(Ai) ≤ 2

k∑
i=1

E(ϕ(i)).

Furthermore, by (V),

P(|En| ≤ cnd) ≤ exp(−c(log n)2),

for c a positive constant. Combining the last four displayed equations, we obtain that,
for α suitably large,

P

(
k∑
i=1

capΩi(Ai) > 2α|En|t−1(log t)−κ

)

≤ P

(
k∑
i=1

E(ϕ(i)) > α|En|t−1(log t)−κ

)

≤ P

(
k∑
i=1

E(ϕ(i)) > αcndt−1(log t)−κ

)
+ P(|En| ≤ cnd)

≤ P

(
k∑
i=1

E(ϕ(i)) ≥ 2

k∑
i=1

E[E(ϕ(i))]

)
+ exp(−c(log n)2)

� 2k−1/2. (3.21)

Hence we obtain (A3)(c) with δ3 = κ.
(b) Replacing (log t)κ and (logN)κ by λ0 in the above argument, it follows that (A3) holds
with the given constants. Furthermore, since the constant α that comes out of the
argument does not depend on λ0, by increasing the value of the latter quantity if needed,
we can ensure that 1− Cαλ−1/2

0 > 0.

As for the Gaussian case, we check the following version of (A3). We underline
that, although we include d = 2 in the following result, we will handle the d = 1 and
d = 2 cases separately in the proofs of our heat kernel estimates, using the quenched
invariance principle that is known to hold throughout the Gaussian regime for those.

Lemma 3.6. (a) Fix d ≥ 2 and s > d + 2. For κ ≥ 1, LRP(d, s) satisfies (A3) with
δ1/d = δ2 = δ3 = κ, δ0 arbitrarily large, and λ(t) = max{1, log(t)}.
(b) Fix d ≥ 2 and s > d+ 2. LRP(d, s) satisfies (A3) with δ1/d = δ2 = δ3 = 1, δ0 arbitrarily
large, and λ(t) = λ0. Moreover, the constants α and λ0 can be chosen so that, taking Cα
as the constant of Theorem 2.3, it holds that 1− Cαλ−1

0 > 0.

Proof. (a) The argument is again similar to Lemma 3.5(a), but now we take

N := t
1
2 (log t)κ.
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In this case, we then get that

max
i=1,...,k

|Ωi| � Nd = t
d
2 (log t)κd,

and so (A3)(a) holds with δ1 = κd. Proceeding as in the previous proof with βN :=

(logN)κ, we further have

P
(
πn(W ∩ Vn) ≥ C(logN)−κ

)
≤ (log t)−δ

for any δ > 0 (once t is large), which verifies (A3)(b) with δ2 = κ. By using similar
arguments as for (3.21), noting that the variance bound (3.19) holds for all d, s, and now
with the help of Proposition 3.4(b), we can also prove that

P

(
k∑
i=1

capΩi(Ai) > 2α|En|t−1(log t)−κ

)
≤ 2k−1/2,

for n ≥ n0(t) = t∆, for α,∆ chosen suitably large.
(b) Making appropriate adaptations to the proof of (a), the proof is similar to that of
Lemma 3.5(b).

Finally, in the critical case, we have the following. Note that in this case we do
not provide a separate bound with λ(t) constant as we do in the previous two lemmas,
since the additional log term in Proposition 3.4(c) means that we are unable to avoid
incorporating a log in the estimates somewhere.

Lemma 3.7. Fix d ≥ 2 and s = d+ 2. For κ > 0, LRP(d, s) satisfies (A3) with δ1/d− 1/2 =

δ2 = δ3 = κ, δ0 arbitrarily large, and λ(t) = max{1, log(t)}.

Proof. The argument is again similar to Lemma 3.5, but now we take

N := t
1
2 (log t)κ+ 1

2 ,

and have to take into account the additional log term that appears in the critical case,
i.e. apply Proposition 3.4(c), rather than Proposition 3.4(b).

4 Proof of Theorems 1.3 and 1.5

4.1 Proof of lower bounds

Given the preparations of the previous section concerning (A1)–(A3), the main out-
standing issue when it comes to the application of Theorem 2.3 is to check the assumption
of Benjamini-Schramm convergence for the LRP(d,s) model. Defining Gn = (Vn, En),
n ≥ 1, as at the start of Section 3, we make precise the desired condition as follows.

(BS) Let ρ be the origin of Zd and ρn be a uniformly chosen vertex in Gn. Then the
random graphs (Gn, ρn) Benjamini-Schramm converge to (G, ρ), conditioned that
ρ ∈ G.

In Section 6.4, we will explain how to verify (BS) in the non-nearest-neighbour setting
when s lies in the restricted range (d, 2d). Unfortunately, for the full range of parameters,
s > d, we are only able to verify (BS) in the nearest-neighbour case, i.e. taking q = 1 in
the more general model of Section 3. (See Remark 4.2 for further discussion of how our
heat kernel estimates apply in general when both (V) and (BS) hold.)

Lemma 4.1. The LRP(d,s) model with q = 1 satisfies (BS).
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Proof. We write BG for balls in G with respect to the graph distance, BGn for balls in
Gn with respect to the graph distance, and B∞ for `∞-balls in Zd. We need to prove that
for any rooted, finite graph H and finite r,

lim
n→∞

P(BGn(ρn, r) = H) = P(BG(ρ, r) = H). (4.1)

We have that

P (BGn(ρn, r) = H) ≤ P (BGn(ρn, r) = H, BG(ρn, r) ⊆ B∞(ρn, N) ⊆ B∞(ρ, n))

+P (BG(ρn, r) 6⊆ B∞(ρn, N)) + P (B∞(ρn, N) 6⊆ B∞(ρ, n)) .

Now, since ρn is uniformly chosen on Vn,

P (B∞(ρn, N) 6⊆ B∞(ρ, n)) ≤ cnd−1N

nd
=
cN

n
→ 0,

as n→∞ (for each fixed N ). Moreover, by the translation invariance of the model,

P (BG(ρn, r) 6⊆ B∞(ρn, N)) = P (BG(ρ, r) 6⊆ B∞(ρ,N)) .

Since G is P-a.s. locally-finite when s > d, BG(ρ, r) is P-a.s. a finite set, and so the above
probability converges to 0 as N → ∞. Finally, on the event BG(ρn, r) ⊆ B∞(ρn, N) ⊆
B∞(ρ, n), it holds that BGn(ρn, r) = BG(ρn, r), and so

P (BGn(ρn, r) = H, BG(ρn, r) ⊆ B∞(ρn, N) ⊆ B∞(ρ, n))

≤ P (BG(ρn, r) = H) = P (BG(ρ, r) = H) .

In particular, it follows from what we have so far established that

lim sup
n→∞

P (BGn(ρn, r) = H) ≤ P (BG(ρ, r) = H) .

By noting that

P (BGn(ρn, r) = H)

≥ P (BGn(ρn, r) = H, BG(ρn, r) ⊆ B∞(ρn, N) ⊆ B∞(ρ, n))

≥ P (BG(ρ, r) = H)−P (BG(ρ, r) 6⊆ B∞(ρ,N))−P (B∞(ρn, N) 6⊆ B∞(ρ, n)) ,

and applying the results of the preceding discussion, one may similarly conclude that

lim inf
n→∞

P (BGn(ρn, r) = H) ≥ P (BG(ρ, r) = H) ,

which is enough to complete the proof of (4.1).

Proof of lower bounds of Theorem 1.3. Combining Theorem 1.1(a) and Lemma 6.2 gives
the lower bound of (1.2) in the case s ∈ (d, d + 1) with δ1 = 0. Similarly, combining
Theorem 1.1(b) and Lemma 6.2 gives the lower bounds of (1.4) in the case s > 2d with
δ3 = 0 and (1.3). In the remaining cases, we have from Lemmas 3.1, 3.2, 3.5(a), 3.6(a), 3.7
that (A1), (A2) and (A3) hold for the δ0, δ1, δ2, δ3 and λ(t) given by the latter three results.
Taking κ > 2 in Lemmas 3.5, 3.6, 3.7 enables us to apply Corollary 2.6(a) (and Lemma 4.1)
to derive quenched lower heat kernel bounds in each case, with the δis of (1.2) and (1.4)
as in Remark 1.4.

Proof of lower bounds of Theorem 1.5. Again we appeal to Lemmas 3.1, 3.2 to confirm
that (A1) and (A2) hold in all three cases. In conjunction with Lemmas 3.5(b) and 3.6(b),
we have that (A3) holds in the sense required by Corollary 2.6(b) in the stable and
Gaussian cases. Putting this together with Lemma 4.1, we thus obtain the lower bounds
of (1.5) and (1.7). The lower bound of (1.6) readily follows by applying Lemmas 3.1, 3.2
and 3.7, with κ > 0 chosen arbitrarily small, in conjunction with Theorem 2.3 (and
Lemma 4.1).
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Remark 4.2. The lower bounds of Theorems 1.3 and 1.5 hold for the more general
LRP(d,s) model of Section 3 (i.e. with q ∈ [0, 1]) whenever the conditions (V) and (BS) are
satisfied. Indeed, we proved in Section 3 that under (V) the assumptions (A1)–(A3) are
valid and hence, by arguments in the proof of Theorem 2.3,

P
(
pGn2t (ρn, ρn) < t−γλ(t)−δ

)
� λ(t)−δ

′

with γ = d
s−d and λ(t) = log(t) and suitable δ, δ′ ≥ 0. Furthermore, the condition

(BS) assures the Benjamini-Schramm convergence of the random graphs Gn, which in
particular implies that∣∣∣P(pGn2t (ρn, ρn) < t−γλ(t)−δ4

)
−P

(
pG2t(ρ, ρ) < 2t−γλ(t)−δ4 | ρ ∈ G

)∣∣∣ ≤ λ(t)−δ0 ,

for all n sufficiently large. The lower bounds of the heat kernel follow from the above
two estimates; see Section 6.4, and Corollary 6.9 in particular, for our application of this
argument to the non-nearest-neighbour long-range percolation model of Section 3 with
s ∈ (d, 2d).

4.2 Proof of upper bounds

Proof of upper bounds of Theorem 1.3. As noted in Remark 1.4, the upper bound of (1.2)
follows from [17, Theorem 1] (which did not require the assumption of nearest-neighbour
edges being present), using the argument in the proof of [4, Theorem 5.14] to transfer
to discrete time. As for (1.3), this is an immediate consequence of the general bound
of [5, Theorem 2.1], which implies that there exists a universal constant C such that
pG2t(x, x) ≤ Ct−1/2 for the simple random walk on any infinite connected graph G.

It remains to establish the upper bound of (1.4). To this end, we will first consider the
continuous-time Markov process (Zt)t≥0, which has jump chain given by X, but the jump
rate at site x is equal to degG(x) (i.e. the holding time is exponential with this parameter).
The idea of the following proof comes from the unpublished version of [14]. Note that
the measure m on V placing mass 1 on each vertex is invariant for (Zt)t≥0. We let

At :=

∫ t

0

degG(Zs)ds,

and define (Yt)t≥0 by setting Yt = ZA−1
t

, where A−1
t is the right continuous inverse of

the non-decreasing additive functional (At)t≥0; the process (Yt)t≥0 has the same jump
chain as Z (and X), but mean one exponential holding times. We claim that there exists
a deterministic constant c1 such that, for any realisation of G,

PGx (Zt = x) ≤ c1t−d/2, ∀x ∈ Zd. (4.2)

Indeed, for the (constant speed) simple symmetric random walk on Zd, the Nash inequal-
ity

‖f‖2+4/d
L2(m) ≤ c2 E

SRW(f, f) ‖f‖4/dL1(m)

holds for some constant c2 = c2(d), see for instance [4, Lemma 3.13]. Here, we have
written ‖f‖Lp(m) for the Lp-norm with respect to m, and

ESRW(f, f) :=
1

2

∑
x,y∈Zd: |x−y|=1

(f(x)− f(y))2.

Since nearest-neighbour edges are present in G, it holds that ESRW(f, f) ≤ E(f, f), where
E was defined at (2.2), and so the same inequality holds with ESRW replaced by E . By [15,
Theorem (2.1)], we thus obtain (4.2).
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We next estimate PGx (Y2t = x) by controlling the time change. Using the monotonicity
of s 7→ PGx (Y2s = x), we get

PGx (Y2t = x) ≤ 1

t
EGx

(∫ 2t

t

I(Ys = x)ds

)
=

1

t
EGx

(∫ A−1
2t

A−1
t

I(Zu = x)A′udu

)

≤ degG(x)

t

∫ 2t

0

PGx (Zu = x, t ≤ Au ≤ 2t) du, (4.3)

where we first changed variables using s := Au, and then used that the derivative
A′u satisfies A′u = degG(Zu) = degG(x) on the event Zu = x. In the last inequality,
we also used the fact that A2t ≥ 2t, which holds because degG(x) ≥ 2d ≥ 1 (since all
nearest-neighbour edges are present).

Now, let Dt := sup0≤s≤t |Ys|. By [17, Lemma 4.1], there exist c3, c4, c5 > 0 such that,
for any T, λ > 0 and any p > (s− d)−1, r < s− d,

P
(
{PGρ

(
Dt ≥ c3tp+1

)
> c4t

−λ}
)
≤ c5tλ+1−pr. (4.4)

Hence, taking p large enough so that
∑∞
t=1 t

d/2+1−pr <∞, by applying the Borel-Cantelli
lemma, one can deduce that, P-a.s., for all large t ∈ N,

PGρ (Ect ) ≤ c4t−d/2, (4.5)

where Et := {Dt < c3t
p+1}. Since

D2t = sup
0≤s≤2t

|Ys| = sup
0≤s≤2t

|ZA−1
s
| = sup

0≤s≤A−1
2t

|Zs|,

it further holds that E2t ∩ {Au ≤ 2t} ⊆ Fu,t, where Fu,t := {sup0≤s≤u |Zs| ≤ c3(2t)p+1}. In
particular, applying (4.5), we deduce from (4.3) that, P-a.s., for all large t ∈ N,

PGx (Y2t = x)

degG(x)
≤ 2c4(2t)−d/2 +

1

t

∫ 2t

0

PGx (Zu = x, t ≤ Au ≤ 2t, Fu,t) du. (4.6)

Using the Markov property, we moreover have

PGx (Zu = x, t ≤ Au ≤ 2t, Fu,t)

≤
∑
y∈Zd

PGx (Zu/2 = y, Zu = x, t/2 ≤ Au/2 ≤ 2t, Fu,t)

+
∑
y∈Zd

PGx (Zu/2 = y, Zu = x, t/2 ≤ Au −Au/2 ≤ 2t, Fu,t)

≤
∑
y∈Zd

EGx
(
I(Zu/2 = y, t/2 ≤ Au/2 ≤ 2t, Fu/2,t)P

G
y

(
Zu/2 = x

))
+
∑
y∈Zd

EGx
(
I(Zu/2 = y)PGy

(
Zu/2 = x, t/2 ≤ Au/2 ≤ 2t, Fu/2,t

))
.

Noting that PGy (Zu/2 = x) ≤ c6u
−d/2, which is due to (4.2) and the Cauchy-Schwarz

inequality, and

PGy
(
Zu/2 = x, t/2 ≤ Au/2 ≤ 2t, Fu/2,t

)
= PGx

(
Zu/2 = y, t/2 ≤ Au/2 ≤ 2t, Fu/2,t

)
,
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which is due to the symmetry of (Zt)t≥0, we obtain

PGx (Zu = x, t ≤ Au ≤ 2t, Fu,t)

≤ 2
∑
y∈Zd

PGx
(
Zu/2 = y

)
PGx

(
Zu/2 = y, t/2 ≤ Au/2 ≤ 2t, Fu/2,t

)
≤ c7u

−d/2PGx
(
t/2 ≤ Au/2 ≤ 2t, Fu/2,t

)
.

Plugging this into (4.6), we have, P-a.s., for all large t ∈ N,

PGx (Y2t = x)

degG(x)
≤ c8t−d/2 +

c9
t

∫ 2t

0

u−d/2PGx
(
t/2 ≤ Au/2 ≤ 2t, Fu/2,t

)
du. (4.7)

Note, on Fu/2,t, it holds that

Au/2 =

∫ u/2

0

degG(Zs)ds ≤
u

2
max

|x|≤c3(2t)p+1
degG(x),

and so

PGx
(
t/2 ≤ Au/2 ≤ 2t, Fu/2,t

)
≤

(u
t

)(d−1)/2

EGx

((
Au/2

u/2

)(d−1)/2

I(Fu/2,t)

)
(4.8)

≤
(u
t

)(d−1)/2

max
|x|≤c3(2t)p+1

degG(x)(d−1)/2.

In particular, together with (4.7), this implies, P-a.s., for all large t ∈ N,

PGx (Y2t = x)

degG(x)
≤ c10t

−d/2 max
|x|≤c3(2t)p+1

degG(x)(d−1)/2.

For bounding the max term, we note that

P

(
max

|x|≤c3(2t)p+1
degG(x) ≥ c11 log t

)
≤ c3(2t)d(p+1)e−c11 log tE[edegG(ρ)] ≤ c12t

d(p+1)−c11 ,

which, by taking c11 > d(p+ 1) + 1, is summable over t ∈ N. Consequently, on applying
the Borel-Cantelli lemma, we obtain an estimate of the desired form for (Yt)t≥0.

To complete the proof, we need to transfer the estimate to discrete time. Note that we
can write Yt = XTt , where (Tt)t≥0 is a unit rate Poisson process on [0,∞), independent
of X. Hence we have that

PGx (Yt = x) = PGx (XTt = x)

=
∑
s≥0

PGx (X2s = x)PGx (Tt = 2s)

≥ min
s∈[t/4,t]

PGx (X2s = x)PGx (Tt ∈ [t/2, 2t])

≥ PGx (X2t = x)
(
1− PGt (|Tt − t| > t/2)

)
.

By Chebyshev’s inequality, it holds that PGt (|Tt − t| > t/2) ≤ 4
t2 VarGx (Tt) = 4

t . Conse-
quently, for t ≥ 8, it holds that PGx (X2t = x) ≤ 2PGx (Yt = x), and so the result follows
from the continuous-time estimate.

Remark 4.3. By Jensen’s inequality and Fubini’s theorem, we have that

EGx

((
Au/2

u/2

)(d−1)/2
)
≤ 2

u

∫ u/2

0

EGx

(
degG(Zs)

(d−1)/2
)
ds. (4.9)

Hence if we could prove a bound of the form EGx (degG(Zs)
(d−1)/2) ≤ CG for all s ≥ 0,

where CG is a random constant depending only on the environment G, then we would
obtain the quenched upper bound without a logarithm.
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Proof of upper bounds of Theorem 1.5. Similarly to (1.2), the upper bound of (1.5) fol-
lows from [17, Theorem 1]. Indeed, it is proved there that there exist deterministic
constants c, δ such that, P-a.s.,

pG2t(ρ, ρ) ≤ ct−
d
s−d (log t)

δ

holds for t ≥ T , where T is a random variable that satisfies: for any η > 0, there exists a
constant C such that

P (T > t) ≤ Ct−η.

(Again, we highlight that, although the general bound of [17] is given for the continuous-
time random walk, this is readily transferred to discrete time by applying the argument
used in the proof of [4, Theorem 5.14].) Hence taking η ≥ d/(s− d) yields

E
(
pG2t(ρ, ρ)

)
≤ ct−

d
s−d (log t)

δ
+ P (T > t) ≤ ct−

d
s−d (log t)

δ
.

The proof of (1.6) and (1.7) can be obtained using the estimates in the quenched
cases. Indeed, for d = 1, one just takes the expectation under E of (1.3), recalling from
the proof of the latter result that the constant in the upper bound is deterministic, and
the bound holds for all t ∈ N. For d ≥ 2, we return to (4.7), replacing the first term in
the upper bound by the probability that it is bounding:

PGx (Y2t = x)

degG(x)
≤ 2PGx (Ec2t) +

c9
t

∫ 2t

0

u−d/2PGx
(
t/2 ≤ Au/2 ≤ 2t, Fu/2,t

)
du.

For the expectation of the first term, we have from (4.4) with λ = d/2 and p chosen
suitably large that

E
(
PGx (Ec2t)

)
≤ c4t−d/2 + c5t

d/2+1−pr ≤ c13t
−d/2.

For the expectation of the second term, we apply (4.8) and (4.9) to deduce that

E
(
PGx

(
t/2 ≤ Au/2 ≤ 2t, Fu/2,t

))
≤
(u
t

)(d−1)/s 2

u

∫ u/2

0

E
(
EGx

(
degG(Zs)

(d−1)/2
))

ds.

To obtain the desired bound in the continuous-time setting, it follows that it is enough to
prove that there exists a constant C, independent of s, such that

E
(
EGx

(
degG(Zs)

(d−1)/2
))
≤ C.

To prove this, note that the environment process (GZs)s≥0, where Gx is the graph G

translated by−x, is invariant and reversible with respect to the measurem (as introduced
in the previous proof) under the annealed measure, see, for instance, [17, Section 4.1].
Thus, setting f(G) := degG(ω(ρ))(d−1)/2, we have

E
(
EGx

(
degG(Zs)

(d−1)/2
))

= E
(
EGx

(
f(GZs)

(d−1)/2
))

= E
(
EGx

(
f(GZ0

)(d−1)/2
))

= E
(

degG(x)(d−1)/2
)
,

and we further have that the right hand side is finite when s > d. In particular, this
establishes that

E

(
PGx (Y2t = x)

degG(x)

)
≤ ct−d/2.

We can transfer this result to the discrete-time process (Xt)t≥0 exactly as in the quenched
case.
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5 Open questions

Now we have completed the proofs of our main results, we collate a number of issues
left open by the present work. (Some of these are discussed in more detail elsewhere.)

1. In the quenched results of (1.2) and (1.4), and the annealed results of (1.5) and (1.6),
it is natural to optimise the log exponents. For the annealed bounds, one would
expect a log term in the case d ≥ 2, s = d+ 2 only. One might conjecture that this
is also the case for the quenched bounds.

2. As in [17, 18], one might seek to derive similar heat kernel bounds to ours when
the assumption that nearest-neighbour bonds are present is dropped. At least for
the lower bounds, we have reduced the problem to checking the conditions (V) and
(BS) (recall Remark 4.2), and verified these in the case s ∈ (d, 2d) (see Section 6.4
below). Is it also possible to check (V) and (BS) in the case s ≥ 2d?

3. Our results support the extension of the Gaussian regime of Theorem 1.1(b) to d ≥ 1,
s > min{d+ 2, 2d}, and the extension of the stable scaling regime of Theorem 1.1(a)
to d ≥ 1, s ∈ (d,min{d+ 2, 2d}). Can this be proved? Some discussion of the latter
case is provided in [18, Section 3].

4. In what sense is it possible to determine the walk dimension of (Xt)t≥0, that is, the
exponent governing the space-time scaling of this process? A related problem is
to establish bounds that satisfactorily describe the off-diagonal decay of the heat
kernel, for which the techniques of the current article are insufficient. (As noted in
the introduction, for nearest-neighbour bond percolation, quenched and annealed
off-diagonal Gaussian heat kernel estimates are established in [2].)

5. All questions remain open in the case d = 1, s = 2. What can be said here?

6. Throughout this paper, we consider unweighted random graphs partly because
Proposition 2.1 (which is [32, Theorem 3.7]) is stated in this setting. It would
be interesting to extend our results to weighted random graphs, including those
arising in random conductance models. Such an extension would potentially be
applicable to the model of [16]. In particular, the latter paper established heat
kernel estimates for long-range random conductance models on integer lattices
when the conductance between x and y is given by wx,y/|x− y|d+α, where {wx,y =

wy,x ≥ 0 : x, y ∈ Zd} are independent and satisfy some moment condition. Is it
possible to extend our approach cover this random conductance model when the
{wx,y} have a translation-invariant distribution?

6 Appendix

We finish with a miscellany of results related to the heat kernel estimation techniques
and long-range percolation model of this article. Lemma 6.2 in particular is required for
our lower heat kernel estimates.

6.1 Heat kernel lower bounds on Zd

In this section, we explain how to check the assumptions of Section 2 for the graph
Zd. For the statement of the next result, we write Bn for the `∞-ball of radius n, centred
at 0, and R for the effective resistance on the integer lattice (see [4, Chapter 2], for
example).

Lemma 6.1. For 0 ≤ m < n,

R (Bm, B
c
n) ≥


c1(n−m), for d = 1;
c2(log(n)− log(m)), for d = 2;
cd(m

2−d − n2−d), for d ≥ 3.
.
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Proof. By applying the Nash-Williams inequality (see [33, Proposition 9.15], for example),
we have the following:

R (Bm, B
c
n) ≥

n−1∑
l=m

1

ld−1
,

from which the result readily follows.

Now, tile Bn, n ≥ t1/2, by boxes (Ωi) that are each translations of Bt1/2 . Let Ai be the
central part of Ωi, as given by a translation of B(1−λ−1)t1/2 . It is then the case that

∑
i

capΩi(Ai) �


n
t1/2
× t−1/2λ = Cλnt

−1, for d = 1;(
n
t1/2

)2 × log(1/(1− λ−1))−1 = Cλn
2t−1, for d = 2;(

n
t1/2

)d × (t1/2)
d−2

(1−λ−1)2−d−1
= Cλn

dt−1, for d ≥ 3.

.

This is enough to check (A3) in this setting. The remaining assumptions are straightfor-
ward to check.

6.2 Quenched lower bound from simple random walk scaling limit

The following bound is adapted from [13, Lemma 5.1], and implies that a scaling
limit for a random walk on a random graph of an appropriate form immediately yields a
quenched heat kernel lower bound.

Lemma 6.2. Let X be a simple random walk on a connected, locally-finite graph G =

(V,E), started at root vertex ρ, and pGt (x, y) be its heat kernel (with respect to the
measure π̃(x) = degG(x)). Let dG be a metric on V , and suppose that: for some constants
dw, df ∈ (0,∞), the laws of (

n−
1
dw dG(ρ,Xnt)

)
t≥0

, n ≥ 1, (6.1)

form a tight sequence in L1([0, 1]), and also

sup
n≥1

n−df π̃ ({x : dG(ρ, x) ≤ n}) <∞. (6.2)

It is then the case that there exists a constant c > 0 such that: for all t ≥ 1,

pG2t(ρ, ρ) ≥ ct−
df
dw .

Proof. We have that

pG2t(ρ, ρ) =
∑
x∈V

pGt (ρ, x)pGt (x, ρ)π̃(x)

≥
∑

x∈V : dG(ρ,x)≤n

pGt (ρ, x)2π̃(x)

≥
PGρ (dG(ρ,Xt) ≤ Cn)

2

π̃ ({x ∈ V : dG(ρ, x) ≤ Cn})
≥ c(Cn)−dfPGρ (dG(ρ,Xt) ≤ Cn)

2

where for the first inequality we use the symmetry of the heat kernel for the second
we apply the Cauchy-Schwarz inequality, and for the third we appeal to (6.2). Now, by
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applying the monotonicity of the on-diagonal part of the heat kernel, it follows that

pG2t(ρ, ρ) ≥

(
t−1

2t−1∑
s=t

pG2s(ρ, ρ)
1
2

)2

≥ c(Cn)−df

(
t−1

2t−1∑
s=t

PGρ (dG(ρ,Xs) ≤ Cn)

)2

= c(Cn)−df

(
EGρ

(
t−1

2t−1∑
s=t

I{dG(ρ,Xs)≤Cn}

))2

.

Setting n = t
1
dw , this yields

pG2t(ρ, ρ) ≥ cC−df t−
df
dw

(
EGρ

(
t−1

2t−1∑
s=t

I
{dG(ρ,Xs)≤Ct

1
dw }

))2

.

Finally, given (6.1), the Kolmogorov-Riesz compactness theorem (see [28, Theorem 5],
for example) implies that, by taking a suitably large value of C,

EGρ

(
t−1

2t−1∑
s=t

I
{dG(ρ,Xs)≤Ct

1
dw }

)
= 1− EGρ

(
t−1

2t−1∑
s=t

I
{t−

1
dw dG(ρ,Xs)>C}

)
≥ 1

2
,

uniformly in t. In conjunction with the previous bound, this completes the proof.

Remark 6.3. In examples, dw will typically represent the so-called walk dimension of X,
which is the exponent governing the space-time scaling of the random walk (with respect
to the metric dG). This is also sometimes called the escape time exponent. Moreover,
df will be the volume growth exponent (again, with respect to the metric dG). In the
case when dG is the usual shortest path graph distance (on a suitably regular graph),
discussion of the possible values of dw and df appears in [3].

Remark 6.4. If in place of condition (6.1) one had that the laws of

n−
1
dw dG(ρ,Xn), n ≥ 1,

form a tight sequence, then one would be able to deduce the same result by an easier
proof. In particular, the integration over time would not be necessary. Whilst this would
be enough for us in the Gaussian case, we need the above L1 version to deal with the
weaker convergence statement that is known to hold in the stable case.

6.3 Quenched invariance principle in one-dimension via resistance scaling

In this section, via the resistance scaling techniques of [19] (see also [24]), we
establish a quenched invariance principle for simple random walk on LRP(d,s) for
d = 1 and s > 2 (cf. Theorem 1.1(b)), which, in conjunction with Lemma 6.2, gives
an on-diagonal lower bound for the heat kernel of the model in question. We assume
nearest-neighbour edges are present, i.e. q = 1. Our proof gives an alternative viewpoint
to the arguments of [18], which used a martingale approach, and [36], which applied
the corrector method. (Note that it was also the case in both [18] and [36] that nearest-
neighbour edges were assumed to be present, which ensures percolation occurs; see
[10] for discussion of percolation for long-range percolation with d = 1.) The particular
form of our proof is closely related to that used to understand the scaling of the Mott
random walk in [20]. Since it is not an original result, we are brief with the details.
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Proposition 6.5. If d = 1 and s > 2, then for P-a.e. realisation of LRP(d, s), the law of(
n−

1
2Xnt

)
t≥0

on C([0,∞)) converges weakly to that of (Bσ2t)t≥0, where (Bt)t≥0 is standard Brownian
motion on Rd, and σ2 ∈ (0,∞) is a deterministic constant.

Proof. Let π̃ be the measure on Z given by π̃({x}) = degG(x). Since C := E(π̃({0})) ∈
(0,∞), we readily deduce from the ergodic theorem that, P-a.s.,

n−1π̃ ({an, . . . , bn})→ C(b− a), ∀a, b ∈ R, a < b. (6.3)

Writing R for the effective resistance on Z, we further claim that there exists a
deterministic constant R∞ ∈ (0,∞) such that, P-a.s.,(

n−1R(xn, yn)
)
x,y∈R → (R∞|x− y|)x,y∈R , (6.4)

uniformly on compacts. To check this, we first apply the triangle inequality for the
effective resistance and Kingman’s subadditive ergodic theorem to deduce that, P-a.s.(

n−1R(0, xn)
)
x∈R → (R∞|x|)x∈R ,

uniformly on compacts, where R∞ := infn≥1 n
−1ER(0, n). We note that R∞ ≤ 1, because

the presence of nearest-neighbour edges ensures that R(0, n) ≤ n. Now, from [18,
Lemma 10.1], we have that the cut-points of the underlying graph are dense on the
appropriate scale, where we say that x is a cut-point for G if {x, x+ 1} is the only edge
in E that crosses this interval. In particular, it is an elementary consequence of [18,
Lemma 10.1] that if Cx is the closest cut-point to x that lies on the left-hand side of x,
then, P-a.s., n−1Cxn → x uniformly on compacts. It follows that, P-a.s., uniformly over
compact regions of 0 ≤ x ≤ y,∣∣n−1R(xn, yn)−R∞|x− y|

∣∣
≤

∣∣n−1R(Cxn, Cyn)−R∞|x− y|
∣∣+ 2 max

z∈{x,y}
n−1 |zn− Czn|

=
∣∣n−1R(C0, Cyn)− n−1R(C0, Cxn)−R∞|x− y|

∣∣+ 2 max
z∈{x,y}

n−1 |zn− Czn|

≤
∣∣n−1R(0, yn)− n−1R(0, xn)−R∞|x− y|

∣∣+ 6 max
z∈{0,x,y}

n−1 |zn− Czn|

→ 0,

where to deduce the equality, we apply the series law for resistors, which clearly holds at
cut-points. To complete the proof of (6.4), it remains to check that R∞ > 0. Since R(0, n)

is bounded below by the number of cut-points between 0 and n, this can be deduced by
another application of [18, Lemma 10.1].

Moreover, we have that, P-a.s.,

lim
r→∞

lim inf
n→∞

n−1R (0, {−rn, . . . , rn}c) =∞. (6.5)

Indeed, if we define C0 and Crn as above, and let C̃−rn be the closest cut-point to −rn
that lies on the right-hand side of −rn, then

R (0, {−rn, . . . , rn}c) ≥ R
(
C0, {Crn, C̃−rn}

)
−R(0, C0) ≥ 1

2
min

z∈{Crn,C̃−rn}
R(0, z)−R(0, C0),
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where we have applied the parallel law to deduce the second inequality. Hence applying
the conclusion of the previous paragraph for point-wise resistances yields that

lim inf
n→∞

n−1R (0, {−rn, . . . , rn}c) ≥ R∞r

2
,

which clearly implies (6.5).
Putting (6.3) and (6.4) together similarly to the argument of [20, Theorem A.1], we

obtain that (
Z, n−1R,n−1π̃, 0, n−1IZ

)
,

where IZ is the identity map on Z, P-a.s. converges in the spatial Gromov-Hausdorff-
vague topology (see [19, Section 7] and [24, Section 2.2] for details) to

(R, R∞dE , CL, 0, IR) ,

where dE is the Euclidean metric, L is the Lebesgue measure on R, and IR is the identity
map on R. Together with the resistance divergence of (6.5), this enables us to apply [19,
Theorem 7.1] to deduce a Brownian motion scaling limit for the continuous-time version
of X, with mean one exponential holding times. The result for the discrete-time process
readily follows.

6.4 Long-range percolation beyond the nearest-neighbour case

As we noted in Remark 4.2, to go beyond the nearest-neighbour case in establishing
heat kernel lower bounds via the approach of this article, it will suffice to check the
conditions (V) and (BS). In this section, we describe some progress in this direction,
which allows us to consider the non-nearest-neighbour model of Section 3 for d ≥ 1 and
s ∈ (d, 2d).

For (V), the essential work was completed by Biskup in [12], where estimates on
the size of a largest percolation cluster in a box were given. In the following lemma,
we transfer the desired estimate to the vertex set Vn. (We recall that G is the infinite
cluster of the long-range percolation model, and Gn = (Vn, En) is the largest connected
component of G ∩ [−n, n]d.)

Lemma 6.6. If d ≥ 1 and s ∈ (d, 2d), then LRP(d,s) satisfies (V).

Proof. Let C1(n) be the largest connected component of LRP(d,s) inside [−n, n]d. It is
proved as [12, Theorem 3.2] that, for any s′ ∈ (s, 2d), there exists a constant ε > 0 such
that

P
(
|C1(n)| < εnd

)
≤ e−εn

2d−s′

(6.6)

for all large n. We seek to replace C1(n) by Vn in this estimate, which we will do by
showing that C1(n) is a part of the infinite component with suitably high probability (cf.
the proof of [12, Corollary 3.3]). To this end, for a given n, define rkn := 2kn, and let xkn be
a sequence of points on the first coordinate axis such that x0

n = 0 and |xk+1
n − xkn| = 3rkn.

In particular, the `∞-balls B∞(xkn, r
k
n), k ≥ 1 are disjoint, but consecutive elements of

the sequence touch. Write Ckn for the largest connected component of LRP(d,s) inside
B∞(xkn, r

k
n), and define Ckn 6↔ Ck+1

n to be the event that the two components in question
are not connected by a direct edge. Applying (6.6), we then have that, for large n,

P
(
Ckn 6↔ Ck+1

n

)
≤ 2e−ε(r

k
n)2d−s

′

+ P
(
Ckn 6↔ Ck+1

n , |Ckn| ≥ ε(rkn)d, |Ck+1
n | ≥ ε(rk+1

n )d
)

≤ 2e−ε(r
k
n)2d−s

′

+ e−ε
2(rkn)d(rk+1

n )d/(2rkn+2rk+1
n )s

≤ Ce−2c(n2k)2d−s
′

≤ Ce−c(n
2d−s′+2k(2d−s

′)),
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where for the second inequality we have used the fact that the maximal distance between
points in Ckn and Ck+1

n is 2rkn + 2rk+1
n , and for the last, we use that a + b ≤ 2ab for

a, b ≥ 1. Hence, writing Ckn ↔ Ck+1
n for the event that the two components in question

are connected by a direct edge, we find that

P (Vn = C1(n)) = P (C1(n) ⊆ G)

≥ P
(
Ckn ↔ Ck+1

n for all k ≥ 0
)

≥ 1−
∞∑
k=0

Ce−c(n
2d−s′+2k(2d−s

′))

= 1− Ce−cn
2d−s′

. (6.7)

Putting this bound together with (6.6), we readily obtain (V).

We next present sufficient conditions for the LRP(d,s) model of Section 3 to satisfy
the Benjamini-Schramm convergence condition (BS). Roughly speaking, the first of the
conditions we introduce means that there is only a small probability that a long path
avoids the largest connected component in a box, and the second one implies a weak
law of large numbers for the size of the component. (Clearly, both conditions are trivial
in the nearest-neighbour case.)

Lemma 6.7. Suppose LRP(d,s) (as defined in Section 3) satisfies the volume condition
(V). Let (an)n≥1 be a divergent sequence of positive integers such that an = o(n), and
suppose that

(a) supx∈W∗n P(x ∈ G \Wn) = o(1),

(b) Var(|Wn|) = o(n2d),

where W ∗n = [−n+ an, n− an]d ∩Zd and Wn = W ∗n ∩ Vn. Then the random rooted graphs
(Gn, ρn)n≥1, with ρn uniformly chosen in Vn, Benjamini-Schramm converge to (G, ρ),
conditioned that ρ ∈ G.

Proof. Assume that (V), (a) and (b) hold. We need to show that for any finite graph H

and r ∈ N,
lim
n→∞

P(BGn(ρn, r) = H) = P(BG(ρ, r) = H | ρ ∈ G). (6.8)

First, we have

P(ρn 6∈Wn) = E(|Vn \Wn|/|Vn|) � n−dE(|Vn \Wn|) + P(|Vn| ≤ cnd)
� n−dnd−1an + exp(−c(log n)2) = o(1).

Therefore,

P[BGn(ρn, r) = H] = P[BGn(ρn, r) = H | ρn ∈Wn] + o(1)

= E

(
1

|Wn|
∑
x∈Wn

I(BGn(x, r) = H)

)
+ o(1)

= E

 1

|Wn|
∑
x∈W∗n

I(BGn(x, r) = H;x ∈Wn)

+ o(1).

Moreover, by translation invariance,

P[BG(ρ, r) = H | ρ ∈ G] =
P (BG(ρ, r) = H; ρ ∈ G)

P(ρ ∈ G)

=
1

|W ∗n |P(ρ ∈ G)
E

 ∑
x∈W∗n

I(BG(x, r) = H; x ∈ G)

 .
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It follows from the last two equations that

|P[BGn(ρn, r) = H]−P[BG(ρ, r) = H | ρ ∈ G]| ≤
∣∣∣∣E(AnBn − A′n

B′n

)∣∣∣∣+ o(1), (6.9)

where

An =
∑
x∈W∗n

I(BG(x, r) = H; x ∈ G), Bn = |W ∗n |P(ρ ∈ G),

A′n =
∑
x∈W∗n

I(BGn(x, r) = H; x ∈Wn), B′n = |Wn|.

Observe that∣∣∣∣E(AnBn − A′n
B′n

)∣∣∣∣ ≤ 1

Bn
E[|An −A′n|] + E

(
A′n|Bn −B′n|

BnB′n

)
. (6.10)

To bound the first term, note that

E|An −A′n| ≤ E
∑
x∈W∗n

(
I(x ∈ G \Wn) + I(x ∈ G, BG(x, r) 6⊆ [−n, n]d)

)
� nd max

x∈W∗n

(
P(x ∈ G \Wn) + P(x ∈ G, BG(x, r) 6⊆ [x− an, x+ an]d)

)
= o(nd) + ndP(ρ ∈ G, BG(ρ, r) 6⊆ [−an, an]d)

= o(nd),

where we have used that |W ∗n | � nd for the second inequality, (a) and translation
invariance for the first equality, and the almost-sure finiteness of BG(ρ, r) (and the
divergence of (an)n≥1) for the second equality. Since Bn � nd, it follows that

1

Bn
E[|An −A′n|] = o(1). (6.11)

Using that A′n ≤ |W ∗n | � Bn, we further obtain that

E

(
A′n|Bn −B′n|

BnB′n

)
� E

(
|Bn −B′n|

B′n

)
= E

(
||Wn| − |W ∗n |P(ρ ∈ G)|

|Wn|

)
� n−dE[||Wn| − |W ∗n |P(ρ ∈ G)|] + ndP[|Wn| ≤ cnd]

� n−d
(
E
(

(|Wn| − |W ∗n |P(ρ ∈ G))
2
))1/2

+ exp(−c(log n)2), (6.12)

by using the Cauchy-Schwarz inequality and (V) (and the fact that |Vn| � |Wn|+nd−1an =

|Wn|+ o(nd)). Additionally,

E
(

(|Wn| − |W ∗n |P(ρ ∈ G))
2
)

= E


 ∑
x∈W∗n

(I(x ∈Wn)−P(x ∈ G))

2


= E


 ∑
x∈W∗n

(I(x ∈Wn)−P(x ∈Wn)−P(x ∈ G \Wn))

2


≤ 2E


 ∑
x∈W∗n

I(x ∈Wn)−P(x ∈Wn)

2
+ 2|W ∗n |2 max

x∈W∗n
P[x ∈ G \Wn]

= 2Var[|Wn|] + 2|W ∗n |2 max
x∈W∗n

P[x ∈ G \Wn]

= o(n2d), (6.13)
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by using (a) and (b). Combining the estimates (6.9)–(6.13), and using (a) again, we
obtain (6.8).

In the subsequent lemma, we apply Lemma 6.7 for d ≥ 1 and s ∈ (d, 2d). We
highlight that the proof depends on the estimates (6.6) and (6.7) from the proof of
Lemma 6.6, and also two further statements from [17, Theorem 2]. Inspecting the
latter reference, one would find that [17, Theorem 2] is stated for the smaller range
s ∈ (d,min{d+ 2, 2d}). However, as is commented below [17, Theorem 2] (and a careful
checking of the argument establishes), this restriction, which is principally due to the
main focus of the paper being on the stable regime, is not essential, and the percolation
estimates of [17, Theorem 2] extend to the range s ∈ (d, 2d).

Lemma 6.8. If d ≥ 1 and s ∈ (d, 2d), then LRP(d,s) satisfies (BS).

Proof. We will check the two conditions of Lemma 6.7.
Towards verifying (a), let x ∈W ∗n , and C1(x, an) be the largest connected component

of LRP(d,s) in the `∞-ball B∞(x, an). We first claim that if an = (log n)∆ for suitably large
∆, then

max
x∈W∗n

P (C1(x, an) 6⊆ Vn) = o(1). (6.14)

Letting C1(n) and C2(n) be the first and second largest components of LRP(d,s) inside
[−n, n]d, respectively, we have that, for any ε > 0,

P (C1(x, an) 6⊆ Vn) ≤ P
(
|C1(x, an)| < εadn

)
+ P

(
C1(x, an) 6⊆ Vn, |C1(x, an)| ≥ εadn

)
≤ P

(
|C1(an)| < εadn

)
+ P

(
|C2(n)| ≥ εadn

)
+ P (Vn 6= C1(n)) ,

where to obtain the second inequality we use that on the event {Vn = C1(n), C1(x, an) 6⊆
Vn}, it holds that |C2(n)| ≥ |C1(x, an)|. Moreover, we highlight that we have used the
translation invariance of the model to derive a bound that does not depend on the choice
of x ∈W ∗n . By (6.6) and (6.7), the first and third probabilities above are o(1) as n→∞.
As for the second term, this is shown to be o(1) in [17, Theorem 2] for ∆ chosen large
enough. Hence we have established (6.14).

Applying the estimate of previous paragraph, we find that

max
x∈W∗n

P (x ∈ G\Wn) ≤ o(1) + max
x∈W∗n

P (x ∈ G\C1(x, an))

≤ o(1) + max
x∈W∗n

P (x! B∞(x, an)c, x 6∈ C1(x, an))

= o(1) + P (0 ! B∞(0, an)c, 0 6∈ C1(an))

where x! B∞(x, an)c means that x is connected to the complement of B∞(x, an), but
not necessarily by a single edge. The probability in the final line above is shown to be
o(1) in [17, Theorem 2]. This confirms (a).

For proving condition (b) of Lemma 6.7, we first observe

Var(|Wn|) � (nan)d +
∑

x,y∈W∗n :
|x−y|>2an

Cov(I(x ∈Wn), I(y ∈Wn)).

Now, some elementary manipulation of probabilities allows it to be checked that, for
x, y ∈W ∗n ,

Cov(I(x ∈Wn), I(y ∈Wn)) ≤ Cov(I(x ∈ C1(x, an)), I(y ∈ C1(y, an)))

+2 max
z∈W∗n

P (z ∈ C1(z, an)\Wn)

+2 max
z∈W∗n

P (z ∈Wn\C1(z, an)) .
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Moreover, if |x− y| > 2an, then the first term in the upper bound is zero. To bound the
first of the probabilities, note that if the event z ∈ C1(z, an)\Wn occurs, then it must be
the case that C1(z, an) 6⊆ Vn. Thus, by (6.14),

max
z∈W∗n

P (z ∈ C1(z, an)\Wn) ≤ max
z∈W∗n

P (z ∈ C1(z, an) 6⊆ Vn) = o(1).

Additionally, since Wn ⊆ Vn ⊆ G, we have that

max
z∈W∗n

P (z ∈Wn\C1(z, an)) ≤ max
z∈W∗n

P (z ∈ G\C1(z, an)) .

That the upper bound is o(1) was established earlier in the proof. Combining the previous
estimates yields (b), as desired.

From Remark 4.2 and Lemmas 6.6 and 6.8 (and the heat kernel upper bound of
[17]), we obtain the following result for the long-range percolation model of Section 3,
which we underline does not require nearest-neighbour connections. In particular,
this result verifies that the on-diagonal heat kernel estimates of [17] are sharp (up to
logarithmic factors) throughout the stable regime s ∈ (d,min{d + 2, 2d}) (and not just
when s ∈ (d, d+ 1), which is what is implied by the invariance principle of [18]).

Corollary 6.9. If d ≥ 1 and s ∈ (d, 2d), then LRP(d,s) satisfies the relevant lower heat
kernel bounds of Theorems 1.3 and 1.5. If d ≥ 1 and s ∈ (d,min{d+ 2, 2d}), then it also
satisfies the spectral dimension result of Corollary 1.7.
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