
E l e c t r o n i
c

J
o

u
r n a l

o
f

P
r

o b a b i l i t y

Electron. J. Probab. 27 (2022), article no. 45, 1–47.
ISSN: 1083-6489 https://doi.org/10.1214/22-EJP775

Positive random walks and an identity for half-space
SPDEs*

Shalin Parekh†

Abstract
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1 Introduction and context

The present work will focus on three related objects: uniform measures on collections
of nearest-neighbor non-negative paths (e.g., Brownian meander), directed polymers
weighted by such measures, and multiplicative-noise stochastic partial differential
equations (SPDE) in a half-space.

1.1 Half-space stochastic heat equations

We begin our discussion with SPDE’s. The multiplicative-noise stochastic heat equa-
tion has been a frequent subject of research within stochastic analysis and mathematical
physics in recent years. This equation arises naturally in the context of directed polymers
and interacting particle systems, as a weak scaling limit [Cor12]. In spatial dimension
one, the multiplicative-noise stochastic heat equation is also related to the so-called
KPZ equation via the Hopf-Cole transform, and may be solved by the classical Itô-Walsh
construction [Wal86] or by more modern techniques such as regularity structures [HL18].
In the present article, we consider the stochastic heat equation with multiplicative noise
on a half-line:

∂TZ(T,X) =
1

2
∂2
XZ(T,X) + Z(T,X) · ξ(T,X), X ≥ 0, T ≥ 0, (SHE)

where ξ is a Gaussian space-time white noise on R+×R+. Naturally one needs to impose
boundary conditions at X = 0 in order to make sense of this equation. In the present
work we consider two types of boundary conditions, Robin and Dirichlet. First let us
write the Robin boundary condition of parameter A ∈ R:

∂XZ(T, 0) = AZ(T, 0). (1.1)

This type of homogeneous boundary condition has been considered in [CS18, Par19,
GPS20, BBCW18] in the context of interacting particle systems, and a robust solution
theory has been developed in [GH19] using techniques of [Hai14]. This boundary
condition transforms into a Neumann boundary condition for the half-space KPZ equation
upon taking the logarithm. Next, we consider the Dirichlet boundary condition for the
half-space SHE:

Z(T, 0) = 0. (1.2)

This type of boundary condition was considered, for instance, in [GLD12], in the context
of directed polymers near an absorbing wall. Again, one can make sense of the equation
using classical techniques of [Wal86] or more modern ones such as [Hai14]. Our main
result compares these two types of boundary conditions; specifically it allows us to
interchange information about the initial data with that of the boundary condition
imposed on the SHE:

Theorem 1.1. Fix A ∈ R. Let Z(A)
Rob(T,X) denote the solution of (SHE) with Robin

boundary parameter A as in (1.1) and delta initial data Z
(A)
Rob(0, X) = δ0(X). Let

Z
(A)
Dir(T,X) be the solution to (SHE) with Dirichlet boundary condition (1.2) and ini-

tial data Z(A)
Dir(0, X) = eBX−(A+ 1

2 )X , where B is a standard Brownian motion independent
of ξ. Then for each T ≥ 0 we have the following equality of distributions:

Z
(A)
Rob(T, 0)

d
= lim
X→0

Z
(A)
Dir(T,X)

X
. (1.3)
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This will be a consequence of Theorem 2.4, which in turn will use the work of
[BBC20, Wu18] and Theorem 2.2 (our main technical result) as inputs. Let us now
discuss the motivation for this result, the contexts in which it has arisen, and the
methods used to prove it.

To give some motivation towards (1.3), we now explain it using the exact solvability
framework developed in [BBC20], which is a crucial input to the proof of (1.3). Both the
left and right sides of (1.3) have interpretations in terms of partition functions of a certain
family of probabilistic models known as directed polymers (see Section 1.2). Specifically,
the left side of (1.3) can be related to a polymer that is modeled on a Brownian motion
which gets reweighted according to its local time at zero, whereas the right side can be
related to a polymer that is modeled on a Brownian motion conditioned to remain positive.
In [BBC20], the authors use certain nontrivial symmetries of Macdonald polynomials
in order to obtain information about the large-scale behavior of discrete versions of
these polymer models and others (which is similar in theme to, and builds on, older
works of [BC14, COSZ14, OSZ14, IS04, BR01]). One particular result in that paper
(Proposition 8.1) is a highly non-obvious identity in distribution for directed polymers
with log-gamma weights, that effectively allows one to switch some of the bulk weights of
the random environment with those on the boundary without changing the distribution
of the associated partition function. Our main goal was to take the SPDE limit of that
identity, which effectively gives Theorem 1.1 under the appropriate scaling. Hence our
result can be viewed as a special case of more general algebraic principles that may be
used to extract certain nontrivial symmetries in certain half-space models.

The right side of (1.3) equals (∂XZ
(A)
Dir)(T, 0). It is not clear why this derivative should

even exist in the first place, since the spatial regularity of ZDir is much worse than C1.
One of our main technical results, given in Section 4, is that the limit in (1.3) is indeed
well-defined (Corollary 4.3). In fact we will prove something stronger: the limit in the
right side of (1.3) simultaneously exists for all T ≥ 0 almost surely, and is Hölder 1/4−
as a function of T almost surely.

In order to convince the reader that (1.3) is at least plausible, let us verify formally
that the expectations are the same on both sides of the equation. Let P (A)

Rob(T ;X,Y ) de-
note the Robin boundary heat kernel and let PDir(T ;X,Y ) denote the Dirichlet boundary
one, where by heat kernel we mean the fundamental solution of the heat equation with
the associated boundary condition started from the delta measure at point X. Letting
P (T ;X) = 1√

2πT
e−X

2/2T , one may verify directly that these kernels are given by the
following explicit formulas for T,X, Y ≥ 0:

P
(A)
Rob(T ;X,Y ) = P (T ;X + Y ) + P (T ;X − Y )− 2A

∫ ∞
0

P (T ;X + Y + Z)e−AZdZ,

PDir(T ;X,Y ) = lim
A→∞

P
(A)
Rob(T ;X,Y ) = P (T ;X − Y )− P (T ;X + Y ).

By the Duhamel principle (see Definition 2.1) it holds that E[Z
(A)
Rob(T,X)] = P

(A)
Rob(T ; 0, X)

and E[Z
(A)
Dir(T,X)] = E[

∫∞
0
PDir(T ;X,Y )eBY −(A+1/2)Y dY ] =

∫∞
0
PDir(T ;X,Y )e−AY dY .

One then formally interchanges an expectation and a derivative to obtain

E[∂X
∣∣
X=0

Z
(A)
Dir(T,X)] =

∫ ∞
0

∂X
∣∣
X=0

PDir(T ;X,Y )e−AY dY

= 2

∫ ∞
0

∂Y PDir(T ; 0, Y )e−AY dY = P
(A)
Rob(T ; 0, X) = E[Z

(A)
Rob(T, 0)],

where we integrate by parts in the third equality. This shows at a purely formal level
that the expectations on either side of (1.3) are the same.
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Theorem 1.1 suggests a duality between the initial data of a solution to the half-space
SHE and the boundary conditions one imposes on it. It may be interesting to see if
more general versions of this hold. For example, could it be possible that the identity
holds as a process in T and not just in the one-point sense? Using this type of idea,
one may potentially obtain useful information about objects of interest, such as the
Neumann-boundary Kardar-Parisi-Zhang (KPZ) equation that was considered in [CS18].
It was conjectured in [Par19] that one has the almost-sure convergence

lim
T→∞

1

T
logZ

(A)
Rob(T, 0) =

{
− 1

24 , A ≥ −1/2

(A+ 1/2)2 − 1
24 , A ≤ −1/2,

which would give the exact law of large numbers for Neumann-boundary KPZ. Unfortu-
nately Theorem 1.1 alone is not enough to obtain this result. Nevertheless, it is plausible
and even hopeful that a clever use of (1.3) (perhaps combined with some new ideas and
techniques) could lead to quantitative results that are close to the above expression.
Indeed, despite the fact that on the Robin side of (1.3) there is no visible phase transition
at A = −1/2, the appearance of the term A+ 1/2 on the Dirichlet side already indicates
the presence of a nontrivial change in large-scale behavior at A = −1/2. Section 1.3 of
[Par19] includes a further discussion of this. More than just computing the above limit,
we are also interested in computing the limiting distribution of the fluctuations around
the mean value. These should be of order T 1/2 and Gaussian in the A < −1/2 case, and
they should be of order T 1/3 and random-matrix theoretic otherwise (with separate cases
when A = −1/2 and A > −1/2). See for instance [Par19, BBCW18, BBCS18, BBC16].

The main technical difficulties in the present work are of an analytic nature: trans-
lating the discrete identity in [BBC20] to that of (1.3) required us to prove a general
convergence result for directed polymers, stated below as Theorem 1.2. As we will now
see, this involves the analysis of an interesting object in its own right: the Brownian
meander.

1.2 Directed polymers weighted by positive random walks

This brings us to the method of proof of Theorem 1.1. As suggested above, it will be
proved using an approximation via directed polymers with very specific weights, where
a discrete version of this identity holds.

Directed polymers are natural probabilistic objects that were first introduced in
[HH85, IS88]. They generalize directed first- and last-passage percolation and have
deep connections to statistical mechanics and stochastic analysis. Specifically, we
consider an environment {ωi,j}(i,j)∈Z≥0×Z consisting of i.i.d., mean-zero, finite-variance
random variables. The standard deviation of the weights is referred to as the inverse
temperature. One may define a partition function Zω(n, x) as a sum over all directed
nearest-neighbor simple random walk paths (i, γi)0≤i≤n of length n starting from (0, x),
of the product of all weights eωi,γi along the path. Similarly, there is also a natural way to
define random Markovian transition densities associated to this environment ω, wherein
a nearest-neighbor path γ has probability proportional to the product of weights eωi,γi

along it. As is standard practice in statistical mechanics, one may then ask questions
about the existence of infinite-volume limits of these path measures and their typical
fluctuation scale, as well as the typical scale and shape of the fluctuations of the partition
function itself [Com17].

Many seminal results in these directions have been proved, perhaps most notably
that there is a phase transition which becomes apparent in high dimensions. Specifically,
in spatial dimensions greater than two, there is a strictly positive critical value of the
inverse temperature below which weak disorder holds, meaning that the fluctuations of
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a typical polymer path look like Brownian motion and one may construct infinite-length
path measures [CY06, Com17]. Such polymers are said to exhibit weak disorder. In
contrast, lower-dimensional polymers at any nonzero inverse temperature are known
to be characterized by strong disorder, meaning that the path fluctuations are quite
different and there is no sensible notion of an infinite volume Gibbs measure [Com17].
The results of [AKQ14a, AKQ14b] examined the partition function in a regime that lies
between strong and weak disorder. Specifically, in spatial dimension one, they scaled the
inverse temperature of the model like n−1/4 and simultaneously applied diffusive scaling
to the partition function, and there they observed that the fluctuations are governed by
(SHE) and that the path measures themselves have a continuum analogue. Recent work
of [CD20, CSZ18] has investigated the intermediate-disorder behavior in two spatial
dimensions, where the scaling n−1/4 is replaced by (log n)−1/2. In a different direction,
[Wu18] extended the work of [AKQ14a] to the case of half-space polymers with Robin
boundary condition.

We will be interested in the analogous half-space question of intermediate-disorder
fluctuations of the directed polymer partition function associated to uniform non-negative
path measures. Specifically, let

• Pnx denote the uniform probability measure on the collection of all paths (γi)0≤i≤n
such that γ0 = x, |γi+1 − γi| = 1 for i < n, and γi ≥ 0 for all i ≤ n.

• ωi,j be i.i.d. mean-zero, variance-one random variables that are uniformly bounded
from below by a deterministic constant.

• fn be a sequence of functions bounded uniformly by a function growing at-worst
exponentially fast near infinity such that fn(n1/2 ·) converges (as n→∞) to some
function f(·) in the Hölder space Cαloc(R+), for all α ∈ (0, 1/2).

Letting Enx denote the expectation with respect to Pnx , and setting S to be the canonical
process associated to Pnx , one defines a directed-polymer partition function as follows:

Zωk (n, x) := Enx

[
fk(Sn)

n∏
i=0

(1 + k−1/4ωi,Si)

]
.

Note that the expectation is taken only with respect to the random walk, conditional
on the environment ωi,j , which is always assumed to be independent of the walk. We
consider the rescaled partition function

Zn(T,X) := Zωn (nT, n1/2X), (1.4)

where the quantity on the right side is defined by linear interpolation between points of
the lattice L := {(x, n) ∈ Z2

≥0 : n− x ∈ 2Z}.
In a manner analogous to [AKQ14a] we show that Zn converges in law to a random

continuous space-time field. The natural candidate for such a limit would be a continuum
analogue of Zωk (n, x), where the expectation Enx over positive discrete random walks
is replaced by that of continuous ones. Indeed the limiting space-time field can be
described as follows: it has the formal Feynman-Kac interpretation that takes as its
input the so-called Brownian meander [DIM77, DI77] on a finite time interval, and
exponentially weighs it by its integral against a space-time white noise field. More
precisely, if PT

t (X,Y ) denotes the inhomogeneous Markov transition density at time t of
Brownian motion started from X and conditioned to stay positive until time T ≥ t, then
this limiting space-time field Z necessarily solves the multiplicative-noise SPDE on the
half-space that is given in Duhamel form by

Z (T,X) =

∫
R+

PT
T (X,Y )f(Y )dY +

∫ T

0

∫
R+

PT
T−S(X,Y )Z (S, Y )ξ(dY dS), (1.5)
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where ξ is a space-time white noise and f is the limiting function from the third bullet
point above. An important step towards proving Theorem 1.1 will be to show that a
solution of (1.5) exists and makes sense even when X = 0, and then to show that it can
in turn be related to the derivative of the solution of the Dirichlet-boundary SHE at the
origin. This will all be done in Section 4; more specifically we will show that the solution
of (1.5) equals

Z (T,X) =
ZDir(T,X)

2Φ(X/
√
T )− 1

, T,X > 0, (1.6)

where ZDir solves (SHE) with Dirichlet boundary condition (1.2) with the same ini-
tial data as Z , and Φ is the cdf of a standard normal variable so that Z (T, 0) =

(2πT )1/2 limX→0
ZDir(T,X)

X . We then have the following result.

Theorem 1.2. The sequence of processes Zn defined in (1.4) converge in law to the
solution of (1.5) as n→∞. The convergence occurs in the sense of finite-dimensional
distributions. If we assume that the ωi,j have p > 8 moments, then distributional
convergence holds when the space C(R+×R+) is equipped with the topology of uniform
convergence on compact sets.

This theorem will be proved in Section 5.2 in greater generality (where the distri-
bution of the weights ω may vary with n), see Proposition 5.9 and Theorem 5.11. It is
actually a simplified version of Theorem 2.2 which is the true input to proving Theorem
1.1. The main difficulty towards this result will be in obtaining the necessary estimates
for the inhomogeneous transition densities (and their discrete analogues) appearing in
(1.5).

Thus the proof of Theorem 1.2 will lead to some new technical results related to
the uniform measures Pnx and their continuum analogues. These will be collected in
appendices at the end of the paper. To illustrate a few such results, we will prove a
coupling result for such random walks in the nearest-neighbor case, and then we will
use that coupling to show the following concentration property: there exist constants
c, C > 0 (independent of n, x ≥ 0) such that for all u > 0 and all k ≤ n one has that

Pnx
(

sup
0≤i≤k

|Si − x| > u
)
≤ Ce−cu

2/k.

We remind the reader that Si is the conditioned walk. The study of such random walks
started with the invariance principle of [Ig74], further generalized in [Bol76]. Later, the
study expanded considerably, with local limit theorems [Car05] and expansions to heavy-
tailed increments [CC08]. We will see that some of the estimates we derive are similar
in spirit to some of those works, but the intricate details are somewhat different. We
will give proofs of many of these technical results because the highly specific estimates
needed to prove Theorem 1.2 were not found in those references (since our random walk
does not necessarily start at zero).

It should be noted that we work with a simplified version of the partition function as
opposed to much of the previous literature: [AKQ14a, CSY03] and related works. There
the partition function Zωk (n, x) is defined with weights ek

−1/4ωi,Si instead of the quantity
1+k−1/4ωi,Si that we have used in (1.4) above. The reason for this is that the latter object
is mathematically simpler because it is already renormalized (has expectation exactly
1 rather than approximately 1), and hence leads to simpler proofs and less stringent
moment restrictions. However, it should be noted that the exponential version is more
natural from the physical point of view, and entire results such as [DZ16] have been
devoted to finding the correct renormalization and phase transition behavior for that
version as a function of the moment assumptions.

Outline: In Section 2, we prove Theorem 1.1 as Theorem 2.4, which uses [BBC20]
and [Wu18] as important inputs. In Section 3, we will introduce and state some estimates
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about the transition densities associated to positive random walks, though the proofs are
postponed to the appendices. In Section 4, we will develop the existence and uniqueness
theory of the limiting SPDE (1.5) from Theorem 1.2, and as a corollary we prove that
∂XZDir(T, 0) exists. In Section 5, we prove Theorem 1.2 by using the estimates developed
in the appendices. In the appendices we derive some elementary but powerful bounds
related to the measures Pnx , which are crucial for the proofs in the main body.

2 Main results

In this section, we show how to prove Theorem 1.1. We denote non-negative reals as
R+ and non-negative integers as Z≥0.

We will use the notion of mild solutions for SPDEs throughout this article. Thus for
completeness, we begin by giving the formal definition of such a solution, although it is
peripheral to the main goals of the section.

Definition 2.1 (Mild Solution). Recall the Dirichlet-boundary heat kernel

PDirt (X,Y ) :=
1√
2πt

(
e−(X−Y )2/2t − e−(X+Y )2/2t

)
. (2.1)

Let ξ be a space-time white noise defined on a probability space (Ω,F ,P), and let µ
be an independent random Borel measure on R+. A continuous space-time process
ZDir = (ZDir(T,X))T,X≥0 is a mild solution of the Dirichlet-boundary SHE with initial
data µ if P-almost surely, for all X,T ≥ 0 one has that

ZDir(T,X) =

∫
R+

PDirT (X,Y )µ(dY ) +

∫ T

0

∫
R+

PDirT−S(X,Y )ZDir(S, Y )ξ(dS, dY ),

where the integral against ξ is meant to be interpreted in the Itô-Walsh sense [Wal86].

The fact that this object exists will be established as a special case of the results in
Section 4. The definition of the Robin boundary version Z(A)

Rob of (SHE) is very similar, but
one replaces the Dirichlet heat kernel with the Robin boundary one throughout. We refer
the reader to Section 4 of [Par19] for more details, including the existence/uniqueness
of this Robin boundary version.

The proof of Theorem 1.1 will be obtained by approximating both Z
(A)
Dir and Z

(A)
Rob

by the partition function of a directed polymer with log-gamma weights. For these
weights we use a known identity that allows us to switch the boundary weights with
those on the initial data without changing the distribution of the partition function along
the boundary [BBC20] (Proposition 8.1). The approximation argument will strongly
emulate the arguments given in [Wu18, AKQ14a] although there are new challenges that
make the convergence result rather difficult and technical. These additional difficulties
are a byproduct of the inhomogeneous Markov transition densities for random walks
conditioned to stay above zero.

Let us explicitly state the Dirichlet-boundary approximation result now. For each
n ∈ N, let ωn = {ωni,j}i≥j≥0 denote a random environment indexed by the principal octant
of Z2 with the following properties:

• The “bulk-environment” random variables {ωni,j}i≥j≥1 are i.i.d., and the “lower-
boundary” random variables {ωni,0}i≥0 are also i.i.d. These two collections are
independent.

• For j > 0 (the bulk variables) ωni,j have finite second moment. Furthermore one has
E[ωni,j ] = 0 and E[(ωni,j)

2] = 1 + o(1) as n→∞.

• For j = 0 (at the lower boundary) log(1 + n−1/4ωni,j) has finite second moment;

moreover there exist µ, σ ∈ R such that E[ωni,j ] = µn−1/4 +o(n−1/4), and var(ωni,j) =

σ2 + o(1) as n→∞. We also assume ωi,0 have 2 + ε moments for some ε > 0.

EJP 27 (2022), paper 45.
Page 7/47

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP775
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Positive random walks and an identity for half-space SPDEs

An upright path in Z2 is a function γ = (γ1, γ2) : {0, ..., n} → Z2 such that both γ1 and
γ2 are weakly increasing, and γ1(i) + γ2(i)− i is constant in i. For p ≥ q ≥ 0 define the
random partition function

Zn(p, q) :=
∑

γ:(0,0)→(p,q)

2−#{i≤p+q : γ2(i) 6=0}
p+q∏
i=0

(1 + n−1/4ωnγ1(i),γ2(i)),

where the sum is taken over all upright paths γ from (0, 0) to (p, q) that stay in the octant
{(i, j) : i ≥ j ≥ 0}. As a convention, we also set Zn(p, q) = Zn(p, 0) for q ≤ 0. Let Φ

denote the cdf of a standard normal distribution. We define the rescaled processes

Zn(T,X) :=
1

2Φ
(
X+n−1/2√

T

)
− 1
· Zn(nT + n1/2X,nT − n1/2X), T,X ≥ 0

where we interpolate linearly between integer values of Zn.
The following result is the primary technical contribution of this work.

Theorem 2.2. In the above notations and assumptions, the sequence of processes Zn

converges in distribution (in the sense of finite-dimensional marginals, as n → ∞) to
the unique space-time process satisfying (1.5) (equivalently given by (1.6)) with initial
data Z (0, X) = ZDir(0, X) = eσBX+(µ− 1

2σ
2)X , where B is a standard Brownian motion

independent of the space-time white noise ξ. If we assume that all weights ωni,j have
more than eight moments bounded independently of n, then distributional convergence
holds when the space C(R+×R+) is equipped with the topology of uniform convergence
on compact sets.

We will see that Theorem 2.2 is essentially equivalent to a more complicated version
of Theorem 1.2, where the distribution of the weights ω depends on n and the domain of
the polymer paths has been changed from a quadrant to an octant of Z2, which makes
the geometry more challenging to work with. Accordingly, the proof of this theorem
will proceed in two steps: first by reducing the claim of the theorem to that of Theorem
1.2 with a specific initial data (which will be achieved in Section 5.1), and then proving
Theorem 1.2 which is simpler thanks to known methods and is done in Section 5.2.

Remark 2.3. There are really two different regimes in which one should interpret
Theorem 2.2. One regime is X > 0, where the result merely says that Zn(nT +n1/2X,nT )

converges to ZDir(T,X). The more interesting regime is X = 0, in which case the
theorem says that (πnT/2)1/2Zn(nT, nT ) converges in law to limX→0

ZDir(T,X)

2Φ(X/
√
T )−1

, i.e.,

n1/2Zn(nT, nT )
d→ lim
X→0

ZDir(T,X)

X
.

An advantage of our approach is that the proof will simultaneously cover both regimes.
In fact, we will see that convergence even takes place in a parabolic Hölder space of the
appropriate regularity provided that the weights have more than eight moments.

We now combine this result with the Robin boundary result of [Wu18] and the log-
gamma identities of [BBC20] in order to obtain the following result, which clearly implies
Theorem 1.1. In what follows, we denote by Γ−1(θ, c) the inverse-gamma distribution of
shape parameter θ and scale parameter c, i.e., the law of the random variable cX, where
X has pdf given by

f(x) =
x−θ−1

Γ(θ)
e−1/x, x > 0.

We will also write E[Γ−1(θ, c)] = c
θ−1 and var(Γ−1(θ, c)) = c2

(θ−1)2(θ−2) to denote respec-
tively the expectation and variance of such a random variable.
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For n ∈ N, let ζ1
n = {ζ1

n(i, j)}i≥j≥0 and ζ2
n = {ζ2

n(i, j)}i≥j≥0 be fields of independent
random variables with the following distributions

ζ1
n(i, j) ∼


Γ−1(2

√
n, 1

2E[Γ−1(2
√
n, 1)]−1), i 6= j

Γ−1(
√
n+A+ 1

2 ,
1
2E[Γ−1(2

√
n, 1)]−1), i = j

ζ2
n(i, j) ∼


Γ−1(2

√
n, 1

2E[Γ−1(2
√
n, 1)]−1), j 6= 0

Γ−1(
√
n+A+ 1

2 ,
1
2E[Γ−1(2

√
n, 1)]−1), j = 0.

Let Z1
n and Z2

n denote the associated partition functions, i.e.,

Zαn :=
∑

γ:(0,0)→(bnTc,bnTc)

2bnTc∏
i=0

ζαn (γ1(i), γ2(i)), for α ∈ {1, 2}. (2.2)

Here the sum is taken over all upright paths γ from (0, 0) to (bnT c, bnT c) that stay in the
octant {(i, j) : i ≥ j ≥ 0}.
Theorem 2.4 (Joint with [BBC20, Wu18]). With Z1

n and Z2
n defined in (2.2), the following

are true:

1.
√
nZ1

n converges in distribution as n→∞ to the left-hand side of (1.3).

2.
√
nZ2

n converges in distribution as n→∞ to the right-hand side of (1.3).

3. For every n, one has Z1
n
d
= Z2

n.

Proof. Item (1) is proved as Theorem 5.1(B) of [Wu18] using techniques from [AKQ14a].
Item (3) is proved in Proposition 8.1 of [BBC20] by developing the theory of half-space
Macdonald processes. Thus we only need to prove Item (2), and this will be done using
Theorem 2.2, in the special case where X = 0. As in Theorem 4.5 of [AKQ14a], we define
a family of independent weights ωn = {ωni,j}i≥j≥0 according to the rule:

2ζ2
n(i, j) = 1 + (4n)−1/4ωni,j , j > 0,

ζ2
n(i, 0) = 1 + n−1/4ωni,0.

There are now three things to verify, corresponding to the three bullet points preceding
Theorem 2.2. Using the fact that

E[Γ−1(θ, 1)] =
1

θ − 1
, var(Γ−1(θ, 1)) =

1

(θ − 1)2(θ − 2)
,

one gets the desired asymptotics on E[ωi,j ] and on E[(ωi,j)
2], with µ = −A and σ2 = 1.

This proves the corollary (and thus also Theorem 1.1).

Once again we would like to emphasize the tremendous importance of [BBC20] as
the primary input to proving the preceding theorem, and thus the main result (1.3). It
may be interesting to explore more robust methods that might give a direct proof of (1.3)
using purely stochastic analytic methods instead of exact solvability, but we have tried
and this seems out of reach for us at the moment. With Theorem 2.4 in place, we will
now shift the goals of the paper to the analytical and technical aspects focusing on the
methods used to prove Theorem 2.2.
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Positive random walks and an identity for half-space SPDEs

Figure 1: A graphical description of Theorem 2.4. The weight of a given path is the
product of the weights along it, and the partition function Zαn for α ∈ {1, 2} is given
by summing the weights of all upright paths from (0, 0) to (bnT c, bnT c) that stay in
the octant. We have represented the SPDE limits by their respective (purely formal)
Feynman-Kac representations.

Since the sum defining the partition function in the preceding results is over all
upright paths that stay in the principal octant of Z2, it is natural to relate those quantities
to reflecting random walk measures. However, if one does asymptotics in Corollary 2.4,
she may verify that ζ2

n(j, j) → 1/2 in probability as n → ∞. What this means is that
instead of pure reflection, our random walk path loses mass by a factor of 1/2 each time
it hits zero. Hence, it is clear that the analysis in proving Theorem 2.2 will involve taking
a close look at these random walk measures, as well as directed polymers weighted by
such measures, as suggested in the introduction.

More precisely, fix some x ∈ Z≥0, and define a sample space of non-negative random
walk trajectories by

Ωnx := {(s0, ..., sn) ∈ Zn : |si+1 − si| = 1, si ≥ 0, s0 = x}.
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Define a sub-probability measure µnx and a probability measure Pnx on Ωnx by

µnx(S) := 2−n, Pnx(S) :=
1

#Ωnx
=

µnx(S)

µnx(Ωnx)
, for all S ∈ Ωnx .

As an intermediate step in proving Theorem 2.2, we obtain the following result.

Theorem 2.5. With the above notation, the following are true.

1. (Markov Property) Fix n, x ≥ 0. Let S = (Sk)nk=0 denote the coordinate process
associated to Pnx , i.e., S is a Ωnx -valued random variable with law Pnx . Then (Sk)nk=0

is a time-inhomogeneous Markov process, in fact conditionally on (Sk)Kk=0 with
K < n, the process (Sk+K)n−Kk=0 is distributed according to Pn−KSK

. One has explicit
transition densities for 0 ≤ i1 < ... < ik ≤ n:

Pnx(Si1 = s1, ..., Sik = sk) = pni1(x, s1)pn−i1i2−i1(s1, s2) · · · pn−ik−1

ik−ik−1
(sk−1, sk),

where pni is given in Definition 3.2 below.

2. (Mass) For every x ∈ Z≥0, the total mass of µnx is asymptotically (x+ 1)
√

2
πn :

lim
n→∞

n1/2µnx(Ωnx) = (x+ 1)
√

2/π.

3. (Concentration) There exist C, c > 0 such that for every x ≥ 0, every 0 ≤ m ≤ k ≤ n,
and every u > 0 one has that

Pnx
(

sup
m≤i≤k

|Si − Sm| > u
)
≤ Ce−cu

2/(k−m).

4. (Convergence of Transition Densities) Let pNn be as in Item (1). One has the
convergence

(n/2)1/2p
2bTnc
2btnc (2bn1/2X/

√
2c, 2bn1/2Y/

√
2c) n→∞−→ PT

t (X,Y ),

where PT
t is the transition probability for a certain (inhomogeneous) Markov pro-

cess defined in Definition 3.4 below. Moreover, for fixed (t, T,X) the convergence
in the Y -variable occurs in Lp(R+, e

aY dY ) for every p ∈ [1,∞).

The first part of the theorem is elementary and the last part is a more local version of
the results of [Ig74, Bol76]. The third part is new as far as we know, and the second part
will simply follow from the local central limit theorem. All proofs may be found in the
appendices, except for (1) which is proved in Section 3.

Remark 2.6. One can actually formulate an invariance principle for this family of
measures. This was done in greater generality in [Ig74, Bol76]. Fix X,T ≥ 0. For
each x,N ≥ 0, let (Sx,Nn )Nn=0 be distributed according to PNx . Then the processes

(N−1/2SN
1/2X,NT

Nt )t∈[0,T ] converge in law (with respect to the uniform topology on C[0, T ],
as N → ∞) to a time-inhomogeneous Markov process B on [0, T ] whose transition
densities PT

t (X,Y ) are given by the limit in Item (4). This limiting process B may be
interpreted as a standard Brownian motion conditioned to stay positive until time T ; see
Proposition 3.5. This invariance principle will be immediate from the results of Appendix
A, but it will not be needed for the results above.

Let us now discuss the basic idea of the proof of Theorem 2.2 in the special case
when (T,X) = (1, 0) because this is enough to give the main idea. Denote by EKRW the
expectation with respect to a reflected random walk of length 2n that is started from
0 and killed at the origin with probability 1/2, i.e., the one whose transition density is
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equal to p(1/2)
n which is defined in Section 3 below. By rotating the picture appropriately,

one rewrites the partition function appearing in Theorem 2.2 as a discrete Feynman-Kac
formula for this killed walk:

Zn =
∑

γ:(0,0)→(n,n)

2−#{i≤2n : γ2(i)>0}
2n∏
i=0

(1 + n−1/4ωnγ1(i),γ2(i))

= EKRW

[
zn0 (STn)

Tn−1∏
i=0

(1 + n−1/4ω̂ni,Si) · 1{survival}

]
, (2.3)

where

• ω̂ni,j is defined to be ωn
(n− i−j2 ),(n− i+j2 )

for all i, j.

• The expectation EKRW is taken only with respect to the random walk S, i.e.,
conditional on the ωni,j (which are always assumed to be independent of S).

• Tn is the first time that (i, Si) hits the diagonal line {(2n− j, j) : 0 ≤ j ≤ 2n}.
• zn0 (x) :=

∏x
i=0(1 + n−1/4ωni,0) can be thought of as a sort of “initial data” for the

above discrete Feynman-Kac representation.

• {survival} is the event that the random walk survives up to time 2n (or equivalently,
up to time Tn).

Now, using Theorem 2.5(2) with x = 0, one finds that PKRW (survival) ≈
√

2/πn.
Moreover, we can make the approximation Tn ≈ 2n for reasons justified later, see
Proposition 5.8. This essentially reduces the octant geometry to that of a quadrant, thus
reducing the theorem statement to that of Theorem 1.2, which is simpler as we see
below. Combining this with the above gives√

πn

2
Zn ≈ EKRW

[
zn0 (S2n)

2n∏
i=0

(1 + n−1/4ω̂ni,Si)

∣∣∣∣ survival

]

= EKRW

[
zn0 (S2n)

2n∑
k=0

n−k/4
∑

1≤i1<...<ik≤2n

k∏
j=1

ω̂nij ,Sij

∣∣∣∣ survival

]
. (2.4)

In the notation of Theorem 2.5, the killed random walk conditioned to survive has law
Pnx and the associated Markov process has transition densities pNn . Using theorem 2.5(1),
the expectation in the preceding expression may be expanded as

2n∑
k=0

n−k/4
∑

0≤i1<...<ik≤2n

∑
(x1,...,xk+1)∈Zk+1

≥0

zn0 (xk+1)
k+1∏
j=1

p
2n−ij−1

ij−ij−1
(xj−1, xj)

k∏
j=1

ω̂nij ,xj , (2.5)

with x0 := 0, i0 := 0, and ik+1 := 2n. Recall that log(1 + u) ≈ u− 1
2u

2, so by writing

zn0 (x) = e
∑x

0 log(1+n−1/4ωni,0) ≈ e
∑x

0

(
n−1/4ωni,0− 1

2n
−1/2(ωni,0)2

)
= e

n−1/4 ∑x
0 (ωni,0−n

−1/4µ)+n−1/2µx− 1

2n1/2

∑x
0 (ωni,0)2

, (2.6)

one may convince herself (using Donsker’s principle and the law of large numbers
together with the third bullet point preceding Theorem 2.2) that as n→∞,(

zn0 (n1/2X)
)
X≥0

d−→
(
eσBX+(µ− 1

2σ
2)X
)
X≥0

(2.7)
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for a Brownian motion B. Then taking the limit of (2.5) as n → ∞ by using Theorem
2.5(4) (with some uniformity estimates), one obtains the Wiener-Itô chaos series

∞∑
k=0

∫
0≤t1<...<tk≤1

∫
R
k+1
+

eσBxk+1
+(µ− 1

2σ
2)xk+1

×
k+1∏
j=1

P
1−tj−1

tj−tj−1
(xj−1, xj)dxk+1ξ(dxk, dtk) · · · ξ(dx1, dt1),

with the convention x0 = 0, t0 = 0, tk+1 = 1, and where the PT
t are the conditional heat

kernels from the limit in Theorem 2.5(4), and ξ is a space-time white noise. But (as we
will see in Proposition 4.2 below) this chaos series is precisely equal to

lim
X→0

ZDir(1, X)

2Φ(X)− 1
=
√
π/2 lim

X→0

ZDir(1, X)

X
,

where the initial data is eσBX+(µ− 1
2σ

2)X , and Φ is the cdf of a standard normal, which
implies that Φ(0) = 1/2 and Φ′(0) =

√
π/2 giving the equality above. This will complete

the argument for Theorem 2.2. Note that no part of the argument relies on the finer
details of the weights ωni,j beyond their mean and variance.

3 Uniform measures on collections of positive paths

In this section we will introduce the inhomogeneous heat kernels pNn associated to
random walks conditioned to stay positive. We begin with an elementary discussion
of the properties of these measures, and later we state technical estimates about
these measures that will be necessary in subsequent sections, though their proofs are
postponed to the appendices.

Definition 3.1. For n ∈ Z≥0 and x ∈ Z, let pn(x) denote the standard heat kernel on Z
(i.e., the transition function for a discrete-time simple symmetric random walk started
from zero). Then we define

p(1/2)
n (x, y) = pn(x− y)− pn(x+ y + 2), n, x, y ≥ 0.

The kernels p(1/2)
n have the following probabilistic interpretation. Consider a simple

symmetric random walk (Sn)n≥0 with S0 = 0 on the integer lattice Z. Impose the
condition that this random walk gets killed, i.e., enters an auxiliary death state, at the
first instance that it hits the value −1. Equivalently one can consider a random walk
reflected at 0 that dies independently with probability 1/2 each time it attempts to move

from site 0 to site 1. Then p(1/2)
n (x, y) is the probability of the following event: the walk

started from x is at position y at time n.

Definition 3.2. We define the following quantity for integers 0 ≤ n ≤ N

pNn (x, y) := p(1/2)
n (x, y)

ψ(y;N − n)

ψ(x;N)
, where ψ(x;n) :=

∑
y≥0

p(1/2)
n (x, y).

The probabilistic relevance of these kernels pNn will be demonstrated shortly in
Proposition 3.3. As in Theorem 2.5, let

ΩNx := {(s0, ..., sN ) ∈ ZN+1
≥0 : |si+1 − si| = 1, s0 = x}.

Then denote by PNx the uniform probability measure on ΩNx , and let S denote the
coordinate process associated to this measure (e.g., S can be the identity map on ΩNx ).
In plainer terms, S is a simple symmetric random walk of length N conditioned to stay
non-negative throughout its course.
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Proposition 3.3. S is an inhomogeneous Markov process on the discrete time interval
{0, ..., N}. In fact, for 0 ≤ i1 < ... < in ≤ N one has

PNx (Si1 = s1, ..., Sin = sn) = pNi1 (x, s1)pN−i1i2−i1 (s1, s2) · · · pN−in−1

in−in−1
(sn−1, sn)

= p
(1/2)
i1

(x, s1)p
(1/2)
i2−i1(s1, s2) · · · p(1/2)

in−in−1
(sn−1, sn)

ψ(sn, N − in)

ψ(x,N)
.

In particular, for M < N the conditional law of (SM+k)N−Mk=0 given (Sk)Mk=0 is distributed
according to PN−MSM

.

This proves Theorem 2.5(1) and shows that the pNn (x, ·) are probability measures.

Proof. Write S[0,M ] for the restriction of S to {0, 1, ...,M}, and write S[M,N ] for the
restriction of S to {M, ..., N} shifted by M places (so S[M,N ] is defined on {0, ..., N −M}).
For nearest-neighbor paths s1 and s2 of lengths M and N −M , respectively, such that
s1(M) = s2(0) one computes that

PNx (S[M,N ] = s2|S[0,M ] = s1) =
PNx (S = s1 ∗ s2)

PNx (S[0,M ] = s1)
=

1
#ΩNx

#{π∈ΩNx : π|[0,M]=s1}
#ΩNx

=
1

#{π ∈ ΩNx : π|[0,M ] = s1}
=

1

#ΩN−Ms1(M)

= PN−Ms1(M)(S = s2),

where s1 ∗ s2 denotes the concatenation of paths. This immediately implies that given
(Sk)Mk=0 the law of (SM+k)N−Mk=0 is distributed according to PN−MSM

. This also implies that

(Sk)Mk=0 and (SM+k)N−Mk=0 are conditionally independent given SM . Therefore, in order to
prove the given formula for transition densities, it suffices to prove the claim for n = 1;
then the claim for general n follows from the conditional independence and induction
(recall that n is the number of indices 0 ≤ i1 < ... < in ≤ N appearing in the transition
formula).

To prove the formula for n = 1 it suffices by conditional independence to assume that
in = N . Note that PNx is the probability measure associated to the killed random walk
conditioned to survive, so that

PNx (SN = s) =
p

(1/2)
N (x, s)∑

y≥0 p
(1/2)
N (x, y)

= p
(1/2)
N (x, s)

1

ψ(x,N)
,

which proves the claim.

Next we introduce the continuum analogues of the previously introduced measures.
We will generally use capital letters to distinguish macroscopic variables from lowercase
microscopic ones.

Definition 3.4. Let Pt(X) := e−X
2/2t/

√
2πt denote the standard heat kernel on the

whole line R. Recall the Dirichlet boundary heat kernel

PDirt (X,Y ) := Pt(X − Y )− Pt(X + Y ).

We then define the inhomogeneous kernel for 0 ≤ t ≤ T and X,Y > 0 :

PT
t (X,Y ) :=

P
Dir
t (X,Y ) 2Φ(Y/

√
T−t)−1

2Φ(X/
√
T )−1

t < T

PDirT (X,Y ) 1
2Φ(X/

√
T )−1

t = T,
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where Φ(x) = 1√
2π

∫ x
−∞ e−u

2/2du is the cdf of a standard normal. For X = 0, one
analogously defines the quantity for Y > 0 and T ≥ t ≥ 0:

PT
t (0, Y ) =

{
Y (T/t3)1/2e−Y

2/2t
(
2Φ(Y/

√
T − t)− 1

)
t < T

(Y/T )e−Y
2/2T t = T,

which is the limit of the previously defined PT
t (X,Y ) as X → 0.

We now discuss the relevance of these kernels as Markov transition densities. Specif-
ically, for X > 0 define WT

X to be the probability measure on C([0, T ],R+) obtained
by conditioning Brownian motion on [0, T ] started from X to stay strictly positive until
time T .1 We define B to be the canonical process associated to WT

X . One can also
define WT

0 as the weak limit of the WT
X as X → 0. The fact that this limiting measure

exists is not difficult but not entirely trivial either (see the appendices). It is called the
Brownian meander and has been studied extensively in [DIM77, DI77, CM81, Ig74] and
subsequent papers on the subject.

Proposition 3.5. Fix some T,X > 0 and let WT
X be as defined above, and let B denote

the associated canonical process. Consider the kernels PT
t defined before. Then for

0 ≤ t1 < ... < tn ≤ T and Y1, ..., Yn > 0,

WT
X(Bt1 ∈ dY1, ..., Btn ∈ dYn)

= PT
t1(X,Y1)PT−t1

t2−t1(Y1, Y2) · · ·PT−tn−1

tn−tn−1
(Yn−1, Yn) dY1 · · · dYn

In particular, if T < S then the conditional law of (Bt+S)t∈[0,T−S] given (Bt)t∈[0,S] is equal

to WT−S
BS

. The same statements hold true for X = 0.

Before moving on to the proof, we remark that when X 6= 0 and tn 6= T , the above
formula for transition densities reduces to

PDirt1 (X,Y1)PDirt2−t1(Y1, Y2) · · ·PDirtn−tn−1
(Yn−1, Yn)

2Φ(Yn/
√
T − tn)− 1

2Φ(X/
√
T )− 1

dY1 · · · dYn.

When tn = T the numerator 2Φ(Yn/
√
T − tn)− 1 should be interpreted as 1. When X = 0

this expression becomes 0/0, and one needs to take the limit, which gives the formula
stated in the above proposition.

Proof. Assuming X > 0 the proof is analogous to that of Proposition 3.3. Basically one
first shows that if S < T then the conditional law of (Bt+S)t∈[0,T−S] given (Bt)t∈[0,S] is

equal to WT−S
BS

, and furthermore that (Bt+S)t∈[0,T−S] and (Bt)t∈[0,S] are conditionally
independent given BS . This may be proven by a single computation using the basic
properties of standard Brownian motion.

As in the proof of Proposition 3.3, this then reduces the claim to proving the formula
for n = 1 and tn = T . In turn, this follows by noticing that WT

X is the same as Brownian
motion killed at zero but conditioned to survive. Hence one finds that

WT
X(BT ∈ dY ) =

PDirT (X,Y )dY∫∞
0
PDirT (X,Z)dZ

=
PDirT (X,Y )dY

2Φ(X/
√
T )− 1

,

which proves the claim.

This concludes the introductory material on the subject, and we now state several
technical estimates on these inhomogeneous heat kernels that are used heavily in the
sequel. The proofs may be found in Appendix B.

1This is not the same as a 3D Bessel process, which is BM conditioned to stay positive for all time and is
time-homogeneous.
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Proposition 3.6. Fix τ ≥ 0. Then for n ≥ 0, define

Pn(t, T ;X,Y ) := (n/2)1/2p
2bTnc
2btnc (2bn1/2X/

√
2c, 2bn1/2Y/

√
2c).

Then for each fixed X,T, t ≥ 0, as n → ∞ the map Y 7→ Pn(t, T ;X,Y ) converges
pointwise and in Lp(R+, e

aY dY ) to PT
t (X,Y ) for all p ≥ 1 and a ≥ 0. Furthermore for

all X,T ≥ 0, the map (t, Y ) 7→Pn(t, T ;X,Y ) converges pointwise and in Lp(dt⊗ eaY dY )

to PT
t (X,Y ) for all p ∈ [1, 3) and a ≥ 0 (as n→∞).

We refer the reader to Proposition B.6 of the appendix for the proof. We remark
that the factors of 2 appearing in the definition of Pn are only necessary due to the
periodicity of the simple random walk.

Proposition 3.7. Let a, τ > 0 and let PT
t be the kernels from Definition 3.4. Then

there exists a constant C = C(τ, a) such that for all X,Y ≥ 0, all θ ∈ [0, 1/2], and all
s ≤ t ≤ T ≤ τ one has the following∫

R+

PT
t (X,Z)eaZdZ ≤ CeaX , (3.1)∫

R+

PT
t (X,Z)2eaZdZ ≤ Ct−1/2eaX , (3.2)∫

R+

(
PT
t (X,Z)−PT

t (Y,Z)
)2
eaZdZ ≤ Ct− 1

2−θea(X+Y )|X − Y |2θ, (3.3)∫
R+

(
PT−t+s
s (X,Z)−PT

t (X,Z)
)2
eaZdZ ≤ Cs− 1

2−θe2aX |t− s|θ (3.4)

The proof may be found as the very last thing in Appendix B. We remark that these
bounds will be the key behind the proofs of Section 4 below.

4 Existence of the derivative in Dirichlet SHE

Note that in order to prove the identity (1.3), one first needs to prove that the mild
solution of ZDir exists and that the limit on the right-hand side of (1.3) also exists. In this
section we actually do something much stronger. We will prove that the mild solution
of ZDir and the aforementioned limits not only exist, but in fact one almost surely has
the simultaneous existence of limX→0

ZDir(T,X)
X for all T ≥ 0, for a fixed initial data.

Furthermore this limit is Hölder-continuous as a function of T .
All of this will essentially be proved in a single step by showing that for X,T ≥ 0 the

chaos series

∞∑
k=0

∫
0≤t1<...<tk≤T

∫
R
k+1
+

f(Xk+1)

k+1∏
j=1

P
T−tj−1

tj−tj−1
(Xj−1, Xj)dXk+1ξT (dXk, dtk) · · · ξT (dX1, dt1),

converges uniformly over compact subsets of (T,X) ∈ R+ ×R+, where t0 := 0, X0 := X,
ξT (X, t) := ξ(X,T − t) for a space-time white noise ξ, and f is some random initial
data with at-worst exponential growth at infinity. Then we will show almost trivially
that when X,T > 0 this chaos series equals ZDir(T,X)/

(
2Φ(X/

√
T ) − 1

)
, where Φ

is the cdf of a standard normal and ZDir satisfies the conditions of Definition 2.1.
This would simultaneously prove existence of ZDir and also the desired limit. This is
because we know the above chaos series extends continuously to X = 0, which means
limX→0

ZDir(T,X)

2Φ(X/
√
T )−1

exists, which is equivalent to showing that limX→0
ZDir(T,X)

X exists

(for all T ≥ 0, a.s.).
In order to prove the uniform convergence of this chaos series, we are going to use

the inhomogeneous heat kernel estimates stated at the end of Section 3. The proofs may
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be skipped without any effect on the readability of Section 5, although some ideas are
similar to ones used there.

With this motivation, we now move on to the main results of this section. Given some
possibly random initial data f : R+ → R+, recall from (1.5) the following Duhamel-form
SPDE:

Z (T,X) =

∫
R+

PT
T (X,Y )f(Y )dY +

∫ T

0

∫
R+

PT
T−S(X,Y )Z (S, Y )ξ(dY dS), (4.1)

where ξ is a space-time white noise and so the above should be interpreted as an Itô
integral. Since Z appears on both sides of this relation, it is not clear that a solution
would even exist. Thus we have the following result, which will be proved by rigorously
expanding (4.1) into the chaos series mentioned above.

Theorem 4.1. Fix a, τ > 0 and suppose that we have some random function-valued
initial data f satisfying

sup
X≥0

e−aXE[f(X)2] <∞.

Then, a unique solution to the SPDE (4.1) with initial data f exists in the class of
space-time functions Z (T,X) that satisfy

sup
X≥0
T∈[0,τ ]

e−aXE[Z (T,X)2] <∞.

Furthermore, the solution Z may be constructed in such a way that its law is supported
on the space of functions that are Hölder-continuous of exponent 1/2−ε in the X variable
and 1/4− ε in the T variable on any compact subset of (T,X) ∈ (0,∞)× [0,∞) for any
ε > 0.

Proof. This is adapted from the proofs given in [Par19, Section 4]. Informally, one argues
as follows: define the following sequence of iterates:

u0(T,X) =

∫
R+

PT
T (X,Y )f(Y )dY,

un+1(T,X) =

∫ T

0

∫
R+

PT
T−S(X,Y )un(S, Y )ξ(dY dS).

In other words, un is just the nth term of a chaos series given by the expansion of (4.1).
Thus it is clear that the desired solution to (4.1) should be given by

∑
n≥0 un. Hence, in

order to formalize these ideas, we will show that the series
∑
n≥0 un converges in the

appropriate Banach space of random space-time functions.

To this end, let us define a Banach space B of C(R+)-valued processes u =

(u(T, ·))T∈[0,τ ] that are adapted to the natural filtration of ξ and with norm given by

‖u‖2B := sup
X≥0
T∈[0,τ ]

e−aXE[u(T,X)2].

Then define a sequence of functions Fn : [0, τ ]→ R for n ≥ 0 by

Fn(T ) := sup
X≥0
S∈[0,T ]

e−aXE[un(S,X)2],
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where un are the iterates defined above. By Itô isometry, it is clear that

E[un+1(T,X)2] =

∫ T

0

∫
R+

PT
T−S(X,Y )2E[un(S, Y )2]dY dS

≤
∫ T

0

[ ∫
R+

PT
T−S(X,Y )2eaY dY

]
Fn(S)dS. (4.2)

Now by (3.2) we have that∫
R+

PT
T−S(X,Y )2eaY dY ≤ C(T − S)−1/2eaX , ∀T ∈ [0, τ ], X ≥ 0, (4.3)

where C may depend on a and τ . Furthermore one notes that the Fn are increasing
functions of T , and therefore T 7→

∫ T
0

(T − S)−1/2Fn(S)dS is also increasing (which may
be verified by making the substitution S = TU ). Combining this fact with (4.2) and (4.3),
one obtains

Fn+1(T ) ≤ C
∫ T

0

(T − S)−1/2Fn(S)dS, (4.4)

where C does not depend on n. Now, we claim that F0(T ) ≤ C (with C = C(a, τ)). Indeed,
by Jensen’s inequality and Fubini’s theorem, one has

E[u0(T,X)2] = E

[(∫
R+

PT
T (X,Y )f(Y )dY

)2]
≤
∫
R+

PT
T (X,Y )E[f(Y )2]dY ≤ CeaX ,

where in the last inequality we used (3.1) together with the assumption that E[f(X)2] ≤
CeaX . This proves that F0 ≤ C, which means that one may iterate (4.4) to obtain

Fn(T ) . CnTn/2/(n/2)!, (4.5)

which implies that
∑
n≥0 ‖un‖B <∞. This completes the proof of existence.

The proof of uniqueness is essentially the same. Indeed, if Z and Z ′ were two
solutions in B that are started from the same initial data f , then an application of Itô’s
isometry reveals that

E
[
(Z (T,X)−Z ′(T,X))2] =

∫ T

0

∫
R+

PT
T−S(X,Y )2E[(Z (S, Y )−Z ′(S, Y ))2]dSdY.

Then one iterates as above and may obtain that the left-hand side is bounded above
(uniformly in T,X) by CnTn/2/(n/2)!, and by letting n→∞ this tends to zero.

Now we address the Hölder regularity. Let un be the iterates defined above. We know
that u0 is a smooth function of (T,X) ∈ (0,∞)× [0,∞) because it is the solution to the
deterministic (i.e., noiseless) version of SPDE (4.1) which is just an inhomogeneous heat
equation (e.g., one may simply differentiate u0 under the integral sign). Thus, it suffices
to prove that the function Z0 := Z − u0 =

∑
n≥1 un has the required Hölder regularity,

so this is what we will do.

Henceforth fix an exponent γ ∈ (0, 1/2). For the spatial regularity, one computes that

E[(un+1(T,X)−un+1(T,Y ))2]=

∫ T

0

∫
R+

(
PT
T−S(X,Z)−PT

T−S(Y,Z)
)2
E[un(S,Z)2]dZdS

≤
∫ T

0

[∫
R+

(
PT
T−S(X,Z)−PT

T−S(Y,Z)
)2
eaZdZ

]
Fn(S)dS
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≤C
∫ T

0

(T−S)γ−1|X−Y |1−2γea(X+Y )Fn(S)dS

(4.5)
≤ Cea(X+Y )|X−Y |1−2γ

∫ T

0

(T−S)γ−1C
nSn/2

(n/2)!
dS

≤Cn+1ea(X+Y )|X−Y |1−2γ T
(n+2γ)/2

(n/2)!

∫ 1

0

(1−a)γ−1an/2da.

In the third line we used (3.3) with θ = 1
2 −γ, and in the final line we made a substitution

S = Ta. Note that the final integral is bounded independently of n, so it may be absorbed
into the constant (which will then depend on γ). Using hypercontractivity of the Ornstein-
Uhlenbeck semigroup associated to the Gaussian noise ξ, we can bound the pth moments
of elements of the homogeneous Wiener chaoses in terms of their second moments.
Specifically, if p ≥ 2 then Equation 7.2 of [Hai16] says that:

E
[∣∣un+1(T,X)− un+1(T, Y )

∣∣p]1/p ≤ (p− 1)(n+1)/2E
[
(un+1(T,X)− un+1(T, Y ))2

]1/2
≤ C(n+1)/2p(n+1)/2ea(X+Y )/2T

(n+1)/4√
(n/2)!

|X − Y | 12−γ .

Using Minkowski’s inequality and summing over all n, we then obtain

E
[∣∣Z0(T,X)−Z0(T,Y )

∣∣p]1/p≤∑
n≥1

E
[∣∣un(T,X)−un(T,Y )

∣∣p]1/p≤D(p,T )ea(X+Y )/2|X−Y | 12−γ .

Here D(p, T ) :=
∑
n

(CpT 1/2)(n+1)/2√
(n/2)!

, which is independent of X,Y and increasing as

a function of T . This is enough by Kolmogorov’s criterion to ensure that Z0 is Hölder
continuous of exponent 1/2− γ − ε (on compact sets) in the spatial variable.

For the temporal regularity, one computes

E[(un+1(T,X)−un+1(S,X))2]

=E

[(∫ T

0

∫
R+

PT
T−U (X,Z)un(U,Z)ξ(dZdU)−

∫ S

0

∫
R+

PS
S−U (X,Z)un(U,Z)ξ(dZdU)

)2]

=

∫ S

0

∫
R+

(
PT
T−U (X,Z)−PS

S−U (X,Z)
)2
E[un(U,Z)2]dZdU

+

∫ T

S

∫
R+

PT
T−U (X,Z)2E[un(U,Z)2]dZdU.

Let us call the integrals in the final expression I1 and I2 respectively. As before, one has

E[un(U,Z)2] ≤ eaZFn(U) ≤ eaZ C
nUn/2

(n/2)! . Then one uses (3.4) with θ = 1
2 − γ to bound the

inner integral of I1 by∫
R+

(
PT
T−U (X,Z)−PS

S−U (X,Z)
)2
eaZdZ ≤ Ce2aX(S − U)γ−1|T − S| 12−γ ,

and one also uses (3.2) to bound the inner integral of I2 as∫
R+

PT
T−U (X,Z)2eaZdZ ≤ C(T − U)−1/2eaX .

Then one finally performs the integral over U on the respective domains, and one can
obtain (as in the spatial case) that I1 + I2 ≤ Cn+1e2aXT (n+1)/2|T − S| 12−γ/(n/2)!. Then
one uses hypercontractivity and sums over n (exactly as in the spatial case), to get that

E
[∣∣Z0(T,X)−Z0(S,X)

∣∣p]1/p ≤ D(p, T )e2aX |T − S| 14−
γ
2 .

EJP 27 (2022), paper 45.
Page 19/47

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP775
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Positive random walks and an identity for half-space SPDEs

Here D(p, T ) is an increasing function of T (the same one as before), so it can be bounded
from above on any compact set of (T,X). This is enough to give Hölder regularity of
1
4 −

γ
2 − ε in time, by Kolmogorov’s criterion.

Next, we discuss the relationship of the Z that we have constructed in Theorem 4.1
with the Dirichlet-boundary SHE.

Proposition 4.2. Any solution of the SPDE (4.1) must a.s. satisfy the following relation
for all T,X > 0

Z (T,X)
(
2Φ(X/

√
T )− 1

)
= ZDir(T,X)

where ZDir solves the Dirichlet-boundary SHE as in Definition 2.1 with the same initial
data f .

Proof. One notes the following relation for X > 0, which is immediate from Definition
3.4:

PT
t (X,Y )

(
2Φ(X/

√
T )− 1

)
=

{
PDirt (X,Y )

(
2Φ(Y/

√
T − t)− 1

)
, t < T

PDirT (X,Y ), t = T.
(4.6)

So suppose Z solves (4.1), and define

A(T,X) := Z (T,X)
(
2Φ(X/

√
T )− 1

)
.

By multiplying both sides of (4.1) by 2Φ(X/
√
T ) − 1 and applying (4.6), one has the

relation

A(T,X)=

∫
R+

PDirT (X,Y )f(Y )dY+

∫ T

0

∫
R+

PDirT−S(X,Y )

[
Z (S,Y )

(
2Φ(Y/

√
S)−1

)]
ξ(dY,dS)

=

∫
R+

PDirT (X,Y )f(Y )dY+

∫ T

0

∫
R+

PDirT−S(X,Y )A(S,Y )ξ(dY,dS),

so that A is indeed a mild solution to the Dirichlet-boundary SHE.

One thing we have not addressed is the uniqueness of solutions to the Dirichlet-
boundary SHE in some large enough class of random space-time functions. This can
be obtained from Theorem 4.1 with minimal work, and with the same conditions on
the initial data f , one can in fact obtain existence/uniqueness in the space of ξ-adapted
space-time functions A satisfying supT≤τ, X≥0E[A(T,X)2] <∞.

Corollary 4.3. Consider any solution ZDir of the Dirichlet-boundary SHE, started from
any initial data f satisfying the assumptions of Theorem 4.1. Then almost surely, for
every T > 0 the limit of ZDir(T,X)

X exists as X → 0.

Proof. Consider the solution Z to (4.1) started from initial data f . By the preceding
proposition, we can couple this with the solution to the Dirichlet-boundary SHE in such
a way so that

Z (T,X) =
ZDir(T,X)

2Φ(X/
√
T )− 1

for all X > 0 and T ≥ 0. But we know that Z extends continuously to X = 0 by Theorem
4.1, hence we know that

lim
X→0

ZDir(T,X)

2Φ(X/
√
T )− 1

exists, and since 2Φ(X/
√
T )− 1 has nonzero derivative at X = 0, the claim follows.
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5 Convergence of the partition function to SHE

In this section we use a discrete chaos expansion together with the methods of
[AKQ14a, CSZ17a] and the heat kernel estimates of the previous sections in order to
prove Theorem 2.2. The first step (Section 5.1) is to simplify the geometry of the region
where our directed polymer lives, and then (in Section 5.2) we will prove the convergence
result in the simpler domain.

As a notational convention, we will usually write C for constants, and we will not
generally specify when irrelevant terms are being absorbed into the constants. We will
also write C(a), C(a, p), C(a, p,K) whenever we want to specify exactly which parameters
the constant depends on. This will not always be specified, though. This applies
throughout the paper. Please be warned that we will freely use many different bounds
from the appendices in the following proofs, so the reader may wish to skim those
estimates first.

5.1 Reduction from the octant model to the quadrant model

In this section, we reduce the technicality of working with the partition function
in an octant to working with it in a quadrant, which simplifies many computations.
The dichotomy here is that the quadrant has a simple geometry that makes polymer-
convergence results of the desired type quite straightforward; on the other hand, the
octant has the advantage that one has nice identities such as those of Corollary 2.4(3)
which fail for a quadrant. Hence, one viewpoint is simpler for technical computations
while the other is well-adapted for exact solvability. The results of this section are specific
to the case of our positive random walk measures; however, the general outline and
arguments that will be given may be easily modified for other random walk measures,
such as the reflecting walk, as long as the analogous heat kernel bounds hold. Thus this
section may potentially prove useful to other works of a similar flavor.

In what follows, we fix a sequence ωn = {ωni,j}i,j≥0 of i.i.d. random environments
with n ∈ N. As always, we denote by E (resp. P) the expectation (resp. probability)
with respect to the environment ωni,j and we denote by Enx (resp. Pnx) the expectation
(resp. probability) with respect to the positive random walk measures of Section 3.
Furthermore Tn will denote the first time that this random walk (i, Si), started from (0, x)

with x ≥ 0, hits the diagonal line {(j, 2n− j) : j ≥ 0}.
First we need an estimate on the variance of the discrete chaos series terms.

Lemma 5.1. Let pNn (x, y) be the positive random walk transition probabilities given in
Definition 3.2. Then there exist constants B,C,K > 0 such that for all x, n, k ≥ 0 and
a ≥ 0,∑
0≤i1<...<ik≤n
(x1,...,xk)∈Zk≥0

pni1(x, x1)2pn−i1i2−i1(x1, x2)2 · · · pn−ik−1

ik−ik−1
(xk−1, xk)2eaxk≤Beax+Ka2nCknk/2/(k/2)!,

where (k/2)! is a shorthand for Γ(1 + k/2).

Proof. We first state a bound, which is Proposition B.3 in the appendix: there exist
constants C,K > 0 such that for all x ≥ 0, all N ≥ n ≥ 0, all a ≥ 0, and all p ≥ 1 one has
that ∑

y≥0

pNn (x, y)peay ≤ Cp(n+ 1)−(p−1)/2eax+Ka2n.

Applying this k times, one sees that∑
(x1,...,xk)∈Zk≥0

pni1(x, x1)2pn−i1i2−i1(x1, x2)2 · · · pn−ik−1

ik−ik−1
(xk−1, xk)2eaxk
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≤ Ckeax+Ka2n(i1 + 1)−1/2(i2 − i1 + 1)−1/2 · · · (ik − ik−1 + 1)−1/2.

Thus the desired sum is bounded above by

eax+Ka2n
∑

1≤i1<...<ik≤n+1

i
−1/2
1 (i2 − i1)−1/2 · · · (ik − ik−1)−1/2.

Now one recognizes that

n−k/2
∑

1≤i1<...<ik≤n+1

i
−1/2
1 (i2 − i1)−1/2 · · · (ik − ik−1)−1/2

=
1

nk

∑
1≤i1<...<ik≤n+1

( i1
n

)−1/2( i2
n
− i1
n

)−1/2 · · ·
( ik
n
− ik−1

n

)−1/2
, (5.1)

which as a Riemann sum approximation is bounded above by (say) twice∫
0≤t1<...<tk≤1

t
−1/2
1 (t2 − t1)−1/2 · · · (tk − tk−1)−1/2dt1 · · · dtk ≤ B/(k/2)!,

where B > 0. Hence the lemma is proved.

Now we use the variance bound in conjunction with Doob’s martingale inequality to
get a bound on the expected supremum in the partition function.

Lemma 5.2. Take a sequence ωn = {ωni,j} of random environments with variance
uniformly bounded above by 1. Furthermore let {zn0 (x)}x≥0 be some sequence of
non-negative stochastic processes, independent of the ωn, with the property that
E[zn0 (x)2] ≤ Kean

−1/2x for some constants K, a that are independent of n and x. Then
there exists a constant C such that for all n, x ≥ 0 one has that

E

[
sup

0≤k≤n
Enx

[
zn0 (Sn)

k∏
i=0

(1 + n−1/4ωni,Si)

]2
]
≤ Cean

−1/2x.

Proof. First we fix some n ∈ N and we note that the process

Mn
k := Enx

[
zn0 (Sn)

k∏
i=1

(1 + n−1/4ωni,Si)

]
is a P-martingale in the k variable with respect to the filtration (Fnk )k≥0, where Fnk is
generated by zn0 and {ωni,j}0≤j≤i≤k. Therefore by Doob’s martingale inequality it is clear
that E[sup0≤k≤n(Mn

k )2] ≤ 4E[(Mn
n )2]. This reduces our work to proving the claim without

the supremum inside the expectation (and replacing k by n in the upper limit of the
product). To do this, we set x0 := x and we write

E

[
Enx

[
zn0 (Sn)

n∏
i=1

(1 + n−1/4ωni,Si)

]2
]

= E

[( ∑
0≤k≤n

0≤i1<...<ik≤n
(x1,...,xk+1)∈Zk+1

≥0

n−k/4zn0 (xk+1)

k∏
j=1

p
n−ij−1

ij−ij−1
(xj−1, xj)ωijxj · p

n−ik
n−ik(xk, xk+1)

)2]

=
∑

0≤k≤n
0≤i1<...<ik≤n
(x1,...,xk)∈Zk≥0

n−k/2
k∏
j=1

p
n−ij−1

ij−ij−1
(xj−1, xj)

2E

[( ∑
xk+1∈Z≥0

zn0 (xk+1)pn−ikn−ik(xk, xk+1)

)2]
,
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where x0 := x by convention. By Jensen we then have that( ∑
xk+1≥0

zn0 (xk+1)pn−ikn−ik(xk,xk+1)

)2

≤
∑

xk+1≥0

zn0 (xk+1)2pn−ikn−ik(xk,xk+1).

We know by assumption that E[zn0 (xk+1)2] ≤ ean
−1/2xk+1 . Thus we find that the expec-

tation of the last expression is bounded above by Cean
−1/2xk because of the inequality∑

y≥0 p
N
n (x, y)eay ≤ Ceax+Ka2n, which holds by Proposition B.1 in the appendix. Thus by

Lemma 5.1 we have

E

[
Enx

[
zn0 (Sn)

n∏
i=1

(1 + n−1/4ωni,Si)

]2
]
≤

∑
0≤k≤n

0≤i1<...<ik≤n
(x1,...,xk)∈Zk≥0

n−k/2
k∏
j=1

p
n−ij−1

ij−ij−1
(xj−1, xj)

2

· Cean
−1/2xk

≤
n∑
k=0

n−k/2BCk+1ean
−1/2xnk/2/(k/2)!

≤ Bean
−1/2x

∞∑
k=0

Ck+1/(k/2)!.

This completes the proof.

We now introduce a class of Banach spaces that will be useful for describing conver-
gence of initial data:

Definition 5.3. Let α, δ ∈ (0, 1). A function f : R→ R is said to be in the exponentially
δ-weighted α-Hölder space C α

e(δ)(R) if

sup
x∈R

|f(x)|
eδ|x|

+ sup
x,y∈R
|x−y|≤1

|f(x)− f(y)|
eδ|x||x− y|α

<∞.

We turn C α
δ into a Banach space by defining the norm of f to be the above quantity.

A straightforward consequence of Arzela-Ascoli is that C α
e(δ) embeds compactly into

C α′

e(δ′) for α′ < α and δ < δ′. The key estimate of this section is as follows:

Theorem 5.4 (Key Estimate). Fix α ∈ (0, 1). Suppose that (zn0 (x))x∈Z≥0
is a family of

deterministic non-negative functions such that the linearly interpolated and rescaled
family zn0 (n1/2x) are bounded with respect to the norm of C γ

e(δ) for some γ, δ ∈ (0, 1).
Define the “error” random variable

E(x, n) := sup
k∈[n−nα,n]

∣∣∣∣∣Enx
[
zn0 (Sn)

n∏
i=1

(
1 + n−1/4ωni,Si

)
− zn0 (Sk)

k∏
i=1

(
1 + n−1/4ωni,Si

)]∣∣∣∣∣.
Then supx≥0 e

−3an−1/2xE[E(x, n)]→ 0 as n→∞.

Proof. By the triangle inequality, we have E(x, n) ≤ E1(x, n) + E2(x, n), where

E1(x, n) := sup
k∈[n−nα,n]

∣∣∣∣∣Enx
[
zn0 (Sn)

( n∏
i=1

(
1 + n−1/4ωni,Si

)
−

k∏
i=1

(
1 + n−1/4ωni,Si

))]∣∣∣∣∣,
E2(x, n) := sup

k∈[n−nα,n]

∣∣∣∣∣Enx
[(
zn0 (Sn)− zn0 (Sk)

) k∏
i=1

(
1 + n−1/4ωni,Si

)]∣∣∣∣∣.
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Positive random walks and an identity for half-space SPDEs

We separately show that both of these satisfy the desired bound. Henceforth when we
write nα we actually mean dnαe.

First we consider E1. First we establish a martingale inequality. If (Mk)k≥0 is a
martingale defined on any probability space, then note that for r ≤ n one has that

sup
r≤k≤n

|Mn −Mk| ≤ |Mn −Mr|+ sup
r≤k≤n

|Mk −Mr|,

and by Doob’s inequality one has that
∥∥ supr≤k≤n |Mk −Mr|

∥∥
p
≤ p

p−1‖Mn −Mr‖p, there-
fore one has that∥∥ sup

r≤k≤n
|Mn −Mk|

∥∥
p
≤ ‖Mn −Mr‖p +

p

p− 1
‖Mn −Mr‖p =

2p− 1

p− 1
‖Mn −Mr‖p. (5.2)

Now let us fix some n ∈ N. Let us define a martingale

Mn
k := Enx

[
zn0 (Sn)

k∏
i=1

(1 + n−1/4ωni,Si)

]
.

This is a P-martingale in the k variable, for fixed n ∈ N. Consequently, using (5.2) with
p = 2 gives us

E
[

sup
k∈[n−nα,n]

(Mn −Mk)2
]
≤ 9E[(Mn

n −Mn
n−nα)2]. (5.3)

Computing the right-hand side, one gets

E[(Mn
n −Mn

n−nα)2] = E

[
Enx

[
zn0 (Sn)

( n∏
i=1

(
1 + n−1/4ωni,Si

)
−
n−nα∏
i=1

(
1 + n−1/4ωni,Si

))]2
]

=
∑

0≤k≤n−nα
0≤i1<...<ik≤n−nα

(x1,...,xk)∈Zk≥0

n−k/2 · pni1(x, x1)2
k−1∏
j=1

p
n−ij−1

ij−ij−1
(xj , xj+1)2Fn(ik, xk),

(5.4)

where Fn(ik, xk) is given by∑
1≤`≤nα

0≤j1<...<j`≤nα
(u1,...,u`)∈Z`≥0

n−`/2pnn−nα+j1−ik(xk, u1)2

·
`−1∏
v=1

p
nα−jv−1

jv−jv−1
(uj , uj+1)2

( ∑
u`+1≥0

zn0 (u`+1)pn
α−j`
nα−j`(u`, u`+1)

)2

.

Note that the latter sum starts at ` = 1 rather than ` = 0 which is crucial. These
expressions come from writing

n∏
i=1

(
1 + n−1/4ωni,Si

)
−
n−nα∏
i=1

(
1 + n−1/4ωni,Si

)
=

n−nα∏
k=1

(1 + n−1/4ωnk,Sk)

( nα∏
`=1

(1 + n−1/4ωn`+n−nα,S`+n−nα ) − 1

)
,

and then expanding both products and taking expectations. The subtraction of 1 from
the second product is what causes the sum defining Fn to start at ` = 1 rather than ` = 0.
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By Jensen and the fact that zn0 (x) ≤ Cean−1/2x (with say a = 2δ where δ is the same as in
the theorem statement) we then have that( ∑

u`+1≥0

zn0 (u`+1)pn
α−j`
nα−j`(u`,u`+1)

)2

≤
∑

u`+1≥0

zn0 (u`+1)2pn
α−j`
nα−j`(u`,u`+1)≤Cean

−1/2u` ,

where we used Proposition B.1 in the last bound. Then by repeatedly applying Proposition
B.3, note that Fn(ik,xk) is bounded above by

nα+1∑
`=1

n−`/2C`ean
−1/2xk

∑
1≤j1<...<j`≤nα+1

(n−nα+j1−ik)−1/2(j2−j1)−1/2···(j`−j`−1)−1/2.

Consequently the entirety of (5.4) is bounded above, after again applying Proposition
B.3 several more times, by∑

0≤k≤n−nα
1≤i1<...<ik≤n−nα+1

1≤`≤nα
1≤j1<...<j`≤nα+1

n−(k+`)/2Ck+`ean
−1/2xi

−1/2
1

·
k−1∏
r=1

(ir−ir−1)−1/2(n−nα+j1−ik)−1/2
`−1∏
v=1

(jv−jv−1)−1/2.

We rewrite that as ean
−1/2x multiplied by∑

0≤k≤n−nα
1≤i1<...<ik≤n−nα+1

1≤`≤nα
1≤j1<...<j`≤nα+1

n−`(1−α)/2n−kn−`αCk+`(
i1
n

)−1/2

·
k−1∏
r=1

(
ir
n
− ir−1

n
)−1/2(

n−nα+j1−ik
nα

)−1/2
`−1∏
v=1

(
jv
nα
−jv−1

nα
)−1/2.

Except for the factor n−`(1−α)/2 we recognize a Riemann sum approximation for

∑
k≥0
`≥1

Ck+`

∫
0≤t1<...<tk≤1

∫
tk≤s1<...<s`≤1

t
−1/2
1 ···(tk−tk−1)−1/2(s1−tk)−1/2···(s`−s`−1)−1/2dtds.

This series may be bounded by ∑
k≥0
`≥1

Ck+`/
(
(k+`)/2

)
!

which converges absolutely to a constant independently of n. Since `≥1 in all expressions
above, the left over factor n−`(1−α)/2 is at worst n−(1−α)/2. Summarizing the bounds, we
showed that E[E1(n,x)] is bounded above by at worst Cean

−1/2xn−(1−α)/2 which implies
the desired result on E1.

Now we consider E2(x,n). Since zn0 is bounded in C γ
e(δ) we have the following bound

with C independent of x,y,n:

|zn0 (n1/2x)−zn0 (n1/2y)|≤C|x−y|γeδ(x+y).
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Using positivity of Bnk :=
∏k

1(1+n−1/2ωni,Si) we then find that

E2(x,n)≤ sup
k∈[n−nα,n]

Enx

[∣∣zn0 (Sn)−zn0 (Sk)
∣∣Bnk ]

≤Cn−γ/2 sup
k∈[n−nα,n]

Enx

[
|Sn−Sk|γeδn

−1/2(Sn+Sk)Bnk

]
=Cn−γ/2 sup

k∈[n−nα,n]

Enx

[
En−kSk

[|S̃n−k−S̃0|γeδn
−1/2S̃n−k ]eδn

−1/2SkBnk

]
,

where the final equality follows from the Markov property of the positive random walk S.
Now we recognize that

ENy [|SN−S0|γeδSN ]≤ENy [|SN−S0|2γ ]1/2ENy [e2δSN ]1/2≤CNγ/2eδy+Kδ2N ,

where C,K are independent of y,N , by Propositions A.9 and B.1. Consequently we find
for k∈[n−nα,n] that

En−kSk
[|S̃n−k−S̃0|γeδn

−1/2S̃n−k ]≤C(n−k)γ/2eδn
−1/2Sk≤Cnαγ/2eδn

−1/2Sk .

Combining our bounds, we find that

E2(x,n)≤Cn−(1−α)γ/2 sup
k∈[n−nα,n]

Enx [e2δn−1/2SkBnk ]. (5.5)

Now for any λ>0, (eλSk)k is a Pnx -submartingale because (Sk) is a submartingale (Lemma
A.2) and since x 7→eλx is increasing and convex for any λ. Thus letting Gk denote the
filtration generated by the first k steps of the n-step positive random walk S, we find

Enx [eλSkBnk ]≤Enx [Enx [eλSn |Gk]Bnk ]=Enx [eλSnBnk ],

for all k≤n,λ>0 because Bnk is Gk-measurable. Setting λ=2δn−1/2, this means that

E

[
sup
k≤n

Enx [e2δn−1/2SkBnk ]2
]
≤E
[

sup
k≤n

Enx [e2δn−1/2SnBnk ]2
]
≤Ce2δn−1/2x, (5.6)

where we used Lemma 5.2 in the last bound, with zn0 (x):=e2δn−1/2x. Combining (5.5) and
(5.6) gives the required result.

Next we give some Kolmogorov-type moment conditions that ensure tightness of the
sequence zn0 of initial data in C α

e(δ).

Proposition 5.5. Suppose that {zn}n≥1 is a family of random functions on R that
satisfies the following moment conditions for some constants a, p, β, C independent
of n, x, y.

• E[|zn(x)− zn(y)|p] ≤ C|x− y|pβ/2ea(|x|+|y|).

• there exist positive integrable random variables D(n) such that supnE[D(n)] <∞
and zn(x) ≤ D(n)ea|x|.

Then assuming p > 1/β, there exist δ > a and α < β − p−1 such that (zn) is tight with
respect to the topology of C α

e(δ).

Before the proof, we remark that when we apply this result, the functions will be
defined on R+ as opposed to all of R and thus the absolute values on x, y are unnecessary.
Furthermore, the zn appearing in the proposition statement will actually be rescaled
and linearly interpolated functions zn0 (n1/2x).
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Proof. Recall from earlier that C α
e(δ) embeds compactly into C α′

e(δ′) whenever δ′ > δ and
α′ < α. Therefore to prove the lemma, it suffices to show that if the two inequalities in
the lemma statement hold uniformly over a family F of real-valued functions, then there
exist α, δ such that

lim
a→∞

sup
z∈F

P(‖z‖Cα
e(δ)

> a) = 0.

We actually show something stronger, namely that under the given assumptions, there
exists C > 0 such that for all a > 0

sup
n∈N

P(‖zn‖Cα
e(δ)

> a) ≤ Ca−1. (5.7)

To prove this, for a function z we write ‖z‖Cα
e(δ)

= ‖z‖δ + [z]α,δ where ‖z‖δ := supx∈R
|z(x)|
eδ|x|

and [z]α,δ := supx∈R e
−δ|x| sup|y−x|≤1

|z(x)−z(y)|
|x−y|α .

To prove (5.7), the following fact will be useful to us: For any γ ∈ (0, 1), the γ-Hölder
seminorm [f ]γ of a function f : [0, 1]→ R is equivalent (as a seminorm) to the quantity
given by supv∈N,1≤k≤2v 2γv|f(k2−v)− f((k − 1)2−v)|. This is proved as an intermediate
step in the standard proof of the classical Kolmogorov-Chentsov criterion.

The exact choices of α, δ will be specified later, but for now let them denote generic
constants. Now to prove (5.7) let us write for a function z,

‖z‖δ ≤ sup
v∈Z

e−δ|v|
(
|z(v)|+ sup

x∈[v,v+1]

|z(x)− z(v)|
)

≤ sup
v∈Z

e−δ|v|
(
|z(v)|+ sup

x∈[v,v+1]

|z(x)− z(v)|
|x− v|α

)
. sup
v∈Z

e−δ|v|
(
|z(v)|+ sup

r∈N,1≤k≤2r
2αr|z(v + k2−r)− z(v + (k − 1)2−r)|

)
,

where . denotes the absorption of some universal constant which can depend on α, δ
but not on the function z. Likewise let us note that

[z]α,δ . sup
v∈Z

e−δ|v| sup
r∈N,1≤k≤2r

2αr|z(v + k2−r)− z(v + (k − 1)2−r)|.

Consequently we find that

‖z‖Cα
δ
. A(z, δ) +B(z, α, δ),

where

A(z, δ) := sup
v∈Z

e−δ|v||z(v)|,

B(z, α, δ) := sup
v∈Z

e−δ|v| sup
r∈N,1≤k≤2r

2αr|z(v + k2−r)− z(v + (k − 1)2−r)|.

Now, with zn uniformly satisfying the bounds given in the lemma statement, let us bound
these terms A(zn, δ) and B(zn, α, δ) individually to obtain (5.7). We will do this by using
the hypotheses in the lemma. Note that by a brutal union bound and Markov’s inequality
followed by the hypothesis zn ≤ D(n)ean

−1/2x, we have

P(A(zn, δ) > a) ≤
∑
v∈Z

P(|hε(v)| > eδ|v|a)

≤
∑
v∈Z

a−1e−δ|v|E[zn(v)]

≤ sup
j
E[D(j)] · a−1

∑
v∈Z

e−(δ−a)|v|,
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The series converges to a finite value independent of n as long as δ is chosen larger
than a. Next we control B, which will also just use a brutal union bound and Markov’s
inequality:

P(B(zn, α, δ) > a) ≤
∑
v∈Z
r∈N

1≤k≤2r

P(2αr|zn(v + k2−r)− zn(v + (k − 1)2−r)| > eδ|v|a)

≤
∑
v∈Z
r∈N

1≤k≤2r

a−p2αpre−δ|v|pE
∣∣zn(n+ k2−r)− zn(v + (k − 1)2−r)

∣∣p

≤ a−p
∑
v∈Z
r∈N

1≤k≤2r

2(α−β)pre(2a−δ)p|v|

= a−p
∑
v∈Z
r∈N

2

[
1+(α−β)p

]
re(2a−δ)p|v|

The double series converges to a finite value independent of n so long as δ, α are chosen
so as to satisfy δ > 2a and 1 + (α− β)p < 0. This is permissible so long as p > β−1.

Lemma 5.6. Let (Xn)n≥0 be a non-negative L1 supermartingale. Then

P
(

sup
n
Xn > a

)
≤ E[X0]

a
.

Proof. We apply Doob-Meyer decomposition to writeX = M−A, whereM is a martingale
with M0 = X0, and A0 is a non-decreasing process with A0 = 0. Then M is a positive
martingale and X ≤M . Doob’s first martingale inequality then gives

P
(

sup
n≤N

Xn > a
)
≤ P

(
sup
n≤N

Mn > a
)
≤ E[MN ]

a
=
E[M0]

a
.

Since M0 = X0, letting N →∞ gives the claim because the right side does not depend
on N and the left side approaches P

(
supnXn > a

)
by monotone convergence.

Proposition 5.7. For each n ∈ N, let {ωni,0}i≥1 be a family of i.i.d. random variables

such that ωni,0 has finite pth moment, with p > 2. Also assume that 1 + n−1/4ωni,0 > 0 a.s.

and that supnE[|ωn1,0|p] <∞. Furthermore assume that E[ωni,0] = µn−1/4 + o(n−1/4) and

var(ωni,0) = σ2 + o(1) as n → ∞. Define zn0 (x) :=
∏x
i=1(1 + n−1/4ωni,0). Then zn0 satisfies

the first two conditions of Proposition 5.5:

• E[|zn0 (x)− zn0 (y)|p] ≤ Cn−p/4|x− y|p/2ean−1/2(x+y) for some constants C, a indepen-
dent of n, x, y.

• with the same a, there exist square-integrable random variables D(n) such that

supnE[D(n)2] <∞ and zn0 (x) ≤ D(n)ean
−1/2x for all n, x almost surely.

Proof. Before proving either bullet point, we prove a preliminary bound. By Taylor
expanding up near u = 1 we see (1 +n−1/4ωni,0)p = 1 +pn−1/4ωni,0 + 1

2 (p2−p)n−1/2(ωni,0)2 +

o(n−1/2), which has expectation roughly 1 + n−1/2(pµ + p2−p
2 σ2) + o(n−1/2). For some

a = a(p) this is bounded above by 1 + an−1/2, and so we see that

E[zn0 (x)p] =

x∏
i=1

E[(1 + n−1/4ωni,0)p] ≤ (1 + n−1/2a)x ≤ ean
−1/2x, (5.8)
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since 1 +v ≤ ev. With this preliminary bound in mind, we proceed to the proof of the first
bullet point. It suffices to prove the claim when y = 0 (i.e., zn0 (y) = 1), by independence
of the multiplicative increments of zn0 . Let us begin by writing

E[|zn0 (x)− 1|p] ≤ 2p
(
E

[∣∣∣∣zn0 (x)− zn0 (x)

E[zn0 (x)]

∣∣∣∣p]+ E

[∣∣∣∣ zn0 (x)

E[zn0 (x)]
− 1

∣∣∣∣p]).
Let us denote these expectations on the right side as E1 and E2, respectively. We bound
each of these separately. For E1, one notes by using (5.8) that

E1 = E[zn0 (x)p]

∣∣∣∣1− 1

E[zn0 (x)]

∣∣∣∣p ≤ ean−1/2x
∣∣1− e−an1/2x

∣∣p
≤ ean

−1/2x
(
an−1/2x

)p
= apean

−1/2xn−p/2xp,

where we used E[zn0 (x)] ≤ E[zn0 (x)p]1/p ≤ ean
−1/2x (by (5.8)) in the first inequality, and

we used 1− e−v ≤ v in the second one. Finally, note that upeu ≤ Cup/2e2u for some C > 0

independent of u, and applying this with u = an−1/2x already gives the desired bound on
E1.

Now we bound E2. This is the difficult part, and one needs to somehow exploit
cancellations that occur at the quadratic scale (e.g., via a Burkholder-type inequality).
To do this, first note that the process Mn

x :=
zn0 (x)
E[zn0 (x)] is a martingale in the x-variable (for

fixed n). Define ζni :=
1+n−1/4ωni,0
E[1+n−1/4ωi,0]

. Then Burkholder-Davis-Gundy says

E2 ≤ CE
[( x∑

i=1

(Mn
i −Mn

i−1)2

)p/2]
= CE

[( x∑
i=1

(ζn1 )2 · · · (ζni−1)2(ζni − 1)2

)p/2]
(5.9)

Now, using the given conditions, |ζni − 1| ≤ C(n−1/4|ωni,0| + n−1/2), so the square is

bounded by C(n−1/2(ωni,0)2 + n−1). Writing ‖A‖p := E[|A|p]1/p, we notice by the triangle
inequality and independence of ζni that∥∥∥∥ x∑

i=1

(ζn1 )2···(ζni−1)2(ζni −1)2

∥∥∥∥
p/2

≤Cn−1/2
x∑
i=1

‖(ζn1 )2‖p/2···‖(ζni−1)2‖p/2‖(ωni,0)2+n−1/2‖p/2.

Now, it holds that ‖(ζn1 )2‖p/2 ≤ e2an−1/2/p, by (5.8) (with x = 1). Hence each term of

the sum can be bounded above by e2an−1/2x/p. The contribution of the n−1/2 term next to
(ωni,0)2 is then seen to be negligible, so we disregard it. Hence the the entire sum may be

bounded by Cn−1/2xe2an−1/2x/p, which, combined with (5.9) and the fact that ‖(ωni,0)2‖p/2
is bounded independently of n by assumption, completes the proof.

Now we prove the second bullet point. Note that zn0 (x)p

E[zn0 (x)p] is a positive martingale

in the x-variable. Let D(n) := supx≥0 z
n
0 (x)/E[zn0 (x)p]1/p. Then it is clear from Lemma

5.6 that P(D(n)p > a) ≤ a−1, so that P(D(n) > a) ≤ a−p. If p > 2, then this easily

implies that supnE[D(n)2] < ∞. But (5.8) tells us that E[zn0 (x)p]1/p ≤ Cean
−1/2x, so we

are done.

Next, we finally prove the octant-quadrant reduction theorem, i.e., that we can
replace Tn with 2n as discussed in the proof sketch at the end of Section 2. Let us
reformulate the main notational conventions here:

• S is a simple symmetric random walk of length n started from x and conditioned to
stay positive throughout its course (i.e., the canonical process associated to the
measures Pnx). We assume n− x is even.
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• ω̂ni,j is defined to be ωn
(n− i−j2 ),(n− i+j2 )

for all i, j of the same parity, where ωni,j is a

family of random environments satisfying the conditions of the three bullet points
before Theorem 2.2, but now the bulk random variables are indexed by all pairs
(i, j) with |i| ≥ j.

• Tn is the first time that n− i = Si.

• zn0 (x) :=
∏x
i=0(1 + n−1/4ω̄ni,0), where the ω̄i,0 have p > 2 moments.

We remark that all conditions of Theorem 5.4 are almost satisfied by this environment.
The only caveat is that the sequence of initial data is not deterministic, however by
Propositions 5.5 and 5.7 and Skorohod’s Lemma (and the fact that zn0 are independent of
the bulk weights) we may choose a probability space on which zn0 → z0 almost surely
with respect to the topology of C α

e(δ) for some choice of α, δ ∈ (0, 1). Here z0(x) is a
geometric Brownian motion with the appropriate diffusion and drift coefficients. Note
that a.s. convergence is stronger than a.s. boundedness in that norm which is the
condition required in Theorem 5.4. Thus there is no loss of generality in assuming that
the initial data are in fact deterministic.

Proposition 5.8 (Octant-Quadrant Reduction). In the notation of the bullet points imme-
diately above, we define the following random variable for n, x ≥ 0:

E (x, n) := Enx

[
zn0 (Sn)

n−1∏
i=0

(1 + n−1/4ω̂ni,Si)

]
−Enx

[
zn0 (STn)

Tn−1∏
i=0

(1 + n−1/4ω̂ni,Si)

]
.

Let xn be a sequence of non-negative integers such that xn ≤ Cn1/2 for some C > 0.
Then E (xn, n)→ 0 in probability.

Proof. First we will show that
∑
nP

n
xn(Tn ≤ n−n2/3) <∞. By Borel-Cantelli, this would

imply that all Pnxn may be coupled to the same probability space in such a way that one
almost surely has Tn > n− n2/3 for large enough n. Then the result follows immediately
from Theorem 5.4 by taking α = 2/3 in the definition of E(x, n). Note that the choice of
exponent 2/3 is arbitrary and could be replaced by any α > 1/2.

To prove that
∑
nP

n
xn(Tn ≤ n − n2/3) < ∞, one first notes that the event {Tn ≤

n− n2/3} can only happen if supi≤n Si ≥ n2/3. But by Theorem A.7, we know that there
are universal constants C, c, c′ > 0 so that

Pnxn
(

sup
i≤n

Si ≥ n2/3
)
≤ Ce−c(n

2/3−xn)2/n ≤ Ce−c(n
2/3−Cn1/2)2/n ≤ Ce−c

′n1/3

.

The right side is summable as a function of n, completing the proof.

Note that by equations (2.3) and (2.4) and the surrounding discussion (but replacing n
above by 2n), the above proposition reduces the proof of Theorem 2.2 to that of Theorem
1.2 but with varying weights, so this is what we focus on now.

5.2 Convergence for the quadrant model

In this section we finally complete the main goals of the paper. Unless otherwise
stated, we always implicitly assume the following:

• All families {ωni,j} of i.i.d. weights satisfy the assumptions that were stated in the
bullet points before Theorem 2.2.

With the reduction (Proposition 5.8) finished, we define a partition function in the
quadrant that is modified to take parity into account. Specifically, given (n, x) in the
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lattice L := {(n, x) ∈ Z2
≥0 : n− x ≡ 0 (mod 2)} we define

Zk(n,x) := Enx

[
zk0 (Sn)

n∏
i=1

(1 + k−1/4ωkn−i,Si)

]

=

n∑
r=0

k−r/4
∑

1≤i1<...<ir≤n
(x1,...,xr+1)∈Zr+1

≥0

r∏
j=1

p
n−ij−1

ij−ij−1
(xj−1, xj)ω

k
n−ij ,xj ·

(
zk0 (xr+1)pn−irn−ir (xr, xr+1)

)
,

(5.10)

with i0 := 0, x0 := x, and zk0 (x) =
∏x
i=0(1 + k−1/4ωki,0) (in fact zk0 can be any sequence of

functions converging weakly and also satisfying the two bullet points of Proposition 5.7).
Consider the following family of diffusively rescaled processes

Zn(T,X) := Zn(nT, n1/2X), T,X ≥ 0, (5.11)

where we interpolate linearly between points of the lattice L. We will now show that
Zn converge in law as n→∞ with respect to the topology of uniform convergence on
compact subsets of R+ × R+ to the solution of (4.1). The first step for doing this is
proving tightness in the appropriate Hölder space. This part is not necessary if one is
only interested in following the minimal logical flow for the proof of Theorem 1.1, and
thus some of the proofs are not included. As always we denote ‖X‖p := E[|X|p]1/p.
Proposition 5.9 (Tightness). Let Zn be defined as in (5.11), and assume that (for each
k), the i.i.d. weights {ωki,j}i,j have p > 8 moments, bounded independently of k. Then
for every a ≥ 0, θ ∈ [0, 1), and compact set K ⊂ [0,∞)2 there exists C = C(a, p, θ,K) > 0

such that one has the following estimates uniformly over all pairs of space-time points
(T,X), (S, Y ) ∈ K:

‖Zn(T,X)‖p ≤ C, (5.12)

‖Zn(T,X)−Zn(T, Y )‖p ≤ C|X − Y |θ/2, (5.13)

‖Zn(T,X)−Zn(S,X)‖p ≤ C|T − S|θ/4. (5.14)

In particular, the laws of the Zn are tight with respect to the topology of uniform
convergence on compact subsets of C(R+ ×R+).

The restriction p > 8 is only necessary to obtain tightness in the Hölder space. Using
more elegant arguments, this may be extended to p ≥ 6 (see Appendix B of [AKQ14a]).
The one-point convergence result will only require two moments though.

Proof. Note that the functions Zk defined in (5.10) satisfy the following Duhamel-form
relation

Zk(n, x) =
∑
y≥0

pnn(x, y)zk0 (y) + k−1/4
n−1∑
i=0

∑
y≥0

pnn−i(x, y)Zk(i, y)ωki,y. (5.15)

Define the martingale Mr(x, n, k) := k−1/4
∑r−1
i=0

∑
y≥0 p

n
n−i(x, y)Zk(i, y)ωki,y. This is a

martingale in the r-variable, with respect to the filtration Fkr := σ({ωki,j}1≤i≤r;j≥0). This
is because Zk(i, y) is Fkr -measurable, and Fkr is independent of the mean-zero random
variables ωkr,y with y ≥ 0. Applying Burkholder-Davis-Gundy and then Minkowski’s
inequality to Mr(x, n, k) shows that

‖Mr(x, n, k)‖2p ≤ C
∥∥∥∥k−1/2

r−1∑
i=0

[∑
y≥0

pnn−i(x, y)Zk(i, y)ωki,y

]2∥∥∥∥
p/2

≤ Ck−1/2
r−1∑
i=0

∥∥∥∥∑
y≥0

pnn−i(x, y)Zk(i, y)ωki,y

∥∥∥∥2

p

. (5.16)
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Next, we notice that since the ωki,y are independent of Zk(i, y), another application of
Burkholder-Davis-Gundy (or in this case, its more elementary version for independent
sums, the Marcinkiewicz-Zygmund inequality) shows that∥∥∥∥∑

y≥0

pnn−i(x, y)Zk(i, y)ωki,y

∥∥∥∥2

p

≤ C
∑
y≥0

pnn−i(x, y)2‖Zk(i, y)‖2p‖ωki,y‖2p. (5.17)

Since p ≤ p0 and the pth0 moments of ωki,y are bounded independently of k, i, y it follows
that ‖ωki,y‖2p may be absorbed into the constant. Combining (5.15),(5.16),(5.17), one finds
that

‖Zk(n, x)‖2p ≤ C
(∑
y≥0

pnn(x, y)‖zk0 (y)‖p
)2

+Ck−1/2
n−1∑
i=0

∑
y≥0

pni (x, y)2‖Zk(n− i, y)‖2p. (5.18)

Now, we note that ‖zk0 (y)‖p ≤ eak
−1/2y by (5.8). Hence,

∑
y p

n
n(x, y)‖zk0 (y)‖p may be

bounded above by Ceak
−1/2x+Ka2k−1n by Proposition B.1. After this, we set x0 := x and

i0 := 0 and we iterate (5.18). Then we get

‖Zk(n, x)‖2p ≤ C
n∑
r=0

k−r/2
∑

0≤i1<...<ir<n
(x1,...,xr)∈Zr≥0

r∏
j=1

p
n−ij
n−ij−1

(xi−1, xi)
2 · eak

−1/2xr+Ka2n/k

Lemma 5.1
≤ Ceak

−1/2x+Ka2n/k
n∑
r=0

Ckk−r/2nr/2/(r/2)!

≤ Ceak
−1/2x+Bn/k, (5.19)

where we use
∑
r C

kk−r/2nr/2/(r/2)! ≤ eC
2n/k and then rename B := Ka2 + C2. Now

replace x by n1/2X, n by nT , and k by n. This will give ‖Zn(T,X)‖2p ≤ CeaX+BT . But
eaX+BT can be bounded from above on any compact set, proving (5.12).

The proofs of (5.13) and (5.14) use similar ideas (e.g., Burkholder-Davis-Gundy,
convexity inequalities like Minkowski and Jensen, and the recursive relations satisfied
by Zk) and will be left out. Now we need to argue tightness from these estimates. But
this is a direct corollary of the Kolmogorov continuity criterion (two-parameter version),
Prokhorov’s theorem, and the Arzela-Ascoli Theorem. Note that the condition p > 8 is
needed to obtain a positive exponent in Kolmogorov’s criterion.

Now that we have proved tightness, we only need to obtain convergence of finite-
dimensional marginals of Zn to those of SPDE (4.1). Thanks to the Cramer-Wold device
(and linearity of integration with respect to space-time white noise) this will not be more
difficult than just proving convergence of one-point marginals. This can be done by
using the convergence result in Proposition 3.6 together with the machinery developed
in the papers [AKQ14a, CSZ17a].

Specifically, we will use Theorem 2.3 of [CSZ17a], which in turn was inspired by the
results of Section 4 in [AKQ14a]. We state this result in a version that is adapted to our
own context. Throughout, we will fix T > 0 and we will denote ∆k(T ) := {(t1, ..., tk) :

0 < t1 < ... < tk < T, ti ∈ R}. Also denote by ∆n
k (T ) := {( t1n , ...,

tk
n ) : 0 < t1 < ... < tk <

Tn, ti ∈ Z}, and let (Rd)n := (n−1/2Z)d. Then define

Lnk := ∆n
k (T )× (Rk)n,

and equip Lnk with the σ-finite measure that assigns mass n−3/2 = n−1 · n−1/2 to each
distinct space-time point ( tn ,

x√
n

). We denote by L2(Lnk ) the L2-space associated to this
measure.

EJP 27 (2022), paper 45.
Page 32/47

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP775
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Positive random walks and an identity for half-space SPDEs

Theorem 5.10 (Theorem 2.3 of [CSZ17a]). For each n ∈ N, let {ωni,j}i,j≥0 be a family of
random weights with mean zero and var(ωni,j) = σ2 + o(1) (as n → ∞). Let {Fnk }n,k∈N
be a family of functions defined on Lnk . Suppose that Fk : ∆k(T ) ×Rk → R is a family
of continuous functions such that ‖Fnk − Fk‖L2(Lnk ) → 0 as n → ∞, for every k ∈ N.
Furthermore assume that

sup
n

∑
k≥0

‖Fnk ‖2L2(Lnk ) <∞.

Then define random variables

Xn :=
∑
k≥0

n−3k/4
∑

(~t,~x)∈Lnk

Fnk (~t, ~x)ω(nt1),(n1/2x1) · · ·ω(ntk),(n1/2xk).

Then Xn converges in distribution as n→∞ to the random variable

∞∑
k=0

σk
∫

∆k(T )

∫
Rk+

Fk(t1, ..., tk;x1, ..., xk)ξ(dx1dt1) · · · ξ(dxkdtk),

where ξ is a space-time white noise on R+ ×R.

We refer the reader to Section 4 of [AKQ14a] for an explanation of the scaling
exponent n−3k/4. With this result in place, we are now ready to prove the main result of
this section, which is a generalization of Theorem 1.2 to the case where the weights ω
vary with n.

Theorem 5.11. Let Zn be as defined in (5.11). Then the finite-dimensional marginals
of Zn converge to those of SPDE (4.1). More precisely, if F ⊂ R+ ×R+ is finite, then
(Zn(T,X))(T,X)∈F converges in law to (Z (T,X))(T,X)∈F where Z solves (4.1) with initial

data Z (0, X) = eσBX+(µ−σ2/2)X for a standard Brownian motion B.

Proof. Using the discussion at the end of Section 2 (more specifically, equations (2.6)
and (2.7)), we know that zn0 (n1/2X) converges in law to a geometric Brownian motion
with drift, specifically eσBX+(µ−σ2/2)X . We exploit Skorohod’s lemma to couple all of
the zn0 to the same probability space in such a way so that this convergence occurs a.s.
uniformly on compact sets.

Fix x, t > 0. In our case, we set

Fnk (t1, ..., tk;x1, ..., xk) :=
∑

xk+1∈n−1/2Z≥0

zn0 (n1/2xk+1)

k+1∏
j=1

Pn(tj − tj−1, T − tj−1;xj−1, xj),

Fk(t1, ..., tk;x1, ..., xk) :=

∫
R+

eBxk+1
−(A+1/2)xk+1

k+1∏
j=1

P
T−tj−1

tj−tj−1
(xj−1, xj) dxk+1,

where PT
t was given in Definition 3.4, Pn was defined in Proposition 3.6 and where

(x0, t0) := (x, t). The condition that

sup
n

∑
k≥0

‖Fnk ‖2L2(Lnk ) <∞,

follows quite simply from Lemma 5.1. Also the condition that ‖Fnk − Fk‖L2(Lnk ) → 0 as
n→∞, follows by inducting on the last statement in Proposition 3.6.

By Theorem 5.10, we conclude that the one-point marginals of Zn converge to those
of the solution of (4.1). The proof for multi-point marginals is similar, but one defines a
new family F̃nk by taking linear combinations of the Fnk that are defined above, then one
applies the Cramer-Wold device to make the conclusion.
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Note that (via Proposition 5.8) this result also implies Theorem 2.2, thus completing
the main goals of the paper. One thing that we have not yet explained the normalization(
2Φ
(
X+n−1/2
√
T

)
− 1
)−1

appearing in Theorem 2.2. This is an easy consequence of the fact
that (by the local central limit theorem and (A.2)), the asymptotic mass of the measures

µnT
n1/2X

appearing in Theorem 2.5 is equal to 2Φ
(
X+n−1/2
√
T

)
− 1 + o(n−1/2).

A Preliminary estimates and concentration of measure

The purpose of this appendix is to gather estimates for the simple symmetric random
walk conditioned to stay positive. The results and proofs are classical in spirit, and
the literature on such measures is extensive [Ig74, Bol76, Car05, CC08, DIM77] etc.
However, we will only give a brief exposition of those selected estimates that apply to
our nearest-neighbor weights, many of which we could not find in the above references,
and might be applicable to other models.

We recall the uniform positive random walk measures Pnx and the three associated

quantities (pNn , p
(1/2)
n , and ψ) that were defined in Section 3. The main goal of this

appendix will be to prove the following concentration inequality for the measures Pnx:

Pnx
(

sup
1≤j≤k

|Sj − x| > u
)
≤ Ce−cu

2/k,

where C, c are independent of n, x, k with k ≤ n. This will in turn allow us to prove
various Lp moment bounds that are used in Section 5. The methods used in proving
these results will be coupling arguments and martingale techniques, some of which
might be useful in and of themselves. More specifically, the main key will be to notice
that for fixed n ∈ N, the process

Mn
k :=

Sk + 1

ψ(Sk, n− k)
, 0 ≤ k ≤ n,

is a Pnx -martingale with respect to the k-variable. Moreover we will use the fact that (Sk)

is itself a submartingale. First we state a few preliminary lemmas.

Lemma A.1. Let ψ(x,N) be as in Definition 3.2. Then there exists a constant C > 0

such that for all x,N ≥ 0 one has

x+ 1

x+ 1 + C
√
N
≤ ψ(x,N) ≤ 1 ∧

(
C(x+ 1)√

N

)
.

Furthermore for each x ≥ 0 one has that

lim
N→∞

√
Nψ(x,N) = (x+ 1)

√
2/π.

Note that this already proves Theorem 2.5(2). Furthermore note that the upper and
lower bounds on ψ are strong enough to give an upper and lower envelope on ψ, i.e.,

C−1 x+ 1

x+ 1 +
√
N
≤ ψ(x,N) ≤ C x+ 1

x+ 1 +
√
N
. (A.1)

This is because 1 ∧ w ≤ 2w
1+w . We now proceed to the proof.

Proof. First we prove the upper bound. Let pN denote the standard heat kernel on the
whole line Z. Using Definitions 3.1 and 3.2 and the fact that pN is symmetric and sums
to 1, it holds that

ψ(x,N) =
∑
y≥0

(
pN (x− y)− pN (x+ y + 2)

)
= pN (x+ 1) + pN (0) + 2

∑
1≤u≤x

pN (u). (A.2)
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Now, we use the simple uniform bound pN ≤ CN−1/2 to see that the right side of the
last expression is bounded above by 2C(x + 1)N−1/2. On the other hand, it is obvious
that ψ(x,N) ≤ 1 for all x,N . So, we have obtained the desired upper bound.

Next, we prove the lower bound. We consider two different cases: x ≤ 2
√
N and

x > 2
√
N .

First we consider the case x > 2
√
N . One may apply Hoeffding’s inequality for the

simple random walk to deduce that

ψ(x,N) = pN (x+ 1) + pN (0) + 2
∑

1≤u≤x

pN (u) ≥
∑

−x≤u≤x

pN (u) ≥ 1− 2e−(x+1)2/2N .

Now set q := (x+1)2

2N . Then q ≥ 2, so q + 2 ≤ eq, and thus 1
1−2e−q ≤ 1 + 2

q . This means that

ψ(x,N)−1 ≤ 1 + N
2(x+1)2 . But since x+ 1 ≥

√
N , it follows that N

(x+1)2 ≤
√
N

x+1 . Hence we

obtain ψ(x,N) ≥ x+1
x+1+0.5

√
N

, whenever x > 2
√
N .

Now we consider the case x ≤ 2
√
N . The local central limit theorem tells us that

pN (u) ≥ c√
N
e−2u2/N ≥ c√

N
e−8, for some c > 0 and all u,N with u ≤ 2

√
N . Hence

ψ(x,N) = pN (x+ 1) + pN (0) + 2
∑

1≤u≤x

pN (u) ≥
∑

0≤u≤x

pN (u) ≥ ce−8

√
N

(x+ 1).

Now one simply notes that ce−8
√
N
≥ 1

x+1+c−1e8
√
N

. This proves the lower bound.
Finally, we prove the last statement about the limit. For this, let us write

ψ(x,N) = pN (x+ 1) + pN (0) + 2
∑

1≤u≤x

pN (u)

The local limit theorem tells us that for each u, the quantity
√
NpN (u) oscillates back

and forth between
√

2/π and zero (depending on the parity of N ) as N becomes large.
This already implies that N1/2 times the right side converges to

(
1 + x

)√
2/π.

Lemma A.2 (Monotonicity). Fix n ∈ N. Then ψ(x, n) is an increasing function of x. Thus,
pn1 (x, x+ 1) ≥ 1/2 ≥ pn1 (x, x− 1) for all x, n ≥ 0. Furthermore pn1 (x, x+ 1) is a decreasing
function of x, and pn1 (x, x− 1) is an increasing function of x.

The proof is straightforward.

Proposition A.3 (Coupling lemma for Positive Walks). Fix n ∈ N and x ≥ 0. There exists
a coupling Qn

x,x+1 of the measures Pnx and Pnx+1 that is supported on pairs (γ, γ′) of paths
such that |γ′i−γi| ≤ 1 for all i ≤ n. More generally, for fixed n ∈ N, the measures {Pnx}x≥0

may all be coupled together in such a way that the coordinate processes associated to
neighboring values of x are never more than distance 1 apart.

Proof. Let {Ui}ni=1 be a sequence of i.i.d. Uniform[0, 1] random variables. We make an
inductive construction as follows. Let S0 = x and S′0 = x+ 1.

Suppose that S0, ..., Sk and S′0, ..., S
′
k have been constructed in such a way that |Si −

S′i| = 1 for all k. If S′k = Sk + 1, we define

(Sk+1, S
′
k+1) :=


(Sk − 1, S′k − 1), Uk+1 > pn−k1 (Sk, Sk + 1)

(Sk + 1, S′k − 1), pn−k1 (Sk, Sk + 1) > Uk+1 > pn−k1 (S′k, S
′
k + 1)

(Sk + 1, S′k + 1), Uk+1 < pn−k1 (S′k, S
′
k + 1)

.

We know by lemma A.2 that one of these cases must hold. Similarly, if S′k = Sk − 1, then
we define (Sk+1, S

′
k+1) in a symmetric fashion. This completes the inductive step.
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A close look at this construction reveals that for x1, ..., xn ≥ 0 one has

P (S1 = x1, S2 = x2, ..., Sn = xn) = pn1 (x, x1)

n−1∏
j=1

pn−j1 (xj , xj+1),

P (S′1 = x1, S
′
2 = x2, ..., S

′
n = xn) = pn1 (x+ 1, x1)

n−1∏
j=1

pn−j1 (xj , xj+1).

By Proposition 3.3, S is distributed as Pnx and S′ is distributed as Pnx+1.
The proof of the more general statement is very similar. One simply uses a uni-

form coupling together with the Lemma A.2, and the argument is a straightforward
generalization of the one given above for two values of x.

Proposition A.4 (Martingales for Positive Walks). Fix x, n, k ≥ 0 with k ≤ n. Let S be
distributed according to Pnx . For i ≤ k define a function f (k,n)(x, i) := En−ix [Sk−i]. Then
the process

Mi = M
(k,n)
i := f (k,n)(Si, i), 0 ≤ i ≤ k

is a martingale with respect to the natural filtration of S. Furthermore it has bounded
increments

|Mi+1 −Mi| ≤ 2, 0 ≤ i ≤ k − 1.

In the special case when k = n, one has the explicit form f (n,n)(x, i) = −1 + x+1
ψ(x,n−i)

Proof. We suppress the superscript (k, n) on f from now on. Letting Fk denote the
natural filtration of S, it is a consequence of the Markov property that f(Si, i) = Enx [Sk|Fi],
which shows that M is a martingale in the i-variable for fixed x, n, k.

To prove that it has bounded increments, first note that

f(x, i)− f(x+ 1, i) = En−ix [Sk−i]−En−ix+1[Sk−i].

By the coupling lemma (Proposition A.3), this is bounded in absolute value by 1. Conse-
quently, one finds that

|f(x± 1, k + 1)− f(x, k)| =
∣∣∣∣f(x± 1, k + 1)−

∑
y∈{x−1,x+1}

pn−k1 (x, y)f(y, k + 1)

∣∣∣∣
≤

∑
y∈{x−1,x+1}

pn−k1 (x, y)
∣∣f(x± 1, k + 1)− f(y, k + 1)

∣∣ = pn−k1 (x, x∓ 1) · 2 ≤ 2,

which gives the desired result.
For the final statement, if k = n one may compute En−ix [Sn−i] =

∑
y≥0 yp

n−i
n−i(x, y) =

ψ(x, n− i)−1
∑
y≥0 yp

(1/2)
n−i (x, y). Now the claim follows from the fact that y 7→ y + 1 is a

unipotent eigenfunction of the semigroup p(1/2), i.e.,
∑
y≥0(y + 1)p

(1/2)
n (x, y) = x+ 1 for

every n, x ≥ 0.

Lemma A.5. Let b ≥ 0. There exists a constant C = C(b) > 0 such that for all n ≥ 0 and
all x, y, z ≥ 0 one has

p(1/2)
n (x, y) ≤ C

[
1√
n+ 1

∧ x+ 1

n+ 1

]
e−bn

−1/2|x−y|.

∣∣p(1/2)
n (x, y)− p(1/2)

n (x, z)
∣∣ ≤ C[ 1

n+ 1
∧ x+ 1

(n+ 1)3/2

]
|z − y|e−bn

−1/2
(
|x−y|∧|x−z|

)
.
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The proof will be omitted, because it is fairly standard and follows the same train of
estimates given in works such as [DT16]. The main point is to note that the standard heat
kernel on Z satisfies

∑
x∈Z pn(x)zx = (z + z−1)n2−n, so we can use Cauchy’s integral

formula to write it as follows:

pn(x) =
1

2πi

∮
C

z−x−12−n(z + z−1)ndz.

Then we choose the contour C cleverly (specifically a circle of radius ebn
−1/2

centered at
the origin) and finally use the fact that p(1/2)

n can be written in terms of pn via Definition
3.1. See Appendix A of [DT16] for details on obtaining bounds in this way.

Lemma A.6. There exists a constant C > 0 such that for all x ≥ 0 and all n ≥ k ≥ 1 one
has that

Enx [Sk] ≤ x+ Ck1/2.

Proof. We consider two cases, k > n/2 and k ≤ n/2.
Case 1. k > n/2. First, we claim that Enx [Sk] ≤ Enx [Sn]. In fact, it is even true

that S forms a Pnx-submartingale and thus Enx [Sk] is an increasing function of k for
every n. This follows immediately from Lemma A.2 after noticing that Enx [Sk+1|Fk] =

Sk + (2pn−k1 (Sk, Sk + 1)− 1) ≥ Sk. Now, from the preceding proposition, we know that
Mk := Sk+1

ψ(Sk,n−k) forms a martingale. Thus, we see that

En0 [Sn + 1] = Enx [M0] =
x+ 1

ψ(x, n)
≤ x+ 1 + Cn1/2,

where we applied the lower bound of Lemma A.1 in the final bound. Since k > n/2, we
see that n1/2 ≤ 21/2k1/2, which gives the desired bound in this case.

Case 2. k ≤ n/2. First we use the coupling lemma (Proposition A.3) to see that
Enx [Sk] ≤ 1 + Enx−1[Sk]. Iterating this x times shows that

Enx [Sk] ≤ x+ En0 [Sk].

Thus we only need to show that En0 [Sk] ≤ Ck1/2. To prove this, let us write En0 [Sk] =∑
y≥0 p

n
k (0, y)y. Now we write pnk (0, y) = p

(1/2)
k (0, y)ψ(y,n−k)

ψ(0,n) . By Lemma A.1 we know
1

ψ(0,n) ≤ C
√
n. Furthermore we also know from the same lemma that ψ(y, n − k) is

bounded above by 1 ∧ (Cy(n− k)−1/2), which is in turn bounded above by 1 ∧ (Cyn−1/2)

since k ≤ n/2. Moreover, we also know from Lemma A.5 that p(1/2)
k (0, y) ≤ C

k+1e
−y/
√
k.

Thus, we find that

En0 [Sk] ≤ C

k + 1

[ ∑
0≤y≤

√
n

e−y/
√
kn1/2(n−1/2y2) +

∑
y≥
√
n

e−y/
√
k(n1/2y)

]
. (A.3)

Let us refer to the two sums inside the square brackets on the right side as J1 and J2,
respectively.

First we bound J1. Now, we use the bound
∑
r≥0 r

2αr ≤ 2
(1−α)3 (valid for α < 1) and

we see that

J1 ≤ C
∑
y≥0

y2e−y/
√
k ≤ C

(1− e−1/
√
k)3
≤ Ck3/2.

In the last bound, we used the elementary bound (1− e−q)−1 ≤ 1 + q−1 (which in turn
implies (1− e−q)−3 ≤ 23(1 + q−3)) with q = k−1/2.

Next, we bound J2. Using the bound
∑
r≥s rα

r ≤ C
[

αs

(1−α)2 + sαs

1−α
]
, we see that

J2 = n1/2
∑
y≥
√
n

e−y/
√
ky ≤ n1/2

[
e−
√
n/k

(1− e−1/
√
k)2

+
n1/2e−

√
n/k

1− e−1/
√
k

]
.
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Now
n1/2e−

√
n/k = k1/2(n/k)1/2e−

√
n/k ≤ k1/2 sup

u>0
ue−u = Ck1/2.

Similarly, one finds that ne−
√
n/k ≤ Ck. We also note that (1− e−q)−1 ≤ 1 + q−1, and thus

(1− e−q)−2 ≤ 2 + 2q−2. Taking q = k−1/2 and then combining the last few expressions,
one finally gets J2 ≤ Ck3/2.

Combining the bounds of J1 and J2 with (A.3), we obtain the desired bound.

Finally we have our concentration theorem, the main result of this appendix.

Theorem A.7 (Concentration). As before, let S = (Sk)0≤k≤n denote the canonical pro-
cess associated to Pnx . Then there exist C, c > 0 such that for every x ≥ 0, every
0 ≤ k ≤ n, and every u > 0 one has that

Pnx
(

sup
0≤i≤k

|Si − x| > u
)
≤ Ce−cu

2/k.

In other words, on time scales of length k, the path measure Pnx concentrates on
spatial scales of order

√
k around x. The idea of the proof is to exploit the martingales

from Proposition A.4 and apply well-known concentration inequalities for bounded-
increment martingales. The Gaussian decay constant c will be obtained as 1/32, which is
not sharp (presumably c = 1/2 should be possible, but we do not have a proof).

Proof. Throughout this proof, x, n, and k will be fixed. Let us write

Pnx
(

sup
0≤i≤k

|Si − x| > u
)

= Pnx
(

sup
0≤i≤k

Si > x+ u
)

+ Pnx
(

inf
0≤i≤k

Si < x− u
)
.

Let us refer to the terms on the right side as p1, p2 respectively.
First we bound p2. Recall from Lemma A.2 that pn1 (x, x+ 1) ≥ 1/2 ≥ pn1 (x, x− 1) for

all n, x ≥ 0. This trivially shows that S is a submartingale, which directly gives the claim
for p2 by Azuma’s inequality [Azu67] for submartingales, with c = 1/2.

Now we will bound p1, which is more difficult. Letting M = (M
(n,k)
i )ki=0 denote the

martingale from Proposition A.4, it is clear that Sk = Mk. Furthermore M0 = f(x, 0) =

Enx [Sk] ≤ Ck1/2 + x by Proposition A.6. Since the increments of M are bounded above by
2, we may apply Azuma’s inequality again to see that

Pnx(Sk > x+ u) = Pnx
(
Mk > x+ u

)
≤ Pnx

(
Mk −M0 > u− Ck1/2

)
≤ e−(u−Ck1/2)2/8k ≤ Ce−u

2/16k.

In the last inequality, we used the fact that (u− Ck1/2)2 ≥ 1
2u

2 − C2k. This, in turn, is
because (a+ b)2 ≤ 2(a2 + b2). Combining the bounds on p1 and p2 shows that

Pnx(|Sk − x| > u) ≤ Ce−u
2/16k. (A.4)

Since (Si) is a submartingale (Lemma A.2) and since x 7→ eλx is increasing and convex
it follows that the process (eλSi)ni=0 is a Pnx-submartingale as well. Thus, we may apply
Doob’s martingale inequality to see that

p1 ≤ Ce−λ(x+u)Enx [eλSk ] = Ce−λ(x+u)

(
1 +

∫ ∞
0

λeλyPnx(Sk > y)du

)
.

Now we split the integral as
∫ x

0
plus

∫∞
x

. We use the crude bound Pnx(Sk > y) ≤ 1 for
the integral over [0, x], and we use the bound (A.4) for the other. This gives

p1 ≤ Ce−λu + Ce−λu
∫ ∞
x

λeλ(y−x)−(y−x)2/16kdy ≤ C(e−λu + λk1/2e4λ2k−λu).
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Setting λ = u
8k gives a bound of C(e−u

2/8k + uk−1/2e−u
2/16k). Now one simply notes that

r ≤ Cer
2/32, so that uk−1/2 ≤ Ceu

2/32k. This gives the desired bound on p1, where the
constant appearing in the theorem statement is c := 1/32.

We now give a slightly generalized version of the concentration theorem.

Corollary A.8. In the same setting as the previous theorem, there exist C, c > 0 such
that for every x ≥ 0, every 0 ≤ m ≤ k ≤ n, and every u > 0 one has that

Pnx
(

sup
m≤i≤k

|Si − Sm| > u
)
≤ Ce−cu

2/(k−m).

Here, C, c are the same as in the previous theorem.

Proof. Define
g(k, n, x, u) := Pnx

(
sup

0≤i≤k
|Si − x| > u

)
.

By the Markov property (conditioning on the first m steps), we have that

Pnx
(

sup
m≤i≤k

|Si − Sm| > u
)

= Enx

[
g(k −m,n−m,Sm, u)

]
.

But Theorem A.7 tells us that g(k, n, x, u) ≤ Ce−cu2/k independently of x, n.

Corollary A.9. Let p > 0. There exists a constant C = Cp > 0 such that for every x ≥ 0

and every 0 ≤ k ≤ m ≤ n, one has

Enx
[
|Sk − Sm|p

]
≤ C|k −m|p/2.

Proof. Let us write

Enx
[
|Sk − Sm|p

]
=

∫ ∞
0

pup−1Pnx(|Sk − Sm| > u)du.

By Corollary A.8, this is bounded above by

C

∫ ∞
0

pup−1e−cu
2/(k−m)du = Cp(k −m)p/2

∫ ∞
0

vp−1e−cv
2

dv = Cp(k −m)p/2,

where we made a substitution y = (k −m)−1/2u in the first equality.

By Arzela-Ascoli, the preceding corollary clearly implies tightness of the diffusively
rescaled process mentioned in Remark 2.6. Indeed we can use this to easily recover clas-
sical results such as [Ig74, BJD06] in this nearest-neighbor case, for instance by showing
that any subsequential limit has the same finite-dimensional marginal distributions as
WT

X which in turn can be shown e.g. by Proposition B.6 below.

B Heat kernel estimates for conditioned walks

We now prove various estimates for the heat kernels pNn defined in Section 3. Not
much motivation will be given here, but the content of Sections 4 and 5 has illustrated
the applicability of these estimates. The methods used in proving these bounds will be
elementary bounds together with the results of Appendix A (specifically Propositions A.5
and A.3, and Theorem A.7).

Proposition B.1. There exist constants C,K > 0 such that for all x ≥ 0, all N ≥ n ≥ 0,
and all a ≥ 0 one has that ∑

y≥0

pNn (x, y)eay ≤ Ceax+Ka2n.
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Proof. In the notation of Appendix A, let us write∑
y≥0

pNn (x, y)eay = ENx [eaSn ] = 1 +

∫ ∞
0

aeauPNx (Sn > u)du.

Now we split the integral as
∫ x

0
+
∫∞
x

. For the integral over [0, x] we use the crude bound
PNx (Sn > u) ≤ 1. For the integral over [x,∞), we use the result of Theorem A.7. This will
give

ENx [eaSn ] ≤ eax + C

∫ ∞
x

aeaue−c(u−x)2/ndu ≤ eax + C · an1/2eax+ a2n
4c .

Since an1/2 ≤ ea2n, this gives the result with K := 1 + 1
4c .

We remark that c = 1/32 from the proof of Theorem A.7, so we can obtain K = 9 in
the preceding proposition. Conjecturally, the optimal value of K should be 1/2, as is the
case for the simple random walk (as seen from cosh(a) ≤ e 1

2a
2

).

Lemma B.2. Fix b > 0. There exists C = C(b) > 0 such that for all x ≥ 0 and all
N ≥ n ≥ 0 one has that

pNn (x, y) ≤ C√
n+ 1

e−b|x−y|/
√
n.

We remark that this bound is fairly strong, and many of our estimates could have
been derived from this result rather than from the concentration theorem (but only in a
weaker form because the decay is merely exponential rather than Gaussian).

Proof. We consider four different cases.

Case 1. x ≥
√
N . Then, one has ψ(y,N−n)

ψ(x,N) ≤
1

ψ(x,N) ≤ C by Lemma A.1. Thus it holds

that pNn (x, y) ≤ Cp(1/2)
n (x− y) ≤ C(n+ 1)−1/2e−b|x−y|/

√
n. The final inequality comes from

the first bound of Lemma A.5.

Case 2. n < N/2 and y ≤ x. Then one has

pNn (x, y) ≤ Cp(1/2)
n (x, y)

[
x+ 1 +

√
N

x+ 1

][
y + 1

y + 1 +
√
N − n

]
≤ C(n+ 1)−1/2e−b|x−y|/

√
n

[
x+ 1 +

√
N

x+ 1

][
x+ 1

x+ 1 +
√
N − n

]
≤ C(n+ 1)−1/2e−b|x−y|/

√
n

[
N

N − n

]1/2

.

We used (A.1) in the first line and we used Lemma A.5 and that y 7→ y+1

y+1+
√
N−n is

monotone increasing in the second line. Then we canceled the x+ 1 and used the fact

that x 7→ x+1+
√
N

x+1+
√
N−n is monotone decreasing in the last line. Since n < N/2 it follows

that
[

N
N−n

]1/2 ≤ 21/2 so that term may be absorbed into C.

Case 3. n < N/2 and y ≥ x. Then

pNn (x, y) ≤ Cp(1/2)
n (x, y)

[
x+ 1 +

√
N

x+ 1

][
y + 1

y + 1 +
√
N − n

]
≤ Cp(1/2)

n (x, y)

[
x+ 1 +

√
N

x+ 1

][
y + 1

x+ 1 +
√
N − n

]
≤ C

[
N

N − n

]1/2

p(1/2)
n (x, y)

y + 1

x+ 1
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= C

[
N

N − n

]1/2

p(1/2)
n (x, y)

[
y − x
x+ 1

+ 1

]
≤ C

[
y − x
n+ 1

+ C(n+ 1)−1/2

]
e−b|x−y|/

√
n. (B.1)

Here we noted y ≥ x in the second line, and we used the fact that x 7→ x+1+
√
N

x+1+
√
N−n is

monotone decreasing in the third line. In the final line, we used
[

N
N−n

]1/2 ≤ 21/2 (since
n < N/2) and also the first bound of Lemma A.5. Now, we know that the bound (B.1) is
true for all b, in particular it is true with b replaced by b+ 1, after perhaps making the
constant bigger. Thus we see that

|x− y|
n+ 1

e−(b+1)|x−y|/
√
n ≤ 1√

n+ 1
e−b|x−y|/

√
n

[
|x− y|√

n
e−|x−y|/

√
n

]
.

≤ 1√
n+ 1

e−b|x−y|/
√
n sup
u>0

ue−u =
C√
n+ 1

e−b|x−y|/
√
n.

Case 4. x ≤
√
N and n ≥ N/2. Since x ≤

√
N ≤

√
2n, we can apply Lemmas A.1 and

A.5 to see that

pNn (x, y) ≤ Cp(1/2)
n (x, y)

x+ 1 +
√
N

x+ 1

≤ C x+ 1

n+ 1
e−b|x−y|/

√
n · 2
√

2n+ 1

x+ 1
≤ C(n+ 1)−1/2e−b|x−y|/

√
n.

This completes the proof of all cases.

Proposition B.3. There exist constants C,K > 0 such that for all x ≥ 0, all N ≥ n ≥ 0,
all a ≥ 0, and all p ≥ 1 one has that∑

y≥0

pNn (x, y)peay ≤ Cp(n+ 1)−(p−1)/2eax+Ka2n.

Proof. Using Lemma B.2 with b = 0, one finds that

pNn (x, y)p = pNn (x, y)p−1pNn (x, y) ≤ Cp−1

(n+ 1)(p−1)/2
pNn (x, y).

Then the claim follows immediately from Proposition B.1.

We now bound space-time differences of the heat kernels pNn .

Lemma B.4. There exists a constant C > 0 such that for all x, y, z ≥ 0 one has that

∣∣pNn (x, y)− pNn (x, z)
∣∣ ≤ C

n+ 1

[
N + 1

N − n+ 1

]1/2

|y − z|.

Proof. Without loss of generality, assume y ≥ z. It suffices to prove the bound in the
case y = z + 1. In the general case, one simply adds the bound y − z times. Let us write

∣∣pNn (x, z + 1)− pNn (x, z)
∣∣ =

∣∣∣∣p(1/2)
n (x, z + 1)ψ(z + 1, N − n)− p(1/2)

n (x, z)ψ(z,N − n)

ψ(x,N)

∣∣∣∣
≤|p(1/2)

n (x,z+1)−p(1/2)
n (x,z)|ψ(z+1,N−n)

ψ(x,N)
+p(1/2)

n (x,z)
|ψ(z+1,N−n)−ψ(z,N−n)|

ψ(x,N)
.

Let us call the two terms of the last expression I1, I2 respectively. From here, one
considers two cases (x ≤

√
N and x ≥

√
N) and bound I1, I2 separately each time. The

arguments are similar to the ones above, so the proof is not included.
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Proposition B.5. Fix p ≥ 1. There exists a constant C = C(p) > 0 such that for all
x, y ≥ 0, all N ≥ n ≥ m ≥ 0, and all a ≥ 0 one has that∑

z≥0

∣∣pNn (x, z)− pNn (y, z)
∣∣2peaz ≤ Cea(x+y)+Ka2n

(
n

1
2−

3
2p + apn

1
2−p
)
|x− y|p, (B.2)

∑
z≥0

∣∣pN−n+m
m (x, z)− pNn (x, z)

∣∣2peaz ≤ Ce2ax+Ka2n
(
m

1
2−

3
2p + apm

1
2−p
)
|n−m|p/2. (B.3)

In the spatial bound (B.2), the constant C grows at worst exponentially in p.

We remark that in the special case that p = 1 and a ≤ Cn−1/2, one has that n
1
2−

3
2p +

apn
1
2−p ≤ Cn−1 and similarly for m. This is the case in which this bound will most often

be applied.

Proof. We first start out by proving an auxiliary bound:

∑
z≥0

(
pNn (x, z)− pNn (y, z)

)2
eaz ≤ Cea(x+y)+Ka2n

(
n−1 + an−1/2

)[ N + 1

N − n+ 1

]1/2

|x− y|.

(B.4)
Let us prove this. The coupling lemma (A.3) and the preceding lemma will be key
here. First, by the coupling lemma, we know that PNx and PNy may be coupled in
such a way so that the respective coordinate processes (call them (Sxn)Nn=0 and (Syn)Nn=0)
are never a distance more than |y − x| apart (i.e., supn≤N |Sxn − Syn| ≤ |x − y| a.s.).
Let E denote the expectation with respect to the coupled measure. Now, by writing(
pNn (x, z) − pNn (y, z)

)2
= pNn (x, z)

(
pNn (x, z) − pNn (y, z)

)
− pNn (y, z)

(
pNn (x, z) − pNn (y, z)

)
we

may write∑
z≥0

(
pNn (x, z)− pNn (y, z)

)2
eaz

= ENx [(pNn (x, Sn)− pNn (y, Sn))eaSn ]−ENy [(pNn (x, Sn)− pNn (y, Sn))eaSn ]

= E[(pNn (x, Sxn)− pNn (y, Sxn))eaS
x
n ]− E[(pNn (x, Syn)− pNn (y, Syn))eaS

y
n ]

= E[(pNn (x, Sxn)− pNn (x, Syn))eaS
x
n ] + E[pNn (x, Syn)(eaS

x
n − eaS

y
n)]

+ E[(pNn (y, Syn)− pNn (y, Sxn))eaS
y
n ] + E[pNn (y, Sxn)(eaS

y
n − eaS

x
n)].

Let us refer to the terms in the last expression as J1, J2, J3, J4, respectively. Since J1 and
J3 occupy symmetric roles, it suffices to bound J1 and then the analogous bound for J3

automatically follows. The same thing happens for J2 and J4. With this understanding,
we will only prove the desired bound for J1 and J2.

Let us start by bounding J1. By Lemma B.4, we see that

|pNn (x, Sxn)− pNn (x, Syn)| ≤ C

n+ 1

[
N + 1

N − n+ 1

]1/2

|Sxn − Syn|

≤ C

n+ 1

[
N + 1

N − n+ 1

]1/2

|x− y|.

Here we applied the coupling in the second inequality. Applying the definition of J1 and
then Proposition B.1, we therefore obtain that

J1 ≤
C

n+ 1

[
N + 1

N − n+ 1

]1/2

|x− y|E[eaS
x
n ] ≤ C

n+ 1

[
N + 1

N − n+ 1

]1/2

|x− y|eax+Ka2n.

This already gives the desired bound on J1. As discussed, the analogous bound on J3 is
obtained in an identical fashion, but one will get eay instead of eax. The final bound on
J1 + J3 is then obtained by noting that eax + eay ≤ 2ea(x+y).
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Now we bound J2. First note that |eu − ev| ≤ |u − v|eu∨v for all u, v ∈ R. Thus
|eaSyn − eaSxn | ≤ a|Syn − Sxn|ea(Syn∨S

x
n) ≤ a|y − x|ea(Syn+Sxn). By Cauchy-Schwarz, we in turn

bound E[ea(Syn+Sxn)] ≤ ENx [e2aSn ]1/2ENy [e2aSn ]1/2 ≤ Cea(x+y)+Ka2n, by Proposition B.3.

Now, we also know from Lemma B.2 that pNn (x, Syn) ≤ C(n + 1)−1/2. Using these facts,
we find that

J2 ≤ Ca|y − x|E[pNn (x, Syn)ea(Syn+Sxn)] ≤ Can−1/2|x− y|ea(y+x)+Ka2n.

Already this proves the required bound on J2. The analogous bound on J4 follows
immediately. This completes the proof of (B.4).

Now let us prove the spatial estimate (B.2). For m ≤ n, we use the semigroup
property to write pNn (x, z) =

∑
y≥0 p

N
m(x, y)pN−mn−m (y, z) and then using Jensen’s inequality,

we find that

∣∣pNn (x, z)− pNn (y, z)
∣∣2p =

∣∣∣∣∑
w≥0

(
pNm(x,w)− pNm(y, w)

)
pN−mn−m (w, z)

∣∣∣∣2p
≤
(∑
w≥0

(
pNm(x,w)− pNm(y, w)

)2
pN−mn−m (w, z)

)p
Denoting by I the left-hand side of (B.2), we then find by Minkowski’s inequality that

I1/p ≤

(∑
z≥0

[∑
w≥0

(
pNm(x,w)− pNm(y, w)

)2
pN−mn−m (w, z)eaz/p

]p)1/p

Minkowski
≤

∑
w≥0

[∑
z≥0

(
pNm(x,w)− pNm(y, w)

)2p
pN−mn−m (w, z)peaz

]1/p

=
∑
w≥0

(
pNm(x,w)− pNm(y, w)

)2[∑
z≥0

pN−mn−m (w, z)peaz
]1/p

Prop.B.3

≤ C
∑
w≥0

(
pNm(x,w)− pNm(y, w)

)2
(n−m)

1−p
2p e(aw+Ka2(n−m))/p

(B.4)
≤ C(n−m)

1−p
2p
(
m−1 + am−1/2

)[ N + 1

N −m+ 1

]1/2

|x− y|e
(
a(x+y)+Ka2n

)
/p.

Setting m := n/2 then gives (B.2), because
[

N+1
N− 1

2n+1

]1/2 ≤ [ N+1
1
2N+1

]1/2 ≤ 21/2. Note that

the constant C does not depend on p, which also proves the final sentence given in the
theorem statement after noting that

(
n−1 + an−1/2

)p ≤ 2p(n−p + apn−p/2).

We move on to the temporal estimate (B.3). The main idea is to use Jensen’s inequality
together with the spatial estimate. Specifically, we start off by writing

∣∣pN−n+m
m (x, z)− pNn (x, z)

∣∣2p =

∣∣∣∣pN−n+m
n (x, z)−

∑
y≥0

pNn−m(x, y)pN−n+m
m (y, z)

∣∣∣∣2p

=

∣∣∣∣∑
y≥0

pNn−m(x, y)
(
pN−n+m
m (x, z)− pN−n+m

m (y, z)
)∣∣∣∣2p

Jensen
≤

∑
y≥0

pNn−m(x, y)
∣∣pN−n+m
m (x, z)− pN−n+M

m (y, z)
∣∣2p.

Next, we multiply by eaz, then sum over z, and interchange the sum over z with the sum
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over y. Letting J denote the left-hand side of (B.3), this gives

J ≤
∑
y≥0

pNn−m(x, y)
∑
z≥0

∣∣pN−n+m
m (x, z)− pN−n+m

m (y, z)
∣∣2peaz

≤ Cp
∑
y≥0

pNn−m(x, y)ea(x+y)+Ka2m
(
m

1
2−

3
2p + apm

1
2−p
)
|y − x|p

= Cpeax+Ka2m
(
m

1
2−

3
2p + apm

1
2−p
)
ENx [|Sn−m − x|peaSn−m ].

All that is left to do is to show that one has ENx [|Sn−m − x|peaSn−m ] ≤ Ceax+Ka2(n−m)|n−
m|p/2. This is an easy consequence of the concentration theorem. Indeed, for any k ≤ N
one may write

ENx [|Sk − x|peaSk ] ≤ ENx [|Sk − x|2p]1/2ENx [e2aSk ]1/2,

and then the claim follows immediately from Propositions B.1 and Corollary A.9.

Next we prove a strong convergence result for the discrete kernels pNn to the contin-
uous ones PT

t from Definition 3.4, from which we can easily obtain estimates for the
continuous kernels as well. In the case of Brownian meander at terminal time (X = 0

and t = T ), the following result is weaker than the local convergence result of [Car05],
but we actually need it for all (t, T ) so we give an original proof.

Proposition B.6. Fix τ ≥ 0. Then for n ≥ 0, define

Pn(t, T ;X,Y ) := (n/2)1/2p
2bTnc
2btnc (2bn1/2X/

√
2c, 2bn1/2Y/

√
2c).

Then for each fixed X,T, t ≥ 0, the map Y 7→Pn(t, T ;X,Y ) converges pointwise and in
Lp(R+, e

aY dY ) to PT
t (X,Y ) for all p ≥ 1 and a ≥ 0 (as n→∞).

Furthermore for all X,T ≥ 0, the map (t, Y ) 7→ Pn(t, T ;X,Y ) converges pointwise
and in Lp(dt⊗ eaY dY ) to PT

t (X,Y ) for all p ∈ [1, 3) and a ≥ 0 (as n→∞).

From now on, we will abbreviate quantities such as p2bTnc
2btnc (2bn1/2X/

√
2c, 2bn1/2Y/

√
2c)

by just writing p2nT
2nt ((2n)1/2X, (2n)1/2Y ) instead. We hope that this abuse of notation will

not cause any confusion, but in reality one should keep in mind that all quantities are only
defined with even integers. The reason for this is the periodicity of the simple random
walk: pNn (x, y) vanishes if n and x− y have different parity. If it were not for this parity

consideration, we could take a limit of the simpler quantity n1/2p
bnTc
bntc (bn1/2Xc, bn1/2Y c).

Proof. First, let us prove pointwise convergence. Letting pn denote the standard heat
kernel on all Z, we recall that

p(1/2)
n (x, y) = pn(x− y)− pn(x+ y + 2).

ψ(x, n) = pn(0) + pn(x+ 1) + 2
∑

1≤y≤x

pn(y) =
∑

−x≤y≤x+1

pn(y).

Let Fn denote the cdf associated to pn, so that ψ(x, n) = Fn(x+ 1)− Fn(−x) = Fn(x) +

Fn(x + 1) − 1. By uniformity of convergence of cdf’s in the central limit theorem
we know that Fn(n1/2x) converges uniformly (on R) to Φ(x), where Φ is the cdf of a
standard normal. From this it is clear that ψ(n, n1/2x) = Fn(n1/2x) + Fn(n1/2x+ 1)− 1

converges uniformly to 2Φ(x) − 1 (because Φ has no atoms). In turn, one deduces
that ψ(2nT, (2n)1/2X) = ψ(2nT, (2nT )1/2X/

√
T ) converges to 2Φ(X/

√
T )− 1. From here,

completing the proof of pointwise convergence is easy using the local central limit
theorem (though notice that X = 0 requires a separate proof) as done in earlier proofs.
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Now we will fix t, T,X, and we will address convergence in Lp(R+, e
aY dY ). The main

idea is simply to use dominated convergence in conjunction with Lemma B.2. Specifically,
that lemma (applied with b = 2at1/2/p) tells us that

Pn(t, T ;X,Y ) ≤ Ct−1/2e−2a|X−Y |/p. (B.5)

Here C is a constant independent of Y (but it will depend on t, a, p). Letting p ≥ 1, it is
then clear from (B.5) that for fixed X,T, t, the sequence of maps

Y 7→Pn(t, T ;X,Y )peaY

is dominated (uniformly in n) by a function that is integrable on R+. This is enough to
guarantee by dominated convergence that∫

R+

|Pn(t, T ;X,Y )−PT
t (X,Y )|peaY dY → 0.

Similarly, one uses (B.5) in conjunction with the dominated convergence theorem to
obtain convergence in Lp(R+×R+, dt⊗eaY dY ) of (Y, t) 7→Pn(t, T ;X,Y ). This argument

only works for p ∈ [1, 3), since the singularity of
∫
R+

t−p/2e−pt
−1/2|X−Y |dY ∼ t−(p−1)/2

fails to be absolutely integrable near t = 0, if p ≥ 3.

Proposition B.7. Let a, τ > 0 and let PT
t be the kernels from Definition 3.4. Then

there exists a constant C = C(τ, a) such that for all X,Y ≥ 0, all θ ∈ [0, 1/2], and all
s ≤ t ≤ T ≤ τ one has the following∫

R+

PT
t (X,Z)eaZdZ ≤ CeaX , (B.6)∫

R+

PT
t (X,Z)2eaZdZ ≤ Ct−1/2eaX , (B.7)∫

R+

(
PT
t (X,Z)−PT

t (Y,Z)
)2
eaZdZ ≤ Ct− 1

2−θea(X+Y )|X − Y |2θ, (B.8)∫
R+

(
PT−t+s
s (X,Z)−PT

t (X,Z)
)2
eaZdZ ≤ Cs− 1

2−θe2aX |t− s|θ (B.9)

Proof. The claims follow from the L1 and L2 convergence in Proposition B.6. More
specifically, (B.6) follows from Proposition B.1 and convergence in L1(R+, e

aY dY ). Next,
(B.7) follows from Proposition B.3 and convergence in L2(eaY dY ). Expressions (B.8)
and (B.9) with θ = 1/2 follow immediately from Proposition B.5 and convergence in
L2(eaY dY ). The appearance of the terms Ka2n in the exponent will be absorbed into the
constant because a effectively becomes replaced by n−1/2a. The θ = 0 cases of (B.8) and
(B.9) follow immediately from (B.7) and the fact that eaX + eaY ≤ 2ea(X+Y ). The proofs
for general θ then follow easily by geometric interpolation (i.e., min{a, b} ≤ aθb1−θ for all
a, b ≥ 0 and all θ ∈ [0, 1]).
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