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Abstract

A random field X = (Xv)v∈G on a quasi-transitive graph G is a factor of an i.i.d.
process if it can be written as X = ϕ(Y ) for some i.i.d. process Y = (Yv)v∈G and
equivariant map ϕ. Such a map, also called a coding, is finitary if, for every vertex
v ∈ G, there exists a finite (but random) set U ⊂ G such that Xv is determined by
{Yu}u∈U . We construct a coding for the random-cluster model on G, and show that the
coding is finitary whenever the free and wired measures coincide. This strengthens a
result of Häggström–Jonasson–Lyons [18]. We also prove that the coding radius has
exponential tails in the subcritical regime. As a corollary, we obtain a similar coding
for the subcritical Potts model.

Our methods are probabilistic in nature, and at their heart lies the use of coupling-
from-the-past for the Glauber dynamics. These methods apply to any monotone model
satisfying mild technical (but natural) requirements. Beyond the random-cluster
and Potts models, we describe two further applications – the loop O(n) model and
long-range Ising models. In the case of G = Zd, we also construct finitary, translation-
equivariant codings using a finite-valued i.i.d. process Y . To do this, we extend a
mixing-time result of Martinelli–Olivieri [22] to infinite-range monotone models on
quasi-transitive graphs of sub-exponential growth.
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Finitary codings for the random-cluster and other infinite-range monotone models

1 Introduction and main results

Consider an infinite graph G = (V, E) and a random field X = (Xv)v∈V whose
distribution is invariant under all automorphisms of G. This paper is concerned with
the question of existence of codings (factor maps): is it possible to express X as an
automorphism-equivariant function (which we call a coding) an i.i.d. process — i.e. a
random field Y = (Yv)v∈V where the Yv’s are independent and identically distributed?
The answer to this question depends on the graph G and the random field X. The theory
of such codings traces back to the seminal work of Ornstein [24] and later Keane and
Smorodisnky [20], who studied the case in which G = Z and X itself is an i.i.d. process.
In this case, Keane and Smorodisnky showed that X and Y are finitarily isomorphic – a
stronger condition than the one we require. The study of the one-dimensional problem
when X is a more general process remains an active research topic.

In the setting of the d-dimensional lattice Zd, it is very natural to ask whether the
Ising model is a factor of an i.i.d. process. This model, perhaps the most well-known of
the statistical physics models, is infamously trivial on Z, but exhibits a phase transition
on Zd when d ≥ 2 – and hence, it is appropriate to study it on non one-dimensional
lattices. In an unpublished work, Ornstein and Weiss [25] (see also [1] for a published
version) showed that the (infinite-volume) plus state of the Ising model at any positive
temperature is a factor of an i.i.d. process. Steif [31] showed a similar but stronger
result for monotone spin systems. In both of these cases, the factor maps may be
infinitely dependent, in the sense that determining the value of X at the origin may
require knowing the value of infinitely many elements of Y . Van den Berg and Steif [2]
showed that the subcritical Ising model has a finitary coding. Explicitly, they construct a
factor map ϕ from an i.i.d. process Y to any subcritical Ising model such that ϕ(Y ) at
the origin depends on a finite (but random) number of Yv’s. In fact, their work quantifies
the ‘amount of information’ required to determine ϕ(Y ) at the origin in two ways. On
the one hand, they show that there exists a coding whose coding radius, which controls
how far one must look in the Y process, has exponential tails. On the other hand, they
show that there exists a (different) coding which only requires a finite-valued input Yv at
every vertex. The same work shows that no finitary coding can exist for the supercritical
Ising model. Recent works constructed finitary codings for Markov random fields with
spatial mixing properties [30], or long-range interacting particle systems that satisfy a
‘high noise’ condition [12].

The initial goal of this project was to show that the random-cluster model on Zd is
a finitary factor of an i.i.d. process. Unlike the Ising model, the random-cluster model
has infinite-range interactions – i.e. the state of an edge in the random-cluster model
may have a nonvanishing effect on the state of an edge that is arbitrarily far away
from it. Although the methods we use yield more general results, the main result of
this paper is the construction of a finitary coding for the random-cluster model on an
arbitrary quasi-transitive graph when the free and wired measures coincide. In the case
of the random-cluster model, the factor constructed in this paper is very similar to the
one discussed by Häggström–Jonasson–Lyons [18]. That paper constructs a factor map
for the random-cluster model on a general quasi-transitive graph, but does not study
whether it is finitary. The analysis presented herein also provides quantitative control of
the coding radius of the factor. In particular, for the subcritical random-cluster model,
the coding radius will have exponential tails. We further obtain results for the Potts
model on such graphs using the Edwards–Sokal coupling. In the case of the subcritical
random-cluster and Potts models on Zd, we also prove the existence of a finitary coding
from a finite-valued i.i.d. process.

The general framework discussed in this paper is that of monotone specifications.
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Finitary codings for the random-cluster and other infinite-range monotone models

Specifications, a formalization of concepts first introduced in the work of Dobrushin [7]
and Landford–Ruelle [21], are families of finite-volume measures, indexed by finite sub-
sets and arbitrary configurations (boundary conditions), that satisfy certain consistency
relations. They are called monotonic (or attractive) if the measures respect a partial
ordering on configurations, in the sense of stochastic domination; this property is a
generalization of the FKG property of the random-cluster model, or Griffiths’ inequalities
for the Ising model. We emphasize that we will not demand that specifications are
quasi-local (which is a well-known continuity property), which is frequently assumed
elsewhere and violated by the random-cluster and other infinite-range models. The
generality of the framework has many possible applications. We discuss two additional
applications: to the critical loop O(n) model on the hexagonal lattice, and to subcritical
long-range Ising models. As far as we are aware, this is the first finitary coding result for
the loop O(n) model and the only non-perturbative finitary coding result for long-range
Ising models (see [11] for a result at sufficiently high temperatures).

We end by briefly discussing the algorithmic aspects of our results. There is an
extensive literature focused on perfect simulations of infinite-range models [12, 13, 5];
for an example involving the ‘high noise’ regimes of the random-cluster model on Zd,
see [6]. The proofs given in this paper rely on the method of coupling-from-the-past of
Propp and Wilson [28]. This technique uses dynamics in order to get a perfect simulation
of the stationary distribution of a finite-state Markov chain. In our setting, we apply
coupling-from-the-past to the single-site Glauber dynamics (in the same spirit as previous
works, e.g., [2, 19]). As such, there is an interest in controlling not only the spatial
dependence of the factor map (i.e. the coding radius), but also the mixing time, which
measures the number of steps of the dynamics required to perfectly sample X at the
origin. The celebrated work of Martinelli and Olivieri [22] relates spatial and temporal
mixing in the context of the finite-range, finite-energy, monotone models on Zd; as part
of this work, we prove a generalization of this result to infinite-range, monotone models
on quasi-transitive graphs of sub-exponential growth. With this perspective, it is clear
that the existence of space-time finitary factors has algorithmic implications: one may
create a perfect sample of X on a finite subset of V by applying the space-time finitary
factor map to the i.i.d. process Y on some random (and possibly much larger) finite
subset of V. Controlling the size of the latter set is tantamount to quantitative control
on the coding radius and mixing time.

1.1 Definitions

Let V be countably infinite and let Γ be a group acting on V. The action is quasi-
transitive if it partitions V into finitely many orbits. Let (S,S) and (T, T ) be two measur-
able spaces, and let X = (Xv)v∈V and Y = (Yv)v∈V be (S,S)-valued and (T, T )-valued
Γ-invariant random fields. For the rest of the paper, we will assume that all probability
spaces are standard.

A coding from Y toX is a measurable function ϕ : TV → SV, which satisfies ϕ(Y )
d
=X

and is Γ-equivariant, i.e., commutes with the action of every element in Γ on a Γ-invariant
subset of TV of full measure. Such a coding is also called a factor map or homomorphism
from Y to X; when such a coding exists, we say that X is a Γ-factor of Y .

Suppose that G is a locally finite graph on vertex set V and that Γ acts quasi-
transitively onV by automorphisms ofG. Thus, G is a quasi-transitive graph; heuristically,
such a graph has finitely many ‘different types’ of vertices (whereas a transitive graph
has exactly one). We say that a pair of configurations y, y′ ∈ TV agree up to distance
r around a vertex v if yw = y′w for all v with dist(v, w) ≤ r, where dist(·, ·) denotes the
graph distance. We say that ϕ is determined at distance r around v at a configuration y
if ϕ(y)v = ϕ(y′)v for any y′ which agrees with y up to distance r around v. The coding
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radius of ϕ at the vertex v and the configuration y, which we denote by Rv(y), is the
minimal distance that determines ϕ at v and y. It may happen that no such r exists, in
which case, Rv(y) =∞. Thus, associated to a coding is a random variable Rv = Rv(Y )

which describes the coding radius at v; a coding is called finitary if Rv(Y ) is almost
surely finite for every v ∈ V.1

We categorize factor maps as follows: When X is a Γ-factor of an i.i.d. (independent
and identically distributed) process, we say it is Γ-fiid, and when it is a finitary Γ-factor
of an i.i.d. process, we say it is Γ-ffiid. A still stronger notion is Γ-fv-ffiid which requires
X to be a finitary Γ-factor of a finite-valued i.i.d. process (i.e., a finite set T ). In addition,
we can add a quantitative element which indicates how far a coding must look to
determine the output at the origin. Explicitly, we say that a coding has exponential
tails if P(Rv ≥ r) ≤ Ce−cr for some C, c > 0 and all r ≥ 0 and v ∈ V, and that it has
stretched-exponential tails if P(Rv ≥ r) ≤ Ce−r

ν

for some C > 0, 0 < ν < 1, and all r ≥ 0

and v ∈ V. For the remains of the paper, when we use the notion fiid (or any variant
thereof) without an explicit mention of Γ, the group may be taken to be any group acting
quasi-transitively on V by automorphisms of the graph.

1.2 The random-cluster model

We begin with a definition of the random-cluster model; for background on the model
and its fundamental properties mentioned below, we direct the reader to the monographs
[16, 8].

Let G′ = (V ′, E′) be a finite subgraph of G, and let ∂V ′ denote the set of vertices in
V ′ that have a neighbor in V \ V ′. The random-cluster measure in G′ with parameters
p ∈ [0, 1] and q > 0 and boundary conditions i ∈ {0, 1} is given by

φiG′,p,q(ω) =
po(ω)(1− p)c(ω)qk

i(ω)

Zi(G′, p, q)
, ω ∈ {0, 1}E

′
,

where o(ω) and c(ω) are the numbers of open and closed edges, i.e., edges e such that
ωe = 1 and ωe = 0, respectively, k0(ω) is the number of open clusters in ω, k1(ω) is the
number of open clusters that do not intersect the boundary ∂V ′, and Zi(G′, p, q) is a
normalizing constant, called the partition function, which makes φiG′,p,q a probability
measure. We call the measures free and wired when i = 0 and i = 1, respectively.
It is well-known that, when q ≥ 1, the random-cluster model has the FKG property
(a monotonicity property), which implies that φiG′,p,q converges weakly to a limiting
measure φip,q as G′ increases to G. The two limiting measures are probability measures
which are supported on {0, 1}E and are invariant under all automorphisms of G. We call
φ0
p,q and φ1

p,q the free and wired infinite-volume random-cluster measures. Our results
concern the coding properties of these two measures.

When φ0
p,q = φ1

p,q, we may omit the superscript for notational clarity and write φp,q
for the common measure. A standard coupling argument shows that, for each i ∈ {0, 1},
there exists a critical parameter pic(q) ∈ [0, 1] such that

φip,q[∃ an infinite cluster] =

{
0 p < pic(q)

1 p > pic(q)
.

It is also a straightforward consequence of the FKG property that p0
c(q) ≥ p1

c(q), and that
φ0
p,q = φ1

p,q whenever p < p1
c(q). Furthermore, the well-known Burton–Keane argument [4]

implies that p0
c(q) = p1

c(q) on any amenable graph.

1Technically, the map Rv(y) may not be measurable as defined. One may deal with this by either modifying
ϕ on a null set (with respect to Y ) or by demanding instead that, for almost every y, ϕ(y)v = ϕ(y′)v for almost
every y′ which agrees with y up to distance r around v.
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We now state our first result about codings for the random-cluster model. Recall
that our definition of coding is stated for a random field on the vertex set of a graph.
Thus, strictly speaking, when considering codings for the random-cluster model on G,
one should think of the model as being defined on the vertices of the line graph of G. In
this case, following our convention, the implicit Γ may be taken to be any group acting
quasi-transitively on V by automorphisms of the line graph.

Theorem 1.1. Let G be an infinite quasi-transitive graph and let p ∈ [0, 1] and q ≥ 1.

• Both φ0
p,q and φ1

p,q are fiid.

• If φ0
p,q = φ1

p,q, then φp,q is ffiid.

• If p < p1
c(q), then φp,q is ffiid with exponential tails.

The second and third items are new, while the first item was already known; see the
discussion in Section 1.6 for further details.

In the amenable case, we can also prove a partial converse for the second item in
Theorem 1.1. This converse works on any amenable graph for the wired measure; we
require a slightly stronger version of amenability for the free measure. We say that
G is amenable if there exists a sequence (Fn)n of non-empty finite subsets of V such
that |∂Fn|/|Fn| → 0 as n→∞. We say that G is c-amenable if there exists a sequence
(Fn, Hn)n of non-empty finite subsets of V such that Hn is connected, ∂Fn ⊂ Hn and
|Hn|/|Fn| → 0 as n → ∞. The ‘c’ in c-amenable stands for connected. It is clear that
c-amenability implies amenability.

Theorem 1.2. Let G be an infinite quasi-transitive graph and let p ∈ [0, 1] and q ≥ 1.

• If G is amenable and φ0
p,q 6= φ1

p,q, then φ1
p,q is not ffiid.

• If G is c-amenable and φ0
p,q 6= φ1

p,q, then φ0
p,q is not ffiid.

Thus, for c-amenable graphs, Theorem 1.1 and Theorem 1.2 imply that the wired
random-cluster measure is ffiid if and only if the free random-cluster measure is ffiid,
both of which hold if and only if the two measures coincide. In particular, this is the
case for Zd, as it is c-amenable for any d ≥ 2, and the free and wired are always equal
on Z. We do not know whether the first item of the theorem holds for non-amenable
graphs, nor do we know whether the second item holds under the standard amenability
assumption. However, the second item does not necessary hold in the non-amenable
case. Indeed, on the d-regular tree, Häggström [17] shows that p1

c(q) < p0
c(q) for any

q > 2 and d ≥ 3, and thus, φ0
p,q 6= φ1

p,q for any p ∈ (p1
c(q), p

0
c(q)); meanwhile, on any tree

and for any p and q, φ0
p,q is exactly Bernoulli percolation of parameter p/[p + q(1 − p)],

and thus is trivially ffiid.
The next result is concerned with the existence of codings from a finite-valued i.i.d.

process for the subcritical random-cluster model on Zd. In this case, p0
c(q) = p1

c(q), so
that we may drop the superscript.

Theorem 1.3. Let d ≥ 2, G = Zd and Γ be the translation group of Zd. Let q ≥ 1 and
p < pc(q). Then φp,q is Γ-fv-ffiid with stretched-exponential tails.

We note that the coding we produce above is translation-equivariant, not automor-
phism-equivariant. The construction we use does not produce a reflection/rotation-
equivariant coding, though we believe that such a construction should be possible,
and that a similar statement should hold for more general quasi-transitive graphs of
sub-exponential growth and their full automorphism group. The proof of Theorem 1.3
relies on a result from [29] and on a new mixing-time result for a natural single-site
dynamics of the subcritical random-cluster model on an arbitrary infinite quasi-transitive
graph of sub-exponential growth (see Section 5).
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1.3 The Potts model

The random-cluster model is closely related to the Potts model. This model, intro-
duced by Potts [27] following a suggestion of his adviser Domb, has been the subject
of intensive study by mathematicians and physicists over the last three decades. For a
review of the physics results, see [32]; for proofs of the classical rigorous results quoted
below, see [14].

Set q ≥ 2 to be an integer. The Potts measure on a finite subgraph G′ = (V ′, E′) of G,
at inverse temperature β and boundary conditions i ∈ {0, 1, . . . , q}, is defined by

µiG′,β,q[σ] :=
eβH

i
G′ (σ)

ZiG′,β,q
, σ ∈ {1, . . . , q}V

′
, (1.1)

where
Hi
G′(σ) :=

∑
{x,y}∈E′

1[σx = σy] +
∑

{x,y}∈∂E′
1[σx = i],

and ZiG′,β,q is a normalizing constant which makes µiG′,β,q a probability measure. Above,
1[·] denotes the indicator function. Note that when i = 0, the second sum is zero for all σ.
One obtains infinite-volume measures µiβ,q via weak limits, which are known to exist.
The case q = 2 is known as the Ising model.

Like the random-cluster model, the different infinite-volume Potts measures may be
highly affected by their boundary conditions. However, if β < βw

c (q), where βw
c (q) :=

− log[1− p1
c(q)], it is well-known that µ0

β,q, µ
1
β,q, . . . , µ

q
β,q coincide. In this case, we denote

the common measure by µβ,q. Using the relation with the random-cluster, we obtain the
following results about the coding properties of the Potts model:

Theorem 1.4. Let G be an infinite quasi-transitive graph, q ≥ 2 be an integer and β ≥ 0.

• If µ0
β,q, µ

1
β,q, . . . , µ

q
β,q coincide, then µβ,q is ffiid.

• If β < βw
c (q), then µβ,q is ffiid with exponential tails.

• If β < βw
c (q), G = Zd and Γ is the translation group, then µβ,q is Γ-fv-ffiid with

stretched-exponential tails.

In the case of the Ising model (q = 2) on Zd, the results of Theorem 1.4 were shown
in [2] (items one and two) and [29] (item three). For q 6= 2 on Zd, partial results were
established in [19] and [30]. To the best of our knowledge, the above result is novel in
all other cases.

1.4 The loop O(n) model

The loop O(n) model is a model for a random collection of non-intersecting loops
on the hexagonal lattice, which is believed to be in the same universality class as the
spin O(n) model (see [26] for background on these models). Let Ω be a connected finite
subset of the hexagonal lattice H whose complement is connected, and let LoopConf(Ω)

be the set of subgraphs where every vertex is of degree 0 or 2, so that the non-trivial
connected components form loops. The loop O(n) measure with edge-weight x > 0 and
loop-weight n > 0 is the probability measure νΩ,n,x given by

νΩ,n,x(ω) :=
xo(ω)n`(ω)

ZΩ,n,x
· 1LoopConf(Ω)(ω), ω ∈ {0, 1}E(Ω),

where o(ω) is the number of edges in ω, `(ω) is the number of loops in ω, and ZΩ,n,x is a
normalizing constant. The loop O(n) model is conjectured to undergo a phase transition
for any 0 ≤ n ≤ 2 when the value of x equals

xc(n) :=
1√

2 +
√

2− n
.
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It is shown in [9, Theorems 1 and 2] that the loop O(n) model has a unique periodic
(i.e. invariant under a finite-index subgroup of the automorphism group of H) Gibbs
measure νn,x whenever n ≥ 1 and nx2 ≤ 1, and moreover, that this is the unique Gibbs
measure whenever n ∈ [1, 2] and x = xc(n) (we note that a unique periodic measure
must be invariant under all automorphisms of H). In the latter case, we show that this
measure has a finitary coding.

Theorem 1.5. Let n ≥ 1 and nx2 ≤ 1. Then νn,x is fiid, and it is ffiid when n ∈ [1, 2] and
x = xc(n).

It would be interesting to determine whether νn,x is always ffiid in the regime n ≥ 1

and nx2 ≤ 1.

1.5 Long-range (ferromagnetic) Ising models

Let J = (JA)A⊂V,|A|≤2 be a collection of non-negative numbers called the coupling
constants satisfying that ∑

A⊂V,|A|≤2
v∈A

JA <∞ for all v ∈ V.

The Ising measure with coupling constants J in a finite volume V ⊂ V with boundary
conditions τ is given by

µτV (σ) :=
1{σV\V =τV\V }

ZτV
· exp

 ∑
A⊂V,|A|≤2
A∩V 6=∅

JAσA

 , σ ∈ {−1,+1}V,

where σA :=
∏
v∈A σv. We assume that the coupling constants are automorphism-

invariant in the sense that JγA = JA for all A and γ in the automorphism group of
G.

The long-range Ising model has an important monotonicity property, known as Grif-
fiths’s inequality [15], which states that E[σAσB ] ≥ E[σA]E[σB ] for any finite subsets
A,B ⊂ V. It is classical that this property implies monotonicity of the associated spec-
ifications, allowing us to define the largest and smallest Gibbs measures µ+ and µ−,
respectively.

Theorem 1.6. Let G be an infinite quasi-transitive graph and let J be non-negative
coupling constants as above. Then µ+ and µ− are fiid. In addition, if µ+ = µ− then µ+ is
ffiid.

1.6 Discussion

In this section, we discuss the previously known results and their relation to ours.
We begin with the random-cluster and Potts models, which are our primary interest

here. Let us start by explaining the relation between these two models. When q ≥ 2 is an
integer, the two models are closely related via the Edwards–Sokal coupling, which allows
to obtain samples of one from the other via a simple procedure (which also introduces
additional randomness). In this coupling, to obtain a sample from the Potts measure
µ0
β,q, one first samples a configuration ω from the free random-cluster measure φ0

p,q with

p = 1− e−β , and then assigns a single color in {1, . . . , q} to all the vertices in each cluster
of ω, with the colors of different clusters chosen uniformly and independently. To obtain
a sample from µiβ,q with i ∈ {1, . . . , q}, one follows the same procedure with ω sampled
from the wired random-cluster measure φ1

p,q, except that any infinite cluster of ω (if any
such clusters exist) is assigned color i. In the other direction, to obtain a sample from
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φip,q with i ∈ {0, 1}, one first samples σ from µiβ,q, and then independently opens each
edge with probability p if its endpoints have the same color in σ, and closes it otherwise.
This relationship allows to transfer many coding properties from one model to the other.
We refer the reader to [16, Theorem 4.91] for details.

Häggström–Jonasson–Lyons [18] studied (non-finitary) coding properties of the random-
cluster and Potts models on general graphs. Lemma 4.5 of that paper shows that µiβ,q
with i ∈ {1, . . . , q} is fiid for any integer q ≥ 2 and any β ≥ 0. That paper was particularly
interested in the closely related notion of Bernoullicity (see Theorem 4.1 there), a classi-
cal mixing property from ergodic theory. In fact, on certain amenable graphs with mild
geometric conditions – namely quasi-transitive amenable graphs that satisfy

Vv,r \Vv,r−1 6⊂ Vu,r for any distinct u, v ∈ V and infinitely many r ∈ N,

the notions of Bernoullicity and fiid are equivalent (Vv,r is the graph-ball of radius r
around v). Although it is not explicitly stated there, the first item of Theorem 1.1, which
states that the free and wired random-cluster measures are fiid, is essentially contained
in [18]. We remark that a slightly stronger version of the above condition appears in
Theorem 2.2.

The second and third items of Theorem 1.1 are both new. As far as we know, previous
results have been restricted to integer q, where they were deduced from results on the
Potts model (see [29, Remark 5] and [30, Remark 6]). In particular, we are unaware of
any finitary coding results which work directly on the random-cluster model. Let us also
mention that, in the second item of the theorem, the coding radius is controlled by the
rate of convergence of the finite-volume free and wired measures (see Theorem 2.1).
Thus, the third item of the theorem will follow with the additional knowledge that the
phase transition of the random-cluster model is sharp [10].

Theorem 1.3 is concerned with finitary codings in which the i.i.d. process is finite-
valued. This is a rather natural restriction, as it makes the coding somewhat more useful
for simulations. For the Ising model on Zd, van den Berg and Steif [2] constructed
such codings, and the second author [29] showed that such codings exist with stretched-
exponential tails for their coding radius. Pushing the methods used to prove Theorem 1.1,
we obtain so-called space-time finitary codings, which, by combining with a general tool
from [29], allow us to deduce that such codings also exist for the random-cluster model.

Theorem 1.2 is concerned with showing that the random-cluster measures are not
ffiid in certain situations. While this is not the main focus of this paper, the result was
given in order to provide a more complete picture. The theorem is an extension of similar
results for other models (see [2, Theorem 2.1] and [30, Theorem 1.3]), which are based
on exponential-rate estimates which appear in [23, 3]. Though previous results were
for nearest-neighbor models on Zd, the key ideas apply in greater generality. We do
point out however that certain technicalities may arise on other graphs, as is reflected
in our need for the c-amenability property in the second item of Theorem 1.2. While we
were able to verify that certain amenable graphs have this stronger property (e.g., the
lamplighter group over Zd for any d ≥ 1), we do not know whether it holds for all infinite,
one-ended, amenable, edge-transitive graphs; we note that two-ended graphs such as Z
are not c-amenable.

Let us now turn to the Potts model. Theorem 1.4 was partially known in the case
of Zd (all results mentioned here are for Γ the group of translations). In the Ising case
q = 2, van den Berg and Steif [2] showed the first two items (and a weakening of the
third item) and the second author [29] showed the third item. In the general case q ≥ 2,
Häggström and Steif [19] showed that µβ,q is fv-ffiid (and it also follows from the proof
that it is ffiid with exponential tails) for β small enough, and the second author [30,
Corollary 1.5] showed that µβ,q is ffiid with power-law tails for all β < βc(q) and that is
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ffiid when d = 2, q ∈ {2, 3, 4} and β = βc(q).
There are very few known results regarding the coding properties of the loop O(n) or

long-range Ising models for general values of the parameters. Our results for these two
models, as well as the random-cluster model, follow from coding results that apply to
a general framework of monotone specifications, which will be discussed in Section 2.
While we developed this methodology with the random-cluster model in mind, it is
sufficiently broad to also include the two other models.

Van den Berg and Steif’s work [2], which we mentioned above in the context of
the Ising model, also proves results for monotone Markov random fields. While their
methods readily extend to finite-range models, they do not apply to infinite-range models
— i.e., models where the dependence of the conditional distribution at the origin on
the boundary conditions is not confined to a bounded box around the origin. The main
technical innovation of our technique is that it allows one to consider such models. For
example, the random-cluster model is an infinite-range model. To see this, observe that
the conditional distribution of an edge depends not only on its neighboring edges, but
rather on the connectivity of its two endpoints, which may require looking arbitrarily far
away from the given edge. In fact, this shows that the conditional distribution does not
even depend continuously on the boundary condition. Our framework requires neither
this continuity assumption nor a ‘high-noise’ assumption, both of which are used in works
such as [13]. Instead, we rely only on monotonicity and uniqueness, thereby allowing us
to obtain non-perturbative results.

1.7 Organization of the paper

The next Section 2 introduces the general framework of monotone specifications.
In particular, it states Theorem 2.1, Theorem 2.2 and Corollary 2.3, which are the
main technical results of this paper. Section 3 proves the theorems introduced above,
assuming the theorems of Section 2. Section 4 defines the coupled dynamics that is
the basis for constructions of all codings in this paper, and then proves Theorem 2.1.
Section 5 proves a mixing time result, which is then used in the subsequent Section 6 to
prove Theorem 2.2. Finally, Section 7 proves Corollary 2.3.

1.8 Notation

We now set up some notation which will be used for the rest of the paper. Let G be
an infinite locally finite quasi-transitive graph on a countable set V (all graphs in this
paper satisfy these conditions). Denote the graph distance in G by dist(·, ·). For sets
U, V ⊂ V, we write dist(U, V ) := minu∈U,v∈V dist(u, v) and dist(u, V ) := dist({u}, V ). We
denote ∂V := {u ∈ V : dist(u,V \ V ) = 1} and ∂v := ∂{v}. Let

Vv,r := {u ∈ V : dist(u, v) ≤ r}

be the ball of radius r around v. We also denote

B(r) := max
v∈V
|Vv,r|.

Recall that Γ is a group acting on V. We extend the action of Γ to AV (for any set A) by

γω := (ωγ−1v)v∈V.

Let µ and ν be probability measures on a common discrete space A. We denote by
‖µ− ν‖TV the total variation distance between µ and ν, i.e.,

‖µ− ν‖TV := 1
2

∑
a∈A
|µ(a)− ν(a)| = max

A⊂A
|µ(A)− ν(A)|.
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When A is partially ordered, we say that µ is stochastically dominated by ν, and write
µ ≤st ν, if µ(A) ≤ ν(A) for any increasing event A.

2 Finitary codings for monotone specifications

2.1 The general framework

Let V be countably infinite, Γ be a group acting quasi-transitively on V and (S,≤) be
a totally ordered discrete spin space with a maximal element +. We extend the order on
S to the product partial order on

Ω := SV,

whose maximal element we denote by +. Thus, given two elements ω, ω′ ∈ Ω,

ω ≤ ω′ ⇐⇒ ωv ≤ ω′v for all v ∈ V.

For a finite V ⊂ V and τ ∈ Ω, define

ΩτV := {ω ∈ Ω : ωV\V = τV\V }.

Denote

Ω+ :=
⋃

V⊂V finite

Ω+
V =

{
ω ∈ Ω : ω agrees with + outside a finite set

}
.

An upwards specification is a family of measures

ρ = {ρτV }V⊂V finite, τ∈Ω+ ,

where ρτV is a probability measure supported on ΩτV , that satisfies the consistency
relations that, for any finite U ⊂ V ⊂ V and any τ, τ ′ ∈ Ω+,

ρτV = ρτ
′

V whenever τV\V = τ ′V\V

and
ρτV ( · | ΩτU ) = ρτU whenever ρτV (ΩτU ) > 0.

If we expand this family by defining measures for any τ ∈ Ω and requiring the same
consistency relations, we obtain a specification. Upwards specifications are simpler
objects than specifications – for one thing, there are only countably many measures in
an upwards specification, whereas a specification requires uncountably many measures.
For any v ∈ V, we write ρτv as a shorthand for ρτ{v}.

An upwards specification is Γ-invariant if

ργτγV (γ−1ω ∈ ·) = ρτV for any γ ∈ Γ, V ⊂ V finite and τ ∈ Ω+.

An upwards specification ρ is irreducible if, for any finite V , the set {ω ∈ Ω+ : ρ+V (ω) > 0}
contains + and is connected in the Hamming graph on Ω+. An upwards specification is
called finite-energy if there infτ∈Ω+,v∈V ρ

τ
{v}(τ) > 0. Intuitively, this condition imposes

a uniform lower bound on the cost of changing the configuration at a single vertex. It
is straightforward to see that finite-energy is stronger than irreducibility. An upwards
specification is monotonic if

ρτV ≤st ρ
τ ′

V for any V ⊂ V finite and τ, τ ′ ∈ Ω+ such that τ ≤ τ ′.

When S has a minimal element −, we similarly define a notion of a downwards
specification by replacing + with −, the minimal element in Ω, and replacing Ω+ with
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Ω−, the set of configurations which equal − outside a finite set. When S has both a
minimal and maximal element, we may also define a notion of an upwards-downwards
specification, where Ω+ is replaced with Ω+ ∪ Ω− above. Such an upwards-downwards
specification ρ may be equivalently seen as a pair (ρ+, ρ−), where ρ+ is an upwards
specification and ρ− is a downwards specification. In this case, Γ-invariance of ρ is
equivalent to Γ-invariance of both ρ+ and ρ−, while monotonicity of ρ is equivalent to
monotonicity of both ρ+ and ρ− along with an ordering between ρ+ and ρ− in the sense
that

ρτV ≤st ρ
τ ′

V for any V ⊂ V finite and τ ∈ Ω−, τ ′ ∈ Ω+ such that τ ≤ τ ′.

On the other hand, by irreducibility of ρ, we mean that both ρ+ and ρ− are irreducible,
without requiring a joint condition.

Let ρ be a monotone upwards specification. By monotonicity, ρ+U stochastically
dominates ρ+V whenever U ⊂ V . Thus, there exists a weak limit

µ+ := lim
V ↑V

ρ+V .

The limit µ+ is in general a sub-probability measure on Ω (not necessarily supported on
Ω+), and is Γ-invariant when ρ is. If S is finite, then µ+ is a probability measure. When ρ
is a monotone downwards specification, we similarly define µ−. In particular, when ρ is
an upwards-downwards specification, both µ+ and µ− are well defined.

2.2 The general results

We now state the three general results that will be used to prove the main theorems
of Section 1.

Theorem 2.1. Let G be an infinite graph on vertex set V and let Γ be a group acting
quasi-transitively on V by automorphisms of G. Let S be a totally ordered discrete spin
space.

1. Suppose that S has a maximal element and let ρ be a monotone Γ-invariant irre-
ducible upwards specification. If µ+ is a probability measure, then it is Γ-fiid.

2. Suppose that S is finite and let ρ be a monotone Γ-invariant irreducible upwards-
downwards specification. Then µ+ is Γ-fiid with a coding radius that satisfies

P(Rv > r) ≤ (|S| − 1) ·
∥∥ρ+Vv,r (σv ∈ ·)− ρ−Vv,r (σv ∈ ·)∥∥TV for all v ∈ V and r ≥ 0.

(2.1)
In particular, if µ+ = µ− then µ+ is Γ-ffiid.

The state spaces for the i.i.d. process Y in the above theorem are unrestricted (one
may think of (T, T ) as Lebesgue space on [0, 1]). In the next section, we wish to control
the ‘amount of temporal information’ used by the coding – heuristically, how many times
must the factor map query a (finite-valued) input at any vertex. To this end, we equip
the space (T, T ) with a more explicit structure, namely, we assume that T = T̃N, where
T̃ is finite. Recall that the coding radius of a coding ϕ : TV → SV at a vertex v ∈ V and a
configuration y ∈ TV is the minimal r ≥ 0 such that ϕ(y)v is determined by (yw)w∈Vv,r .
We analogously define R∗v(y), the space-time coding radius of ϕ at v and y, to be the
minimal r ≥ 0 such that ϕ(y)v is determined by (yw(i))w∈Vv,r,0≤i≤r. We say that such
a coding is space-time finitary if R∗v = R∗v(Y ) is almost surely finite for every v. In
this setting, when Y is said to be an i.i.d. process, we mean that {Yv(n)}v∈V,n∈N is a
collection of i.i.d. random variables supported on the finite set T̃ .

We add one final piece of notation before we state the theorem: an upwards-
downwards specification ρ is marginally finite if {ρτv(σv ∈ ·)}v∈V, τ∈Ω+∪Ω− is a finite
collection of distinct measures.
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Theorem 2.2. Let G be an infinite graph on vertex set V and let Γ be a group acting
quasi-transitively on V by automorphisms of G. Suppose that

Vv,r \Vv,r−1 6⊂ Vu,r for any distinct u, v ∈ V and r ≥ 0. (2.2)

Let S be a totally ordered finite spin space and ρ be a monotone Γ-invariant irreducible
marginally finite upwards-downwards specification.

• If µ+ = µ−, then there exists a space-time finitary coding from an i.i.d. process Y
to µ+.

• Suppose that there exist C, c > 0 such that∥∥ρ+Vv,r (σv ∈ ·)− ρ−Vv,r (σv ∈ ·)∥∥TV ≤ Ce−cr for all v ∈ V and r ≥ 0. (2.3)

If G has sub-exponential growth, i.e., B(r) = exp(o(r)), then the tails of the space-
time coding radius beats any stretched-exponential, i.e., P(R∗v ≥ r) ≤ exp(−r1−o(1)).
Moreover, if G has growth B(r) = exp(o( r

log r )), then the space-time coding radius
has exponential tails.

Condition (2.3) is commonly referred to as weak spatial mixing. The proof of the
second item in Theorem 2.2 relies on controlling the mixing-time of a natural single-site
dynamics for specifications satisfying weak spatial mixing (see Section 5).

In the case in which Zd and Γ is restricted to translations of the lattice, we can use
the setup of [29] to deduce the existence of fv-ffiid codings:

Corollary 2.3. Let G be Zd or its line graph, Γ be the group of translations, S be a
totally ordered finite spin space, and ρ be a monotone Γ-invariant irreducible marginally
finite upwards-downwards specification that satisfies (2.3). Then µ+ is Γ-fv-ffiid with
stretched-exponential tails.

We believe that codings from a finite-valued i.i.d. process should exist for a much
larger class of graphs (perhaps graphs satisfying (2.2) and having sub-exponential
growth).

3 Proofs of main results

In this section, we prove the theorems stated in Section 1. All the theorems, with the
exception of Theorem 1.2, will follow from the general results given in Section 2. The
proofs of these general results are postponed to the subsequent sections.

3.1 The random-cluster model

In this section, we prove the three main theorems about the random-cluster model,
namely, Theorem 1.1, Theorem 1.2 and Theorem 1.3. We first place the model in the
general framework of Section 2.

Consider the random-cluster model with parameters p ∈ [0, 1] and q ≥ 1 on an infinite
quasi-transitive graph G = (V, E). While the random-cluster model is most naturally
defined on the edges of G, our abstract definitions are stated for models defined on
the vertex set of a graph, and therefore we view the random-cluster model as a ‘living’
on the line graph G of G, whose vertex set is E. Let S := {0, 1} and let Γ be a group
acting quasi-transitively on V by automorphisms of G. The random-cluster model has
two natural specifications associated to it – the free-DLR and wired-DLR specifications –
corresponding to the choice of i ∈ {0, 1} in the definition of the model. These are denoted
by ρfree and ρwired and defined by

ρ#,τ
F (ω) ∝ poF (ω)(1− p)cF (ω)qk

#
F (ω)1ΩτF

(ω), ω ∈ {0, 1}E , (3.1)
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where F is a finite subset of E, oF (ω) and cF (ω) are the numbers of open and closed
edges in F , and k#

F (ω) is the number of open clusters that intersect an endpoint of
some edge in F , with kwired

F (ω) counting only finite clusters and kfree
F (ω) counting both

finite and infinite clusters (we note that the usual notion of ‘free’ and ’wired’ boundary
conditions correspond to ρfree,0

F and ρwired,1
F , where 0 and 1 correspond to the all-closed

and all-open configurations, respectively).

Remark 3.1. A specification ρ gives rise to the notion of a Gibbs measure (also called
a DLR state), which is a probability measure µ such that, for every finite F ⊂ E and
µ-a.e. τ ∈ {0, 1}E , the conditional law of ω under µ given that ω ∈ ΩτF is ρτF . Thus, in
general, the random-cluster model has two notions of Gibbs measures. For amenable
quasi-transitive connected graphs, any Gibbs measure (of either of the two specifications)
has at most one infinite cluster with probability 1; in this case, there is no distinction
between free-DLR and wired-DLR Gibbs measures. In particular, p0

c(q) = p1
c(q) for every

amenable graph. For more general graphs, the number of infinite clusters may be
infinite, in which case, this distinction is essential: for example, φ1

p,q may not satisfy the
free-DLR condition for certain graphs and values of p and q, but always satisfies the
wired-DLR condition. Similarly, φ0

p,q may not be a wired-DLR random-cluster measure
(see Section 6.4 of [14] for further discussion). Also, every Gibbs measure (in either the
free or wired DLR sense) stochastically dominates φ0

p,q and is stochastically dominated
by φ1

p,q.

Let ρ = (ρ+, ρ−) be the upwards-downwards specification given by ρ+ :=

(ρwired,τ
F )F⊂E finite ,τ∈Ω+ and ρ− := (ρfree,τ

F )F⊂E finite ,τ∈Ω− . Whenever q ≥ 1, the FKG prop-
erty of the random-cluster model implies that ρ is a monotone specification (see [16,
Theorems 3.8 and 2.27]). It is clear from (3.1) that ρ is Γ-invariant. Since, by (3.1),{
ρfree,τ
e (σe = s), ρwired,τ

e (σe = s) : τ ∈ Ω, e ∈ E, s ∈ {0, 1}
}

=
{
p, 1−p, p

p+(1−p)q ,
(1−p)q
p+(1−p)q

}
,

it is clear that ρ is irreducible and marginally finite.

Proof of Theorem 1.1. The free and wired random-cluster measures, φ0
p,q and φ1

p,q, are
precisely the measures µ− and µ+ obtained from the upwards-downwards specification
ρ. Therefore, the first and second items of Theorem 1.1 are immediate consequences of
the first and second items of Theorem 2.1, respectively.

We now turn to the third item of Theorem 1.1. Define Fe,r be the set of edges
whose distance (taken in the line graph of G) from e is at most r. For the third item of
Theorem 1.1, it remains only to show that, when p < p1

c(q), there exist C, c > 0 such that∥∥ρwired,+
Fe,r

(σe ∈ ·)− ρfree,−
Fe,r

(σe ∈ ·)
∥∥
TV
≤ Ce−cr for all e ∈ E and r ≥ 0.

It is well-known that one may couple samples from ρwired,+
Fe,r

and ρfree,−
Fe,r

so that they agree
on e whenever the endpoints of e are disconnected from the boundary. Thus, if v is an
endpoint of e,∥∥ρwired,+

Fe,r
(σe ∈ ·)− ρfree,−

Fe,r
(σe ∈ ·)

∥∥
TV
≤ φ1

Vv,r−1,p,q(e↔ ∂Vv,r−1).

The exponential decay of the right-hand side is exactly the content of [10, Theorem 1.2]
which establishes the sharpness of the phase transition for the random-cluster model.

Proof of Theorem 1.3. In light of the above, Theorem 1.3 is a direct application of Corol-
lary 2.3.

Proof of Theorem 1.2. We begin with the first item of the theorem, which we proceed to
establish by contradiction. Thus, we assume towards a contradiction that φ0

p,q 6= φ1
p,q and
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that φ1
p,q is Γ-ffiid for some group Γ acting quasi-transitively by automorphisms. Since G

is amenable, there exists at most one infinite connected component φip,q-almost surely;
thus, φip,q is both a free-DLR and a wired-DLR Gibbs state (see Remark 3.1 and [14,
Proposition 6.19]). It thus does not matter which specification we work with; we will use
the wired-DLR specification for concreteness, but denote it as ρ for notational clarity.

We begin by assuming that Γ acts transitively on E. We write ω for a generic random
element of {0, 1}E . Since G is amenable, there exists a sequence F ′n ⊂ V of non-empty
finite subsets such that |∂F ′n|/|F ′n| → 0 as n → ∞. Letting Fn denote the set of edges
spanned by F ′n, and ∂Fn denote the set of edges in E \Fn that share an endpoint with an
edge in Fn, we have that |∂Fn|/|Fn| → 0 as n→∞. For n ≥ 1, denote

Zn :=
1

|Fn|
∑
e∈Fn

ωe.

Denote a0 := φ0
p,q(ωe) and a1 := φ1

p,q(ωe) and note that a0 < a1. Since φ1
p,q is Γ-ffiid, it

follows that the convergence in the ergodic theorem occurs at an exponential rate for
φ1
p,q (this was shown in [3] for the case G = Zd, and the proof there goes through with

no changes for an arbitrary quasi-transitive graph G). Hence, denoting a := 1
2 (a0 + a1),

φ1
p,q(Zn ≤ a) ≤ Ce−2c|Fn| for some C, c > 0 and for all n ≥ 1.

By Markov’s inequality and the fact that φ1
p,q is a wired-DLR Gibbs measure,

φ1
p,q

(
Tn
)
≤ Ce−c|Fn|, where Tn :=

{
τ ∈ {0, 1}E : ρτFn(Zn ≤ a) ≥ e−c|Fn|

}
.

Let us show that the all 0 configuration 0 belongs to Tn for large n. By monotonicity
of the specification ρ, Tn is a decreasing set for each n, and thus it suffices to show that
Tn is non-empty for large n. Indeed, by Markov’s inequality and the fact that φ0

p,q is also
a wired-DLR state,

1− φ0
p,q

(
Tn
)

= φ0
p,q

(
ρωFn(Zn ≤ a) < e−c|Fn|

)
≤ φ0

p,q

(
ρωFn(Zn ≤ a) ≤ o(1)

)
= φ0

p,q

(
ρωFn(Zn > a) ≥ 1− o(1)

)
≤ (1 + o(1)) · φ0

p,q

(
ρωFn(Zn > a)

)
≤ (1 + o(1)) · φ0

p,q

(
Zn > a

)
≤ (1 + o(1))a0a .

Since a0 < a, we conclude that Tn is non-empty for large n. Let Ω0
∂Fn

denote the set of
configurations that equal zero on ∂Fn. Observe that ρτFn = ρ0Fn for all n and τ ∈ Ω0

∂Fn
, as

the free boundary conditions decouple the measure in Fn from the state of ω on F cn \ ∂Fn.
Thus, Ω0

∂Fn
⊂ Tn for large n, so that

φ1
p,q

(
ω∂Fn = 0

)
= φ1

p,q

(
Ω0
∂Fn

)
≤ φ1

p,q(Tn) ≤ Ce−c|Fn| for large n.

On the other hand, by finite energy, we have the lower bound

φ1
p,q

(
ω∂Fn = 0

)
≥
(

p

p+ (1− p)q

)|∂Fn|
for all n.

Since |∂Fn||Fn| → 0 as n → ∞, we have reached a contradiction. This completes the first
item in the case where Γ acts transitively on E.

To handle the case where Γ acts on E quasi-transitively, we let (O1, . . . Ok) be the
(finitely many) orbits of E under Γ. By possibly extracting a subsequence, we may assume
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that ri = limn→∞ |Oi ∩ Fn|/|Fn| exists for each i. We now define aj =
∑k
i=1 ri · φjp,q(ωei),

where ei is an arbitrary element of Oi. By construction, φjp,q(Zn) converges to aj , and
the proof goes through, as above.

We now turn to the second item of the theorem. The proof given above adapts to this
case with some modification which we now explain. First, we choose Fn differently. By
definition of c-amenable, there exists a sequence (F ′n, H

′
n)n of non-empty finite subsets

of V such that H ′n is connected, ∂F ′n ⊂ H ′n and |H ′n|/|F ′n| → 0 as n→∞. Let Hn denote
the set of edges incident to a vertex in H ′n, and let Fn denote the set of edges incident to
a vertex in F ′n but not in Hn. Then Hn is a connected set of edges, which contains ∂Fn
and is disjoint from Fn. We replace the occurrences of ∂Fn in the proof with Hn. The
proof then goes through once we interchange the roles of free and wired, replace the all
zero configuration 0 with the all one configuration 1, and replace Zn by (1− Zn). The
reason for the Hn in this case (and not merely ∂Fn) is that, while the 0 configuration
acts as a strong ‘decoupling boundary condition’ in the sense that ρτV = ρ0V whenever
τ∂V = 0, the 1 configuration has a weaker decoupling property: in order to force ‘true
wired boundary condition’ in the sense that ρτV = ρ1V , it is not sufficient to merely have
τ∂V = 1, but rather one needs τH = 1 on a set H which connects ∂V from outside of V .
This is the reason for our assumption of c-amenability.

3.2 The Potts model

In this section, we prove Theorem 1.4. Due to the relation between the Potts and
random-cluster models (namely, the Edwards–Sokal coupling), the theorem follows
(morally) from the results about the random-cluster (more specifically, the first and
second items from Theorem 1.1 and the third item from Theorem 1.3). However, before
proving Theorem 1.4, there is a technical issue we must face: Potts configurations belong
to {1, . . . , q}V, while random-cluster configurations belong to {0, 1}E . Let Γ be a group
acting on V by automorphisms of G. If G is the line graph of G, then Γ can be canonically
embedded in the automorphism group of G. In a slight abuse of notation, we allow γ ∈ Γ

to act on E through this identification. This allows us to discuss factors from processes
on V to processes on E. The lemma below shows that we can produce any i.i.d. process
on E using an i.i.d. process on V in a Γ-equivariant manner.

Lemma 3.2. Let G be an infinite quasi-transitive graph and let Γ denote its full auto-
morphism group. Then any i.i.d. process on E is a finitary Γ-factor of an i.i.d. process on
V with bounded coding radius.

Proof. Let X = (Xe)e∈E be an i.i.d. process, where each Xe takes values in a measurable
space (T, T ). Let ∆ be the maximal degree of G. We will show by direct construction
that X is a Γ-factor of the i.i.d. process (Y,Z) = (Yv, Zv)v∈V, where Yv and Zv are
independent, Yv = (Y 1

v , . . . , Y
∆
v ) is a collection of ∆ i.i.d. random variables having the

same distribution as Xe, and Zv is a uniform random variable on [0, 1].
Define

ψ : (T∆ × [0, 1])V → TE

by

ψ(y1, . . . , y∆, z){u,v} :=

{
y
|{w∼u : zu≤zw≤zv}|
u if zu < zv

y
|{w∼v : zv≤zw≤zu}|
v if zu ≥ zv

.

In words, the value associated to an edge {u, v} is obtained as follows: z induces an
order on the vertices of G; the edge {u, v} chooses its smaller endpoint with respect to
this order – say, u – and takes on the value yiu for some i ∈ {1, . . . ,∆}. To determine the
value of i, the set of edges that chose u is ordered according to the value of z at the
other endpoint – the first edge takes y1

u, the second y2
u, etc.
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If zu 6= zv for any distinct u, v ∈ V, then no value of yiu is assigned to more than one

edge. Thus, we have ψ(Y,Z)
d
=X. Since it is clear that ψ is Γ-equivariant and has coding

radius at most 2, the lemma follows.

We also require the following simple lemma.

Lemma 3.3. The composition of finitary codings with (stretched-)exponential tails is
also a finitary coding with (stretched-)exponential tails.

Proof. Let X, Y and Z be processes on V. Let ϕ be a coding from Y to X and let ϕ′ be a
coding from Z to Y , both having (stretched-)exponential tails. Denote ϕ̃ = ϕ′ ◦ ϕ. We
denote the coding radii of ϕ, ϕ′ and ϕ̃ at v by Rv, R′v and R̃v, respectively.

We first handle the case of exponential tails. Let C, c > 0 be such that P(Rv > r) ≤
Ce−cr and P(R′v > r) ≤ Ce−c

′r for all r > 0. Let ∆ be the maximal degree of G and set
a := c/[2(c+ log ∆)]. Fix v ∈ V and define

Sv,r :=
⋂

u∈Vv,ar

{Ru ≤ (1− a)r}.

By the union bound and the definition of a,

P[Scv,r] ≤ B(ar) · Ce−c(1−a)r ≤ C∆are−c(1−a)r ≤ Ce−cr/2.

It straightforward to see that on the event {R′v ≤ ar} ∩ Sv,r, we have that R̃v ≤ r. Thus,

P[R̃v > r] ≤ P[Scr,v] + P[R′v > ar] ≤ Ce−cr/2 + Cec
′ar.

This completes the proof in the case of exponential tails.
The case of stretched-exponential tails follows in a similar same way, where we let

C > 0 and 0 < c, c′ < 1 be such that P(Rv > r) ≤ Ce−rc and P(R′v > r) ≤ Ce−rc
′

, and we
set a := r

c
2−1/ log ∆.

Proof of Theorem 1.4. Let Γ be the full automorphism group of G; we set p = 1 − e−β,
and assume that µ0

β,q = µ1
β,q = · · · = µqβ,q. Using the Edwards-Sokal coupling (see [16,

Theorem 4.91]), this implies that φ0
p,q = φ1

p,q. By Theorem 1.1, there exists an i.i.d.
process Y on the edges, taking values in some measurable space (T, T ), and a finitary
coding ϕ : TE → {0, 1}E from Y to φp,q. Since ϕ is invariant under any automorphism
of the line graph of G, we have that ϕ ◦ γ = γ ◦ ϕ for any γ ∈ Γ (since Γ is canonically
embedded in the automorphism group of the line graph).

Next, we wish to construct the Edwards–Sokal coupling in a Γ-equivariant manner.
Define

Ψ: [0, 1]V × {1, . . . , q}V × {0, 1}E → {1, . . . , q}V

by
Ψ(z, σ, ω)v := σu, where u = argmin{zw : w

ω←→ v},

where we recall that w
ω←→ v indicates that there exists a path of ω-open edges connecting

w and v. Heuristically, Ψ(z, σ, ω)v outputs the color σu, where u is the vertex in the
connected component of v which has the minimal z value. By construction, Ψ is Γ-
equivariant. Let (Z,Σ) be an i.i.d. process on V, where Zv and Σv are independent
and uniform on [0, 1] and {1, . . . , q}, respectively. Then the Edwards–Sokal coupling

(see [16, Theorem 4.91]) implies that Ψ(Z,Σ, ω)
d
=µβ,q whenever ω is sampled from φp,q

independently of (Z,Σ). This implies that µβ,q is ffiid.
For the second item, we assume that β < βw

c (q). This implies that p < pc(q), which
implies (by the third item of Theorem 1.1) that the coding radius of ϕ has exponential
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tails. Suppose now that Y and (Z,Σ) are independent. Then the composition Ψ◦(id, id, ϕ)

is a coding from (Z,Σ, Y ) to µβ,q. By Lemma 3.2, this implies that we can create a coding
Ψ′ from an i.i.d. process on V to the Potts model µβ,q. By Lemma 3.3, this coding has
exponential tails, proving the second item of the theorem.

For the final item, we set G = Zd and Γ to be the translation group of the lattice. The
extra structure here allows us to skip the more complicated constructions above and do
things ‘by hand.’ Let {e1, . . . , ed} denote the the standard basis of Zd. Any e ∈ E has a
unique representation e = {v, v+ei}, where v ∈ Zd and 1 ≤ i ≤ d. Define ψ̃ : (T d)V → TE

by
ψ̃(y1, . . . , yd)e := yiv, where e = {v, v + ei}.

We also define Ψ̃ : {1, . . . , q}V × {0, 1}E by

Ψ̃(σ, ω)v := σu where u = min{w : w
ω←→ v},

where the minimum over vertices is taken in the lexicographical order on Zd. Both ψ̃ and
Ψ̃ are Γ-equivariant, as the lexicographical order is translation-invariant. Theorem 1.3
gives us a Γ-fv-ffiid coding ϕ̃ for φp,q with stretched-exponential tails. Then Ψ̃ ◦ (id, ϕ̃ ◦ ψ̃)

is a Γ-fv-ffiid coding for µβ,q. By Lemma 3.3, the coding radius of this map has stretched-
exponential tails, completing the proof.

3.3 The loop O(n) model

In this section, we prove Theorem 1.5.
We define the so-called spin representation of the loop O(n) model as follows: set

V := T and S := {+,−}. For any σ ∈ SV, define the probability measure µτV defined by
the formula

µτV (σ) :=
nk(σ)xe(σ)

ZτV
· 1{σV\V =τV\V },

where k(σ) + 1 is the sum of the number of connected components of pluses and minuses
in σ that intersect V or its neighborhood, e(σ) :=

∑
u∼v 1σu 6=σv is the number of edges

{u, v} that intersect V and have σu 6= σv, and ZτV is the unique constant making µτV a
probability measure. Clearly, both k(σ) and e(σ) depend on V , but we omit it in the
notation for brevity.

The spin representation is related to the original model in the following manner: if
σ is distributed as µτV , then its ‘domain walls’, or the lines that separate + from −, are
distributed as νΩ,n,x (see [9, Proposition 3] for more details).

Proof of Theorem 1.5. The family of measures {µτV }V⊂V finite, τ∈Ω+∪Ω− defines an upwards-
downwards specification. It is shown in [9, Theorem 4] that the spin representation
is monotonic whenever n ≥ 1 and nx2 ≤ 1. Thus, we can define the infinite-volume
limits µ+ and µ−, which are the largest and smallest possible measures, respectively.
The domain walls of µ+ and µ− are both distributed as νn,x, the unique periodic Gibbs
measure of the loop O(n) model. The operation that maps a spin configuration to its
domain walls has a finite coding radius, and therefore Lemma 3.2 allows us to transfer
coding properties of µ+ or µ− to νn,x.

The upwards-downwards specification satisfies the finite-energy property, and is
therefore irreducible, and is clearly invariant under all automorphisms of T. We also
note that the automorphism group of the line graph of H (which is isomorphic to the
Kagome lattice) is naturally identified with the automorphism group of T. With this in
mind, the first part of Theorem 1.5 follows from the first item of Theorem 2.1. For the
second part of Theorem 1.5, we note that µ+ = µ− when n ∈ [1, 2] and x = xc(n), as was
shown in [9] (see the last sentence in the paragraph after Theorem 5 in that paper), so
that the result follows from the second item of Theorem 2.1.
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3.4 Long-range Ising models

In this section, we prove Theorem 1.6. By Theorem 2.1, the long-rang Ising model
satisfies the desired coding properties if µ+ and µ− are the limit measures of a mono-
tone, irreducible Γ-invariant upwards-downwards specification. As was mentioned in the
discussion above Theorem 1.6, the monotonicity is a classical consequence of Griffith’s
inequality. Irreducibility follows from the finite-energy property, using the fact that the
coupling constants are summable. Finally, Γ-invariance of the model is a starightfor-
ward consequence of the definition of the model and the assumption that the coupling
constants are Γ-invariant.

4 Construction of codings via coupling-from-the-past

In this section, we introduce a dynamics, stemming from a single-site heat-bath
Glauber dynamics, on a general spin system with upwards and downwards specification.
The dynamics is defined in any finite volume, given any starting state, and with one of two
possible boundary conditions, corresponding to the largest and smallest configurations
on the complement. Crucially, the construction ensures that this dynamics couples
together all such choices simultaneously. In addition, the dynamics is monotone in the
sense that it maintains the partial order on the spin space. The dynamics allows us to use
coupling-from-the-past to manufacture an almost-sure limit, which will be the desired
coding map. This procedure leads to a proof of Theorem 2.1.

4.1 Overview of the dynamics

We begin with an informal description of the dynamics, which play a central role in
this section.

Consider the sequence of finite graphs (Vv,r)r∈N and a monotonic irreducible upwards
(or upwards-downwards) specification ρ. We will define a natural single-site dynamics on
each Vv,r, called the + dynamics. A single step of this dynamics started at an arbitrary
initial configuration ω(0) ∈ Ω+

Vv,r
is defined by applying the following evolution:

• Order V in a Γ-invariant way and consider the order induced on Vv,r = {v1, . . . vm}.

• Obtain ω(1) from ω(0) by resampling the value at v1, i.e., ω(1) is sampled from ρω
(0)

v1 .

• Repeat inductively, resampling ωvk using ω(k−1), until all sites have been resampled.

• The final configuration ω(m) is the new state.

When ρ is an upwards-downwards specification, the above can be applied to configura-
tions in Ω−

Vv,r
, producing the − dynamics.

In Section 4.2, we construct the + dynamics on Vv,r so that all initial configurations
ξ in Ω+

Vv,r
are coupled at all times. The irreducibility assumption ensures the dynamics

constructed above are ergodic for any fixed r. Thus, in the limit as the number of steps
of the dynamics tends to infinity, the distribution converges to ρ+Vv,r . Taking r to infinity

as well (in a suitable manner) gives convergence in distribution to µ+. The method of
coupling-from-the-past allows us to move from distributional limits to stronger notions
of convergence, and thus construct a coding for µ+, as will be seen in Section 4.3.
Finally, in Section 4.4 we consider the + and − dynamics simultaneously (in a properly
coupled manner), and deduce that, under the appropriate assumptions, the coding
radius R satisfies (2.1). This allows us to transfer quantitative control on the total
variation distance between ρ+Vv,r and ρ−Vv,r to quantitative control on the coding radius;

in particular, it shows that µ+ = µ− is sufficient to prove that both measures are ffiid.
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4.2 The coupled dynamics

Let Y = (Yv)v∈V be an i.i.d. process and suppose that, for each v ∈ V,

Yv = (Yv,n)n∈N

is a collection of i.i.d. random variables. Further suppose that (A, π) and (B, θ) are two
probability spaces and that, for each v ∈ V and n ∈ N,

Yv,n = (Av,n, Bv,n)

are two independent random variables sampled from π and θ, respectively. We denote
An := (Av,n)v∈V and Bn := (Bv,n)v∈V. The dynamics we construct are functions of Y
(specifically, the n-th step of the dynamics is a function of An and Bn), which thus yields
a coding ϕ from Y to µ+. We now explain how to choose (A, π), (B, θ) and ϕ. To remain
general, we not explicitly define (A, π), (B, θ) and ϕ, but rather let them be arbitrary
objects satisfying certain properties required for the proof. This gives us a framework
which is sufficiently flexible to prove both Theorem 2.1 and Theorem 2.2. After each
definition, we also provide constructions to ensure that the objects we require actually
exist. In fact, these will be used for the proof of Theorem 2.1; more delicate versions of
these constructions, in which A and B are finite, will be required for Theorem 2.2 (see
Section 6).

As mentioned above, the dynamics we construct are a coupled version of single-site
Glauber dynamics of the given upwards specification. We begin by selecting (A, π) and a
measurable function

F : Ω+ ×V ×A → S,

which is used to define a single-site update. Specifically, we require that

• The random variable F (ω, v, ·) matches the specification at v:

π (F (ω, v, ·) = s) = ρωv [σv = s] for any ω ∈ Ω+ and s ∈ S. (4.1)

• F is monotonic in ω:

F (ω, v, a) ≤ F (ω′, v, a) for any a ∈ A and ω, ω′ ∈ Ω+ such that ω ≤ ω′, (4.2)

• F is Γ-invariant:

F (ω, v, a) = F (γω, γv, a) for any a ∈ A, ω ∈ Ω+ and γ ∈ Γ. (4.3)

At this point, we place no additional restrictions on A (in Section 6, we will need A to
be finite). This allows to give a simple construction for F : set A := [0, 1], π := Leb, the
Lebesgue measure on the interval, and, for any ω ∈ Ω+ and s ∈ S,

a∗(ω, v, s) := ρωv [σv < s] and a∗(ω, v, s) := ρωv [σv ≤ s].

It is straightforward to check that, for any ω ∈ Ω+, s′ ∈ S and a ∈ (a∗(ω, v, s
′), a∗(ω, v, s′)),

min{s ∈ S : a∗(ω, v, s) ≥ a} = max{s ∈ S : a∗(ω, v, s) ≤ a} = s′.

Therefore, choosing an arbitrarily s0 ∈ S, we may now define F by

F (ω, v, a) :=

{
min{s ∈ S : a∗(ω, v, s) ≥ a} = max{s ∈ S : a∗(ω, v, s) ≤ a} if a ∈ A′

s0 otherwise
.
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where
A′ :=

⋂
ω∈Ω+

⋂
v∈V

⋃
s∈S

(a∗(ω, v, s), a
∗(ω, v, s)).

This choice of A′ ensures that F (ω, v, a) is well defined; we note that A′ has Lebesgue
measure one as its complement is the countable union of Lebesgue measure zero sets.
Using that the upwards specification is monotone and Γ-invariant, it follows from the
definition of F that (4.2) and (4.3) hold. To see that (4.1) holds, note that

π (F (ω, v, ·) ≤ s) = Leb({a ∈ [0, 1] : a∗(ω, v, s) ≥ a}) = a∗(ω, v, s) = ρωv [σv ≤ s].

For any v ∈ V and a ∈ A, we define

Fv,a : Ω+ → Ω+

by

Fv,a(ω)u :=

{
F (ω, v, a) if u = v

ωu otherwise
, ω ∈ Ω+, u ∈ V.

Note that (4.3) implies that Fv,a(ω) = Fγv,a(γω) for γ ∈ Γ and ω ∈ Ω+.
We now describe how to choose the updating sites. In our dynamics, the set of

updated sites are deterministic; we must, however, be careful as to the order of the
chain of single-site updates which make up a single step of the dynamics. The most
straightforward way to order the sites is to associate a uniform [0, 1] random variable to
each, and use the inherited linear order. This approach is very useful, but is slightly too
rigid to allow us to study the coding properties we are interested in – specifically, this
will be an issue when we are looking for codings from a finite-valued i.i.d. process. Thus,
we give a more abstract definition.

Let (B,B) be a measurable space and let O : BV × V2 → {0, 1} be measurable and
Γ-invariant - i.e.

O(γη, γu, γv) = O(η, u, v) for all γ ∈ Γ.

We regard η ∈ BV as inducing via O an order �η on V, where O(η, u, v) = 1 indicates
that u precedes v in this order. Formally, �η is a binary relation on V, defined by

u �η v if and only if O(η, u, v) = 1. (4.4)

A general choice of O and η does not result in a linear ordering – or even a preorder,
for that matter! For a probability measure θ on B, we say that O is θ-compatible if �η
is almost surely a linear ordering, when (ηv)v∈V are i.i.d. samples from θ. If B = [0, 1]

and θ is the uniform measure, we can choose O(η, u, v) = 1ηu≤ηv . This function is clearly
θ-compatible, and recovers the simplest ordering described earlier.

Given a finite sequence q = ((v1, a1), . . . , (vk, ak)) ∈ (V ×A)k, we denote

Fq := Fv1,a1 ◦ · · · ◦ Fvk,ak .

Given ν ∈ AV, η ∈ BV such that �η is a linear order, a vertex v ∈ V and an integer r ≥ 0,
we define

q(ν, η, v, r) := ((v1, a1), . . . , (vm, am)),

where

m = |Vv,r|, Vv,r = {v1, . . . , vm}, v1 �η · · · �η vm, ai = νvi .

This gives rise to a coupled dynamics on Ω, namely,

Fq(ν,η,v,r) : Ω+ → Ω+.
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For any v ∈ V and r ∈ N, define

Q+,v,r : Ω→ Ω+
Vv,r

to be the natural projection, i.e.

Q+,v,r(ω)u :=

{
ωu if u ∈ Vv,r
+ otherwise

.

This allows us to define the random function from Ω to Ω+:

f̃+,v,r
n := Fq(An,Bn,v,r) ◦Q

+,v,r.

The function f̃+,v,r
n describes the nth round of updates in the coupled dynamics. We also

define

f+,v,r
n := f̃+,v,r

1 ◦ · · · ◦ f̃+,v,r
n . (4.5)

There are two important things to note about f+,v,r
n . First, the order of composition is

reverse from the usual convention. This will prove essential to our construction. For
further discussion, see Section 4.3. Second, for any v, r and n, f+,v,r

n is a deterministic
function of Y .

Having chosen our definitions carefully, we easily obtain the following.

Lemma 4.1. For any r ≥ 0 and v ∈ V,

f+,v,r
n (+)

(d)−−→ ρ+Vv,r as n→∞.

Proof. The consistency relations of the upwards specification ρ+ imply that ρ+Vv,r is

stationary with respect to Fu,A for any u ∈ Vv,r, where A is sampled from π. Since Q+,v,r

is the identity map on Ω+
Vv,r

, ρ+Vv,r is also stationary with respect to f̃+,v,r
n .

We now consider the countable-state Markov chain

g+,v,r
n := f̃+,v,r

n ◦ · · · ◦ f̃+,v,r
1 ,

given by composing the f̃+,v,r
n in the usual order. The chain is aperiodic (as f̃+,v,r

i (+)

equals + with positive probability) and irreducible (since ρ+ is irreducible). Since there
exists a stationary distribution, the Markov chain is ergodic on the states with positive
ρ+Vv,r measure, and thus g+,v,r

n (+) converges in distribution to ρ+Vv,r . Since g+,v,r
n (+) and

f+,v,r
n (+) have the same distribution, we are done.

If we assume that S has a minimal element − and ρ is an upwards-downwards
specification, we may extend F to Ω+ ∪Ω−, define a − projection Q−,v,r, and thus create
f̃−,v,rn and f−,v,rn in order to define the − dynamics. Lemma 4.1 also applies to this
dynamics.

4.3 Monotonicity and existence of factors

We can think of f+,v,r
n as a (random) function from Ω to Ω+

Vv,r
which inherits several

monotonicity properties from the upward specification ρ+ (which must be stationary
with respect to it).

Lemma 4.2. The function f+,v,r
n (ω) preserves the order in ω and is decreasing in r. That

is, for any n, r ≥ 0 and v ∈ V,

f+,v,r
n (ω) � f+,v,r

n (ω′) for any ω, ω′ ∈ Ω such that ω ≤ ω′,
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and
f+,v,r+1
n (ω) � f+,v,r

n (ω) for any ω ∈ Ω.

In particular,
f+,v,r
n+1 (+) ≤ f+,v,r

n (+).

Proof. Thanks to (4.2), we know that Fu,a(ω) ≤ Fu,a(ω′) for all a ∈ A, u ∈ Vv,r, and
ω, ω′ ∈ Ω+ such that ω ≤ ω′. Furthermore, Q+,v,r also maintains the order on Ω for
fixed v and r, and we conclude that f+,v,r

n , a composition of monotone functions, is also
monotonic.

We now turn to prove the second monotonicity statement. Since Q+,v,r is decreasing
in r, it suffices to show that, almost surely,

Fq(An,Bn,v,r+1)(ω) ≤ Fq(An,Bn,v,r)(ω) for all ω ∈ Ω+
Vv,r

.

Fix ν ∈ AV and η ∈ BV such that �η is a total order on V. Write Vv,r = {v1, . . . , vB(r)}
and Vv,r+1 = {u1, . . . , uB(r+1)}, where v1 �η · · · �η vB(r) and u1 �η · · · �η uB(r+1). It
is clear that vi = ui′ and vj = uj′ then i ≤ j if and only if i′ ≤ j′. Therefore, for some
functions Gi : Ω+ → Ω+ such that Gi(ω)Vv,r = ωVv,r for all ω ∈ Ω+, we have

Fq(ν,η,v,r) = Fv1,νv1 ◦ Fv2,νv2 ◦ · · · ◦ FvB(r),νvB(r)

Fq(ν,η,v,r+1) = G0 ◦ Fv1,νv1 ◦G1 ◦ Fv2,νv2 ◦G2 ◦ · · · ◦ FvB(r),νvB(r)
◦GB(r).

Observe that, for any ω ∈ Ω+
Vv,r

, we have Gi(ω) ≤ ω and Fw,ηw(ω) ∈ Ω+
Vv,r

for any

w ∈ Vv,r. Thus, given ω ∈ Ω+
Vv,r

, removing every composition with Gi from the above se-
quence defining Fq(ν,η,v,r+1)(ω) only increases the output, showing that Fq(ν,η,v,r+1)(ω) ≤
Fq(ν,η,v,r)(ω), as desired.

The final inequality now follows, since + is the maximal element of Ω:

f+,v,r
n+1 (+) = f+,v,r

n (f̃+,v,r
n+1 (+)) ≤ f+,v,r

n (+).

We deduce a simple but crucial consequence of the above lemma and the definition
of f+,v,r

n :

Corollary 4.3. The random field

σ+,v,r := lim
n→∞

f+,v,r
n (+)

is defined almost-surely and has the distribution ρ+Vv,r . Furthermore, if µ+ is a probability
measure,

σ+ := lim
r→∞

σ+,v,r = lim
n,r→∞

f+,v,r
n (+)

is also a well-defined random field, independent of v, with distribution µ+.

Proof. The sequence {f+,v,r
n (+)}n is decreasing, and must have an almost-sure limit,

taking value in S
V

for some possibly larger S ⊃ S (if S is not finite, and thus not compact
in the discrete topology, we cannot be sure that the limit is supported on Ω a priori ).
However, by Lemma 4.1, the distribution of the limiting random variable is known to be
ρ+Vv,r , which is supported on Ω+, giving the desired result.

By Lemma 4.2, σ+,v,r is decreasing in r, meaning it, too, has an almost-sure limit
in a possibly larger space as r goes to infinity. Thanks to the monotonicity of the
specifications, the resulting limit is independent of v. Since µ+ is defined by exhaustion,
σ+ must have distribution µ+, meaning σ+ is almost-surely supported in Ω. To complete
the proof, we note that the array {f+,v,r

n (+)}n,r is monotonically decreasing pointwise
in both n and r, and thus extracting any diagonal sequence maintains the almost-sure
convergence properties above.

EJP 27 (2022), paper 51.
Page 22/32

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP778
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Finitary codings for the random-cluster and other infinite-range monotone models

Remark 4.4 (Coupling-from-the-past). Let us momentarily reconsider the standard,
“forward” dynamics given by g+,v,r

n := f̃+,v,r
n ◦ · · · ◦ f̃+,v,r

1 . In distribution, the random
variables f+,v,r

n (+) and g+,v,r
n (+) are identical for any fixed n. However, g+,v,r

n (+) cannot
be monotonic in n - if our configuration + evolved to be some different configuration ω
at time n, there is no reason to believe that the next step in the dynamic is smaller than
ω! In fact, g+,v,r

n (+) does not have an almost-sure limit, as it continues changing after
every application of the gn.

On the other hand, f+,v,r
n (ω) is defined from the past, and can be thought of as

evaluating the forward dynamics at time 0, with ‘initial’ conditions of ω at time −n. Since
f+,v,r
n is a function from Ω to Ω+,v,r, we can sample f+,v,r

n+1 given f+,v,r
n by taking ω to

the (random) configuration f̃+,v,r
n+1 (ω), and then mapping it to the (deterministic, given

the conditioning) configuration assigned to it by f+,v,r
n . This concatenation construction

is crucially important for the final inequality of Lemma 4.2, and is the conceptual
justification for the existence of almost-sure limits in coupling-from-the-past.

Proof of Theorem 2.1, item 1. The existence of an i.i.d. coding follows by explicit con-
struction: for any v ∈ V, σ+

v = limn,r→∞ f+,v,r
n (+)v. Since µ+ is a probability measure

by assumption, Corollary 4.3 shows that σ+ is distributed as µ+; the Γ-invariance of the
specifications implies that σ+ is a deterministic and Γ-equivariant function of Y .

4.4 Finitary factors via quantitative bounds on coding radius

For this section, we assume that S is a finite spin space and that ρ is a monotone
Γ-invariant irreducible upwards-downwards specification. In this case, S has both a
maximal and minimal element, and both µ+ and µ− are probability measures.

As mentioned above, the construction in Section 4.2 extends to upwards-downwards
specifications. Observe that f−,v,rn enjoys similar properties as f+,v,r

n , with the notable
difference that f−,v,rn (ω) is increasing in r (it still preserves the order in ω). As in
Corollary 4.3, σ−,v,r and σ− are defined almost surely and are distributed as ρ−Vv,r and

µ−, respectively.
We stress that the + and − dynamics are coupled as they are both defined through

the same process Y . In particular, almost surely,

f−,v,rn (ω) ≤ f+,v,r
n (ω′) for any v ∈ V, r ∈ N and ω, ω′ ∈ Ω such that ω ≤ ω′.

This implies that, almost surely,

σ−,v,r ≤ σ− ≤ σ+ ≤ σ+,v,r for any v ∈ V.

For finite spin spaces, we have the following lemma which relates the probability of
disagreement under monotone couplings to total-variation bounds:

Lemma 4.5. Let X and Y be random variables taking value in a totally ordered, finite
spin space S. If P[X ≤ Y ] = 1, then

P[X 6= Y ] ≤ (|S| − 1) · ‖X − Y ‖TV .

Proof. Identifying S with the set {0, . . . , |S| − 1}, we see that, by Markov’s inequality,

P[X 6= Y ] = P[Y −X ≥ 1] ≤ E[Y −X] = Eop[Y −X] ≤ (|S| − 1)Pop[X 6= Y ],

where Pop is an optimal coupling between X and Y . In an optimal coupling, the
probability of two variables not matching is exactly the total variation distance, as
required.
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Proof of Theorem 2.1, item 2. We let (A, π) and F be as above. We let (B, θ) be the
Lebesgue measure space on [0, 1] and set O(η, u, v) := 1ηu≤ηv . With this choice, it is clear
that σ+,v,r is measurable with respect to YVv,r . Recall that σ+ describes a coding from Y

to µ+. Our goal is then to bound its coding radius Rv.
Define the random variable

R̃v := min
{
r ≥ 0 : σ+,v,r

v = σ−,v,rv

}
,

where we set R̃ =∞ if the two spins do not agree for any r. Thus, σ+
v = σ+,v,r

v for any
r ≥ R̃v. Since σ+,v,r is independent of (Yu)u6∈Vv,r and R̃v is a stopping time with respect

to the filtration of (YVv,r )r, it is clear that Rv ≤ R̃v.
By Lemma 4.5,

P[R̃v > r] = P[σ+,v,r
v 6= σ−,v,rv ] ≤ (|S| − 1) ·

∥∥ρ+Vv,r (σv ∈ ·)− ρ−Vv,r (σv ∈ ·)∥∥TV ,
as required. In particular, if µ+ = µ−, it is clear the total variation distance must vanish
as r →∞, so that Rv is almost-surely finite.

5 Weak spatial mixing implies exponential mixing in time

In this section, we prove bounds on the mixing-time of the dynamics considered in
Section 4. Throughout this section, we will assume that S is finite and that we are given
a monotone Γ-invariant irreducible upwards-downwards specification ρ. In particular,
we use the coupled + and − dynamics as in Section 4.4.

A monotone Γ-invariant (upwards-downwards) specification ρ is said to satisfy weak
spatial mixing with rate c > 0 if (2.3) holds for some C. Martinelli and Olivieri [22] show
that when G = Zd and ρ is a monotone Γ-invariant specification satisfying a finite-range
assumption and a finite-energy assumption, weak spatial mixing implies that the mixing-
time of the single-site Glauber dynamics (as considered in Section 4) has exponential
tails (their setting is a continuous-time dynamics on Zd, but the proof easily adapts to
our discrete-time dynamics on Zd). In our notation, this means that the total-variation
distance between limr→∞ f+,v,r

n (+)v and limr→∞ f−,v,rn (−)v is exponentially small in n.
Using the order constructed in Section 4.2, we can see that the finite range assumption
implies that f+,v,n

n (+)v and f−,v,nn (−)v are exponentially close, as both f+,v,r
n (+) and

f−,v,rn (−) depend only on {Au,i, Bu,i}u∈Vv,Cr,i≤n for some constant C > 0 depending on
the range of the specification.

We extend the result of Martinelli–Olivieri in a number of directions. First, we allow
an arbitrary quasi-transitive graph G of sub-exponential growth (though we require a
slightly stronger quantitative bound on the rate of growth for the full conclusion). Second,
we drop the finite-range and finite-energy assumptions, requiring only an irreducibility
assumption. Third, we work with a monotone upwards-downwards specification, instead
of a (usual) monotone specification. Lastly, we keep track not only of the amount of time
required until mixing, but also the amount of space (in the graph G) required.

Theorem 5.1. Let G be an infinite graph and Γ be a group acting quasi-transitively
on V by automorphisms of G. Let S be a totally ordered finite spin space and ρ be a
monotone Γ-invariant irreducible upwards-downwards specification that satisfies weak
spatial mixing with rate c > 0. If G has sub-exponential growth, i.e., B(r) = eo(r) as
r →∞, then

max
v∈V

∥∥f+,v,n
n (+)v − f−,v,nn (−)v

∥∥
TV
≤ e−n

1−o(1)
as n→∞.

Moreover, if there exists β < c log 2 such that B(r) ≤ e
βr

log r for large r, then there exists
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c′ > 0 such that

max
v∈V

∥∥f+,v,n
n (+)v − f−,v,nn (−)v

∥∥
TV
≤ e−c

′n for large n.

For the proof, we require the following calculus lemma, whose proof we postpone to
the end of the section.

Lemma 5.2. Let ψ : N→ (0,∞) be monotone decreasing to zero and let b : N→ [0,∞)

be sub-linear. Suppose that, for some C, c > 0,

ψ(2n) ≤ eb(s)ψ(n)2 + Ce−cs for all n ≥ s ≥ 1.

Then ψ(n) decays faster than any stretched-exponential, i.e., ψ(n) ≤ exp(−n1−o(1)). In
addition, if b(n) ≤ βn

logn for some β < c log 2 and all sufficiently large n, then ψ(n) decays
exponentially fast.

Proof of Theorem 5.1. For n, r ≥ 0, define

φ(n, r) := max
v∈V

P[f+,v,r
n (+)v 6= f−,v,rn (−)v].

Throughout the proof, we repeatedly use Lemma 4.2 without explicit mention; in particu-
lar, we use the fact that φ(n, r) is decreasing in both n and r, as easily follows.

It suffices to show that ψ(n) := φ(n, n) has the desired decay rate. Note that the
weak spatial mixing assumption implies that µ+ = µ−, which, together with irreducibility,
implies that ψ(n)→ 0 as n→∞. Thus, the theorem will follow from Lemma 5.2 once we
establish the following inequality:

ψ(2n) ≤ φ(2n, n+ s) ≤ 2B(s)ψ(n)2 + 3C|S|e−cs for all n ≥ s ≥ 0.

In fact, we show the slightly stronger inequality:

φ(n+m, r+s) ≤ 2B(s)φ(n, r)φ(m, r+s)+2C|S|e−cs+C|S|e−cr for all n,m, s ≥ 0 and r ≥ s.
(5.1)

The earlier inequality follows by setting n = m = r.
Recall that f±,v,rn is measurable with respect to the i.i.d. process Y . Let ξ+

v ∼ ρ+Vv,r
and ξ−v ∼ ρ

−
Vv,r

be a random variables, independent of Y , satisfying that ξ+
v ≥ ξ−v almost

surely. Note that f+,v,r
n (ξ+

v ) ∼ ρ+Vv,r and f−,v,rn (ξ−v ) ∼ ρ−Vv,r . By comparing f+,v,r
n (+)v to

f+,v,r
n (ξ+

v )v and f−,v,rn (−)v to f−,v,rn (ξ−v )v and using Lemma 4.5, we see that

φ(n, r) ≤ φ+(n, r) + φ−(n, r) + |S| ·max
v∈V

∥∥ρ+Vv,r (σv ∈ ·)− ρ−Vv,r (σv ∈ ·)∥∥TV , (5.2)

where

φ+(n, r) := max
v∈V

P[f+,v,r
n (+)v 6= f+,v,r

n (ξ+
v )v],

φ−(n, r) := max
v∈V

P[f−,v,rn (−)v 6= f−,v,rn (ξ−v )v].

Next, we now show that

φ±(n+m, r+s) ≤ B(s)φ(n, r)φ(m, r+s)+|S|·max
v∈V

∥∥ρ+Vv,s(σv ∈ ·)−ρ−Vv,s(σv ∈ ·)∥∥TV . (5.3)

This statement will give (5.1) thanks to (2.3) and (5.2). We show (5.3) only for φ+ as
the proof for φ− is similar. Recall from (4.5) that f+,v,r+s

n+m is the composition of n + m

independent copies of f̃+,v,r+s
1 . Letting h+,v,r+s

n be identical in distribution to f+,v,r+s
n
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and independent of Y and ξ+
v , we see that f+,v,r+s

m ◦ h+,v,r+s
n has the same distribution

as f+,v,r+s
n+m . Therefore,

φ+(n+m, r + s) = max
v∈V

P
[
f+,v,r+s
m (h+,v,r+s

n (+))v 6= f+,v,r+s
m (h+,v,r+s

n (ξ+
v ))v

]
,

Now, letting Ev,u denote the event that h+,v,r+s
n (+)u = h+,v,r+s

n (ξ+
v )u and letting Ev :=⋂

u∈Vv,s Ev,u,

φ±(n+m, r + s) ≤ max
v∈V

P(Ecv) · P
[
f+,v,r+s
m (+)v 6= f+,v,r+s

m (−)v
]

+ max
v∈V

P
[
f+,v,s
m (h+,v,r+s

n (ξ+
v ))v 6= f−,v,sm (h+,v,r+s

n (ξ+
v ))v

]
.

This follows by two different types of monotonocity: if the configurations did not couple
by time n, we may assume they take on their maximal difference. If they do, we may
assume the boundary conditions outside Vv,s take on the worst possible state.

For the first term, since Vu,r ⊂ Vv,r+s for u ∈ Vv,s, we have for any u ∈ Vv,s that

P(Ecv,u) ≤ P
[
h+,v,r+s
n (+)u 6= h−,v,r+sn (−)u

]
≤ P

[
h+,u,r
n (+)u 6= h−,u,rn (−)u

]
≤ φ(n, r),

so that
P(Ecv) ≤

∑
u∈Vv,s

P(Ecv,u) ≤ B(s)φ(n, r).

For the second term, we note that s ≤ r implies that ρ−Vv,s ≤st ρ
−
Vv,r
≤st ρ

+
Vv,r
≤st ρ

+
Vv,s

.

Since ξ+
v ∼ ρ

+
Vv,r

, we see that

f+,v,s
m (h+,v,r+s

n (ξ+
v )) ≤ f+,v,s

m (h+,v,s
n (ξ+

v )) ≤st ρ
+
Vv,s

,

f−,v,sm (h+,v,r+s
n (ξ+

v )) ≥ f−,v,sm (h−,v,sn (ξ+
v )) ≥st ρ

−
Vv,s

.

Thus, Lemma 4.5 gives that

P
[
f+,v,s
m (h+,v,r+s

n (ξ+
v ))v 6= f−,v,sm (h+,v,r+s

n (ξ+
v ))v

]
≤ |S| ·

∥∥ρ+Vv,s(σv ∈ ·)− ρ−Vv,s(σv ∈ ·)∥∥TV .
Putting this together yields (5.3).

Proof of Lemma 5.2. Denote an := − logψ(n) and observe that the main assumption
implies that

a2n ≥ cs− log(1 + C) for any n ≥ s ≥ 1 such that cs+ b(s) ≤ 2an. (5.4)

The restriction that s ≤ n is a nuisance; to rid ourselves of it, we note that either
an ≥ cn/2 for infinitely many n, or, whenever n is large, any solution to cs+ b(s) ≤ 2an
satisfies s ≤ n. In the former case, it is not difficult to check that an = Ω(n), so that ψ(n)

decays exponentially. We may therefore assume that this is not the case.
We begin by showing that ψ(n) decays faster than any stretched-exponential, that is,

that an grows faster than nδ for any 0 < δ < 1. Since b(s) is sub-linear by assumption, for
any fixed ε > 0, we have cs+ b(s) ≤ 2x for all s ≤ (2/c− ε)x and large x. Since an →∞
as n→∞, it follows from (5.4) that a2n ≥ c(2/c− ε)an − log(1 + C) ≥ (2− εc− ε)an for
large n. We conclude that

lim
n→∞

a2n2−δn =∞ for any 0 < δ < 1.

It is then straightforward to show that an = n1−o(1), establishing the first part of the
lemma.
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Towards showing an exponential bound under the additional assumption on the
growth rate of b(n), let β < c log 2 be such that b(n) ≤ βn

logn . Let β/c < α < log 2. We
claim that

s ≤ 2x
c (1− α

log x ) =⇒ cs+ b(s) ≤ 2x for large x.

Indeed, since s 7→ cs+ b(s) is increasing, this follows from

2x(1− a
log x ) +

2xβ
c (1− α

log x )

log
[

2x
c (1− α

log x )
] = 2x(1− a

log x ) ·

1 +
β

c log
[

2x
c (1− α

log x )
]
 ≤ 2x.

Thus, by (5.4), there exists N such that

a2n ≥ 2an(1− α
log an

) for all n ≥ N.

Let 0 < γ < 1 − α
log 2 and let A > 0 be small enough so that a2N ≥ AN/(logN)1−γ . We

prove by induction that

an ≥
An

(log n)1−γ for all n ∈ {N, 2N, 4N, 8N, . . . }.

Since x 7→ 2x(1− α
log x ) is increasing,

a2n ≥ 2an

(
1− α

log an

)
≥ 2An

(log n)1−γ ·
(

1− α

logAn− log(log n)1−γ

)
=

2An

(log 2n)1−γ ·
(log 2n)1−γ

(log n)1−γ ·
(

1− α

logAn− log(log n)1−γ

)
.

The induction step now follows using that (1− γ) log 2 > α and that

(log 2n)1−γ

(log n)1−γ =

(
1 +

log 2

log n

)1−γ

≥ 1 +
(1− γ) log 2

log n
.

We conclude that

ψ(n) ≤ exp

(
− An

(log n)1−γ

)
for all n ∈ {N, 2N, 4N, 8N, . . . }. (5.5)

Towards upgrading this bound to the desired exponential bound, define

`(n) := e
n

(logn)1−γ/2 ψ(n) + e−cn/4+
√
n.

Using the recursion assumption with s = n, we see that for large n,

`(2n) = e
2n

(log 2n)1−γ/2 ψ(2n) + e−cn/2+
√

2n

≤ e
2n

(log 2n)1−γ/2
+ cn

lognψ(n)2 + e
2n

(log 2n)1−γ/2
−cn

+ e−cn/2+
√

2n

≤ e
2n

(logn)1−γ/2 ψ(n)2 + e−cn/2+
√

2n+1

≤ `(n)2.

Since (5.5) implies that lim infn→∞ `(n) = 0, there exists M ≥ 1 such that `(M) ≤ 1/e and
`(2n) ≤ `(n)2 for all n ≥M . Then `(2nM) ≤ e−2n for all n ≥ 0. Since maxn≤m≤2n `(m) ≤
en/(logn)1−γ/2`(n), it easily follows that `(n) decays exponentially fast, and we conclude
that ψ(n) also decays exponentially fast.
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6 Space-time finitary codings

The goal of this section is to prove Theorem 2.2. As such, the graph G will be
an infinite quasi-transitive graph satisfying (2.2), S will be finite (and identified with
{0, 1, . . . , |S| − 1}), and ρ will be a monotone Γ-invariant irreducible marginally finite
upwards-downwards specification such that µ+ = µ−.

We will reuse the dynamics of Section 4, but will now demand that the spaces A and
B are both finite. Before we construct suitable versions of (A, π), F , (B, θ) and O, let us
outline the properties required to obtain a space-time finitary coding.

For any v ∈ V, define

Tv := min
{
n : f+,v,n

n (+)v = f−,v,nn (−)v
}
.

The assumption µ+ = µ− implies that σ+ = σ− (as was shown in the proof of Theorem 2.1,
item 2). Thus, from Corollary 4.3, we conclude that Tv is almost surely finite, and, in
particular,

σ+
v = σ−v = f+,v,Tv

Tv
(+) = f−,v,TvTv

(−), v ∈ Zd.

With a finite-valued construction of (A, π) and (B, θ), this does not allow us to conclude
that the coding ϕ is finitary (let alone space-time finitary). Indeed, Tv does not bound
the coding radius as it is not necessarily a stopping time with respect to the filtration
(YVv,r ). This is because the ordering �Bn restricted to Vv,r may depend on {Bu,n}u6∈Vv,r .

To deal with this issue, for η ∈ BV, we define

Ru,v(η) := min
{
r ≥ 0 : 1{u�ηv} = 1{u�η′v} for any η′ satisfying η′Vu,r∪Vv,r = ηVu,r∪Vv,r

}
,

where we again set the variable to∞ if the set is empty. In words Ru,v(η) is the minimal
radius around u and v needed to determine the relative �η-order between u and v. We
now set

T ∗v := 2 min
{
n : f+,v,n

n (+)v = f−,v,nn (−)v and Ru,w(Bi) ≤ n for all u,w ∈ Vv,n and

0 ≤ i ≤ n
}
.

The factor of 2 is introduced to accommodate the fact that Vu,n ⊂ Vv,2n for u ∈ Vv,n.
Then T ∗v is a bound on the coding radius at v. More importantly, it is a bound on the
space-time coding radius, as one can easily see. Thus, the first part of Theorem 2.2
will follow once we can construct finite probability spaces (A, π) and (B, θ) and their
associated functions that imply T ∗v is almost surely finite. The second part will require
quantitative bounds on the tails of T ∗v , which will require the use of the mixing time
results of the previous section.

6.1 Constructing finite probability spaces

We begin by choosing (A, π) and F . We set

A :=
{
ρωv [σv ≤ s]

}
ω∈Ω+∪Ω−, v∈V, s∈S .

Since S is finite and ρ is marginally finite, we immediately see that A is finite as
well. Thus, we may order the finite number of elements of A in increasing order,
0 ≤ a1 < · · · < am = 1, where m := |A|. Letting a0 := 0, we define π by

π({ai}) := ai − ai−1, 1 ≤ i ≤ m.

We then define F by

F (ω, v, ai) := min{s ∈ S : ρωv [σv ≤ s] ≥ ai}, ω ∈ Ω+ ∪ Ω−, 1 ≤ i ≤ m.
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It is straightforward to check that (4.1), (4.2) and (4.3) hold, where we recall that, in all
those equations, we allow ω ∈ Ω+ ∪ Ω−.

We now turn to choosing (B, θ) and O. We set B := {1, . . . , D} for some integer
D ≥ 2 and we set θ to be the uniform measure on B. Given η ∈ BV and v ∈ V, define
Zv(η) = (Zv,n(η))n≥0 ∈ NN by

Zv,n(η) :=
∑

u∈Vv,n\Vv,n−1

ηu,

where it is understood that Zv,0(η) := ηv. We now define

O(η, u, v) := 1Zu(η)≤Zv(η),

where ≤ is used to indicate the lexicographical order on NN. This creates a preorder �η
on V. The following lemma shows that O is θ-compatible, i.e., that �η is almost surely a
total ordering, when (ηv)v∈V are i.i.d. samples of θ.

Lemma 6.1. Let G be an infinite quasi-transitive graph satisfying (2.2). Then O is
θ-compatible and, letting η = (ηv)v∈V be i.i.d. random variables sampled from θ,

P(Ru,v(η) > r) ≤ D−r for any distinct u, v ∈ V and r ≥ 0.

Proof. Fix u, v ∈ V distinct. Consider the event

An :=

n⋂
i=1

{Zu,i(η) = Zv,i(η)}.

Observe that O is θ-compatible if and only if P(An) → 0 as n → ∞. Observe also that
Ru,v(η) > n implies the occurrence An. Thus, the lemma will follow once we show that
P(An | An−1) ≤ 1

D for all n ≥ 1. By (2.2), there exists some wn ∈ (Vu,n \Vu,n−1) \Vv,n.
Then

P
(
An | ηV\{wn}

)
≤ max

k∈Z
P(ηwn = k) ≤ 1

D .

Since An−1 is measurable with respect to ηV\{wn}, it follows that P(An | An−1) ≤ 1
D .

6.2 Proof of Theorem 2.2

The first item of the theorem will follow once we show that T ∗v is almost surely finite.
By monotonicity, f+,v,n

n (+)v = f−,v,nn (−)v for all n ≥ Tv. Thus, since Tv is almost surely
finite, it suffices to show that P(En) → 0 as n → ∞, where En is the event that there
exists 0 ≤ i ≤ n and a pair of vertices u,w ∈ Vv,n for which Ru,w(Bi) ≥ n. Indeed, taking
D to be larger than 3∆2, where ∆ is the degree of G, the union bound and Lemma 6.1
allow us to conclude that

P[En] ≤ (n+ 1)B(n)2D−n ≤ 10n∆2nD−n ≤ 2−n for any sufficiently large n.

This completes the proof of the first item of the theorem.
We now turn to the second item of the theorem. Since, on the complement of En,

Tv ≤ n implies that T ∗v ≤ 2n, we see that

P[T ∗v > 2n] ≤ P[En] + P[
{
T ∗v > 2n

}
∩ Ecn] ≤ P[En] + P[Tv > n].

Thus, for large n,

P[T ∗v > 2n] ≤ 2−n + |S| ·
∥∥f+,v,n
n (+)v − f−,v,nn (−)v

∥∥
TV
,

and the theorem follows from Theorem 5.1.
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7 Codings from finite-valued i.i.d. processes

In this section, we prove Corollary 2.3. To this end, we require a result from [29]
which allows to convert space-time finitary codings with exponential tails to fv-ffiid with
stretched-exponential tails.

Suppose that Y = (Yv,i)v∈Zd,i≥0 are i.i.d. random variables taking values in a finite set
T̃ . Let 0 be the origin of Zd, and F = (Fn)n≥0 be a strictly increasing sequence of subsets
of Zd × N with F0 := {(0, 0)}, and consider the associated σ-algebras {Fnv }v∈Zd,n≥0

defined by
Fnv := σ

(
{Yv+u,i}(u,i)∈Fn

)
. (7.1)

An N-valued random field τ = (τv)v∈Zd is said to be a F -stopping-process for Y if,
for every v, τv is an almost surely finite stopping time with respect to the filtration
(Fnv )n≥0. When we say that such a stopping-process is stationary, we shall mean that
the same stopping rule is used at every vertex (rather than just meaning that its law is
translation-invariant). Given a F -stopping-process, we denote by Y τ the random field

Y τ :=
(
(Yv+u,i)(u,i)∈Fτv

)
v∈Zd .

Note that (Y τ )v takes values in the finite-configuration space
⋃
n≥0 T̃

Fn . We say that F
is linear if

∆n := max
{

max{|u|, i} : (u, i) ∈ Fn
}
≤ ∆n for some ∆ ≥ 1 and all n ≥ 0. (7.2)

Proposition 7.1 ([29, Proposition 10]). Let Y = (Yv,i)v∈Zd,i≥0 be a finite-valued i.i.d.
process, let F be linear and let τ be a stationary F -stopping-process for Y . Suppose that
τv has exponential tails and E|Fτv | < M for some integer M . Then Y τ is a translation-
equivariant finitary factor of ((Yv,i)0≤i<M )v∈Zd with stretched-exponential tails.

Proof of Corollary 2.3. In the proof, all factors are translation-equivariant, i.e., Γ-factors
where Γ is the group of translations.

Suppose first that G = Zd. In this case, µ+ is a measure on SZ
d

. By Theorem 2.2,
there exists a space-time finitary coding ϕ from an i.i.d. process Y = (Yv,i)v∈Zd,i≥0

to µ+ whose space-time coding radius R∗ has exponential tails. Let R∗v denote the
space-time coding radius of the vertex v ∈ V. Towards applying Proposition 7.1, define
Fn := {(u, i) : |u| ≤ n, 0 ≤ i ≤ n} and note that the random field τ = (R∗v)v∈Zd is
a stationary F -stopping-process for Y . Since τv has exponential tails, it follows that
E|Fτv | < ∞. Note that, by definition of the process Y τ , there exists a deterministic
function ψ such that ϕ(Y )v = ψ((Y τ )v) for all v (ψ may, in some sense, be thought of as
ϕ(·)0). In particular, µ+ is a finitary factor of Y τ with coding radius 0. It thus suffices to
show that Y τ is fv-ffiid with stretched-exponential tails. Indeed, letting M be any integer
larger than E|Fτv |, Proposition 7.1 yields that Y τ is a finitary factor of ((Yv,i)0≤i<M )v∈Zd

with stretched-exponential tails. Since the latter process is a finite-valued i.i.d. process,
this yields the required coding for µ+, completing the proof in the case of G = Zd.

Suppose now thatG is the line graph ofZd. In this case, µ+ is a measure on SE(Zd) and
the coding ϕ obtained from Theorem 2.2 is from an i.i.d. process Y ′ = (Y ′e,i)e∈E(Zd),i≥0.
Converting the problem to one on the vertices of Zd is simple: Let X ′ be sampled
from µ+, and define X = (Xv)v∈Zd and Y = (Yv,i)v∈Zd,i≥0 by Xv = (X ′e1 , . . . , X

′
ed

) and
Yv,i = (Y ′e1,i, . . . , Y

′
ed,i

), where ej = {v, v + ej} for 1 ≤ j ≤ d. Clearly, X is a space-
time finitary factor of Y with space-time coding radius having exponential tails. The
argument above now shows that, for some M , X is a a finitary factor ((Yv,i)0≤i<M )v∈Zd

with stretched-exponential tails. Going back to the prime processes, we obtain that X ′ is
a finitary factor of ((Y ′e,i)0≤i<M )e∈E(Zd) with stretched-exponential tails, as required. We
note that we have relied very much on the fact that Γ is the translation group (and not a
larger group).
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