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Fluctuations of transverse increments in
two-dimensional first passage percolation

Ujan Gangopadhyay*

Abstract

We consider a model of first passage percolation (FPP) where the nearest-neighbor
edges of the standard two-dimensional Euclidean lattice are equipped with random
variables. These variables are i.i.d. nonnegative, continuous, and have a finite mo-
ment generating function in a neighborhood of 0. We derive consequences about
transverse increments of passage times, assuming the model satisfies certain prop-
erties. Approximately, the assumed properties are the following: We assume that
the standard deviation of the passage time on scale r is of some order σ(r), and
{σ(r), r > 0} grows approximately as a power of r. Also, the tails of the passage time
distributions for distance r satisfy an exponential bound on a scale σ(r) uniformly
over r. In addition, the boundary of the limit shape in a neighborhood of some fixed
direction θ has a uniform quadratic curvature. By transverse increment we mean
the difference between passage times from the origin to a pair of points which are
approximately at the direction θ and the direction between the pair of points is the
direction of the tangent to the boundary of the limit shape at the direction θ. The main
consequence derived is the following. If σ(r) varies as rχ for some χ > 0, and ξ is
such that χ = 2ξ − 1, then the fluctuation of the transverse increment of passage time
between a pair of points situated at distance r from each other is of the order of rχ/ξ.
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1 Introduction

In this paper, we investigate the transverse increments of passage times in the
classical model of first passage percolation (FPP) on Z2, which was introduced in [19].
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Transverse increments in FPP on Z2

1.1 A brief description of the model

Let E(Z2) be the set of nearest-neighbor edges in Z2. On E(Z2) we consider a
collection of random variables T := { τe : e ∈ E(Z2) }, which are called edge-weights. We
assume certain properties of the edge-weights. We categorize these assumptions as
being basic or technical. We use the basic assumptions throughout the paper. We use
the technical assumptions more selectively.

The basic assumptions: We assume that the edge-weights are i.i.d., nonnegative, and
continuous. In addition, there exists C > 0 such that E[exp (Cτe)] <∞.

Using the edge-weights, we define the passage time of a self-avoiding lattice path γ,
denoted by T (γ), as the sum of the edge-weights of all the edges on the path γ, i.e.,

T (γ) :=
∑

γ contains e

τe .

In the above definition, we adopt the convention that a path is a continuous, piece-wise
constant curve in R2 which traces the edges of the integer lattice. Next, we define the
passage time between two points u and v in Z2 as

T (u,v) := inf{T (γ) : γ is a path joining u and v } .

It follows from the above definition that T is a random pseudo-metric on Z2. In [34] it was
shown, assuming only the i.i.d. and nonnegative assumptions on the edge-weights, the
infimum in the definition of T is attained for some paths, i.e., the infimum is a minimum.
Since we have assumed that the edge-weights are also continuous, it follows that there
is only one such minimizing path almost surely. We call this path the geodesic between
u and v, and denote it by Γ(u,v). Since the edge-weights have finite expectation, the
passage times T (u,v), for all u, v, also have finite expectation. Therefore,

h(u) := E[T (0,u)]

is well-defined. From the triangle inequality of T it follows that h is subadditive, i.e., for
any u,v ∈ Z2 we have

h(u + v) ≤ h(u) + h(v) .

The subadditive ergodic theorem in [25] implies that for any u ∈ Z2 the following limits
exist almost surely and in L1:

g(u) := lim
n→∞

T (0, nu)

n
= lim
n→∞

h(nu)

n
= inf
n>0

h(nu)

n
.

The domain of g can be extended to Q2 by taking limit along appropriate subsequences
in the above definition. By extending the domain in this way, g becomes a norm on Q2.
Therefore, the domain of g can be further extended to R2. The unit ball in the norm g is

B :=
{
x ∈ R2 : g(x) ≤ 1

}
,

This is called the limit shape. The wet region at time t is defined as

B(t) :=
{
x ∈ Z2 : T (0,x) ≤ t

}
.

The shape theorem in [13] implies, under conditions milder than our basic assumptions,
B(t) approaches B in an appropriate sense as t→∞. In addition, B is compact, convex,
has a nonempty interior, and has all the symmetries of the lattice.
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Transverse increments in FPP on Z2

Notation 1.1. Here, we define passage times between points in R2. For x ∈ R2, let bxc
be the down-left corner of the unit square containing x in Z2. For x,y ∈ R2, let

T (x,y) := T (bxc, byc) .

Similarly, by Γ(x,y) we mean the geodesic Γ(bxc, byc). Furthermore, for x ∈ R2, let

h(x) := h(bxc) .

Remark 1.2. Throughout the paper, we denote by C,C0, C1, C2, . . . constants that de-
pend only on the distribution of the edge-weights. We restart numbering of Cis in
each proof. Often we break the proof of a theorem in propositions and claims. In these
situations, we do not restart numbering the constants in the proof of the propositions and
claims. Also, when we use a result which has been proved before, we use “tilde-version”
of the variables and the parameters.

Remark 1.3. Extending definition of T from Z2 to R2 yields a minor technical issue.
Although g(x) ≤ h(x) for all x ∈ Z2, this may not be true for x ∈ R2. Instead, we have,
for some constant C1 > 0 and for all x ∈ R2

g(x)− C1 ≤ h(x) .

Similarly, we have, for some constant C2 > 0 and for all x,y ∈ R2

h(x + y)− C2 ≤ h(x) + h(y) .

1.2 Heuristics of the main results

It is common in the literature, for instance, in the works [29], [30], [27], [14], [15],
to assume specific unproved properties of the limit shape. Often properties such as
differentiability, and curvature, either locally or globally, which eliminates the possibility
of facets or corners. These properties are believed to be valid under our assumptions,
but there is no proof yet. We also make similar assumptions.

Suppose the boundary of the limit shape is differentiable at a direction θ, and θt is the
corresponding tangential direction. By transverse increments we mean differences of
the form T (0,x)− T (0,y) where x has direction θ, x− y has direction θt. Heuristically
we can say what the order of the fluctuations of transverse increments should be. For
this, we need the scaling exponents χ and ξ.

It is believed that for FPP on Euclidean lattices of any dimension, that there exists
an exponent χ, called the ‘fluctuation exponent,’ such that T (0,v)− h(v) is of the order
of ‖v‖χ (‖ · ‖ is the Euclidean norm.) Also, it is believed that there exists an exponent ξ,
called the ‘wandering exponent,’ such that the geodesic Γ(0,v) wanders ‖v‖ξ distance
on average from the line joining 0 and v. The two exponents are related by the equation
χ = 2ξ − 1 which has been proved in [12] assuming χ and ξ exist in a certain sense. In
dimension d = 2 it is believed that χ = 1/3 and ξ = 2/3. In d = 3 it is believed that χ
is approximately 1/4, and in higher dimensions there does not seem to be a consensus
even among physicists about values of χ and ξ, see for example [28], [26], [17], [24], [5].
In the exactly solvable models of two-dimensional last passage percolation, it has been
proved that χ = 1/3 and ξ = 2/3, see [20], [21], [7].

If one assumes the existence of these exponents in some appropriate sense, then
fluctuations of the transverse increment T (0,x) − T (0,y) should be of the order of

‖x− y‖χ/ξ. The heuristic of this is the following, see Figure 1. We expect that the
geodesics Γ(0,x) and Γ(0,y) stay disjoint after starting from x and y respectively for a

distance of the order of ‖x− y‖1/ξ. Then these two branches should contribute approxi-

mately independently ‖x− y‖χ/ξ to the fluctuation. The right scale of the coalescence
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Transverse increments in FPP on Z2

time as above has been proved in [9] for the exactly solvable model of two-dimensional
last passage percolation.

Figure 1: Illustration for the heuristic of the exponent χ/ξ: directions of x and y are
approximately θ0; direction of y − x is θt0; the two geodesics Γ(0,x) and Γ(0,y) are

expected to coalesce approximately at distance ‖x− y‖1/ξ in −θ0 direction when traced
starting from x and y respectively.

One reason for studying the fluctuations of transverse increments is the following. In
d = 2, it is believed that the transverse increments behave like increments of Brownian
motion, that is, the increments are approximately uncorrelated. If this is true, then the
exponent for fluctuation of transverse increments should be 1/2 so that χ/ξ = 1/2. This
with χ = 2ξ − 1 would imply χ = 1/3 and ξ = 2/3.

Figure 2: Illustration for the heuristic of the exponent 2χ/(1 − ξ): directions of a and
b are approximately θ0; direction of a − b is θt0; distances of a and b from origin are
approximately n; distance between a and b is 2Jnξ; the two geodesics Γ(0,a) and
Γ(0, b) are expected to branch apart at approximately distance m from the origin where
mξ/m = Jnξ/n.

As an application of the upper bound on fluctuations of transverse increments we
get an upper bound on long-range correlations. By long-range correlation we mean the
correlation between T (0,a) and T (0, b) where a and b are points approximately in the
same direction from the origin and distance between a and b is large compared to typical
wanderings of the geodesics Γ(0,a) and Γ(0, b). Heuristically we can say the following
about this correlation, see Figure 2. Assuming χ and ξ exist, typical wandering of the
geodesics Γ(0,a) and Γ(0, b) is of the order of nξ where n is the distance of the points a,
b from the origin. Suppose the distance between a and b is Jnξ for some large J . Then
Γ(0,a) and Γ(0, b) are expected to branch apart at a distance m from the origin such
that the distance between the rays joining 0 to a and 0 to b at distance m from the origin
is of the order of the typical wandering of the geodesics of at distance m from origin.
So we have approximately mξ/m = Jnξ/n. Hence m = nJ−(1−ξ)−1

. Then the covariance
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Transverse increments in FPP on Z2

between T (0,a) and T (0, b) is expected to be of the order of m2χ. So the correlation
should be of the order of J−2χ/(1−ξ).

1.3 Advanced assumptions

Along with our basic assumptions we make the following assumptions. Similar
assumptions have been used in [3], [4], and [18]. We assume that there exists σ :

(0,∞)→ (0,∞) such that the following hold.

Assumption 1.4. There exist positive constants C1, C2, such that for all x,y ∈ R2 and
all t > 0, we have

P(|T (x,y)− h(x− y)| ≥ tσ(‖x− y‖)) ≤ C1 exp(−C2t) . (A1)

Assumption 1.5. There exist constants p > 0, q > 0, α ∈ (0, 1), β ∈ (0, 1), α ≤ β, such
that for all x > y > 0 we have

p

(
x

y

)α
≤ σ(x)

σ(y)
≤ q

(
x

y

)β
. (A2)

Assumption 1.6. There exist positive constants ε, C, such that for x,y ∈ R2 with
‖x− y‖ ≥ C, we have

P(T (x,y) ≤ h(x− y)− εσ(‖x− y‖)) ≥ ε ,

P(T (x,y) ≥ h(x− y) + εσ(‖x− y‖)) ≥ ε .
(A3)

Remark 1.7. Assumption 1.4 is known to hold for various sub-optimal σ. First, it was
shown in [23] that (A1) holds for σ(x) = x1/2. In [31] it was shown that (A1) holds
for σ(x) = x1/2 and with t2 in place of t in the right-hand side. In [11] it was shown
that (A1) holds for σ(x) = x1/2/(log+ x)1/2 when the edge-weights take the value a with
probability 1/2 and the value b with probability 1/2 for some b > a > 0. In [10] it was
shown that (A1) holds for the scale σ(x) = x1/2/(log+ x)1/2 but for a much larger family
of distributions called “nearly-gamma” distributions. In [15] it was shown that (A1) holds
for the scale σ(x) = x1/2/(log+ x)1/2 under very mild conditions on the distribution of the
edge weights.

Remark 1.8. In this paper we are considering two-dimensional percolation. Thus,
Assumptions 1.4-1.6 are expected to hold for some σ(x) of the order x1/3.

Remark 1.9. By Remark 1.1 of [3], we assume without loss of generality that σ is
monotonically increasing and continuous.

Remark 1.10. Under Assumption 1.4, Assumption 1.6 is equivalent to saying that there
exist positive constants C1, C2, such that for all x,y ∈ R2 with ‖x− y‖ ≥ C1, we have

Var(T (x,y)) ≥ C2σ
2(‖x− y‖) .

Remark 1.11. The assumption β < 1 is natural because, from results in [23], the
passage times are known to satisfy exponential concentration with scaling exponent 1/2,
which shows that χ must be ≤ 1/2 under any reasonable definition.

Remark 1.12. The assumption α > 0 is natural because, for a certain definition of χ and
ξ it was shown in [33] that χ ≥ (1− (d− 1)ξ)/2 in d-dimensions, which in two dimensions
coupled with χ ≥ 2ξ − 1 and χ ≤ 1/2 yields χ ≥ 1/8.

Notation 1.13. For any direction θ the unit vector in direction θ is denoted by eθ. By
abuse of notation, we denote the standard unit vectors in R2 by e1 and e2.
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Transverse increments in FPP on Z2

Definition 1.14. We say that a direction θ0 is of type I if there exist constants C > 0,
δ1 > 0, δ2 > 0 such that the following holds: the limit shape boundary ∂B is differentiable
in the sector (θ0 − δ1, θ0 + δ1); for |δ| ≤ δ2 and θ ∈ (θ0 − δ1, θ0 + δ1), we have

g(eθ + δeθt)− g(eθ) ≥ Cδ2 ,

where θt is the direction of the tangent to ∂B at the point in direction θ.

Remark 1.15. We take the direction of the tangents in counter-clockwise direction
around the limit shape boundary.

Remark 1.16. An alternative formulation of type I direction is the following: there exist
constants C > 0, δ1 > 0 such that ∂B is differentiable in the sector (θ0 − δ1, θ0 + δ1); for
θ ∈ (θ0 − δ1, θ0 + δ1) and all δ ∈ R we have

g(eθ + δeθt)− g(eθ) ≥ C min
{
|δ|, δ2

}
.

Definition 1.17. We say that a direction θ0 is of type II if there exist constants C > 0,
δ1 > 0, δ2 > 0 such that the following holds: the limit shape boundary ∂B is differentiable
in the sector (θ0 − δ1, θ0 + δ1); for |δ| ≤ δ2 and θ ∈ (θ0 − δ1, θ0 + δ1) we have

g(eθ + δeθt)− g(eθ) ≤ Cδ2 , (1.1)

where, as before, θt is the direction of the tangent to ∂B at the point in direction θ.

Remark 1.18. In a neighborhood of a type I direction the limit shape boundary cannot
have a facet. Similarly in a neighborhood of a type II direction the limit shape boundary
cannot have a corner.

Remark 1.19. As observed in Remark 1.2 of [3], the condition in (1.1) can be alterna-
tively stated as follows. If uθ is the point on ∂B in direction θ, then in a neighborhood of
uθ, the boundary is squeezed between the tangent at uθ and a parabola tangent to ∂B
at uθ. This implies that the direction of the tangent grows at most linearly in a neigh-
borhood of θ. So, if θ0 is a direction of type II, then there exist constants C > 0, δ1 > 0,
δ2 > 0 such that the following holds: ∂B is differentiable in the sector (θ0 − δ1, θ0 + δ1);
for θ1, θ2 ∈ (θ0 − δ1, θ0 + δ1) with |θ1 − θ2| ≤ δ2, we have |θt1 − θt2| ≤ C|θ1 − θ2|.
Remark 1.20. If θ0 is of type I then in a neighborhood of θ0 all directions are uniformly
of type I in the sense that the condition in Definition 1.14 holds with same parameters
C, δ1, δ2 for all directions in this neighborhood of θ0. The same can be said about
directions of type II.

1.4 Main results

Notation 1.21. Given two linearly independent directions θ1, θ2 we define the projec-
tions π1

θ1,θ2
and π2

θ1,θ2
so that for any v we have

v = π1
θ1,θ2(v) eθ1 + π2

θ1,θ2(v) eθ2 .

Notation 1.22. For n > 0 let
∆(n) := (nσ(n))

1/2
.

Our first main result is the following.

Theorem 1.23. Let θ0 be a direction of both type I and II. For n > 0, L > 0, define

I(n,L) :=
{
x ∈ R2 : π1

θ0,θt0
(x) = n , 0 ≤ π2

θ0,θt0
(x) ≤ L

}
,

D(n,L) := max{ |T (0,x)− T (0,y)| : x,y ∈ I(n,L) } ,

I ′(n,L) :=
{
x ∈ R2 : π1

θ0,θt0
(x) = n , −L ≤ π2

θ0,θt0
(x) ≤ 0

}
,

D′(n,L) := max{ |T (0,x)− T (0,y)| : x,y ∈ I ′(n,L) } .
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Transverse increments in FPP on Z2

Fix η ∈ (0, 1]. Then, under the Assumptions 1.4 and 1.5, there exist positive constants C1,
C2, L0, n0, t0, such that for L ≥ L0, n ≥ n0, t ≥ t0, L ≤ ∆(n), we have

P
(
D(n,L) ≥ t(logL)ησ

(
∆−1(L)

))
≤ C1 exp(−C2t(logL)η) ,

P
(
D′(n,L) ≥ t(logL)ησ

(
∆−1(L)

))
≤ C1 exp(−C2t(logL)η) .

We prove this in Section 5. The following theorem is our lower bound on the fluctua-
tions of transverse increments. In this theorem, we show that the standard deviation of
the transverse increment between a pair of points at a distance L is at least of the order
of σ

(
∆−1(L)

)
with a correction factor smaller than any power of L.

Theorem 1.24. Let θ0 be a direction of both type I and II. Fix ν ∈ (1/2, 1). Then, under
the Assumptions 1.4, 1.5, and 1.6, there exist positive constants L0, n0, such that for
L ≥ L0, n ≥ n0, L ≤ ∆(n), we have

Var
(
T (0, neθ0)− T (0, neθ0 + Leθt0)

)
≥ exp(−(logL)ν)σ2

(
∆−1(L)

)
.

Same bound holds for variance of T (0, neθ0)− T (0, neθ0 − Leθt0).

We prove this in Section 6. As a corollary of Theorems 1.23 and 1.24 we get the
following result. It shows that if we assume χ and ξ exist in a certain sense, then χ/ξ is
the correct scaling exponent for the fluctuations of the transverse increments.

Corollary 1.25. Suppose there exists χ > 0 such that

lim
x→∞

log σ(x)

log x
= χ ,

and let

ξ :=
1 + χ

2
= lim
x→∞

log ∆(x)

log x
.

Let θ0 be a direction of both type I and II. Then, under the Assumptions 1.4, 1.5, and 1.6,
there exist functions f1, f2, f3, which converge to 0 at∞, and positive constants C1, C2,
C3, n0, L0, t0, such that for n ≥ n0, L ≥ L0, t ≥ t0, L ≤ nξ+f1(n), we have

P
(∣∣∣T (0, neθ0)− T (0, neθ0 + Leθt0)

∣∣∣ ≥ tLχ/ξ+f2(L)
)
≤ C1 exp(−C2t) ,

Var
(
T (0, neθ0)− T (0, neθ0 + Leθt0)

)
≥ C3L

2χ/ξ+f3(L) .

Same bounds hold for T (0, neθ0)− T (0, neθ0 − Leθt0).

Proof. Fix η ∈ (0, 1) and ν ∈ (1/2, 1). Define f1, f2, f3 such that for all x > 1,

xξ+f1(x) = ∆(x) ,

xχ/ξ+f2(x) = σ(∆−1(x))(log x)η ,

x2χ/ξ+f3(x) = e−(log x)ν0σ2(x) .

Then f1, f2, f3 converge to 0 at∞ and the result readily follows from Theorems 1.23 and
1.24.

Notation 1.26. Define

f(n) :=
∆(n)(log n)1/2

n
and f−1(y) := sup{x : f(x) ≥ y } .
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Transverse increments in FPP on Z2

Remark 1.27. Since β < 1 by (A2), and because we have assumed σ is monotonically
increasing and continuous, we get that f is continuous and goes to 0 at∞. Therefore,
f−1 is continuous, monotonically decreasing, and converges to 0 at∞.

Now we state the result on upper bound of long-range correlations.

Theorem 1.28. Let θ0 be a direction of both type I and II. Recall β and q from (A2).
Fix δ ∈ (0, (1 − β)/2). Then, under the Assumptions 1.4 and 1.5, there exist positive
constants C, J0, n0, such that for n ≥ n0, J ∈ [q1/2J0, n

δ], we have

Cov
(
T (0, neθ0 − J∆(n)(log n)1/2eθt0), T (0, neθ0 + J∆(n)(log n)1/2eθt0)

)
≤ Cσ2

(
f−1

(
J

J0
f(n)

))
log n .

The next corollary shows how we get the exponent 2χ/(1− ξ) under further regularity
assumptions on σ.

Corollary 1.29. Suppose σ(n) = nχL(n), where L is a slowly varying function. Let
ξ := (1 + χ)/2. Fix δ1 ∈ (0, (1 − β)/2). Let θ0 be a direction of both type I and II.
Then, under the Assumptions 1.4 and 1.5, there exist positive constants C, J0, such
that the following holds: for any δ2 > 0 there exists n0 > 0 such that for n ≥ n0 and
J ∈ [q1/2J0, n

δ1 ], we have

Corr
(
T (0, neθ0 − J∆(n)(log n)1/2eθt0), T (0, neθ0 + J∆(n)(log n)1/2eθt0)

)
≤ CJ−2χ/(1−ξ)+δ2 log n .

Proof. From Theorem 1.28 we get positive constants C1, J0, n0, such that for n ≥ n0,
J ∈ [q1/2J0, n

δ1 ], we have

Cov (T (0,a), T (0, b) ) ≤ C1σ
2(m) log n , (1.2)

where

a := neθ0 + J∆(n)(log n)1/2eθt0 ,

b := neθ0 − J∆(n)(log n)1/2eθt0 ,

m := f−1(Jf(n)/J0) .

Using J ≤ nδ1 , δ1 < (1− β)/2, and (A2), we get ‖a‖ ≤ C2n, ‖b‖ ≤ C2. Hence, using (1.2)
and (A2), we get

Corr(T (0,a), T (0, b)) ≤ C3
σ2(m)

σ2(n)
log n . (1.3)

From m = f−1(Jf(n)/J0) we get

J0
∆(m)(logm)1/2

m
= J

∆(n)(log n)1/2

n
.

Therefore, using J ∈ [q1/2J0, n
δ
1], δ1 < (1 − β)/2, and (A2), we get m ≤ n and logm ≥

C4 log n. Fix an δ2 > 0 and let δ3 > 0 be such that

2χ

1− ξ
− δ2 ≤

2χ− 2δ3
1− ξ + δ3/2

. (1.4)

Since L is slowly-varying, by possibly increasing n0 based on δ2, we get

L(n)

L(m)
≥
( n
m

)−δ3
. (1.5)
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Therefore, using ∆(n)(log n)1/2 = nξL(n)1/2(log n)1/2 we get

( n
m

)1−ξ
=

J

J0

(
L(n) log n

L(m) logm

)1/2

≥ J

J0

( n
m

)−δ3/2
.

Combining this with (1.5) and (1.4), we get

σ2(m)

σ2(n)
=
(m
n

)2χ
(
L(m)

L(n)

)2

≤
(m
n

)2χ−2δ3
≤
(
J0

J

) 2χ−2δ3
1−ξ+δ3/2

≤ J
2χ
1−ξ
0 J−

2χ
1−ξ+δ2 .

Combining this with (1.3) completes the proof of Corollary 1.29.

2 Wandering of geodesics

In this section we establish some upper bounds on the wandering of geodesics.
Lemma 2.2 provides a preliminary bound on the wandering of geodesics. The proof of
Lemma 2.2 follows from Proposition 5.8 of [22] under our basic assumptions. Lemma 2.2
has been shown to hold under milder assumptions in Theorem 6.2 of [6].

Notation 2.1. For any set A ⊂ R2 let

Diam(A) := sup{ ‖x− y‖ : x,y ∈ A } .

Lemma 2.2. There exist positive constants C1, C2, C3, such that the following holds. If
‖u− v‖ ≥ C1 for some u,v ∈ R2, then

P(Diam(Γ(u,v)) ≥ C2‖u− v‖)) ≤ exp(−C3‖u− v‖) .

Utilizing the curvature of the limit shape we get a refined bound on the wandering
of the geodesics. The curvature of the limit shape is utilized in the following manner.
Consider two points in R2. The shortest path between these two points in the g-norm is,
of course, the line joining them. When the geodesic between these two points wander
transversely too far from the line joining them, the extra distance covered by the geodesic
in the g-norm can be thought of as a cost for excessive wandering. Therefore, a lower
bound of this cost yields an upper bound of the wandering of the geodesic. A lower
bound on this cost can be obtained from a lower bound of the curvature of the limit
shape. This is stated in Lemma 2.3 which is essentially same as Lemma 2.3 of [3]. Thus
we skip the proof of Lemma 2.3.

Lemma 2.3. Let θ0 be a direction of type I. Then there exist positive constants C and δ
such that for n > 0, k, l, d, satisfying |l|/n ≤ δ, we have

g(u) + g(a− u)− g(a) ≥ C min

{
|d| , d

2

n

}
,

where a := neθ0 + leθt0 and u := keθ0 + (l kn + d)eθt0 .

Geodesics cannot wander too much transversely because the cost associated with the
g-norm becomes difficult to be compensated by the fluctuations of passage times. Thus,
bounds on the fluctuations T (0,x)−g(x), combined with Lemma 2.3 yields upper bounds
on transverse wanderings of geodesics. By Assumption 1.4 we know T (0,x) − h(x)

satisfies exponential concentration in the scale σ(‖x‖) uniformly over x. So we need a
bound on the differences h(x)− g(x). These differences are known as nonrandom fluctu-
ations in the literature. A general method of bounding the nonrandom fluctuations was
developed in [1, 2]. There it was shown, using exponential concentration of T (0,x)−h(x)

on the scale of ‖x‖1/2 from [23], that h(x)− g(x) is at most of the order of ‖x‖1/2 log‖x‖.
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In our case, Alexander’s method can be used without any significant alteration to yield
a bound of the order of σ(‖x‖) log‖x‖. We state this without proof in Proposition 2.6.
Improvements to the logarithmic bound have been made in [32], [16], [4] in related
models, which we briefly discuss in Section 4. In our model, we improve the logarithmic
bound to σ(‖x‖)(log‖x‖)η for arbitrary small η > 0 in Section 4. This improvement is
necessary to prove the lower bound result Theorem 1.24. To state the bound on the
nonrandom fluctuations we use the notion of ‘general approximation property’ from [2].

Notation 2.4. Let Φ be the set of functions from (0,∞) to [0,∞) such that for every
φ ∈ Φ there exists some C ≥ 0 such that φ(x) > 0 for x > C and infx>y>C φ(x)/φ(y) > 0.
For η ∈ (0, 1], define φη(k) = 0 for k ≤ 1, and for k > 1

φη(k) := k−ασ(k)(log k)η .

Also define φ̂(k) = 0 for k ≤ 2, and for k > 2

φ̂(k) := k−ασ(k) log log k .

So φ̂ and φη for all η ∈ (0, 1] belong to Φ.

Definition 2.5. For ν ≥ 0 and φ ∈ Φ we say that h satisfies the general approximation
property with exponent ν and correction factor φ in a sector of directions S if there exist
positive constants C and M such that for all x ∈ R2 with ‖x‖ ≥M and having direction
in the sector S we have

h(x) ≤ g(x) + C‖x‖νφ(‖x‖) .

When we want to specify the relevant constants, we say h satisfies GAP(ν, φ,M,C) in
sector S.

We often refer to functions φ as in the above definition as correction factors. In [2],
the class of correction factors consisted of non-decreasing functions and the general
approximation property was not restricted to any particular set of directions. In our setup
the class of correction factors is extended, and we also pay attention to the sector of
directions. These are some minor modifications we need in our setup. As we mentioned
before, we get the following result in our context by following Alexander’s method.

Proposition 2.6. Under the Assumptions 1.4 and 1.5, there exist positive constants
C and M such that h satisfies GAP(α, φ1,M,C) in all directions, i.e., for all x ∈ R2

satisfying ‖x‖ ≥M , we have

h(x) ≤ g(x) + Cσ(‖x‖) log‖x‖ .

Let us now introduce a notation to measure wandering of geodesics.

Notation 2.7. Suppose θ0 is a direction where the boundary of the limit shape is
differentiable. Let θt0 be the direction of the tangent. Let u, v be points in R2 with
π1
θ0,θt0

(v − u) 6= 0. For w ∈ R2 define

C (u,v,w) := π2
θ0,θt0

(w − u)− π1
θ0,θt0

(w − u)
π2
θ0,θt0

(v − u)

π1
θ0,θt0

(v − u)
.

For k ∈ R define

W (u,v, k, θ0) := max
{
|C (u,v,w)| : w ∈ Γ(u,v) , π1

θ0,θt0
(w − u) = k

}
.

ThusW (u,v, k, θ0) is the maximum wandering of the geodesic Γ(u,v), in ±θt0 directions,
from the line joining u and v, when the geodesic is at a distance k from u in θ0 direction.
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The parameter k is continuous, it can take any real value. In the above definition, w is
not necessarily a lattice point. But, there is no issue with measurability because if θt0 is
one of the axial directions then we can consider only lattice points for w, and of θt0 is
not one of the axial directions then the set of points w ∈ R2 satisfying w ∈ Γ(u,v) and
π1
θ0,θt0

(w − u) = k is countable.
For k ∈ R define

W (u,v, k, θ0) := max
{
|C (u,v,w)| : w ∈ Γ(u,v) ∩Z2 , π1

θ0,θt0
(w − u) ∈ [k, k + 1)

}
.

Thus,W (u,v, k, θ0) measures maximum wandering in a cylinder, whereasW (u,v, k, θ0)

measures maximum wandering along a line. In the above definition w is a lattice point
(points with both coordinates integer valued).

The following relation holds betweenW andW:

W (u,v, k, θ0) ≤ W (u,v, k, θ0) + 1 . (2.1)

In Theorem 2.8, we consider ‘global’ wandering of geodesics. We consider a point a
approximately at distance n and direction θ0 from 0. We consider wandering of Γ(0,a) at
distance k from 0 at direction θ0 i.e., we considerW (0,a, k, θ0). Here k is arbitrary. We
show thatW (0,a, k, θ0) is at most of the order of ∆(n) with some logarithmic correction
factors. This bound is sub-optimal for k bigger than a multiple of n, because in this case
we get a better bound using Lemma 2.2.

In Theorem 2.10 we consider ‘local’ wandering of geodesics. Again we consider a
point a approximately at distance n and direction θ0 from 0. We consider wandering
of Γ(0,a) at distance k from 0 at direction θ0 i.e., we consider W (0,a, k, θ0). We show
that W (0,a, k, θ0) is at most of the order of ∆(k). Thus we get a better bound than
Theorem 2.8 when k is of smaller order than n.

In Theorems 2.5 and 2.7 of [8], and in Theorem 3 of [9] similar bound on wandering of
geodesics has been proved in the integrable model of last passage percolation. There the
results are sharper in the sense that there are no logarithmic correction factors involved.
This is because, in the integrable model of last passage percolation exact asymptotics of
the distribution of the passage times are known.

Theorem 2.8. Let θ0 be a direction of type I. Suppose h satisfies GAP with exponent
α and correction factor φη for some η ∈ (0, 1] in a sector (θ0 − δ, θ0 + δ). Then, under
Assumptions 1.4 and 1.5, there exist positive constants C1, C2, δ1, δ2, n0, t0, such that
for n ≥ n0, t ≥ t0, t∆(n)(log n)η/2 ≤ nδ1, |l| ≤ nδ2, k ∈ (−∞,∞), we have

P
(
W
(
0, neθ0 + leθt0 , k, θ0

)
≥ t∆(n)(log n)η/2

)
≤ C1 exp

(
−C2t

2(log n)
η)
.

The same bound holds forW
(
0, neθ0 + leθt0 , k, θ0

)
.

Proof. Due to symmetry of the lattice, without loss of generality we assume θ0 ∈ [0, π/4].
Fix δ1 > 0, δ2 > 0, to be assumed appropriately small whenever required. Fix n0 > 0,
t0 > 0, to be assumed appropriately large whenever required. Consider n, t, l satisfying
n ≥ n0, t ≥ t0, t∆(n)(log n)η/2 ≤ nδ1, |l| ≤ nδ2. Let a := neθ0 + leθt0 . We will focus on

W (0,a, k, θ0). The bound onW (0,a, k, θ0) will follow from (2.1) with slight adjustment
to the various constants.

Assuming δ2 < 1 we get ‖a‖ ≤ 2n. Therefore, by Lemma 2.2, the geodesic Γ(0,a)

stays inside a square of side length C1n centered at the 0, with probability at least
1− exp(−C2n). Using t∆(n)(log n)η/2 ≤ nδ1, assuming δ1 is small enough, and using (A2),
we get t2(log n)η ≤ C3n/σ(n) ≤ C4n

1−α. Hence, the probability bound in the statement
is trivial for |k| ≥ C5n. So let us consider k satisfying |k| ≤ C5n.
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We split the probability under consideration as

P
(
W (0,a, k, θ0) ≥ t∆(n)(log n)η/2

)
≤ P

(
W (0,a, k, θ0) ≥ n

)
+ P

(
t∆(n)(log n)η/2 ≤ W (0,a, k, θ0) ≤ n

)
. (2.2)

For any point u on Γ(0,a) we have

0 = T (0,u) + T (u,a)− T (0,a)

= (T (0,u)− h(u)) + (T (u,a)− h(a− u))− (T (0,a)− h(a))

+ (h(u)− g(u)) + (h(a− u)− g(a− u))− (h(a)− g(a))

+ (g(u) + g(a− u)− g(a)) .

Therefore

|T (0,u)− h(u)|+ |T (u,a)− h(a− u)|+ |T (0,a)− h(a)|

≥ (h(u)− g(u)) + (h(a− u)− g(a− u))− (h(a)− g(a)) + (g(u) + g(a− u)− g(a))

≥ (g(u) + g(a− u)− g(a))− (h(a)− g(a)) . (2.3)

Let V be the set of lattice points u (points with both coordinates integer) with π1
θ0,θt0

(u) ∈
[k, k + 1). Define a function d : V → R as follows. For u ∈ V let

d(u) := π2
θ0,θt0

(u)− π1
θ0,θt0

(u)
l

n
.

Let V1 ⊂ V be the set of points u ∈ V with |d(u)| ≥ n. Let V2 be the set of points u ∈ V
with t∆(n)(log n)η/2 ≤ |d(u)| ≤ n. Thus, ifW (0,a, k, θ0) ≥ n, then Γ(0,a) goes through a
point u ∈ V1. Assuming δ2 is small enough and using Lemma 2.3 we get

g(u) + g(a− u)− g(a) ≥ C6|d(u)| . (2.4)

Using h satisfies GAP with exponent α and correction factor φη in a neighborhood of θ0

and assuming δ2 is small enough we get

h(a)− g(a) ≤ C7σ(n)(log n)
η
. (2.5)

Using |d(u)| ≥ n, |l|/n ≤ δ2 < 1, and |k| ≤ C5n, we get

max{‖u− a‖, ‖u‖, ‖a‖} ≤ C8|d(u)| .

Therefore, using (A1) and (A2), we get for all t′ > 0

P(max{|T (0,u)− h(u)|, |T (u,a)− h(a− u)|, |T (0,a)− h(a)|} ≥ t′σ(|d(u)|))

≤ C9 exp(−C10t
′) . (2.6)

Combining (2.3)-(2.6) and using (A2), we get

P
(
W (0,a, k, θ0) ≥ n

)
≤
∑
u∈V1

C11 exp(−C12(C6|d(u)| − C7σ(n)(log n)η)/σ(|d(u)|))

≤
∑
u∈V1

C13 exp(−C14|d(u)|/σ(|d(u)|))

≤ C15 exp(−C16n/σ(n)) . (2.7)
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IfW (0,a, k, θ0) ∈ [t∆(n)(log n)η/2, n], then Γ(0,a) goes through a point u ∈ V2. Assuming
δ2 is small enough and using Lemma 2.3 we get

g(u) + g(a− u)− g(a) ≥ C17
|d(u)|2

n
≥ C17t

2σ(n)(log n)η . (2.8)

Since |d(u)| ≤ n, we have

max{‖u− a‖, ‖u‖, ‖a‖} ≤ C18n .

Hence, using Assumptions 1.4 and 1.5 we get, for all t′ > 0

P(max{|T (0,u)− h(u)|, |T (u,a)− h(a− u)|, |T (0,a)− h(a)|} ≥ t′σ(n))

≤ C19 exp(−C20t
′) .

Using this with (2.3), (2.5), (2.8) we get

P
(
W (0,a, k, θ0) ∈

[
t∆(n)(log n)η/2, n

])
≤
∑
u∈V2

C21 exp

(
−C22

(
C17
|d(u)|2

n
− C7σ(n)(log n)η

)
/σ(n)

)
≤ C23 exp

(
−C24t

2(log n)η
)
. (2.9)

Assuming δ1 is small enough and combining (2.7), (2.9), (2.2) we get

P
(
W (0,a, k, θ0) ≥ t∆(n)(log n)η/2

)
≤ C25 exp

(
−C26t

2(log n)η
)
.

This completes the proof of Theorem 2.8.

Corollary 2.9. Let θ0 be a direction of type I. Then, under Assumptions 1.4 and 1.5, there
exist positive constants C1, C2, δ1, δ2, n0, t0, such that for n ≥ n0, t ≥ t0, t∆(n)(log n)1/2 ≤
nδ1, |l| ≤ nδ2, we have

P

(
max

−∞<k<∞
W
(
0, neθ0 + leθt0 , k, θ0

)
≥ t∆(n)(log n)1/2

)
≤ C1 exp

(
−C2t

2 log n
)
.

Here, the maximum over all real numbers k. But there is no issue with measurability
since we can only consider those values of k for which there exist a lattice point u such
that π1

θ0,θt0
(u) = k.

Proof. Due to symmetry of the lattice, without loss of generality we assume θ0 ∈ [0, π/4].
Fix δ1 > 0, δ2 > 0, to be assumed appropriately small whenever required. Fix n0 > 0,
t0 > 0, to be assumed appropriately large whenever required. Consider n, t, and l,
satisfying n ≥ n0, t ≥ t0, t∆(n)(log n)1/2 ≤ nδ1, |l| ≤ nδ2. Let a := neθ0 + leθt0 . Since

maxk∈RW (0,a, k, θ0) is equal to maxk∈ZW (0,a, k, θ0), we work withW instead ofW.
Assuming δ2 < 1 we get ‖a‖ ≤ 2n, so that by Lemma 2.2, the geodesic Γ(0,a) stays

inside a square of side length C1n around 0 with probability at least 1− exp(−C2n). On
this event |π1

θ0,θt0
(u)| ≤ C3n for all u in Γ(0,a). Assuming δ1 < 1 and using (A2) we get

t2 log n ≤ n/σ(n) ≤ C4n
1−α. Thus

P

(
max

|k|≥C3n , k∈Z
W (0,a, k, θ0) ≥ t∆(n)(log n)1/2

)
≤ exp(−C2n) ≤ C5 exp

(
−C6t

2 log n
)
. (2.10)
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Using Proposition 2.6, Theorem 2.8, and a union bound, we get

P

(
max

|k|≤C3n , k∈Z
W (0,a, k, θ0) ≥ t∆(n)(log n)1/2

)
≤ C7 exp

(
−C8t

2 log n
)
. (2.11)

Combining (2.10) and (2.11) completes the proof of Corollary 2.9.

In Theorem 2.8 and Corollary 2.9 we deal with global wandering of geodesics. We
have shown transverse wandering of the geodesic between two points roughly at a
distance n is at most of the order of ∆(n) up to some logarithmic correction factor. In
Theorem 2.10 we deal with local wandering of geodesics. We consider two points roughly
at distance n. We consider wandering of the geodesic between them at a distance k ≤ n
from one of the end points. We show that this wandering is at most of the order of ∆(k)

with some logarithmic correction factor.

Theorem 2.10. Let θ0 be a direction of type I. Suppose h satisfies GAP with exponent
α and correction factor φη for some η ∈ (0, 1] in a neighborhood of θ0. Then, under the
Assumptions 1.4 and 1.5, there exist positive constants C1, C2, δ1, δ2, k0, n0, t0, such that
for n ≥ n0, t ≥ t0, k ≥ k0, k < n, t∆(k)(log k)η/2 ≤ kδ1, |l| ≤ nδ2, we have

P
(
W
(
0, neθ0 + leθt0 , k, θ0

)
≥ t∆(k)(log k)η/2

)
≤ C1 exp

(
−C2t

2(log k)η
)
.

Proof. Due to symmetry of the lattice, without loss of generality we assume θ0 ∈ [0, π/4].
Fix δ1 > 0, δ2 > 0, to be assumed appropriately small whenever required. Fix k0 > 0,
n0 > 0, t0 > 0, to be assumed appropriately large whenever required. Consider k, n, l, t
satisfying n ≥ n0, t ≥ t0, k ≥ k0, t∆(k)(log k)η/2 ≤ kδ1, |l| ≤ nδ2. Let a := neθ0 + leθt0 .

Construction of sequences of points (ap)
m
p=0 and (bp)

m
p=0: We construct two se-

quences of points (ap)
m+1
p=0 and (bp)

m+1
p=0 in the following manner.

(i) Fix a parameter ζ satisfying 1 < ζ < 2/(1 + β). Define another parameter ε :=

1− ζ(1 +β)/2. Fix parameters λ > 1, λ′ > 0. Later we choose λ so that (2.14) holds,
and we choose λ′ based on λ so that (2.12) holds.

(ii) Let m ≥ 0 be such that λmk < n ≤ λm+1k.

(iii) Define both am+1 and bm+1 to be the point a.

(iv) To define (ap)
m
p=0 and (bp)

m
p=0 first we fix the π1

θ0,θt0
values of these points. For each

0 ≤ p ≤ m let
π1
θ0,θt0

(ap) = π1
θ0,θt0

(bp) = λpk .

(v) Now we fix the π2
θ0,θt0

values of the points (ap)
m
p=0 and (bp)

m
p=0. We have already

set am+1 = bm+1 = a so that π2
θ0,θt0

(am+1) = π2
θ0,θt0

(bm+1) = l. Now we define

π2
θ0,θt0

(am), . . . , π2
θ0,θt0

(a0) and π2
θ0,θt0

(bm), . . . , π2
θ0,θt0

(b0) recursively. For each 0 ≤ p ≤
m let

π2
θ0,θt0

(ap) =
π1
θ0,θt0

(ap)

π1
θ0,θt0

(ap+1)
π2
θ0,θt0

(ap+1) + λ′t∆(λζpk)(log(λζpk))η/2 ,

π2
θ0,θt0

(bp) =
π1
θ0,θt0

(bp)

π1
θ0,θt0

(bp+1)
π2
θ0,θt0

(bp+1)− λ′t∆(λζpk)(log(λζpk))η/2 .

Recall that we have assumed θ0 ∈ [0, π/4]. Also by our convention of taking tangents
in the counter-clockwise direction we have θt0 > 0. This means, ap is above the line
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joining 0 and ap+1. And the distance in θt0 direction of the point ap and the line
joining 0 and ap+1 is λ′t∆(λζpk)(log(λζpk))η/2. Similarly bp is below the line joining
0 and bp+1. And the distance in θt0 direction of the point bp and the line joining 0

and bp+1 is λ′t∆(λζpk)(log(λζpk))η/2.

Figure 3: Rough sketch for m = 2: am+1 = bm+1 = a; for 0 ≤ p ≤ m the segment joining
ap and bp is Ip, and extending Ip we get the line Ip; for all 0 ≤ p ≤ m if the geodesics
Γ(0,ap) and Γ(0, bp) do not wander excessively then for all 0 ≤ p ≤ m the geodesic
Γ(0,a) intersects Ip whenever it intersects Ip.

Defining
(
Ip
)m
p=0

, (Ip)mp=0, I: For 0 ≤ p ≤ m, let

Ip :=
{
x ∈ R2 : π1

θ0,θt0
(x) = λpk

}
.

Thus ap, bp are on this line. Let Ip be the segment joining ap and bp. Define the half-line

I :=

{
x ∈ R2 : π1

θ0,θt0
(x) ≥ n,

π2
θ0,θt0

(x)

π1
θ0,θt0

(x)
=

l

n

}
.

Strategy of the proof: We want to establish a lower bound of the probability of the
eventW (0,a, k, θ0) ≤ t∆(k)(log k)η/2. We will choose λ′ (depending on λ) in a such a way
that the eventW (0,a, k, θ0) ≤ t∆(k)(log k)η/2 includes the event that whenever Γ(0,a)

intersects I0, it intersects I0. So we will establish a lower bound of this event. This
event happens if all of the events listed below happen:

(i) For all 0 ≤ p ≤ m, the geodesic Γ(0,ap+1) intersects Ip whenever it intersects Ip.

(ii) For all 0 ≤ p ≤ m, the geodesic Γ(0,ap) does not intersect I.

(iii) For all 0 ≤ p ≤ m, the geodesic Γ(0, bp+1) intersects Ip whenever it intersects Ip.

(iv) For all 0 ≤ p ≤ m, the geodesic Γ(0, bp) does not intersect I.

If these events happen, then Γ(0,a) intersects Ip whenever it intersects Ip, for each
0 ≤ p ≤ m. In particular, Γ(0,a) intersects I0 whenever it intersects I0. Here we
crucially use the uniqueness of geodesics. All the geodesics Γ(0,ap) and Γ(0, bp) for
0 ≤ p ≤ m after starting from 0 cannot touch or intersect each other, Figure 3 shows the
situation for m = 2. Now we will choose λ′ and establish lower bounds on the probability
of the events listed above.
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Choosing λ′: For any 0 ≤ p ≤ q ≤ m, using (A2) we get

λ−q∆
(
λζqk

)(
log
(
λζqk

))η/2
λ−p∆(λζpk)(log(λζpk))

η/2
≤ C1λ

−ε(q−p)
(
qζ log λ+ log k

pζ log λ+ log k

)η/2

≤ C2λ
−ε(q−p)

(
1 +

(q − p)ζ log λ

pζ log λ+ log k

)η/2
≤ C3λ

−ε(q−p) (1 + (q − p) log λ)
η/2

.

Therefore, we can choose λ′, depending on λ, such that

m∑
q=p

λ−(q−p)∆
(
λζqk

)(
log
(
λζqk

))η/2 ≤ 1

λ′
∆
(
λζpk

)(
log
(
λζpk

))η/2
. (2.12)

Therefore, for 0 ≤ p ≤ m

π2
θ0,θt0

(ap) = λpk
l

n
+ λ′t

m∑
q=p

λ−(q−p)∆
(
λζqk

)(
log
(
λζqk

))η/2
≤ λpk l

n
+ t∆

(
λζpk

)(
log
(
λζpk

))η/2
,

π2
θ0,θt0

(bp) = λpk
l

n
− λ′t

m∑
q=p

λ−(q−p)∆
(
λζqk

)(
log
(
λζqk

))η/2
≥ λpk l

n
− t∆

(
λζpk

)(
log
(
λζpk

))η/2
.

Therefore, the event W (0,a, k, θ0) ≤ t∆(k)(log k)η/2 includes the event that whenever
Γ(0,a) intersects I0, it intersects I0.

Defining the events (E1
p )
m
p=0, (E2

p )
m
p=0: For 0 ≤ p ≤ m let

E1
p :=

{
W (0,ap+1, λ

pk, θ0) ≤ λ′t∆
(
λζpk

)(
log
(
λζpk

))η/2 }
,

E2
p :=

{
W (0, bp+1, λ

pk, θ0) ≤ λ′t∆
(
λζpk

)(
log
(
λζpk

))η/2 }
.

Recall that T denotes the overall edge-weight configuration. Thus, for each 0 ≤ p ≤ m,
if T ∈ E1

p ∩ E2
p , then the geodesics Γ(0,ap+1) and Γ(0, bp+1) intersect Ip whenever they

intersect Ip.

Defining the events
(
E3
p

)m
p=0

,
(
E4
p

)m
p=0

: Let

E3
m :=

{
max
n′≥n

W (0,am, n
′, θ0) ≤ λ′t∆

(
λζmk

)(
log
(
λζmk

))η/2}
,

E4
m :=

{
max
n′≥n

W (0, bm, n
′, θ0) ≤ λ′t∆

(
λζmk

)(
log
(
λζmk

))η/2}
.

Let us assume δ2 < 1/2 so that ‖a‖ > n/2. Define for 0 ≤ p < m

E3
p := {Diam(Γ(0,ap)) ≤ n/2 } ,

E4
p := {Diam(Γ(0, bp)) ≤ n/2 } .

So, for 0 ≤ p ≤ m, if T ∈ E3
p , then Γ(0,ap) does not intersect I, and if T ∈ E4

p , then
Γ(0, bp) does not intersect I.
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Bounding probability of the events (E1
p )mp=0, (E2

p )mp=0, E3
m, E4

m: Fix 0 ≤ p ≤ m and
consider the event E1

p . We use Theorem 2.8 to bound P( (E1
p )
c

). We use the following
parameters:

η̃ := η , ñ := π1
θ0,θt0

(ap+1) , l̃ := π2
θ0,θt0

(ap+1) , t̃ := λ′t
∆
(
λζpk

)(
log
(
λζpk

))η/2
∆(ñ)(log ñ)

η/2
.

Recall from Remark 1.2 our convention of using tilde on parameters. So we use Theo-
rem 2.8 with η̃ in place of η, ñ in place n, and so on. We need to verify ñ ≥ ñ0, t̃ ≥ t̃0,
t̃∆(ñ)(log ñ)η̃/2 ≤ ñδ1, |l̃| ≤ ñδ̃2. The condition ñ ≥ ñ0 holds by taking k0 large enough
because ñ ≥ k ≥ k0. Using ñ ≤ λp+1k and (A2) we get t̃ ≥ C4t. So t̃ ≥ t̃0 holds by
choosing t0 large enough. Using ñ ≥ λpk, (A2), t∆(k)(log k)η/2 ≤ kδ1, and assuming δ1 is
small enough, we get

1

ñ
t̃∆(ñ)(log ñ)η/2 ≤ C5

1

λpk
t∆(λpk)(log λpk)η/2 ≤ C6

1

k
t∆(k)(log k)η/2 ≤ C7δ1 ≤ δ̃1 .

If p = m, then |l̃|/ñ = |l|/n ≤ δ2 ≤ δ̃2. For p < m, using t∆(k)(log k)η/2 ≤ kδ1, |l| ≤ nδ2,
(A2), and assuming δ1, δ2 are small enough, we get

|l̃|
ñ

=
|π2
θ0,θt0

(ap+1)|
π1
θ0,θt0

(ap+1)

≤ 1

λp+1k

(
λp+1k

|l|
n

+ t∆
(
λζ(p+1)k

)(
log
(
λζ(p+1)k

))η/2)

≤ δ2 + δ1
∆
(
λζ(p+1)k

)(
log
(
λζ(p+1)k

))η/2
λp∆(k)(log k)η/2

≤ δ2 + C8δ1λ
−ε(p+1)

(
1 +

(p+ 1)ζ log λ

log k

)η/2
≤ δ2 + C9δ1

≤ δ̃2 .

So the conditions for applying Theorem 2.8 hold. Using ñ ≤ λp+1k and (A2) we get

t̃2(log ñ)η ≥ C10t
2λpε(log k)η .

Therefore, applying Theorem 2.8 we get

P
((
E1
p

)c) ≤ C11 exp
(
−C12t

2λpε(log k)η
)
. (2.13)

Similar bounds hold for E2
p for 0 ≤ p ≤ m, E3

m, E4
m.

Bounding probability of E3
p and E4

p for 0 ≤ p < m: Fix 0 ≤ p < m. From the

verification of |l̃|/|ñ| ≤ δ̃2 we get ‖ap‖ ≤ 2λpk and ‖bp‖ ≤ 2λpk. We have n > λmk. Thus
n/2 ≥ (λ/4)‖ap‖ and n/2 ≥ (λ/4)‖ap‖. Thus, assuming λ large enough, we get for i = 3, 4

and 0 ≤ p < m, using Lemma 2.2,

P
((
E ip
)c) ≤ C13 exp(−C14λ

pk) . (2.14)

Combining (2.13) and (2.14) we get

P
(
W (0,a, k, θ0) ≥ t∆(k)(log k)η/2

)
≤ P

(
∪4
i=1 ∪mp=0

(
E ip
)c) ≤ C15 exp

(
−C16t

2(log k)η
)
.

This completes the proof of Theorem 2.10.
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As a corollary we can deal with wandering of a geodesic within a fixed distance from
one of the endpoints of the geodesic. In the next result we consider geodesics with one
endpoint at the origin, and consider wandering of the geodesic in a neighborhood of the
origin.

Corollary 2.11. Let θ0 be a direction of type I. Then, under the Assumptions 1.4 and
1.5, there exist positive constants C1, C2, δ1, δ2, k0, n0, t0, such that for k ≥ k0, n ≥ n0,
t ≥ t0, t∆(k)(log k)1/2 ≤ kδ1, |l| ≤ nδ2, we have

P

(
max
k′≤k
W
(
0, neθ0 + leθt0 , k

′, θ0

)
≥ t∆(k)(log k)1/2

)
≤ C1 exp

(
−C2t

2 log k
)
.

Here k′ takes real values. There is no issue with measurability since we only need to
consider k′ = k and those values of k′ < k for which there exists some lattice point u
such that π1

θ0,θt0
(u) = k′.

Proof. Due to symmetry of the lattice, without loss of generality we assume θ0 ∈ [0, π/4].
Fix δ1 > 0, δ2 > 0, to be assumed appropriately small whenever required. Fix k0 > 0,
n0 > 0, t0 > 0, to be assumed large enough whenever required. Let a := neθ0 + leθt0 .
Define

I :=

{
v ∈ R2 : π1

θ0,θt0
(v) = k,

∣∣∣∣π2
θ0,θt0

(v)− k l
n

∣∣∣∣ ≤ t

2
∆(k)(log k)1/2

}
.

The event maxk′≤kW (0,a, k′, θ0) ≥ t∆(k)(log k)1/2 can happen in two ways: either
we have W (0,a, k, θ0) ≥ (t/2)∆(k)(log k)1/2, or Γ(0,a) passes through some v ∈ I
and maxk′W (0,v, k′, θ0) ≥ (t/2)∆(k)(log k)1/2. In the first case, by Theorem 2.10 and
Proposition 2.6, we get

P

(
W (0,a, k, θ0) ≥ t

2
∆(k)(log k)1/2

)
≤ C1 exp

(
−C2t

2 log k
)
. (2.15)

For the second case, consider v ∈ I. We apply Corollary 2.9 with

θ̃0 := θ0 , ñ := k , l̃ := π2
θ0,θt0

(v) , t̃ := t .

(Recall from Remark 1.2 our convention of using tilde on parameters.) Then

|l̃|
ñ
≤ |l|

n
+

1

k

t

2
∆(k)(log k)1/2 ≤ δ1 +

δ2
2
.

Also
1

ñ
t̃∆(ñ)(log ñ)1/2 ≤ 1

k
t∆(k)(log k)1/2 ≤ δ2 .

Therefore, assuming δ1, δ2 are small enough, we get

P

(
max
k′
W (0,v, k′, θ0) ≥ t

2
∆(k)(log k)1/2

)
≤ C3 exp

(
−C4t

2 log k
)
.

Recall that I is of length t∆(k)(log k)1/2. We need to take a union bound over v ∈ I.
Although there are uncountable many such v, number of lattice points bvc (recall
Notation 1.1) where v ∈ I is of the order of t∆(k)(log k)1/2. Thus, by a union bound we
get

P

(
max
k′
W (0,v, k′, θ0) ≥ t∆(k)(log k)1/2 for some v ∈ I

)
≤ C5 exp

(
−C6t

2 log k
)
. (2.16)

Combining (2.15), (2.16) completes the proof of Corollary 2.11.
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Remark 2.12. Recall from Notation 1.1 that geodesic between points u, v which are not
necessarily lattice points is defined as the geodesic between buc and bvc. In Theorem 2.8,
Corollary 2.9, Theorem 2.10, and Corollary 2.11, we are dealing with geodesics having
one endpoint 0 and we are measuring the wandering at a distance from 0. Later while
applying these results we may have a point of R2 in place of 0. This does not cause
any major complication, i.e., bounds that hold for wandering of Γ(0,u) also hold for
wandering of Γ(v,u + v), where u and v are not necessarily lattice points.

3 Preliminary upper bound of the transverse increments

In this section, our principal objective is to prove Theorem 3.2. This is a special
case of Theorem 1.23 which is our main upper bound on the transverse increments.
In Section 4, we use Theorem 3.2 to prove Theorem 4.4 which is a refinement of the
bound on nonrandom fluctuations of Proposition 2.6. We use this refinement to prove
Theorem 1.23 in Section 5.

We need the following result on curvature of the boundary of the limit shape. We skip
the proof because the result is essentially same as Lemma 2.7 of [3].

Lemma 3.1. Let θ0 be a direction of type II. Then there exist positive constants C, δ1,
δ2, such that for d, k > 0, L, satisfying |d| ≤ kδ1, |L| ≤ kδ2, we have∣∣∣g(keθ0 + (d+ L)eθt0)− g(keθ0 + deθt0)

∣∣∣ ≤ C (L2

k
+
|d| · |L|
k

)
.

The preliminary upper bound of the transverse increments is the following.

Theorem 3.2. Let θ0 be a direction of both type I and II. For n > 0, L > 0, let I(n,L)

and D(n,L) be as defined in Theorem 1.23. Then, under Assumptions 1.4 and 1.5, there
exist positive constants C1, C2, L0, n0, t0, such that for L ≥ L0, n ≥ n0, t ≥ t0, L ≤ ∆(n),
we have

P
(
D(n,L) ≥ t logLσ

(
∆−1(L)

))
≤ C1 exp(−C2t logL) .

The same bound holds for D′(n,L).

Proof. Due to the symmetry of the lattice, without loss of generality we assume θ0 ∈
[0, π/4]. Fix L0 > 0, n0 > 0, t0 > 0. We assume L0, n0, t0 are large whenever required.
Consider L ≥ L0, n ≥ n0, t ≥ t0, L ≤ ∆(n). We focus on D(n,L). The bound on D′(n,L)

can be proved similarly. Based on the values of t we consider two cases. Because
for suitably large values of t we are in a large deviation regime, and the proof is
straightforward.

Case I: Suppose
t ≥ 4µL

(
σ
(
∆−1(L)

)
logL

)−1
,

where µ is the expected passage edge-weight. Since I(n,L) has width L, the set of
lattice points {bxc : x ∈ I(n,L)} (see Notation 1.1) can be joined by a lattice path of
at most d2Le edges. Hence D(n,L) ≤ X1 + · · · + Xd2Le, where Xi’s are i.i.d. random
variables which have the same distribution as that of the edge-weights. Therefore,

P
(
D(n,L) ≥ t (logL)σ(∆−1(L))

)
≤ P

(
X1 + · · ·+Xd2Le ≥ t (logL)σ(∆−1(L)

)
≤ C1 exp

(
−C2 t (logL)σ(∆−1(L))

)
≤ C3 exp(−C4 t logL) .

This concludes the proof in this case.

EJP 27 (2022), paper 58.
Page 19/61

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP772
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Transverse increments in FPP on Z2

Case II: Suppose

t ≤ 4µL
(
σ
(
∆−1(L)

)
logL

)−1
. (3.1)

Define

J :=

[
−t1/2L(log ∆−1(L))1/2,

(
1− ∆−1(L)

n

)
L+ t1/2L

(
log ∆−1(L)

)1/2]
,

I∗ :=
{
x ∈ R2 : π1

θ0,θt0
(x) = n−∆−1(L) , π2

θ0,θt0
(x) ∈ J

}
, (3.2)

E := {Γ(0,u) intersects I∗ for all u ∈ I(n,L) } .

Observe that, if T 6∈ E , then W
(
u,0,∆−1(L),−θ0

)
≥ t1/2L(log ∆−1(L))1/2 for some

u ∈ I(n,L). Consider a point u ∈ I(n,L). We want to apply Theorem 2.10 with the
variables

k̃ := ∆−1(L) , l̃ := π2
θ0,θt0

(u) , ñ := π2
θ0,θt0

(u) = n ,

t̃ := t1/2 , θ̃0 := −θ0 , η̃ := 1 .

(Recall from Remark 1.2 our convention about using parameters with tilde, essentially
we want to use Theorem 2.10 with k̃ in place of k and so on.) We need to verify that
these variables satisfy the conditions of Theorem 2.10. The point u is not necessarily a
lattice point. But this issue has been addressed in Remark 2.12. The conditions on θ̃0

hold because by assumption θ0 is of type I (so that, by symmetry −θ0 is also of type I),
and by Proposition 2.6 h satisfies GAP with correction factor φ1 in all directions. Now,
we need to verify the conditions k̃ ≥ k̃0, ñ ≥ ñ0, t̃ ≥ t̃0, t̃∆(k̃)(log k̃)1/2 ≤ k̃δ̃1, |l̃| ≤ ñδ̃2.
Assuming n0, L0, t0 are large enough, we get k̃ ≥ k̃0, ñ ≥ ñ0, t̃ ≥ t̃0. From u ∈ I(n,L) we
get |π2

θ0,θt0
(u)| ≤ L. Therefore, using L ≤ ∆(n), (A2), and assuming n0 is large enough,

we get

|l̃|
ñ
≤ L

n
≤ ∆(n)

n
≤ n−(1−β)/2

0 ≤ δ̃2 .

Using (3.1), (A2), and assuming L0 is large enough, we get

1

k̃
t̃∆(k̃)(log k̃)1/2 =

t1/2L
(
log ∆−1(L)

)1/2
∆−1(L)

≤ C5
L3/2(log ∆−1(L))1/2

∆−1(L)(σ(∆−1(L))1/2(logL)1/2

≤ C6
L1/2

(∆−1(L))1/2
≤ C7L

− (1−β)
2(1+β) ≤ C8L

− (1−β)
2(1+β)

0 ≤ δ̃1 .

Therefore, all the conditions for applying Theorem 2.10 are satisfied, and we get

P
(
W
(
u,0,∆−1(L),−θ0

)
≥ t1/2L(log ∆−1(L))1/2

)
≤ C9 exp(−C10t logL) .

Therefore, taking a union bound over { buc : u ∈ I(n,L) } (recall Notation 1.1) we get

P(Ec) ≤ C11 exp(−C12t logL) . (3.3)

So in order to complete the proof we consider T ∈ E .
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Figure 4: Illustration for Theorem 3.2 under case II: distance of I(n,L) from 0 in θ0

direction is n, width of I(n,L) in θt0 direction is L, distance of I∗ from 0 is n−∆−1L, if
T ∈ E then geodesics from 0 to points in I(n,L) passes through I∗.

Consider two points u and v on I(n,L). Since T ∈ E , there exist points y and z on I∗
such that the geodesic Γ(0,u) passes through y, and the geodesic Γ(0,v) passes through
z. Then

T (0,u)− T (0,v) ≤ (T (0, z) + T (z,u))− (T (0, z) + T (z,v)) = T (z,u)− T (z,v) .

Similarly, we get the opposite inequality with y in place of z. Therefore,

|T (0,u)− T (0,v)| ≤ max
x∈I∗
|T (x,u)− T (x,v)| . (3.4)

Fix an x ∈ I∗. Then

|T (x,u)− T (x,v)| ≤ |T (x,u)− h(u− x)|+ |T (x,v)− h(v − x)|
+ |h(u− x)− g(v − x)|+ |h(v − x)− g(v − x)|+ |g(u− x)− g(v − x)| . (3.5)

Since u, v are in I(n,L), we have

π2
θ0,θt0

(u− v) ≤ L . (3.6)

From (3.2) we get
π1
θ0,θt0

(u− x) = ∆−1(L) , (3.7)

and ∣∣∣π2
θ0,θt0

(u− x)
∣∣∣ ≤ C13t

1/2L(log ∆−1(L))1/2 . (3.8)

Combining (3.6), (3.7), (3.1) we get

‖u− x‖ ≤ C14∆−1(L) . (3.9)

Hence, by Proposition 2.6, and using logL and log ∆−1(L) are of the same order, we get

|h(u− x)− g(u− x)| ≤ C15σ(∆−1(L)) logL . (3.10)

Similarly, (3.7)-(3.10) hold for u replaced with v. By Lemma 3.1 and using (3.6), (3.7),
(3.8), we get

|g(u− x)− g(v − x)| ≤ C16t
1/2 L2

∆−1(L)
log ∆−1(L) ≤ C17t

1/2σ(∆−1(L)) logL . (3.11)
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Using (3.10) and the same for u replaced with v, (3.11), and (3.5), we get

P
(
|T (x,u)− T (x,v)| ≥ tσ(∆−1(L)) logL

)
≤ P

(
|T (x,u)− h(u− x)| ≥ C18tσ(∆−1(L)) logL

)
+ P

(
|T (x,v)− h(v − x)| ≥ C18tσ(∆−1(L)) logL

)
.

Therefore, using (3.9) and the same for u replaced by v, and using (A1) we get

P
(
|T (x,u)− T (x,v)| ≥ tσ(∆−1(L)) logL

)
≤ C19 exp(−C20t logL) . (3.12)

The number of choices of lattice points corresponding to x, u, v i.e., number of triplets
(bxc, buc, bvc) (see Notation 1.1) is at most C21tL

3(logL)1/2. Using (3.4), (3.12), and a
union bound, we get

P
(
D(n,L) ≥ tσ(∆−1(L)) logL and T ∈ E

)
≤ C22 exp(−C23t logL) .

This concludes the proof because we already found in (3.3) that Ec has appropriately
small probability.

We need the following variation of the last result. In the last result we chose a
direction of both type I and type II, and considered the transverse increment over a
segment with one endpoint having that chosen direction. In the next result, we consider
transverse increment over a segment whose endpoints have direction in a neighborhood
of a fixed direction which is of both type I and type II.

Corollary 3.3. Let θ0 be a direction of both type I and II. For n > 0, L > 0, d, let

I(n,L, d) :=
{
x ∈ R2 : π1

θ0,θt0
(x) = n , d ≤ π2

θ0,θt0
(x) ≤ d+ L

}
,

D(n,L, d) := max{ |T (0,x)− T (0,y)| : x,y ∈ I(n,L, d) } .

Then, under the Assumptions 1.4 and 1.5, there exist positive constants δ1, δ2 C1, C2, C3,
L0, n0, t0, such that for L ≥ L0, n ≥ n0, t ≥ t0, |d| ≤ nδ1, L ≤ δ2∆(n), we have

P

(
D(n,L, d) ≥ C3L

|d|
n

+ tσ(∆−1(L)) logL

)
≤ C1 exp(−C2t logL) .

Proof. Due to symmetry of the lattice, without loss of generality we assume θ0 ∈ [0, π/4].
Fix δ1 > 0, δ2 > 0, to be assumed appropriately small whenever required. Fix n0 > 0,
L0 > 0, t0 > 0, to be assumed appropriately large whenever required. Consider n, L, t, d
such that L ≥ L0, n ≥ n0, |d| ≤ nδ1, L ≤ δ2∆(n). Let u := neθ0+deθt0 , v := neθ0+(d+L)eθt0 .
Let θ1, θ2 be the directions of u and v respectively. Let w be the projection of u on the
line joining 0 and v in direction θt1 which exists assuming δ1 is small enough. Let I∗ be
the segment joining u and w.

Figure 5: Illustration for Corollary 3.3. The segment joining u and v is I(n,L, d). The
segment joining u and w is I∗.
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Let
D∗ := max{ |T (0,x)− T (0,y)| : x,y ∈ I∗ } .

Let |I∗| be the length of I∗. To bound D∗ we use Theorem 3.2 with the following variables

θ̃0 = θ1 , ñ := ‖u‖ , L̃ := |I∗|, t̃ =
t

2
, η̃ = 1 .

Recall Remark 1.20. Since θ0 is of both type I and type II, assuming δ1 is small enough,
we get all possible values of θ1 are uniformly of both type I and type II i.e., they satisfy
the curvature conditions with same constants. Thus the condition on θ1 for applying
Theorem 3.2 holds. Assuming δ1 is small enough, we get

C1L ≤ |I∗| ≤ C2L , and C3n ≤ ñ ≤ C4n

(because if δ1 → 0 then we have d→ 0, ‖w − v‖ → 0, and |I∗| → L). Therefore, L̃ ≥ L̃0,
ñ ≥ ñ0 hold assuming L0 and n0 are large enough. Also from L ≤ δ2∆(n) we get
L̃ ≤ ∆(ñ). Hence all the conditions for applying Theorem 3.2 hold and we get

P

(
D∗ ≥ t

2
σ(∆−1(L)) logL

)
≤ C5 exp(−C6t logL) . (3.13)

Now let us consider the difference |D∗ −D(n,L, d)|. Considering the triangle with
vertices u, v, w, we get

‖v −w‖ = L
|sin(θt1 − θt0)|
|sin(θt1 − θ2)|

. (3.14)

Assuming δ1 and δ2 are small enough, we get∣∣sin(θt1 − θ2

)∣∣ ≥ C7

∣∣sin(θt0 − θ0

)∣∣ , (3.15)

and∣∣sin(θt − θt0)∣∣ ≤ C8

∣∣θt1 − θt0∣∣ ≤ C9|θ1 − θ0|

≤ C10|sin(θ1 − θ0)| ≤ C11
|d|
n

∣∣sin(θt0 − θ)∣∣ ≤ C12
|d|
n

∣∣sin(θt0 − θ0

)∣∣ , (3.16)

where the second inequality holds by Remark 1.19. Combining (3.14)-(3.16) we get

‖v −w‖ ≤ C13L
|d|
n
.

Therefore, if x is a point on I(n,L, d) and y is its projection on I∗ in direction θ2,
then ‖x− y‖ ≤ C14L|d|/n. Since h is subadditive and therefore sublinear, we get
h(x− y) ≤ C15L|d|/n. Assuming δ1 < 1, taking L0 large enough, and using (A2), we get
|d|/n ≤ δ1 < 1 ≤ ∆−1(L)/L, so that L|d|/n ≤ ∆−1(L). Therefore, using (A1) we get for
all t′ > 0

P

(
T (x,y) ≥ C15L

|d|
n

+ t′σ(∆−1(L))

)
≤ C16 exp(−C17t

′) .

Using |I∗| ≤ C2L, |I(n,L, d)| = L, and using a union bound, we get

P

(
|D∗ −D(n,L)| ≥ C15L

|d|
n

+ t′σ(∆−1(L))

)
≤ C18L

2 exp(−C19t
′) .

Therefore, taking t′ = (t/2) logL, and assuming t0 and L0 are large enough, we get

P

(
|D∗ −D(n,L)| ≥ C15L

|d|
n

+
t

2
σ(∆−1(L)) logL

)
≤ C20 exp(−C21t logL) . (3.17)

Combining (3.13) and (3.17) completes the proof.
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4 Refined upper bound on nonrandom fluctuations

Theorem 3.2 of the previous section provides a preliminary upper bound of the
fluctuations of the transverse increments. To prove the refined bound of Theorem 1.23,
we need to reduce the correction factor in Proposition 2.6 from log to fixed but arbitrary
small power of log. Related results are known in the literature. In [32] it has been shown
that (log x)1/2 is a valid correction factor in FPP on Cayley Graphs on integer lattices. In
[16] it has been shown that any iterate of log is a valid correction factor in a spherically
symmetric model of FPP. In [4] an upper bound without any correction factor has been
shown in a spherically symmetric model of FPP. In our case, to reduce the correction
factor, we use a modified version of the procedure of [2]. We now introduce the concept
of convex hull approximation property from [2].

Notation 4.1. Let S0 be the set of directions where the boundary of B is differentiable.
Consider x ∈ R2 with direction in S0. Let Hx be the tangent to ∂g(x)B at x. Let H0

x be
the line through 0 parallel to Hx. Let gx be the unique linear functional on R2 satisfying
gx(y) = 0 for all y ∈ H0

x, and gx(x) = g(x). Recall Φ from Notation 2.4. Define for φ ∈ Φ,
ν ≥ 0, C > 0, K > 0,

Qx(ν, φ, C,K) :=
{
y ∈ Z2 : ‖y‖ ≤ K‖x‖ , gx(y) ≤ g(x) , h(y) ≤ gx(y) + C‖x‖νφ(‖x‖)

}
.

Definition 4.2. We say that h satisfies the convex hull approximation property (CHAP)
with exponent ν ≥ 0 and correction factor φ ∈ Φ in a set of directions S ⊂ S0, if there
exist constants M > 0, C > 0, K > 0, a > 1 such that x/Υ ∈ Co(Qx(ν, φ, C,K)) for
some Υ ∈ [1, a], for all x ∈ Q2 with ‖x‖ ≥M and direction of x in S, where Co denotes
the convex hull. When we want to specify the specific constants, we say h satisfies
CHAP(ν, φ,M,C,K, a) in sector S.

The procedure in [2] in our terminology as follows. The objective of [2] was to prove
GAP with exponent α and correction factor φ1. To achieve this, first, it is shown that
CHAP with exponent α and correction factor φ1 holds. This is done in an iterative way.
GAP with exponent 1 and correction factor φ1 holds trivially because h is sublinear. Then
the exponent of GAP is reduced from 1 to α iteratively using CHAP with exponent α.
Here we are not concerned about the exponent α.

In contrast to [2], here we want to change the correction factor of GAP from φ1 to φη
for some small η > 0 while keeping the exponent α unchanged. We do this in two steps.
In the first step, we prove that CHAP holds with exponent α and correction factor φ̂
(recall φ̂ from Notation 2.4). From Proposition 2.6 we get h satisfies GAP with exponent
α and correction factor φ1. Using this, we reduce the correction factor of GAP from φ1 to
φη, which is the second step. The result on CHAP with exponent α and correction factor

φ̂ is the following.

Theorem 4.3. Let θ0 be a direction of both type I and type II. Then, under Assump-
tions 1.4 and 1.5, there exists δ > 0 such that CHAP holds for h with exponent α and
correction factor φ̂ in the sector (θ0 − δ, θ0 + δ).

After carrying out the second step we get the refined upper bound on the nonrandom
fluctuations stated below.

Theorem 4.4. Let θ0 be a direction of both type I and type II. Fix η ∈ (0, 1]. Then, under
Assumptions 1.4 and 1.5, there exist constants C > 0, M > 0, δ > 0 such that for all
‖x‖ ≥M with direction of x in (θ0 − δ, θ0 + δ), we have

h(x) ≤ g(x) + Cσ(‖x‖)(log‖x‖)η ,

i.e., GAP(α, φη, C,M) holds in the sector (θ0 − δ, θ0 + δ).
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In the first subsection below we prove Theorem 4.3, then in the second subsection
we prove Theorem 4.4 using Theorem 4.3.

4.1 Proof of Theorem 4.3

Due to the symmetry of the lattice, without loss of generality we assume θ0 ∈ [0, π/4].
Let us now choose a parameter δ > 0 which is fixed throughout the proof of Theorem 4.3.
Since θ0 is of both type I and II, we choose δ > 0 such that ∂B is differentiable in
(θ0− 2δ, θ0 + 2δ) and there exists δ1 > 0 such that for all θ ∈ (θ0− 2δ, θ0 + 2δ) and |δ2| ≤ δ1

C1δ
2
2 ≤ g(eθ + δ2eθt)− g(eθ) ≤ C2δ

2
2 . (4.1)

So all θ ∈ (θ0 − δ, θ0 + δ) are of both type I and type II with same constants. This allows
us to use results which hold in type I or type II directions with same constants for all
θ ∈ (θ0 − δ, θ0 + δ).

We extract a sufficient condition from [2] for the Theorem 4.3 to hold. We state the
condition as Proposition 4.5. Since it is essentially proved in [2], we do not prove it here.
To state the condition we need the concept of skeletons of paths defined below.

Construction of fine skeletons: For x ∈ R2, n > 0, λ > 0, K > 0, the fine
Qx(α, φ̂, λ,K)-skeleton of a self-avoiding path γ from 0 to nx is the sequence of marked
points v0, . . . ,vm on γ constructed as follows. Let v0 := 0, and given vi, let v′i+1 be the

first point (if any) in γ such that v′i+1−vi 6∈ Qx(α, φ̂, λ,K); then let vi+1 be the last lattice
point in γ before v′i+1 if v′i+1 exists; otherwise let vi+1 = bnxc and end the construction.

Proposition 4.5. Consider an infinite sequence of i.i.d. copies of the passage-time
configuration (T̂ i)∞i=0 on the lattice. Suppose for some positive constants λ1, λ2, λ3, we
have

P

(
m−1∑
i=0

[
h(vi − vi + 1)− T̂ i(vi,vi+1)

]
≥ λ1

16
mσ(‖x‖) log log‖x‖

for some m ≥ 1 and some Qx(α, φ̂, λ1, 5)-skeleton (vj)
m
j=0

of a path from 0 to nx for some n

)
≤ exp (−λ2 log log‖x‖) (4.2)

for all x with ‖x‖ ≥ λ3 and direction of x ∈ (θ0 − δ, θ0 + δ). Then there exists M > 0 such

that h satisfies CHAP
(
α, φ̂,M, λ1, 4, 2

)
in the sector (θ0 − δ, θ0 + δ).

In order to verify (4.2) we need the concept of ‘coarse skeletons.’

Construction of coarse skeletons: Consider x ∈ R2 with direction θ ∈ (θ0− δ, θ0 + δ).
Define

`x :=
‖x‖

(log‖x‖)2/α
. (4.3)

Also, for i, j ∈ Z, define

Bij :=
{
y ∈ R2 : π1

θ,θt(y) ∈ [i`x, (i+ 1)`x) , π2
θ,θt(y) ∈ [j∆(`x), (j + 1)∆(`x))

}
, (4.4)

where α is defined in Assumption 1.5. So Bij is a parallelogram with side lengths `x and
∆(`x), and these parallelograms cover the whole plane. Given v ∈ Bij , let

Gx(v) := bi`xeθ + j∆(`x)eθtc , Fx(v) := b(i+ 1)`xeθ + j∆(`x)eθtc .
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Recall that we have assumed that θ0 ∈ [0, π/4]. Thus θ ∈ (−δ, π/4 + δ). Also recall
from Remark 1.15 that we take tangent in counterclockwise direction. Thus we can
assume θt > 0. So, Fx(v) is the lattice point corresponding to down-right corner of
the parallelogram Bij containing v and Gx(v) is the down-left corner, see Figure 6.

Suppose (vi)
m
i=0 is a fine Qx(α, φ̂, λ, 5)-skeleton of some path for some λ > 0. Then its

coarse skeleton (wj)
2m−1
j=0 is defined as follows. For 0 ≤ i ≤ m− 1, let w2i := Fx(vi) and

w2i+1 := Gx(vi+1).

Figure 6: Construction of the coarse skeleton: for every pair of consecutive points v,
v′ in a fine skeleton of a path, we have Fx(v) and Gx(v′) as consecutive points in the
coarse skeleton of the path.

Remark 4.6. If for some n, (vi)
m
i=0 is a fine Qx(α, φ̂, λ, 5)-skeleton of a path from 0 to

nx and (wj)
2m−1
j=0 is the corresponding coarse skeleton, then ‖vi − vi+1‖ ≤ 5‖x‖ and

‖w2i−1 −w2i‖ ≤ 6‖x‖ for large enough ‖x‖.
We state two propositions which in combination establishes (4.2). We define a few

constants first. Let C3, C4, C5, C6, C7, be positive constants such that for all x ∈ R2 with
‖x‖ ≥ C3, and for all u,v ∈ R2 with C4 ≤ ‖u− v‖ ≤ 6‖x‖, we have

P(|T (u,v)− h(u− v)| ≥ tσ(‖x‖)) ≤ C5 exp(−C6t) , (4.5)

and

C7 := 256 · α−1 · C−1
6 · (1 + C5) . (4.6)

For all x ∈ R2, we use the shorthand notation

Qx := Qx

(
α, φ̂, C7, 5

)
.

Proposition 4.7. Under the assumptions of Theorem 4.3, there exist positive constants
C8, C9 such that for x with direction in (θ0 − δ, θ0 + δ) and ‖x‖ ≥ C8, and for all m ≥ 1,
we have

P

(
m−1∑
i=0

[
h(w2i −w2i+1)− T̂ i(w2i,w2i+1)

]
>
C7

32
mσ (‖x‖) log log‖x‖

for some coarse Qx-skeleton (wj)
2m
j=0 of a path from 0 to nx for some n

)
≤ exp(−mC9 log log‖x‖) .

Proposition 4.8. Under the assumptions of Theorem 4.3, there exist positive constants
C10, C11 such that for x with direction in (θ0 − δ, θ0 + δ) and ‖x‖ ≥ C10, and for all m ≥ 1,
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we have

P

(
m−1∑
i=0

[
h(vi − vi+1)− T̂ i(vi,vi+1)− h(w2i −w2i+1) + T̂ i(w2i,w2i+1)

]
≥ C7

32
mσ(‖x‖) log log‖x‖ for some fine Qx-skeleton (vj)

m
j=0 and the

corresponding coarse skeleton (wj)
2m
j=0 of a path from 0 to nx for some n

)
≤ exp(−mC11 log log‖x‖) .

So (4.2) holds by Propositions 4.8 and 4.7. Hence, to complete the proof of Theo-
rem 4.3, we only need to prove these two propositions. We need the following lemma
first.

Lemma 4.9. Under the assumptions of Theorem 4.3, there exist positive constants C12,
C13 such that for x with direction in (θ0 − δ, θ0 + δ) and ‖x‖ ≥ C12 we have the following.

(i) For all y ∈ Qx, |π2
θ,θt(y)| ≤ C13∆(‖x‖)(log log‖x‖)1/2, where θ is the direction of x.

(ii) The number of coarse Qx-skeletons of length 2m+ 1 is at most (log‖x‖)4m/α, where
α is defined in (A2).

Proof. Fix x with direction θ in (θ0 − δ, θ0 + δ). We assume that ‖x‖ is large enough
whenever required.

Proof of (i): Consider y ∈ Qx. Then g(y) ≤ h(y) ≤ gx(y) + C7σ(‖x‖) log log‖x‖, so

g(y)− gx(y) ≤ C7σ(‖x‖) log log‖x‖ . (4.7)

Consider three cases.

Case I: Suppose π1
θ,θt(y) > 0 and |π2

θ,θt(y)| ≤ δ1π
1
θ,θt(y), where δ1 is defined in (4.1).

From (4.1) we get

g(y)− gx(y) = g(π1
θ,θt(y)eθ + π2

θ,θt(y)eθt)− g(π1
θ,θt(y)eθ) ≥ C14

π2
θ,θt(y)2

π1
θ,θt(y)

. (4.8)

Since y ∈ Qx, we have
π1
θ,θt(y) ≤ C15‖y‖ ≤ C16‖x‖ .

This with (4.8) and (4.7) implies

|π2
θ,θt(y)| ≤ C17∆(‖x‖)(log log‖x‖)1/2 .

Case II: Now suppose π1
θ,θt(y) > 0 and |π2

θ,θt(y)| ≥ δ1π1
θ,θt(y). Let us consider π2

θ,θt(y) >

0, the case π2
θ,θt(y) < 0 is similar. Using convexity of g and (4.1) we get

g(y)− gx(y)

= g(π1
θ,θt(y)eθ + π2

θ,θt(y)eθt)− g(π1
θ,θt(y)eθ)

≥
g(π1

θ,θt(y)eθ + δ1π
1
θ,θt(y)eθt)− g(π1

θ,θt(y)eθ)

δ1π1
θ,θt(y)/π2

θ,θt(y)

= π2
θ,θt(y)δ−1

1 (g(eθ + δ1eθt)− g(eθ))

≥ C18π
2
θ,θt(y) .
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Hence using (4.7) and (A2) we get

π2
θ,θt(y) ≤ C19σ(‖x‖) log log‖x‖ ≤ C20∆(‖x‖)(log log‖x‖)1/2 .

Case III: Suppose π1
θ,θt(y) < 0. Then gx(y) < 0. Using y ∈ Qx, (4.7), and (A2) we get

π2
θ,θt(y) ≤ C21‖y‖ ≤ C22g(y) ≤ C23σ(‖x‖) log log‖x‖ ≤ C24∆(‖x‖)(log log‖x‖)1/2 .

Proof of (ii): Given any v let Qx(v) denote the translate of Qx by v. Suppose part
of a coarse skeleton is given as (w0, . . . ,w2i). We find an upper bound on number of
possibilities of (w2i+1,w2i+2). Consider a fine skeleton (v0, . . . ,vi) corresponding to
(w0, . . . ,w2i). Since (w2i−1,w2i) is fixed, all choices of vi lie in the same Bi0j0 . Consider
the union ofQx(v) over all v ∈ Bi0j0 . EachQx(v) is contained in a parallelogram of length
C25‖x‖ in θ direction and length C26∆(‖x‖)(log log‖x‖)1/2 in θt direction. Hence, the
union of all suchQx(v) as v varies in a parallelogramBi0j0 is contained in a parallelogram
of length C27‖x‖ in θ direction and length C28∆(‖x‖)(log log‖x‖)1/2 in θt direction (using
(i)). From (4.3) we have

∆(‖x‖)(log log‖x‖)1/2

∆(`x)
≤ C29(log‖x‖)(1+β)/α(log log‖x‖)1/2 ,

and,
‖x‖
`x

= (log‖x‖)2/α .

Therefore, using β < 1, the number of parallelograms Bij that cover the aforementioned
union is at most (log‖x‖)4/α. Hence, the number of choices of (w2i+1,w2i+2) is at most
(log‖x‖)4/α. Iterating this from i = 0 to m, we get the result.

4.1.1 Proof of Proposition 4.7

Fix a point x ∈ R2 with direction θ ∈ (θ0 − δ, θ0 + δ). We assume ‖x‖ is large enough
whenever required. Fix a coarse Qx-skeleton (wj)

2m
j=0 for some m ≥ 1. By Remark 4.6

and equation (4.5) we get

P
(
h(w2i −w2i+1)− T̂ i(w2i,w2i+1) ≥ tσ(‖x‖)

)
≤ C5 exp(−C6t) .

For C30 := C6/(1 + C5) we get

E

[
exp

(
C30

(
h(w2i −w2i+1)− T̂ i(w2i,w2i+1)

)+

/σ(‖x‖)
)]
≤ 2 .

Using the independence of T̂ is we get

E

[
exp

(
C30

m−1∑
i=0

(
h(w2i −w2i+1)− T̂ i(w2i,w2i+1)

)+

/σ(‖x‖)

)]
≤ 2m .

Hence, for all t > 0, we have

P

(
m−1∑
i=0

h(w2i −w2i+1)− T̂ i(w2i,w2i+1) > tmσ(‖x‖) log log‖x‖

)
≤ 2m exp(−C30mt log log‖x‖) .
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From Lemma 4.9 we get that the number of coarse skeletons of length 2m+ 1 is at most
(log‖x‖)m(4/α). Therefore, by (4.6) we get

P

(
m−1∑
i=0

[
h(w2i −w2i+1)− T̂ i(w2i,w2i+1)

]
>
C7

32
mσ(‖x‖) log log‖x‖

for some coarse Qx-skeleton (wj)
2m
j=0 of a path from 0 to nx for some n

)

≤ 2m(log‖x‖)m(4/α) exp

(
−C30

C7

32
m log log‖x‖

)
≤ exp(−mC31 log log‖x‖) .

This completes the proof of Proposition 4.7.

4.1.2 Proof of Proposition 4.8

Fix a point x ∈ R2 with direction θ ∈ (θ0 − δ, θ0 + δ). We assume ‖x‖ is large enough
whenever required. Fix a coarse Qx-skeleton (wj)

2m−1
j=0 of a path from 0 to nx for some

n ≥ 1. For 0 ≤ i ≤ m− 1, define the set

Vi :=
{

(v,v′) ∈ Z2 ×Z2 : Fx(v) = w2i , Gx(v′) = w2i+1 , v
′ − v ∈ Qx

}
,

and also define

Xi := max
(v,v′)∈Vi

h(v − v′)− T̂ i(v,v′)− h(w2i −w2i+1) + T̂ i(w2i,w2i+1)

σ(‖x‖)
.

By Remark 4.6, we have ‖v − v′‖ ≤ 5‖x‖ for all (v,v′) ∈ Vi and 0 ≤ i ≤ m− 1. Therefore,
the number of elements in Vi for any 0 ≤ i ≤ m − 1 is at most C32‖x‖4. Hence, for all
t > 0 we have

P(Xi ≥ t) ≤ C33‖x‖4 exp(−C34t) . (4.9)

If we show that for some constant C35 > 0

P

(
m−1∑
i=0

Xi ≥
C7

32
m log log‖x‖

)
≤ exp(−C35m log‖x‖) , (4.10)

then Proposition 4.8 follows using Lemma 4.9. Therefore, we prove (4.10) now. Let

C36 := 8C−1
34 , (4.11)

and let N0, N1 be positive integers such that

2N0 <
C7

96
log log‖x‖ ≤ 2N0+1 , (4.12)

2N1−1 < C36 log‖x‖ ≤ 2N1 . (4.13)

Then

P

(
m−1∑
i=0

Xi ≥
C7

32
m log log‖x‖

)
≤ P

(
m−1∑
i=0

Xi1(2N0 ≤ Xi < 2N1) ≥ C7

96
m log log‖x‖

)

+ P

(
m−1∑
i=0

Xi1(Xi ≥ 2N1) ≥ C7

96
m log log‖x‖

)
. (4.14)
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For the second term in the right-hand side of (4.14) we have

P

(
m−1∑
i=0

Xi1(Xi ≥ 2N1) ≥ C7

96
m log log‖x‖

)

≤ P

 ∞∑
q=N1

m−1∑
i=0

2q+11(2q+1 > Xi ≥ 2q) ≥ C7

96
m log log‖x‖

∞∑
q=N1

2−(q−N1+1)


≤

∞∑
q=N1

P

(
m−1∑
i=0

1(Xi ≥ 2q) ≥ C7

96
m log log‖x‖2N1−2(q+1)

)

≤
∞∑

q=N1

exp(−mI(a1(q)|b1(q))) , (4.15)

where

a1(q) :=
C7

96
m log log‖x‖2N1−2(q+1) , b1(q) := max

0≤i≤m−1
P(Xi ≥ 2q) ,

and I is the large deviation rate function for Bernoulli random variables:

I(x|y) := x log
x

y
+ (1− x) log

1− x
1− y

. (4.16)

Using (4.9), (4.11), and (4.13), we get for q ≥ N1

b1(q) ≤ C33‖x‖4 exp(−C342q) ≤ exp(−C372q) .

So b1(q) is much smaller than a1(q). Therefore, using (4.16) for I(a1(q)|b1(q)) and
expanding the log terms we see that the term a1(q) log(b1(q)−1) dominates the others.
Hence

I(a1(q)|b1(q)) ≥ C38a1(q) log(b1(q)−1) ≥ C39 log log‖x‖ log‖x‖2−q .
Therefore, continuing from (4.15) and using (4.9) we get

P

(
m−1∑
i=0

Xi1(Xi ≥ 2N1) ≥ C7

96
m log log‖x‖

)
≤ exp(−C40m log‖x‖) . (4.17)

For the first term in the right-hand side of (4.14) we have

P

(
m−1∑
i=0

Xi1(2N0 ≤ Xi < 2N1) ≥ C7

96
m log log‖x‖

)

≤ P

m−1∑
i=0

N1−1∑
q=N0

2q+11(Xi ≥ 2q) ≥ C7

96
m log log‖x‖


≤

N1−1∑
q=N0

P

(
m−1∑
i=0

1(Xi ≥ 2q) ≥ C7

96
m(log log‖x‖)2−(q+1)(N1 −N0)−1

)

≤
N1−1∑
q=N0

exp(−mI(a2(q)|b2(q))) , (4.18)

where

a2(q) :=
C7

96
(log log‖x‖)2−(q+1)(N1 −N0)−1 , b2(q) := max

0≤i≤m−1
P(Xi ≥ 2q) .

We use the following claim to derive a bound of b2(q). The proof of the claim is presented
later.
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Claim 4.10. For 0 ≤ i ≤ m− 1, (v,v′) ∈ Vi, and t ∈ [2N0 , 2N1−1], we have

P
(
h(v − v′)− T̂ i(v,v′)− h(w2i −w2i+1) + T̂ i(w2i,w2i+1)) ≥ tσ(‖x‖)

)
≤ exp(−C41t log‖x‖) .

By this claim and using that the number of elements in Vi is at most C32‖x‖4 we get,
for N0 ≤ q ≤ N1 − 1

b2(q) = max
0≤i≤m−1

P(Xi ≥ 2q) ≤ C42‖x‖4 exp(−C432q log‖x‖) ≤ exp(−C442q log‖x‖) .

From (4.13) we get C452−q ≤ a2(q) ≤ C462−q. Therefore, using (4.16) for I(a2(q)|b2(q)),
and expanding the log terms, we see that the term a2(q) log(b2(q)−1) dominates the
others. Hence

I(a2(q)|b2(q)) ≥ C47a2(q) log(b2(q)−1) ≥ C48 log‖x‖ .

Therefore, continuing from (4.18) we get

P

(
m−1∑
i=0

Xi1(2N0 ≤ Xi < 2N1) ≥ C7

96
m log log‖x‖

)
≤ exp(−mC49 log‖x‖) .

Combining this with (4.17) we get (4.10). Therefore, to complete the proof of Proposi-
tion 4.8 we only need to prove Claim 4.10.

Proof of Claim 4.10. Fix 0 ≤ i ≤ m− 1 and (v,v′) ∈ Vi. Define

D(v,v′) := h(v − v′)− T̂ i(v,v′)− h(w2i −w2i+1) + T̂ i(w2i,w2i+1) .

Define

`0 :=
‖x‖

(log‖x‖)1/α
.

We consider two cases.

Case I: Suppose π1
θ,θt(v

′ − v) ≤ `0. This includes the case π1
θ,θt(v

′ − v) < 0. Using
Lemma 4.9, |π2

θ,θt(v −w2i)| and |π2
θ,θt(v

′ −w2i+1)| are at most C50∆(x) log log‖x‖ which
is smaller than `0. Since Fx(v) = w2i and Gx(v′) = w2i+1, |π1

θ,θt(v −w2i)| and |π1
θ,θt(v

′ −
w2i+1)| are at most `x which is smaller than `0. Hence ‖v −w2i‖ and ‖v′ −w2i+1‖ are
at most of the order of `0. Therefore, using (A1) and (A2), we get

P(D(v,v′) ≥ tσ(‖x‖)) ≤ C51 exp(−C52tσ(‖x‖)/σ(‖`0‖)) ≤ exp(−C53t log‖x‖) .

So the claim is proved in this case.

Case II: Suppose
π1
θ,θt(v

′ − v) ≥ `0 . (4.19)

Let

D1(v,v′) := h(v − v′)− T (v,v′)− h(v −w2i+1) + T (v,w2i+1) ,

D2(v,v′) := h(v −w2i+1)− T (v,w2i+1)− h(w2i −w2i+1) + T (w2i,w2i+1) .

Therefore, D(v,v′) = D1(v,v′) +D2(v,v′). Hence

P(D(v,v′) ≥ tσ(‖x‖)) ≤ P
(
D1(v,v′) ≥ t

2
σ(‖x‖)

)
+ P

(
D2(v,v′) ≥ t

2
σ(‖x‖)

)
. (4.20)
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We only consider the first term on the right-hand side, the second term can be dealt with
similarly. Suppose i0 and j0 are such that v′ ∈ Bi0j0 , where recall that Bij is defined in
(4.4). Let

J :=
[
j0∆(`x)− t1/2∆(`x)(log `x)1/2, (j0 + 1)∆(`x) + t1/2∆(`x)(log `x)1/2

]
,

R(t) :=
{
y ∈ R2 : π1

θ,θt(y) = i0`x , π
2
θ,θt(y) ∈ J

}
.

So R(t) is an extension of a side of the parallelogram Bi0j0 . Define the event

E(t) := {Γ(v,v′) intersects R(t) } .

Since v′ ∈ Bi0j0 , the distance of the segment R(t) from v′ in −θ direction is less than
`x. Therefore, if T 6∈ E(t), then W (v′,v, k,−θ) ≥ t1/2∆(`x)(log `x)1/2 for some k ≤ `x.
Hence, to bound the probability of T 6∈ E(t) we use Corollary 2.11 with

θ̃0 := −θ , ñ := π1
θ,θt(v

′ − v) , l̃ := π2
θ,θt(v − v′) , k̃ := `x , t̃ := t1/2 .

(Recall from Remark 1.2 our convention of using tilde on parameters.) We now verify
the conditions of Corollary 2.11. Recall that by our choice of δ from (4.1) θ is a direction
of type I, hence so is −θ. Using (4.19) we get ñ ≥ `0 ≥ ñ0. By Lemma 4.9 we have
|l̃| ≤ C54∆(‖x‖) log log‖x‖. Hence, |l̃| ≤ ñδ̃2, as required. Using t ≤ 2N1−1 and (4.13), we
get t1/2∆(k̃)(log k̃) ≤ k̃δ̃3, as required. Thus, all the conditions for applying Corollary 2.11
hold, and we get

P( E(t)c ) ≤ exp(−C55t log `x) ≤ exp(−C56t log‖x‖) . (4.21)

Let R := R(2N1−1). For any y in R let

D′1(y) := h(v − y)− T (v,y)− h(v −w2i+1) + T (v,w2i+1) ,

D′2(y) := h(y − v′)− T (y,v′) .

If Γ(v,v′) passes through y then D1(v,v′) ≤ D′1(y) +D′2(y). Hence

P

(
D1(v,v′) ≥ t

2
σ(‖x‖)

)
≤ P

(
max
y∈R
D′1(y) ≥ t

4
σ(‖x‖)

)
+ P

(
max
y∈R
D′2(y) ≥ t

4
σ(‖x‖)

)
+ P( E(t)c ) . (4.22)

Let us consider the first term in the right-hand side first. We use Corollary 3.3 with

θ̃0 := θ ,

ñ := i0`x − π1
θ,θt(v) ,

L̃ := ∆(`x)(1 + 2(N1−1)/2+1(log `x)1/2) ,

d̃ := ∆(`x)(j0 − 2(N1−1)/2(log `x)1/2)− π2
θ,θt(v) .

(Recall from Remark 1.2 our convention of using tilde on parameters.) We now verify
the conditions of Corollary 3.3. By our choice of δ in (4.1), θ is of both type I and type II.
Since ñ is the distance of R from v in direction −θ, we have

ñ ≥ `0 − `x ≥ C57`0 ≥ ñ0 .

Using (4.13), (A2), and ñ ≥ C57`0 from above, we get

L̃ ≤ C58∆(`x) log‖x‖ ≤ C59∆(`0)(log‖x‖)1−(1+β)/(2α) ≤ δ̃2∆(ñ) . (4.23)
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By Lemma 4.9 we have

|π2
θ,θt(v

′ − v)| ≤ C60∆(x)(log log‖x‖)1/2 .

Since v′ ∈ Bi0j0 , we have

|π2
θ,θt(v

′)− j0∆(`x)| ≤ ∆(`x) .

Therefore, using (A2) and ñ ≥ C57`0, we get

|d̃| ≤ C61∆(‖x‖)(log log‖x‖)1/2 + 2N1/2∆(`x)(log `x)1/2

≤ C62∆(‖x‖)(log log‖x‖)1/2 ≤ δ̃1ñ . (4.24)

By Corollary 3.3 we get for t̃ ≥ t̃0

P

(
max
y∈R
D′1(y) ≥ C63L̃

|d̃|
ñ

+ t̃σ(∆−1(L̃)) log ∆−1(L̃)

)
≤ C64 exp

(
−C65t̃ log L̃

)
. (4.25)

Let t̃ be such that

C66L̃
|d̃|
ñ

+ t̃σ
(

∆−1
(
L̃
))

log ∆−1(L̃) =
t

4
σ(‖x‖) . (4.26)

We need to verify t̃ ≥ t̃0. Using (4.23) and (A2), we have

L̃ ≤ C58∆(`x) log‖x‖ ≤ C67∆(‖x‖)(log‖x‖)−1/α . (4.27)

Using this with (4.24) we get

L̃
|d̃|
ñ
≤ C68σ(‖x‖)(log log‖x‖)1/2(log‖x‖)−1/α . (4.28)

Using t ≥ 2N0 , (4.12), (4.26), (4.28), and (4.27), we get

t̃ ≥ C69t
σ(‖x‖)

σ(∆−1(L̃)) log ∆−1(L̃)
≥ C70t

(
‖x‖

∆−1(L̃)

)α
(log‖x‖)−1

≥ C71t

(
∆(‖x‖)
L̃

)2α/(1+β)

(log‖x‖)−1 ≥ C72t(log‖x‖)(1−β)/(1+β) ≥ t̃0 .

Therefore, from (4.25) and (4.26), we get

P

(
max
y∈R
D′1(y) ≥ t

4
σ(‖x‖)

)
≤ C73 exp

(
−C74t(log‖x‖)2/(1+β)

)
≤ C75 exp(−C76t(log‖x‖)) . (4.29)

Now we consider the second term in the right-hand side of (4.22). By (4.27) width of R is
less than ∆(x). Distance of R from v′ in θ direction is less than `x. So ‖y − v′‖ ≤ C77`x
for all y ∈ R. Thus, using (A1), (A2), and a union bound, we get

P

(
max
y∈R
D′2(y) ≥ t

4
σ(‖x‖)

)
≤ C78‖x‖ exp(−C79tσ(‖x‖)/σ(`x))

≤ C80 exp
(
−C81t(log‖x‖)2

)
.

Using this in (4.22) together with (4.21) and (4.29) we get appropriate bound for the
first term in the right-hand side of (4.20). The second term can be dealt with similarly.
This completes the proof of Claim 4.10.

This also completes the proof of Proposition 4.8.
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4.2 Proof of Theorem 4.4

Due to the symmetry of the lattice, without loss of generality we assume θ0 ∈ [0, π/4].
We also assume that η < 1 because for η = 1 the result is same as Proposition 2.6.

Let n be a positive integer such that (1− α)n ≤ η/2. Define for 0 ≤ m ≤ n and k ≥ 3

ψm(k) := k−ασ(k)(log k)(1−α)m(log log k)1−(1−α)m .

Because ψn(k) ≤ φη(k) for large enough k, to prove Theorem 4.4 it is enough to show
that h satisfies GAP with exponent α and correction factor ψn.

By assumptions of Theorem 4.4 θ0 is a direction of both type I and II. Therefore,
by Theorem 4.3, there exist positive constants δ, Cc, Mc, K, a, such that h satisfies

CHAP
(
α, φ̂,Mc, Cc,K, a

)
in the sector of directions (θ0 − δ, θ0 + δ). Define S0 := [0, 2π],

and for 1 ≤ m ≤ n define

Sm :=

[
θ0 − δ

n−m+ 1

n
, θ0 + δ

n−m+ 1

n

]
.

We show that h satisfies GAP with exponent α and correction factor ψn in Sn.

By Proposition 2.6, h satisfies GAP with exponent α and correction factor φ1 = ψ0 in
all directions. Hence, there exist constants Cg > 0 and Mg > 0 such that for ‖x‖ ≥Mg

we have

h(x) ≤ g(x) + Cgσ (‖x‖) log‖x‖ . (4.30)

We use an inductive argument. Fix 0 ≤ m < n. Suppose h satisfies GAP with exponent α,
correction factor ψm, in the sector Sm, with constants C and M . We show that h satisfies
GAP with exponent α, correction factor ψm+1, in the sector Sm+1, with constant C and M .
This establishes that h satisfies GAP with exponent α, correction factor ψn in the sector
Sn. The constants C and M need to remain unchanged. We will see that if C and M are
chosen large enough then the inductive step works. We assume without loss of generality
K > 1, M > 3, M > Mc, M > Mg. Also we assume M is large enough, independent
of m, so that ψm+1(‖x‖) ≥ 1 for all ‖x‖ ≥ M , which is possible by (A2). Since h has
sublinear growth, there exists constant r > 0 such that for all x we have h(x) ≤ r‖x‖. Let
ν := (1−β)/4, c0 := 3Cc, c1 := Cca, c2 := 3K, c3 := (c1 + c0 +Cgc2(αν)−1)p−1, c4 := cα2 p

−1,

c5 := cα3 c
1−α
4

((
α

1− α

)1−α

+

(
1− α
α

)α)
,

and c6 := (1− α)c3(αc4)−1. We start the inductive step now. Consider x with direction
θ ∈ Sm+1 and ‖x‖ ≥M . We need to show

h(x) ≤ g(x) + C‖x‖αψm+1(‖x‖) . (4.31)

We are free to choose C and M large enough, independent of m. In various steps we
assume C is large enough depending on M , and M is chosen to be large enough without
depending on C.

Bounding h(x) when ‖x‖ is small: Suppose ‖x‖ ≤ c2M . Assuming C ≥ rc2M , we get

h(x) ≤ r‖x‖ ≤ rc2M ≤ C ≤ C‖x‖αψm+1(x) ≤ g(x) + C‖x‖αψm(‖x‖) .

Thus (4.31) is verified.
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Defining x∗, xL and xS when ‖x‖ is large: Suppose

‖x‖ ≥ c2M.

Take q ∈ [c2, ‖x‖/M ] ∩ Q. Then ‖x/q‖ ≥ M ≥ Mc. Applying CHAP(α, φ̂,Mc, Cc,K, a) to
x/q we get

x/q =

3∑
i=1

Υqiyqi with Υqi ≥ 0 ,

3∑
i=1

Υqi ∈ [1, a] and yqi ∈ Qx/q

(
α, φ̂, Cc,K

)
. (4.32)

Let

L(q) :=
{

1 ≤ i ≤ 3:
∥∥yqi∥∥ ≥ ‖x/q‖1−ν }

and

x∗ :=

3∑
i=1

bqΥqicyqi , xL :=
∑
i∈L(q)

γqiyqi , xS :=
∑
i 6∈L(q)

γqiyqi , (4.33)

where

γqi := qΥqi − bqΥqic ∈ [0, 1) .

Therefore,

x = x∗ + xL + xS .

Direction of xL: Consider i ∈ L(q). Then∥∥yqi∥∥ ≥ ‖x/q‖1−ν . (4.34)

Using Lemma 4.9, yqi ∈ Qx/q(α, φ̂, Cc,K), ‖x/q‖ ≥M , assuming M is large enough, and
(A2), we get

|π2
θ,θt(yqi)| ≤ C1∆(x/q)(log log‖x/q‖)1/2 ≤ C2‖x/q‖(1+β)/2

(log log‖x/q‖)1/2 .

Therefore, using (4.34), (A2), and 1− ν = 1− (1− β)/4 > (1 + β)/2, we get

|π1
θ,θt(yqi)| ≥

∥∥yqi∥∥− |π2
θ,θt(yqi)| ≥ C3‖x/q‖1−ν ,

and, further, using 1− ν − (1 + β)/2 = (1− β)/4 we get

|π2
θ,θt(yqi)|
|π1
θ,θt(yqi)|

≤ C4
‖x/q‖(1+β)/2

(log log‖x/q‖)1/2

‖x/q‖1−ν
≤ C5

(log logM)1/2

M (1−β)/4
.

Since θ ∈ Sm+1, assuming M is large enough, we get direction of yqi is in Sm. This
implies xL has direction in Sm.

Bounding h(x∗): Using subadditivity of h, (4.33), (4.32), and (A2), we get

h(x∗) ≤
3∑
i=1

bqΥqich(yqi) ≤
3∑
i=1

bqΥqic
[
gx(yqi) + Cc‖x/q‖αφ̂(‖x/q‖)

]
≤ gx(x∗) + c1p

−1q1−α‖x‖αφ̂(‖x‖) . (4.35)
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Bounding h(xS) when ‖xS‖ is large: Suppose ‖xS‖ ≥ Mg. Using q ≥ c2 = 3K > 3,
‖x/q‖ ≥M ≥ 1, and (4.33) we get

‖xS‖ =

∥∥∥∥∥∥
∑
i 6∈L(q)

γqiyqi

∥∥∥∥∥∥ ≤
∑
i6∈L(q)

γqi
∥∥yqi∥∥ ≤ 3‖x/q‖1−ν ≤ 3‖x/q‖ ≤ ‖x‖ .

Using this and log‖x‖ ≤ ‖x‖αν(αν)−1 we get

σ(‖xS‖) log‖xS‖
σ(‖x‖) log log‖x‖

≤ p−1

(
‖xS‖
‖x‖

)α
log‖x‖

log log‖x‖

≤ p−1 cα2 q
αν log‖x‖

qα‖x‖αν log log‖x‖
≤ p−1cα2 (αν)−1q−α(1−ν) .

Since ‖xS‖ ≥Mg, using (4.30) we get

h(xS)

≤ g(xS) + Cg‖xS‖αφ1(‖xS‖)

≤
∑
i6∈L(q)

γqig(yqi) + Cgσ(‖xS‖) log‖xS‖

≤ gx(xS) +
∑
i 6∈L(q)

γqi
[
g(yqi)− gx(yqi)

]
+ Cgσ(‖xS‖) log‖xS‖

≤ gx(xS) +
∑
i 6∈L(q)

γqi
[
g(yqi)− gx(yqi)

]
+ Cgp

−1cα2 (αν)−1q−α(1−ν)σ(‖x‖) log log‖x‖

≤ gx(xS) +
∑
i 6∈L(q)

γqi
[
g(yqi)− gx(yqi)

]
+ Cgp

−1cα2 (αν)−1q1−ασ(‖x‖) log log‖x‖ . (4.36)

Bounding h(xS) when ‖xS‖ is small: Here we consider the case ‖xS‖ ≤ Mg. Since
yqi ∈ Qx/q(α, φ2, Cc,K),

0 ≤ h(yqi) ≤ gx(yqi) + Ccq
−α‖x‖αφ̂(‖x/q‖) .

Therefore
gx(yqi) ≥ −Ccq−α‖x‖

α
φ̂(‖x/q‖) .

So, letting I(q) :=
{
i ≤ 3 : gx(yqi) < 0

}
, and using definition of c0, and (A2), we have

gx(xS) =
∑
i 6∈L(q)

γqigx(yqi) ≥ −
∑
i∈I(q)

∣∣gx(yqi)
∣∣

≥ − c0q−α‖x‖αφ̂(‖x/q‖) ≥ −p−1c0q
−α‖x‖αφ̂(‖x‖) .

Therefore, using ‖xS‖ ≤Mg and h(xS) ≤ r‖xS‖

h(xS) ≤ rMg ≤ gx(xS) + p−1c0q
−α‖x‖αφ̂(‖x‖) + rMg . (4.37)

Bounding h(xL) when ‖xL‖ is large: Suppose ‖xL‖ ≥ M . Using q ≥ c2 ≥ 1, ‖x/q‖ ≥
M ≥ 1, (4.33), and

∥∥yqi∥∥ ≤ K‖x/q‖, we get

‖xL‖ =

∥∥∥∥∥∥
∑
i∈L(q)

γqiyqi

∥∥∥∥∥∥ ≤
∑
i∈L(q)

γqi
∥∥yqi∥∥ ≤ c2‖x/q‖ ≤ ‖x‖ .
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Using this and applying GAP(α,ψm,M,C), which holds by the induction hypothesis for
m, we get

h(xL) ≤ g(xL) + C‖xL‖αψm (‖xL‖)

≤
∑
i∈L(q)

γqig(yqi) + Cp−1cα2 q
−α‖x‖αψm (‖x‖)

≤ gx(xL) +
∑
i∈L(q)

γqi
[
g(yqi)− gx(yqi)

]
+ Cp−1cα2 q

−α‖x‖αψm(‖x‖) . (4.38)

Bounding h(xL) when ‖xL‖ is small: Suppose ‖xL‖ ≤M . Then by similar calculations
that lead to (4.37) we get

h(xL) ≤ rM ≤ gx(xL) + p−1c0q
−α‖x‖αφ̂(‖x‖) + rM . (4.39)

Overall bound on h(x): Using yqi ∈ Qx/q(α, φ̂, Cc,K), definition of c0, and (A2), we
get

3∑
i=1

γqi
[
g(yqi)− gx(yqi)

]
≤

3∑
i=1

γqi
[
h(yqi)− gx(yqi)

]
≤ c0‖x/q‖αφ̂(‖x/q‖) ≤ c0p−1q−α‖x‖αφ̂(‖x‖) .

Combining this with (4.35)-(4.39), we get

h(x)

≤ h(x∗) + h(xL) + h(xS)

≤ g(x) + c3q
1−ασ(‖x‖) log log‖x‖

+ Cc4q
−ασ(‖x‖)(log‖x‖)(1−α)m(log log‖x‖)1−(1−α)m + rM + rMg . (4.40)

Optimizing over q: The optimal q that minimizes the right-hand side (4.40) is

q0 := C
αc4

(1− α)c3

(
log‖x‖

log log‖x‖

)(1−α)m

.

Plugging in q = q0 in (4.40) we see that if C is large enough depending on r, M , Mg,
then

h(x) ≤ g(x) + c5C
1−ασ(‖x‖)(log‖x‖)(1−α)m+1

(log log‖x‖)1−(1−α)m+1

+ rM + rMg

≤ g(x) + Cσ(‖x‖)(log‖x‖)(1−α)m+1

(log log‖x‖)1−(1−α)m+1

.

Thus we get (4.31) provided we prove q0 is feasible.

Feasibility of q0: We need to verify that q0 ∈ [c2, ‖x‖/M ]. We get q0 ≥ c2 using
‖x‖ ≥M , m ≤ n, choosing C > 1, and assuming M is large enough. Suppose ‖x‖ < q0M

so that we have

CM ≥ c6‖x‖
(

log‖x‖
log log‖x‖

)−(1−α)m

. (4.41)

This gives an upper bound on ‖x‖. So q0 is not feasible when ‖x‖ is too small. But we
can prove (4.31) in a different way. Consider two cases. Case I: Suppose x is such that

C ≥ Cg
(

log‖x‖
log log‖x‖

)1−(1−α)m+1

.
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Then from (4.30) we get

h(x) ≤ g(x) + Cσ(‖x‖)(log‖x‖)(1−α)m+1

(log log‖x‖)1−(1−α)m+1

.

Thus (4.31) is verified. Case II: Suppose x is such that

C ≤ Cg
(

log‖x‖
log log‖x‖

)1−(1−α)m+1

.

Combining with (4.41) we get

CgM

(
log‖x‖

log log‖x‖

)1−(1−α)m+1

≥ c6‖x‖
(

log‖x‖
log log‖x‖

)−(1−α)m

.

So
CgM

c6
≥ ‖x‖

(
log‖x‖

log log‖x‖

)−(1−(1−α)m+1+(1−α)m)

≥ ‖x‖
(

log‖x‖
log log‖x‖

)−2

.

Therefore, M ≥ F (‖x‖), where F : [3,∞) → (0,∞) is F (k) := c6C
−1
g k(log k/ log log k)−2.

Observe that F is strictly increasing. Therefore, taking C ≥ rF−1(M), we get

h(x) ≤ r‖x‖ ≤ rF−1(M) ≤ C ≤ g(x) + Cψm+1(‖x‖) .

Thus (4.31) is verified.
This concludes the inductive step and proves Theorem 4.4.

5 Upper bound of the transverse increments

In this section, we prove Theorem 1.23, which is our main result on upper bound of
the transverse increments. Let θ0 be a direction of both type I and II. Due to symmetry of
the lattice, without loss of generality we assume θ0 ∈ [0, π/4]. Fix L0 > 0, n0 > 0, t0 > 0,
to be assumed large enough whenever required. Consider n, L, t, satisfying n ≥ n0,
L ≥ L0, t ≥ t0, and L ≤ ∆(n). We establish the bound on D(n,L), the bound on D′(n,L)

can be established in a similar manner. If t ≥ 4µL(σ(∆−1(L))((log ∆−1(L))
η
)
−1

), where
µ is the expected edge-weight, then we are in a large-deviation regime, and the proof is
similar to Case I of Theorem 3.2. Therefore, let us assume

t ≤ 4µL
(
σ
(
∆−1(L)

)(
log ∆−1(L)

)η)−1

. (5.1)

Define an interval J and a segment I∗ as

J :=

[
−t1/2L

(
log ∆−1(L)

)η/2
,

(
1− ∆−1(L)

n

)
L+ t1/2L

(
log ∆−1(L)

)η/2]
,

I∗ :=
{
x ∈ R2 : π1

θ0,θt0
(x) = n−∆−1(L) , π2

θ0,θt0
(x) ∈ J

}
.

Let
M := (1 + β)/(2α) , N1 := b(logL)Mc , N2 := bt1/2(logL)M+η/2c . (5.2)

Divide the segment I(n,L) in N1 segments of equal length: I1, . . . , IN1
, with endpoints

a0, . . . ,aN1
, as shown in Figure 7. Divide the segment I∗ in N2 segments of equal length:

I∗1 , . . . , I∗N2
, with endpoints b0, . . . , bN2

, as shown in Figure 7. By (A2), logL is of the
same order as log ∆−1(L), i.e.,

C1 logL ≤ log ∆−1(L) ≤ C2 logL . (5.3)
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Therefore, length of the segments Ii and I∗j are bounded as

C3L(logL)
−M ≤ π2

θ0,θt0
(ai−1 − ai) ≤ C4L(logL)

−M
, (5.4)

C5L(logL)
−M ≤ π2

θ0,θt0
(bj−1 − bj) ≤ C6L(logL)

−M
. (5.5)

Figure 7: Setup of Theorem 1.23: width of the portion of I∗ between the dotted
lines is L(1 −∆−1(L)/n); width of the portion of I∗ above the line joining 0 and a0 is

t1/2L
(
log ∆−1(L)

)η/2
; width of the portion of I∗ below the line joining 0 and aN1

is also

t1/2L(log ∆−1(L))
η/2.

Define the event

E := {Γ(0,ai) passes through I∗ for all 0 ≤ i ≤ N1 } .

Define

D[1] := max{ |T (0,ai1)− T (0,ai2)| : 0 ≤ i1 < i2 ≤ N1 } ,

D[2] := max{ |T (x,ai1)− T (x,ai2)| : 0 ≤ i1 < i2 ≤ N1 , x ∈ I∗ } ,

D[3] := max{ |T (bj ,ai1)− T (bj ,ai2)| : 0 ≤ i1 < i2 ≤ N1 , 0 ≤ j ≤ N2 } ,

D[4] := max
{ ∣∣T (b,ai)− T (b′,ai)

∣∣ : b, b′ ∈ I∗j , 0 ≤ j ≤ N2 , 0 ≤ i ≤ N1

}
,

Di := max{ |T (0,x)− T (0,y)| : x,y ∈ Ii } , for 0 ≤ i ≤ N1 .

Therefore

D(n,L) ≤ D[1] + max
0≤i≤N1

Di ,

D[2] ≤ D[3] + 2D[4] . (5.6)

We claim that if T ∈ E then
D[1] ≤ D[2] . (5.7)

To prove this, we take 0 ≤ i1 < i2 ≤ N1. If T ∈ E , then there exist points y and z in I∗
such that Γ(0,ai1) passes through y, and Γ(0,ai2) passes through z. Therefore

T (0,ai1)− T (0,ai2) ≤ T (0, z) + T (z,ai1)− T (0, z)− T (z,ai2) = T (z,ai1)− T (z,ai2) .

Similarly,
T (0,ai2)− T (0,ai1) ≤ T (y,ai2)− T (y,ai1) .
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Therefore
|T (0,ai1)− T (0,ai2)| ≤ max

x∈I∗
|T (x,ai1)− T (x,ai2)| .

Thus, (5.7) is proved by taking maximum over values of i1, i2. Combining (5.6) and (5.7)
we get that on the event E ,

D(n,L) ≤ D[3] + 2D[4] + max
0≤i≤N1

Di .

Therefore

P
(
D(n,L) ≥ tσ(∆−1(L))(logL)η

)
≤ P( Ec ) + P

(
D[3] ≥ t

4
σ(∆−1(L))(logL)η

)
+ P

(
D[4] ≥ t

4
σ(∆−1(L))(logL)η

)
+ P

(
max

0≤i≤N1

Di ≥
t

4
σ(∆−1(L))(logL)η

)
. (5.8)

First, we show that P( Ec ) is small. If T 6∈ E , then for some i, Γ(0,ai) wanders more than
t1/2L(log ∆−1(L))η/2 in ±θt0 directions when it is at a distance ∆−1(L) from ai in −θ0

direction. Since θ0 is a direction of both type I and type II, by Theorem 4.4 h satisfies
GAP with exponent α and correction factor φη in a neighborhood of θ0. Thus, applying
Theorem 2.10 with the variables

θ̃0 := −θ0 , η̃ := η , ñ := n ,

k̃ := ∆−1(L) , l̃ := π2
θ0,θt0

(ai) , t̃ := t1/2 ,

(recall from Remark 1.2 our convention of using tilde on parameters) and using (5.3), we
get

P
(
W
(
ai,0,∆

−1(L),−θ0

)
≥ t1/2L(log ∆−1(L))η/2

)
≤ C7 exp(−C8t(logL)η) , (5.9)

provided ñ ≥ ñ0, t̃ ≥ t̃0, k̃ ≥ k̃0, t̃∆(k̃)(log k̃)η̃/2 ≤ k̃δ̃1, and l̃ ≤ ñδ̃2. We verify these
conditions now. Taking n0, L0, t0 large enough we get ñ ≥ ñ0, t̃ ≥ t̃0, and k̃ ≥ k̃0. Using
(5.1) and (A2) we get

t̃∆(k̃)(log k̃)η/2

k̃
=
t1/2L(log ∆−1(L))η/2

∆−1(L)
≤ C9

L1/2

(∆−1(L))1/2

≤ C10L
−(1−β)/2 ≤ C11L

−(1−β)/2
0 ≤ δ̃1 . (5.10)

Using L ≤ ∆(n) and (A2), we get

|l̃|
ñ
≤ L

n
≤ ∆(n)

n
≤ C12n

−(1−β)/2
0 ≤ δ̃2 .

Thus all the conditions for (5.9) to hold are true. From (5.9) taking a union bound over i
values we get

P( Ec ) ≤ C13 exp(−C14t(logL)η) . (5.11)

Now we show that the second term in the right-hand side of (5.8) is small. Take x in I∗
and u, v in I(n,L). Then

|T (x,u)− T (x,v)| ≤ |T (x,u)− h(u− x)|+ |T (x,v)− h(v − x)|

+ |h(u− x)− g(u− x)|+ |h(v − x)− g(v − x)|

+ |g(u− x)− g(v − x)| .
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From the definition of I∗ it follows

π1
θ0,θt0

(u− x) = ∆−1(L), |π2
θ0,θt0

(u− x)| ≤ C15t
1/2L(log ∆−1(L))η/2 . (5.12)

By same calculation as in (5.10) we get that the direction of u−x can be made arbitrarily
close to θ0 by choosing L0 large enough. So by Theorem 4.4 and equation (5.3) we get

|h(u− x)− g(u− x)| ≤ C16σ(∆−1(L))(logL)η . (5.13)

Same holds true for v replaced by u. Using (5.12), Lemma 3.1, and (5.3), we get

|g(u− x)− g(v − x)| ≤ C17t
1/2L

2(log(∆−1(L)))η

∆−1(L)
≤ C18t

1/2σ(∆−1(L))(logL)η . (5.14)

Using (5.13), (5.14), and (A1) we get

P

(
|T (x,u)− T (x,v)| ≥ t

4
σ(∆−1(L))(logL)η

)
≤ C19 exp(−C20t(logL)η) . (5.15)

Equation 5.15 is true for fixed x, u and v. Thus we get for all 0 ≤ i1 < i2 ≤ N1 and
0 ≤ j ≤ N2

P

(
|T (bj ,ai1)− T (bj ,ai2)| ≥ t

4
σ(∆−1(L))(logL)η

)
≤ C21 exp(−C22t(logL)η) . (5.16)

By (5.2), the number of triplets (i1, i2, j) is less than C23t
1/2(logL)3M+η/2. Therefore,

from (5.16) we get by a union bound

P

(
D[3] ≥ t

4
σ(∆−1(L))(logL)η

)
≤ C24 exp(−C25t(logL)η) . (5.17)

Now let us consider the third term in the right-hand side of (5.8). Fix 0 ≤ i ≤ N1 and
1 ≤ j ≤ N2. Applying Corollary 3.3 with the variables

θ̃0 := −θ0 , ñ := ∆−1(L) , L̃ := |π2
θ0,θt0

(bj−1 − bj)| , d̃ := π2
θ0,θt0

(bj − ai) ,

(recall from Remark 1.2 our convention of using tilde on parameters) we get for all t̃ ≥ t̃0

P

(
max

b,b′∈I∗j

∣∣T (b,ai)− T (b′,ai)
∣∣ ≥ C26L̃

|d̃|
ñ

+ t̃σ(∆−1(L̃)) log ∆−1(L̃)

)

≤ C27 exp
(
−C28t log L̃

)
, (5.18)

provided the following conditions are satisfied: |d̃| ≤ δ̃1ñ, L̃ ≤ δ̃2∆(ñ), ñ ≥ ñ0, L̃ ≥ L̃0.
Let us now verify these conditions. From definition of I∗ we get

|d̃| ≤ C29t
1/2L

(
log ∆−1(L)

)η/2
,

so that by calculations similar to (5.10) we get |d̃| ≤ δ̃1ñ. Combining this with (5.5) we
get

L̃
|d̃|
ñ
≤ C30t

1/2σ(∆−1(L))(logL)−M (5.19)

Let t̃ be such that

C26L̃
|d̃|
ñ

+ t̃σ(∆−1(L̃)) log ∆−1(L̃) =
t

4
σ(∆−1(L))(logL)η. (5.20)
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Using (5.19), (A2), lower bound on L̃ from (5.5), value of M from (5.2), and (5.3), we get

t̃ ≥ C31t
σ(∆−1(L))(logL)η

σ(∆−1(L̃)) log ∆−1(L̃)
≥ C32t(logL)2αM/(1+β)+η−1

≥ C33t(logL)η ≥ C33t0(logL0)η .

So we have t̃ ≥ t̃0, assuming t0 and L0 are large enough. Therefore, all the conditions
for (5.18) are satisfied. Combining (5.18) with (5.20), we get

P

(
max

b,b′∈I∗j

∣∣T (b,ai)− T (b′,ai)
∣∣ ≥ t

4
σ(∆−1(L))(logL)η

)
≤ C34 exp

(
−C35t(logL)1+η

)
,

The number of choices of i and j is at most C36t
1/2(logL)2M+η/2. Hence using a union

bound we get

P

(
D[4] ≥ t

4
σ(∆−1(L))(logL)η

)
≤ C37 exp

(
−C38t(logL)1+η

)
. (5.21)

Now we are going to consider the fourth term in the right-hand side of (5.8). Fix an i. To
bound Di we apply Corollary 3.3 with the following variables:

ñ := n , L̃ := |π2
θ0,θt0

(ai−1 − ai)| , d̃ := π2
θ0,θt0

(ai) .

By Corollary 3.3 we have for all t̃ ≥ t̃0

P

(
Di ≥ C39L̃

|d̃|
ñ

+ t̃σ(k̃) log k̃

)
≤ C40 exp

(
−C41t log k̃

)
, (5.22)

provided the following conditions are satisfied: |d̃| ≤ δ̃1ñ, L̃ ≤ δ̃2∆(ñ), ñ ≥ ñ0, L̃ ≥ L̃0.
From definition of I(n,L) we have |d̃| ≤ L. Therefore,

|d̃|
ñ
≤ L

n
≤ ∆(n)

n
≤ C42n

−(1−β)/2
0 ≤ δ̃1 .

From (5.4) we get L̃ ≤ L. Further using L ≤ ∆(n) we get

L̃ ≤ L ≤ ∆(n) ≤ δ̃2ñ .

Also, using the bound on L̃ from (5.4) we get

L̃
|d̃|
ñ
≤ C43L(logL)−M

L

n
≤ C44

L2

∆−1(L)
(logL)−M ≤ C45σ(∆−1(L))(logL)−M . (5.23)

Let t̃ be such that

C39L̃
|d̃|
ñ

+ t̃σ(∆−1(L̃)) log ∆−1(L̃) =
t

4
σ(∆−1(L))(logL)η . (5.24)

Therefore, using (5.23), bound on L̃ from (5.4), and value of M from (5.2), we get

t̃ ≥ C46t
σ(∆−1(L))(logL)η

σ(∆−1(L̃) log ∆−1(L̃)
≥ C47t(logL)2αM/(1+β)+η−1

≥ C48t(logL)η ≥ C48t0(logL0)η .
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So t̃ ≥ t̃0 assuming t0 and L0 are large enough. Combining this with (5.22) and (5.24)
we get

P

(
Di ≥

t

4
σ(∆−1(L))(logL)η

)
≤ C49 exp

(
−C50t(logL)1+η

)
.

Using a union bound over values of i we get

P
(

max
i
Di ≥ tσ(∆−1(L))(logL)η

)
≤ C51 exp

(
−C52t(logL)1+η

)
. (5.25)

Combining (5.11), (5.17), (5.21), (5.25), and (5.8), completes the proof of Theorem 1.23.

6 Lower bound on the variance of the transverse increments

In this section, we prove Theorem 1.24. In accordance with the statement of The-
orem 1.24, we consider a direction θ0 which is of both type I and type II. Due to the
symmetry of the lattice, without loss of generality we assume θ0 ∈ [0, π/4]. We also fix a
constant ν ∈ (1/2, 1) as in the statement of Theorem 1.24. In addition, we fix a constant
η ∈ (1/2, 1). Consider n > 0 and L > 0 satisfying L ≤ ∆(n). Define k such that

L = ∆(k)(log k)η . (6.1)

Therefore, a lower limit of k yields lower limits of both n and L. Hence, we will state
results which hold for large enough k, tacitly assuming n and L are also large enough
so that the two relations L ≤ ∆(n) and (6.1) hold. We will establish the lower bound
on the variance of T (0, neθ0) − T (0, neθ0 + Leθt0). The lower bound on the variance of
T (0, neθ0)− T (0, neθ0 − Leθt0) can be established in a similar manner. Let us introduce
some more notations. We will use these throughout this section.

Notation 6.1. Let a := neθ0 , b := neθ0 + Leθt0 ,

h∗ := max
{
h(x− a) : x ∈ Z2 , ‖x− a‖ ≤ k

}
,

H :=
{
x ∈ Z2 : h(x− a) ≤ h∗

}
,

τ := min{T (0,x) : x ∈ H } ,

F :=
{
x ∈ Z2 : T (0,x) ≤ τ

}
,

∂H := {x ∈ H : x± ei ∈ Hc for some i = 1, 2 } .

So the set H ⊂ Z2 is the smallest h-ball around the point a which contains within
itself the Euclidean ball (in Z2) of radius k around a; the set ∂H is the vertex-boundary
of H i.e., the set of vertices in H which are also adjacent to some vertex outside H; τ is
the time required to reach H from the origin 0; the set F is the set of vertices that can
be reached by time τ from 0 i.e., F is the wet region B(τ). We emphasize the fact that H,
F , ∂H are subsets of Z2 i.e., they contains lattice points.

We also define E ⊂ E(Z2) to be the set of nearest-neighbor edges which have at least
one endpoint in F , and we let F be the sigma-field generated by τ , F , and { τe : e ∈ E }.
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Figure 8: Illustration for a, b, H, F , ∂H: direction of a is θ0, direction of b− a is θt0. We
want to prove a lower bound of the variance of the transverse increment T (0,a)−T (0, b).

Remark 6.2. Since h is sublinear and g is a norm, we have for ‖u‖ ≥ C1,

C2‖u‖ ≤ h(u) ≤ C3‖u‖ . (6.2)

Therefore

C4k ≤ h∗ ≤ C5k .

Every y ∈ ∂H has an adjacent vertex that does not belong to H. Therefore, for all
y ∈ ∂H we have

h∗ ≥ h(y − a) ≥ h∗ − C6 . (6.3)

Combining (6.2)-(6.3) we get that for all y ∈ ∂H,

C7k ≤ ‖y − a‖ ≤ C8k . (6.4)

Therefore, H can be inscribed in a square whose sides are of the order of k around a.

Remark 6.3. Using (A2), (6.1), and L ≤ ∆(n), we get that for any δ > 0, k ≤ δn for large
enough k depending on δ. Therefore, using Remark 6.2, we get that 0 lies outside H. In
this case, the region F touches the region H i.e., F ∩H ⊂ ∂H. Since the edge-weights
are continuous, F touches H at only one point (almost surely). So we assume that k is
large enough such that the origin 0 lies outside H.

Now we state three propositions, and then we will complete the proof of Theorem 1.24
using these propositions. We prove these propositions separately in later subsections.

Proposition 6.4. Under the assumptions of Theorem 1.24, there exist constants C9 > 0,
ε1 > 0, such that for large enough k

P(P(T (0,a) ≤ h∗ + τ − ε1σ(k)|F) ≤ ε1) ≤ exp
(
−kC9

)
.

By definition of τ (see Notation 6.1), T (0,a)− τ is an upper bound of the time it takes
for Γ(0,a) to exit H after starting from a. Recall from (6.3) that h∗ is approximately the
expected passage time from a to any point on ∂H. Also recall from (6.4) that points of
∂H are at a distance of the order of k from a. Therefore, Proposition 6.4 implies that, for
most F (i.e., with probability > 1− exp

(
−kC9

)
the following happens given F : there is a

nonnegligible probability (i.e., with probability > 1− ε1) that the time taken for Γ(0,a)

to exit H starting from a is less than h∗ by a fraction of σ(k) i.e., the geodesic Γ(0,a) is
faster than usual before exiting H starting from a with nonnegligible probability.
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Proposition 6.5. Under the assumptions of Theorem 1.24, there exist constants ν1 ∈
(1/2, ν), ε2 > 0, such that for large enough k

P(T (0,a) ≥ h∗ + τ + ε2σ(k)) ≥ exp(−(log k)ν1) .

Proposition 6.5 implies that, roughly speaking, there is a nonnegligible probability
(that is ≥ exp(−(log k)ν1)) that the time taken by the geodesic Γ(0,a) to exit H starting
from a is greater than h∗ by a fraction of σ(k). That is, the geodesic Γ(0,a) is slower
than usual before exiting H starting from a with some nonnegligible probability.

Clearly Propositions 6.4 and 6.5 will yield a lower bound on the variance of T (0,a)

given F . Proposition 6.6 bounds the covariance of T (0,a) and T (0, b) given F . Thus we
will get a lower bound on the variance of T (0,a)− T (0, b) given F .

Proposition 6.6. Under the assumptions of Theorem 1.24, there exist a constant C10 > 0,
such that for large enough k

0 ≤ E[Cov(T (0,a), T (0, b)F)] ≤ C10 .

Now we complete the proof of Theorem 1.24 using Propositions 6.4-6.6. Let ε3 :=

min {ε1, ε2}. Expanding the expectation of the conditional variance given F , we get

Var(T (0,a)− T (0, b))

≥ E[Var(T (0,a)|F)] + E[Var(T (0, b)|F)]− 2E[Cov(T (0,a), T (0, b)|F)] . (6.5)

For any random variable X, Var(X) = E (X −X ′)2
/2, where X ′ is another random

variable with the same distribution as X and is independent of X. Therefore, for any
random variable X and for any a > b,

Var(X) ≥ 1

2
(a− b)2P(X ≥ a)P(X ≤ b) .

Thus

Var(T (0,a)|F)

≥ C11σ
2(k)P(T (0,a) ≥ h∗ + τ + ε3σ(k)|F)P(T (0,a) ≤ h∗ + τ − ε3σ(k)|F) . (6.6)

As a shorthand notation let us use

X := P(T (0,a) ≥ h∗ + τ + ε3σ(k)|F) · P(T (0,a) ≤ h∗ + τ − ε3σ(k)|F) ,

Y := P(T (0,a) ≥ h∗ + τ + ε3σ(k)|F) · ε3 .

Proposition 6.5 implies that

E[Y ] ≥ ε3 · exp(−(log k)ν1) . (6.7)

Furthermore, using Proposition 6.4 and 0 ≤ X,Y ≤ 1, we get

E
[
(Y −X)+

]
≤ P(Y ≥ X) ≤ exp

(
−kC9

)
.

Therefore, using (6.7) and the inequality E[X] ≥ E[Y ]− E[(Y −X)+], we get

E[X] ≥ ε3 · exp(−(log k)ν1)− exp
(
−kC9

)
≥ C12 exp(−(log k)ν1) .

Combining this with (6.6), we get

E[Var(T (0,a)|F)] ≥ C13σ
2(k) exp(−(log k)ν1) .
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Therefore, by (6.5), Proposition 6.6, and (A2), we get

Var(T (0,a)− T (0, b)) ≥ C14σ
2(k) exp(−(log k)ν1) .

Therefore, using (6.1), ν > ν1, and (A2), we get

Var(T (0,a)− T (0, b)) ≥ σ2
(
∆−1(L)

)
exp(−(logL)ν) .

This completes the proof of Theorem 1.24 using Propositions 6.4-6.6. Now we prove
these propositions.

6.1 Proof of Proposition 6.4

Recall the definitions of F , τ , and E from Notation 6.1. Conditioned on F , consider
i.i.d. random variables { τ ′e : e ∈ E } each having distribution of the original edge-weights.
For a path γ let

T ′(γ) :=
∑

γ contains e
and e∈E

τ ′e +
∑

γ contains e
and e∈Ec

τe .

For any two points y, z ∈ R2, let

T ′(y, z) := inf{T ′(γ) : γ is a path from y to z } .

Therefore, the conditional distribution of all the passage times {T ′(y, z) : y, z ∈ R2 }
given F is same as the unconditional distribution of all the passage times {T (y, z) : y, z ∈
R2 }. For all y, z ∈ R2 let Γ′(y, z) be the geodesic corresponding to T ′(y, z). Let x be
the point where F touches H. Let u be the first point belonging to F when the geodesic
Γ′(a,x) is traced starting from a, see Figure 9.

Figure 9: Setup for Proposition 6.4: given a realization of the edge-weights on the whole
lattice, we take another configuration on E, which is the set of edges having at least one
endpoint in F . The geodesic Γ′(a,x) is then constructed in the environment where we
have the new edge-weight configuration on E and the original realization of edge-weights
in Ec.

Since u ∈ F , we have T (0,u) ≤ τ . Let w be the lattice point on Γ′(a,x) preceding u

when Γ′(a,x) is traced starting from a. Then Γ′(a,w) consists of edges only in Ec, and
hence T (a,w) ≤ T ′(a,w). Therefore,

T (a,u) ≤ T (a,w) + T (w,u) ≤ T ′(a,w) + T (w,u) .
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For any v ∈ Z2 let
d(v) := max{T (v,v ± ei) : i = 1, 2 } .

So T (w,u) ≤ d(u), and hence T (u,a) ≤ d(u) + T ′(u,a). Therefore,

T (0,a) ≤ T (0,u) + T (u,a) ≤ τ + d(u) + T ′(u,a) ≤ τ + d(u) + T ′(x,a) . (6.8)

By (A3) we get there exists ε4 > 0 such that

P(T ′(x,a) ≤ h(x− a)− ε4σ(‖x− a‖)|F) ≥ ε4 . (6.9)

Since F touches H at x, we have x ∈ ∂H. Hence, h(x − a) ≤ h∗ and ‖x− a‖ ≥ k.
Therefore, by (A2), (6.8), and (6.9), we get for some ε5 > 0

ε5 ≤ P(T ′(x,a) ≤ h∗ − ε5σ(k)|F)

≤ P
(
T (0,a) ≤ h∗ + τ − ε5

2
σ(k)|F

)
+ P

(
d(u) ≥ ε5

2
σ(k)|F

)
.

Therefore, taking ε6 := ε5/2, we get

P(P(T (0,a) ≤ h∗ + τ − ε6σ(k)|F) ≤ ε6)

≤ P(P(d(u) ≥ ε6σ(k)|F) ≥ ε6)

≤ ε−1
6 P(d(u) ≥ ε6σ(k)) . (6.10)

Since x ∈ ∂H, by Remark 6.2 we get ‖x− a‖ ≤ C15k. Since u lies on the geodesic
Γ′(a,x), by Lemma 2.2 we get

P(‖u− a‖ ≥ C16k|F) ≤ exp(−C17k) .

Therefore,
P(‖u− a‖ ≥ C16k) ≤ exp(−C17k) . (6.11)

Since edge-weights have exponential moments, for any v and all t > 0 we have

P(d(v) ≥ t) ≤ C18 exp(−C19t) . (6.12)

Therefore, using (6.11) and (6.12), we get

P(d(u) ≥ ε6σ(k)) ≤ C20k
2 exp(−C21σ(k)) .

Combining this with (6.10) and using (A2) we get

P(P(T (0,a) ≤ h∗ + τ − ε6σ(k)|F) ≤ ε6) ≤ ε−1
6 C20k

2 exp(−C21σ(k)) ≤ exp
(
−kC9

)
.

This completes the proof of Proposition 6.4.

6.2 Proof of Proposition 6.5

We begin with an outline of the proof. Recall from Notation 6.1 that τ is the passage
time from the origin to H, and h∗ is the maximum average passage time from a to any
point on ∂H. By definition, H contains an Euclidean ball of size k around a, and by
Remark 6.2 H is contained in a ball of radius of the order of k around a. Thus, σ(k) is
the order of fluctuation of passage times from a to any point on ∂H. Therefore, to prove
Proposition 6.5, it suffices to show that the time it takes for Γ(0,a) to reach ∂H after
starting from a is slower than h∗ by a fraction of σ(k) with a non-negligible probability.
Here, by a non-negligible probability we mean probability at least exp(−(log k)ε) for
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some ε ∈ (1/2, ν). To prove this, we define H∗, a subset of ∂H, such that with high
probability Γ(0,a) does not intersect ∂H \H∗. Then, we show that passage times from
a to the points of H∗ can be uniformly slow with non-negligible probability. To achieve
this, we further define G∗, a polygonal line which is roughly a discrete approximation
of a sector of a g-ball around a. We show that passage times from a to points on G∗

are uniformly slow with non-negligible probability, and passage time from G∗ to H∗ are
sufficiently small, so that passage times from a to points of H∗ are also slow. Moreover,
G∗ is constructed in a way so that Γ(0,a), when traced from starting from a, intersect
G∗ before H∗ with high probability.

Let us now begin the proof formally. By Remark 6.2, the maximum distance in the
direction −θ0 from a of a point in ∂H is at most of the order of k, i.e.,

max
x∈∂H

π1
θ0,θt0

(a− x) ≤ C22k . (6.13)

We do not need to use any absolute value in the above equation because we have
assumed θ0 ∈ [0, π/4]. Using Corollary 2.11 and (A2), we have for all x on Γ(0,a) with
π1
θ0,θt0

(a− x) ≤ C22k ∣∣∣π2
θ0,θt0

(a− x)
∣∣∣ ≤ C23∆(k)(log k)1/2 ,

with probability at least 1− e−C24 log k. Thus, defining the event

E :=
{

Γ(0,a) does not wander more than C23∆(k)(log k)1/2 in ± θt0 directions

before exiting H when traced starting from a
}
,

we get
P( E ) ≥ 1− exp(−C24 log k) . (6.14)

This motivates us to define H∗ as the portion of ∂H, facing towards the origin i.e.,
towards direction −θ0 from a, having width 2C23∆(k)(log k)1/2 in θt0 direction, i.e.,

H∗ :=
{
x ∈ ∂H :

∣∣∣π2
θ0,θt0

(a− x)
∣∣∣ ≤ C23∆(k)(log k)1/2 , π1

θ0,θt0
(a− x) ≥ 0

}
. (6.15)

Thus, (6.14) implies that the geodesic Γ(0,a) does not pass through any point in the set
∂H \H∗ with probability at least 1− exp(−C24 log k). Now we establish a bound on the
width of H∗.

Lemma 6.7. Under the assumptions of Theorem 1.24 we have for large enough k

min
x∈∂H

π1
θ0,θt0

(a− x) ≥ C25k , (6.16)

and
max
x∈H∗

π1
θ0,θt0

(a− x)− min
x∈H∗

π1
θ0,θt0

(a− x) ≤ C26∆(k)(log k)1/2 . (6.17)

Proof. Consider x ∈ H∗. Recall the definition of ga from Notation 4.1. Then, using that
g is a norm, we get

g(a− x) = g(π1
θ0,θt0

(a− x)eθ0 + π2
θ0,θt0

(a− x)eθt0)

≤ g(π1
θ0,θt0

(a− x)eθ0) + g(π2
θ0,θt0

(a− x)eθt0)

= ga(a− x) + g(π2
θ0,θt0

(a− x)eθt0)

≤ ga(a− x) + C27|π2
θ0,θt0

(a− x)eθt0 |

= ga(a− x) + C27|π2
θ0,θt0

(a− x)| .
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Therefore, using (6.15), we get

ga(a− x) ≥ g(a− x)− C27|π2
θ0,θt0

(a− x)| ≥ g(a− x)− C28∆(k)(log k)1/2 . (6.18)

Using Proposition 2.6, (6.3), (6.4), and (A2), we get

g(a− x) ≥ h∗ − C29σ(k) log k . (6.19)

Combining (6.18) and (6.19) we get

ga(a− x) ≥ h∗ − C30∆(k)(log k)1/2 . (6.20)

Using (6.3) and Remark 1.3, we get

ga(a− x) ≤ g(a− x) ≤ h(a− x) + C31 ≤ h∗ + C31 . (6.21)

Combining (6.20) and (6.21) we get

max
x∈H∗

ga(a− x)− min
x∈H∗

ga(a− x) ≤ C32∆(k)(log k)1/2 .

This establishes (6.17) because ga(a − x) is proportional to π1
θ0,θt0

(a − x). Combining
(6.13) and (6.17) we get (6.16).

Construction and properties of G∗: We denote the vertices of G∗ by (bi)
N1

i=−N2
. For

−N2 ≤ i < N1 we denote by Gi the segment joining bi and bi+1. For each i 6= 0, we
denote the direction of a − bi by θi. We will define b0 in such a way that a − b0 has
direction θ0. So for each i the direction of a − bi is θi. Recall that we have assumed
θ0 ∈ [0, π/4]. Thus, by our convention of orienting tangents in the counter-clockwise
direction (see Remark 1.15) we have θt0 > 0. We construct G∗ satisfying the following
properties:

(1) b0 is situated on the line joining 0 and a;

(2) the points {bi : 0 < i ≤ N1} are above the line joining 0 and a;

(3) the points {bi : −N2 ≤ i < 0} are below the line joining 0 and a;

(4) θis are in a small neighborhood of θ0, say [θ0 − δ, θ0 + δ], so that θti exists for all i;

(5) for 0 ≤ i < N1, direction of bi+1 − bi is θti ;

(6) for −N2 < i ≤ 0 direction of bi−1 − bi is −θti ;

(7) width of G∗ in ±θt0 direction is same as that of H∗;

(8) total number of segments of G∗ is of the order of (log k)ν2 for some ν2 > 0;

(9) length of the segments Gi for −N2 < i < N1 − 1 are same, denoted by `; the
segments G−N2 and GN1−1 have lengths ≤ `.

Let us now proceed with the construction. Using Remark 1.19, we choose a δ > 0

such that the limit shape boundary is differentiable in the sector [θ0 − δ, θ0 + δ], and for θ
belonging to this sector, we have∣∣θt − θt0∣∣ ≤ C33|θ − θ0| . (6.22)

Let ν1, ν2 be constants such that

1

2
< ν2 < ν1 < ν . (6.23)
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Let

` :=
∆(k)(log k)1/2

(log k)ν2
. (6.24)

The point b0 is defined by the conditions:

π2
θ0,θt0

(b0) = 0 , π1
θ0,θt0

(b0) = max
y∈H∗

π1
θ0,θt0

(y) . (6.25)

We construct (bi)
N1

i=0 inductively as follows. Suppose for some j ≥ 0 we have defined
(b0, . . . , bj). Further assume that (b0, . . . , bj) satisfies the conditions:

(i) |θi − θ0| ≤ δ for all 0 ≤ i ≤ j;

(ii) π2
θ0,θt0

(bj) < C23∆(k)(log k)1/2;

(iii) direction of bi+1 − bi is θti for all 0 ≤ i < j.

Recall C23 is the constant used to define H∗ in (6.15). Due to convexity of ∂B and due
to our convention of orienting tangents in the counter-clockwise direction, we have
π1
θ0,θt0

(bi+1 − bi) ≥ 0 and π2
θ0,θt0

(bi+1 − bi) ≥ 0 for all 0 ≤ i < j. We construct bj+1 as

follows. Let b′j be the point such that direction of b′j − bj is θtj ,
∥∥b′j − bj

∥∥ = `. We define

bj+1 to be b′j , if π2
θ0,θt0

(b′j) ≤ C23∆(k)(log k)1/2. Otherwise, we take bj+1 to be the point

b′′j on the line joining bj and b′j which satisfies π2
θ0,θt0

(b′′j ) = C23∆(k)(log k)1/2, and end
the construction. In (ii) above, the inequality is strong, because if we have an equality,
then we do not proceed with the construction. To establish that this construction is
well-defined, it suffices to show that |θj+1−θ0| ≤ δ, where θj+1 is the direction of a−bj+1.
Assuming δ is small enough and using (6.22) we get for all 0 ≤ i ≤ j

π1
θ0,θt0

(bi+1 − bi) = ‖bi+1 − bi‖
|sin(θti − θt0)|
|sin(θt0 − θ0)|

≤ C34δ‖bi+1 − bi‖ , (6.26)

and

π2
θ0,θt0

(bi+1 − bi) = ‖bi+1 − bi‖
|sin(θti − θ0)|
|sin(θt0 − θ0)|

≥ C35‖bi+1 − bi‖ . (6.27)

By construction we have

π2
θ0,θt0

(bj+1 − a) = π2
θ0,θt0

(bj+1 − b0) = π2
θ0,θt0

(bj+1) ≤ C23∆(k)(log k)1/2 . (6.28)

Taking sum over 0 ≤ i ≤ j in (6.26) and (6.27), and using (6.28) we get

π1
θ0,θt0

(bj+1 − b0) ≤ C36δπ
2
θ0,θt0

(bj+1 − b0) ≤ C37δ∆(k)(log k)1/2 . (6.29)

Therefore, using (6.16) and (6.25), we get

π1
θ0,θt0

(a− bj+1) ≥ C38k . (6.30)

Combining this with (6.28) and using (A2) we get |θj+1 − θ0| ≤ δ for large enough
k. This shows that the construction is well-defined. In a similar way we construct
{ bi : − N2 ≤ i < 0 }. We require π2

θ0,θt0
(bi) decreases from 0 to −C23∆(k)(log k)1/2 as i

runs from 0 to −N2. Equations (6.28) and (6.30) also yield for all x in the part of G∗

joining b0 and bN1

C39k ≤ ‖a− x‖ ≤ C40k , (6.31)

but the same holds for all x in the part joining b0 and b−N2 . By (6.27), (6.28), and (6.24)
we get N1 ≤ C41(log k)ν2 , and the same is true for N2. Hence the total number of sides
of G∗ is bounded as

N := N1 +N2 ≤ C42(log k)ν2 . (6.32)
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By (6.29), width of the part of G∗ joining b0 and bN1
is at most C43∆(k)(log k)1/2 in

θ0 direction, and the same holds for the part joining b0 and b−N2
. Therefore, for all

x,y ∈ G∗
|π1
θ0,θt0

(x− y)| ≤ C44∆(k)(log k)1/2 . (6.33)

This ends the discussion on construction and properties of G∗. We now state two
propositions and complete the proof of Proposition 6.5 using them. Then we proceed to
prove these propositions.

Proposition 6.8. Under the assumptions of Theorem 1.24, there exists ε7 > 0 such that
for all large enough k we have

P(T (x,a) ≥ h(x− a) + ε7σ(k) for all x ∈ G∗) ≥ exp(−C45(log k)ν2) .

Proposition 6.9. Under the assumptions of Theorem 1.24, we have

P
(
|T (x,y)− h(x− y)| ≥ ε7

2
σ(k) for some x ∈ H∗,y ∈ G∗

)
≤ exp

(
−kC46

)
,

where ε7 is the constant from Proposition 6.8.

Let us now complete proof of Proposition 6.5 using these propositions. Define the
event

E1 := {Γ(0,a), when traced from a to 0, first intersects G∗ and then H∗ } .

Since E1 ⊂ E , we have using (6.14)

P( Ec1 ) ≤ exp(−C24 log k) . (6.34)

Define the events

E2 := {T (x,a) ≥ h(x− a) + ε8σ(k) for all x ∈ G∗ } ,

and
E3 :=

{
|T (x,y)− h(x− y)| ≤ ε8

2
σ(k) for all x ∈ H∗ , y ∈ G∗

}
.

Using (6.34), Proposition 6.8, and Proposition 6.9, and (6.23), we get

P( E1 ∩ E2 ∩ E3 ) ≥ exp(−(log k)ν1) .

So let us suppose T ∈ E1 ∩ E2 ∩ E3.
Since T ∈ E1, there exist points w∗ ∈ G∗ and v∗ ∈ H∗, both situated on the geodesic

Γ(0,a), such that
T (a,v∗) = T (a,w∗) + T (w∗,v∗) , (6.35)

see Figure 10. Since v∗ ∈ H∗ ⊂ ∂H, we have

T (0,v∗) ≥ τ . (6.36)

Combining (6.35) and (6.36) we get

T (0,a) = T (0,v∗) + T (v∗,a) ≥ τ + T (a,w∗) + T (w∗,v∗) . (6.37)

From T ∈ E2 ∩ E3 we get

T (a,w∗) + T (w∗,v∗) ≥ h(w∗ − a) + ε8σ(k) + h(v∗ −w∗)− ε8
2
σ(k)

≥ h(v∗ − a) +
ε8
2
σ(k)− C47 ,
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Figure 10: Setup of Proposition 6.5: we show that (i) the geodesic Γ(0,a) when traced
starting from a intersects first G∗ and then H∗ with high probability; (ii) passage time
from a to points in G∗ can be large with non-negligible probability; (iii) passage time
between points in G∗ and points in H∗ are not too small with high probability. So passage
time from a to G∗ can be large with non-negligible probability.

where we get the extra constant at the end by Remark 1.3. Since v∗ is on ∂H, from (6.3)
we have

h(v∗ − a) ≥ h∗ − C48 . (6.38)

For large enough k we have

ε8
2
σ(k)− C47 − C48 ≥

ε8
4
σ(k) . (6.39)

Therefore, combining (6.37)-(6.39) we get

T (0,a) ≥ τ + h∗ +
ε8
4
σ(k) .

Letting ε2 := ε8/4 completes proof of Proposition 6.5. Let us now prove Propositions 6.8
and 6.9.

6.2.1 Proof of Proposition 6.8

Recall Gi is the segment of G∗ joining bi and bi+1 for all −N2 ≤ i < N1. For all i, let
ai be the point on Gi which has the maximum expected passage time from a. By (A3),
there exists ε8 > 0 such that for each i,

P(T (a,ai) ≥ h(ai − a) + ε8σ(‖ai − a‖)) ≥ ε8 .

Therefore, using (6.31) and (A2) we get, for some ε9 > 0 and for all i,

P(T (a,ai) ≥ h(ai − a) + ε9σ(k)) ≥ ε9 . (6.40)

Define for each i

Di := max{ |T (a,x)− T (a,y)| : x,y ∈ Gi } .

Recall ν2 > 1/2 from (6.23). Choose ν3 > 0 such that

ν3 <
2α

(1 + β)
(ν2 − 1/2) . (6.41)
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Recall from Remark 1.2 our convention of using tilde on parameters. To bound Di for
i < 0 we use Theorem 1.23 with the variables

η̃ := ν3 , θ̃0 := −θi+1 , L̃ := ` , ñ := ‖bi+1 − a‖ .

To bound Di for i ≥ 0 we use Theorem 1.23 with the variables

η̃ := ν3 , θ̃0 := −θi , L̃ := ` , ñ := ‖bi − a‖ .

Using (6.24), (6.31), and (A2), we get L̃ ≥ L̃0, ñ ≥ ñ0, L̃ ≤ ∆(ñ), as required. Using
Theorem 1.23 and (A2), we get for large enough t

P
(
Di ≥ t (log k)ν3 σ

(
∆−1(`)

))
≤ C49 exp(−C50t (log k)ν3) . (6.42)

Using (6.24) and (A2), we get

σ(k)

σ(∆−1(`))(log k)ν3
≥ C51(log k)−ν3+(ν2−1/2)(2α)/(1+β) .

By (6.41), this can be made arbitrarily large by choosing k large. Therefore, in (6.42) we
can choose

t =
ε9
2

σ(k)

σ(∆−1(`))(log k)ν3
,

and we get for large enough k

P
(
Di ≥

ε9
2
σ(k)

)
≤ ε9

2
.

Combining this with (6.40) we get for all i

P
(
T (a,x) ≥ h(x− a) +

ε9
2
σ(k) for all x ∈ Gi

)
≥ ε9

2
.

Since for each i, inf{T (a,x)− h(x− a) : x ∈ Gi } is an increasing function of the edge-
weight configuration, by the FKG inequality we get

P
(
T (a,x) ≥ h(x− a) +

ε9
2
σ(k) for all x ∈ G∗

)
≥
(ε9

2

)N
,

where recall from (6.32) that N is the total number of segments in G∗. Using (6.32) we
get

P
(
T (a,x) ≥ h(x− a) +

ε9
2
σ(k) for all x ∈ G∗

)
≥ exp(−C52(log k)ν2) .

This completes the proof of Proposition 6.8.

6.2.2 Proof of Proposition 6.9

By (6.17), width of H∗ in the direction θ0 is 2C23∆(k)(log k)1/2. By (6.33), width of G∗ in
the direction θ0 is C53∆(k)(log k)1/2. By construction of G∗ we have

min
x∈G∗

π1
θ0,θt0

(x) = max
y∈H∗

π1
θ0,θt0

(y) .

Both G∗ and H∗ are centered around the line joining 0 and a, and both go up to distance
C23∆(k)(log k)1/2 in the directions θt0 and −θt0. Therefore, for all x ∈ G∗ and y ∈ H∗

‖x− y‖ ≤ C54∆(k)(log k)1/2 .
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Using (A2), the number of pairs (bxc,y) (recall Notation 1.1) where x ∈ G∗ and y ∈ H∗
is at most C55k

2. Hence, using (A1), (A2), and a union bound, we get

P
(
|T (x,y)− h(x− y)| ≥ ε7

2
σ(k) for some x ∈ G∗ and y ∈ H∗

)
≤ C56k

2 exp

(
−C57

σ(k) log k

σ(∆(k)(log k)1/2)

)
≤ exp

(
−kC58

)
.

This completes the proof of Proposition 6.9.

6.3 Proof of Proposition 6.6

The passage times T (0,a) and T (0, b) are increasing functions of the edge-weight
configuration T. Therefore, using the FKG inequality and taking expectation we get

E[Cov(T (0,a), T (0, b)|F)] ≥ 0 .

Define two collections of paths

Π(0,a) :=

{
γ : γ is a path from 0 to a, and for all lattice points

y in γ outside F we have
∣∣∣π2
θ0,θt0

(y − a)
∣∣∣ < 1

2
∆(k)(log k)η

}
,

Π(0, b) :=

{
γ : γ is a path from 0 to b, and for all lattice points

y in γ outside F we have
∣∣∣π2
θ0,θt0

(y − b)
∣∣∣ < 1

2
∆(k)(log k)η

}
.

Since |π2
θ0,θt0

(a− b)| = L = ∆(k)(log k)η, a path in Π(0,a) does not touch a path in Π(0, b)

outside F . Let

T ′(0,a) := min
γ∈Π(0,a)

T (γ) , T ′(0, b) := min
γ∈Π(0,b)

T (γ) .

Since paths in Π(0,a) do not intersect paths in Π(0, b) outside F , T ′(0,a) and T ′(0, b)

are independent conditioned on F .

Let Γ(a, F ) be the geodesic from a to F i.e., the path with minimum passage time
from a to a point in F . Let T (a, F ) := T (Γ(a, F )). Since F touches H, we have

T (a, F ) ≤ max
y∈H

T (a,y) .

By Remark 6.2, H is contained in a square of side length C59k. Therefore, by Lemma 2.2
we get that there exist positive constants C60 and C61 such that

P(T (a, F ) ≥ C60k) ≤ exp(−C61k) . (6.43)

Let

T t(0,a) := min{T ′(0,a), τ + C60k } , T t(0, b) := min{T ′(0, b), τ + C60k } .

Because T ′(0,a) and T ′(0, b) are independent conditioned on F , T t(0,a) and T t(0, b) are
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also independent conditioned on F . Therefore

E[Cov(T (0,a), T (0, b)|F)]

= E
[
Cov

(
T (0,a)− T t(0,a), T (0, b)− τ |F

)]
+ E

[
Cov

(
T t(0,a)− τ, T (0, b)− T t(0, b)|F

)]
≤ E

[(
E
((
T (0,a)− T t(0,a)

)2|F))1/2(
E
(

(T (0, b)− τ)
2|F
))1/2

]
+ E

[(
E
((
T (0, b)− T t(0, b)

)2|F))1/2(
E
((
T t(0,a)− τ

)2|F))1/2
]

≤
(
E
[(
T (0,a)− T t(0,a)

)2])1/2(
E
[
(T (0, b)− τ)

2
])1/2

+
(
E
[(
T (0, b)− T t(0, b)

)2])1/2(
E
[(
T t(0,a)− τ

)2])1/2

. (6.44)

Let x be the point where F touches H. Therefore T (0,x) = τ ≤ T (0,a). Hence
0 ≤ T (0,a)− τ ≤ T (a,x). Using that H is contained in a box of size C59k we get

E
[
(T (0,a)− τ)

4
]
≤ E

[
T (a,x)4

]
≤ C62k

4 . (6.45)

Since T ′(0,a) is the minimum passage time restricted to some paths from 0 to a, we
have T ′(0,a) ≥ T (0,a). Therefore T t(0,a) ≥ τ . Therefore∣∣T t(0,a)− τ

∣∣ ≤ C63k . (6.46)

Combining (6.45) and (6.46) we get(
E
(
T (0,a)− T t(0,a)

)2)1/2

≤
(
E
(
T (0,a)− T t(0,a)

)4)1/4

P
(
T (0,a) 6= T t(0,a)

)1/4
≤
[(
E(T (0,a)− τ)

4
)1/4

+
(
E
(
T t(0,a)− τ

)4)1/4
]
P
(
T (0,a) 6= T t(0,a)

)1/4
≤ C64kP

(
T (0,a) 6= T t(0,a)

)1/4
. (6.47)

Similarly we have
E (T (0, b)− τ)

2 ≤ C65k
2 . (6.48)

and (
E
(
T (0, b)− T t(0, b)

)2)1/2

≤ C66kP
(
T (0, b) 6= T t(0, b)

)1/4
. (6.49)

Therefore, combining (6.44), (6.47)-(6.49) we get

E[Cov(T (0,a), T (0, b)|F)]

≤ C67k
2
(
P
(
T (0,a) 6= T t(0,a)

)1/4
+ P

(
T (0, b) 6= T t(0, b)

)1/4)
. (6.50)

Let us consider the term P(T (0,a) 6= T t(0,a)), the other one can be dealt similarly.
Depending on C60 there exist positive constants C68 and C69 such that for large enough
k we have

P(min{T (a,y) : ‖y − a‖ = C68k } ≤ C60k) ≤ exp(−C69k) . (6.51)
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Define the events

E1 := {T (a, F ) ≤ C60k } ,

E2 := {min{T (a,y) : ‖y − a‖ = C68k } > C60k } ,

E3 := {Diam(Γ(a, F )) ≤ 2C68k } .

Therefore, E1 and E2 implies E3. Recall Notation 2.7. Let

E4 :=

{
max

k′≤2C68k
W (a,0, k′,−θ0) <

1

2
∆(k)(log k)η

}
.

Using Corollary 2.11 and η > 1/2, we get

P( Ec4 ) ≤ exp
(
−C70(log k)2η

)
. (6.52)

If T ∈ E1 ∩ E3 ∩ E4 then T (0,a) = T t(0,a). Therefore, combining (6.43), (6.51), and
(6.52), we get

P
(
T (0,a) 6= T t(0, a)

)
≤ exp

(
−C71(log k)2η

)
.

Similar bound holds P(T (0, b) 6= T t(0, b)). Therefore, using (6.50) and η > 1/2, we get

E[Cov(T (0,a), T (0, b)|F)] ≤ C72

for any C72 > 0, provided k is large enough. This completes the proof of Proposition 6.6.

7 Upper bound of the long-range correlations

In this section, our objective is to prove Theorem 1.28. Due to symmetry of the lattice,
without loss of generality we assume θ0 ∈ [0, π/4]. Fix J0 > 0, n0 > 0 to be assumed large
enough whenever required. Consider n ≥ n0, J ∈ [q1/2J0, n

δ]. Let m := f−1(Jf(n)/J0),
so that

J0
∆(m)(logm)1/2

m
= J

∆(n)(log n)1/2

n
. (7.1)

Using J ≥ q1/2J0 and (A2) we get m ≤ n. Using δ < (1−β)/2, J ≤ nδ, (A2), and assuming
n0 is large enough, we get

logm ≥ C1 log n . (7.2)

As a shorthand notation let us use

a := neθ0 + J∆(n)(log n)1/2eθt0 ,

b := neθ0 − J∆(n)(log n)1/2eθt0 .

Using δ < (1− β)/2 and J ≤ nδ, we get ‖a‖ and ‖b‖ are at most C2n. Let

H :=
{
x ∈ R2 : π1

θ0,θt0
(x) ≥ m

}
.

Let F be the sigma-field generated by all the edge-weights τe such that both endpoints
of the edge e are in H. Our objective is to establish upper bound of Cov(T (0,a), T (0, b)).
We split the covariance in expectation of conditional covariances given F and covariance
of conditional expectations given F , and establish upper bound of them separately.

Proposition 7.1. Assuming J0 and n0 are large enough, we have

|Cov(E(T (0,a)|F),E(T (0, b)|F))| ≤ C3 . (7.3)
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Figure 11: Setup of Proposition 7.1: distance between u and v is 2J∆(m)(logm)1/2; H
is the region to the right of ∂H; Ra is the subset of H above the line in direction θ0, Rb

is the region below the line; with high probability Γ(0,a) stays in Ra while it is in H,
Γ(0, b) stays in Rb while it is in H.

Proof. Define two regions

Ra :=
{
x ∈ R2 : π1

θ0,θt0
(x) ≥ m, π2

θ0,θt0
(x) > 0

}
,

Rb :=
{
x ∈ R2 : π1

θ0,θt0
(x) ≥ m, π2

θ0,θt0
(x) < 0

}
.

Define the event

E1 := {Γ(0,a) stays inside Ra while it is in the region H } ,

i.e., for all u ∈ Γ(0,a) with π1
θ0,θt0

(u) ≥ m we have π2
θ0,θt0

(u) > 0. Similarly, define the
event

E2 := {Γ(0, b) stays inside Rb while it is in the region H } .

Define a set of points V as follows. Recall that we have assumed θ0 ∈ [0, π/4]. If θ0 = 0

then let V be the points ke1 with k ∈ [m,n] ∩Z (recall e1 is the positive x-axis direction).
If θ0 6= 0, then let V be the set of points u on the edges of the integer lattice grid (so that
u has at least one integer coordinate) satisfying π1

θ0,θt0
(u) ∈ [m,n] and π2

θ0,θt0
= 0. Thus,

in both cases, the number of points in V is bounded by C4n. Let K be the set of values of
π1
θ0,θt0

(u) where u ∈ V. Therefore, if T 6∈ E1, then we have the following three cases:

(i) eitherW (0,a,m, θ0) ≥ J0∆(m)(logm)1/2; or,

(ii) W (0,a, k, θ0) ≥ J0(k/m)∆(m)(logm)1/2 for some k ∈ K; or,

(iii) W (0,a, k, θ0) ≥ J∆(n)(log n)1/2 for some k ≥ n.

Using Corollary 2.11 and (7.2) we get

P
(
W (0,a,m, θ0) ≥ J0∆(m) (logm)

1/2
)
≤ C5 exp

(
−C6J

2
0 log n

)
. (7.4)

By (A2) and (7.2) we get for k ∈ [m,n]

J0(k/m)∆(m)(logm)1/2 ≥ J0C7∆(k)(log k)1/2 .
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Therefore, using Corollary 2.11 and (7.2) we get for each k ∈ K

P

(
W (0,a, k, θ0) ≥ J0

k

m
∆(m) (logm)

1/2

)
≤ C8 exp

(
−C9J

2
0 log n

)
. (7.5)

Assuming J0 is large enough, we can take a union bound over k ∈ K. Then we get

P

(
W (0,a, k, θ0) ≥ J0

k

m
∆(m) (logm)

1/2 for some k ∈ K
)

≤ C10 exp
(
−C11J

2
0 log n

)
. (7.6)

Using Corollary 2.9 we get

P
(
W (0,a, k, θ0) ≥ J0∆(n) (log n)

1/2 for some k ≥ n
)

≤ C12 exp
(
−C13J

2
0 log n

)
. (7.7)

Combining (7.4), (7.6), and (7.7) we get

P( Ec1 ) ≤ C14 exp
(
−C15J

2
0 log n

)
. (7.8)

The same holds for the event E2.
Let T̂ (0,a) be the minimum passage time among of all paths from 0 to a which

stays in Ra when in H. Similarly define T̂ (0, b). Then E(T̂ (0,a)|F) and E(T̂ (0, b)|F) are
independent because Ra and Rb are disjoint. If T ∈ E1, then T (0,a) = T̂ (0,a), and if
T ∈ E2, then T (0, b) = T̂ (0, b). Using ‖a‖ ≤ C2n, ‖b‖ ≤ C2n, (7.8), and the same bound
for E2, we get

Cov(E(T (0,a)|F),E(T (0, b)|F))

≤
(
E
(
T (0,a)− T̂ (0,a)

)2
)1/2(

ET (0, b)2
)1/2

+

(
E
(
T (0, b)− T̂ (0, b)

)2
)1/2(

ET (0,a)2
)1/2

≤ P( Ec1 )
1/2

(
E
(
T (0,a)− T̂ (0,a)

)4
)1/4(

ET (0, b)2
)1/2

+ P( Ec2 )
1/2

(
E
(
T (0, b)− T̂ (0, b)

)4
)1/4(

ET (0, b)2
)1/2

≤ C16n
2 exp

(
−C17J

2
0 log n

)
≤ C18 .

This completes the proof of Proposition 7.1.

Now we consider the expected conditional covariance. We have

E[Cov(T (0,a), T (0, b)|F)] ≤ (E[Var(T (0,a)|F)])
1/2

(E[Var(T (0, b)|F)])
1/2

. (7.9)

We establish an upper bound of E[Var(T (0,a)|F)]. A similar upper bound also holds
for E[Var(T (0,a)|F)]. Consider an independent edge-weight configuration on the edges
which have at least one endpoint not in the half-space H. Let T ′(0,a) be the passage
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time from 0 to a on the new configuration. Let Γ′(0,a) be the corresponding geodesic.
Then T (0,a) and T ′(0,a) are independent given F . Therefore

E [Var (T (0,a)|F)]

= E

[
E

(
1

2
(T (0,a)− T ′(0,a))

2 ∣∣F)]
=

1

2
E
[
(T (0,a)− T ′(0,a))

2
]
. (7.10)

Proposition 7.2. Assuming J0 and n0 are large enough, we have

E
[
(T (0,a)− T ′(0,a))

2
]
≤ C19σ

2(m) log n . (7.11)

Figure 12: Setup of Proposition 7.2: the segment I is a part of ∂H, see Figure 11 for
the location of ∂H; the geodesic Γ′(0,a) is constructed by taking a new configuration in
the left-side of ∂H. With high probability, both geodesics Γ(0,a) and Γ′(0,a) intersect I
when they intersect ∂H.

Proof. Consider the line segment

I :=
{
x ∈ R2 : π1

θ0,θt0
(x) = m, 0 ≤ π2

θ0,θt0
(x) ≤ 2J0∆(m)(logm)1/2

}
.

Define the event E3

E3 := {Γ(0,a) and Γ′(0,a) pass through I } .

If T 6∈ E3 then both Γ(0,a) and Γ′(0,a) wander more than J0∆(m)(logm)1/2 in ±θt0
directions when they are at distance m in θ0 direction from 0. So, using Theorem 2.8
and logm ≥ C1 log n, we get

P ( Ec3 ) ≤ C20 exp
(
−C21J

2
0 log n

)
.

Therefore, using ‖a‖ ≤ C2n and assuming J0 is large enough, we get

E
[
(T (0,a)− T ′(0,a))

2
1(Ec3)

]
≤ C22 . (7.12)

If we have T ∈ E3, Γ(0,a) passes through x ∈ I, and Γ′(0,a) passes through y ∈ I, then

T (0,x)− T ′(0,x) ≤ T (0,a)− T ′(0,a) ≤ T (0,y)− T ′(0,y) .

Therefore

E
[
(T (0,a)− T ′(0,a))

2
1(E3)

]
≤ E

[
max
z∈I

(T (0, z)− T ′(0, z))
2
]
. (7.13)
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For every z ∈ I, T (0, z) and T ′(0, z) have the same mean. Using (7.1), J ≤ nδ, δ ≤
(1− β)/2, and (A2), we get ‖z‖ ≤ C23m for all z ∈ I. Therefore, by (A1) and (A2), for all
t > 0

P

(
max
z∈I
|T (0, z)− T ′(0, z)| ≥ tσ(m)

)
≤ C24m exp(−C25t) .

Therefore,

E

[
max
z∈I

(T (0, z)− T ′(0, z))
2
]
≤ C26σ

2(m) logm .

Combining this with (7.12), (7.13), and using m ≤ n proves Proposition 7.2.

Combining (7.10) and (7.11) we get

E[Var(T (0,a)|F)] ≤ C27σ
2(m) log n .

By symmetry, the same statement holds if we replace a by b. Therefore by (7.9) we get

E[Cov(T (0,a), T (0, b)|F)] ≤ C28σ
2(m) log n . (7.14)

Therefore, by (A2), the bound on the covariance of the conditional expectations in (7.3)
is negligible compared to the bound on the expectation of the conditional covariance in
(7.14). Thus, combining (7.3) and (7.14), proves Theorem 1.28.
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