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Asymptotic analysis of higher-order scattering
transform of Gaussian processes*

Gi-Ren Liu† Yuan-Chung Sheu‡ Hau-Tieng Wu§

Abstract

We analyze the scattering transform with the quadratic nonlinearity (STQN) of Gaus-
sian processes without depth limitation. STQN is a nonlinear transform that involves
a sequential interlacing convolution and nonlinear operators, which is motivated to
model the deep convolutional neural network. We prove that with a proper normaliza-
tion, the output of STQN converges to a chi-square process with one degree of freedom
in the finite dimensional distribution sense, and we provide a total variation distance
control of this convergence at each time that converges to zero at an exponential rate.
To show these, we derive a recursive formula to represent the intricate nonlinearity of
STQN by a linear combination of Wiener chaos, and then apply the Malliavin calculus
and Stein’s method to achieve the goal.
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1 Introduction

The scattering transform (ST) is motivated by establishing a mathematical foundation
of the convolutional neural network [20], and it has been applied to various signals, for
example, fetal heart rate [8], brain waves [15, 14], respiration [29], marine bioacoustics
[4], and audio [1, 13]. It provides a variety of representations for a given function X

through a sequential interlacing convolution and nonlinear operators:

U [j1, j2, . . . , jM ]X(t) = A (· · ·A (A (X ? ψj1) ? ψj2) · · · ? ψjM (t)) , t ∈ R,
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Figure 1: Tree structure of the scattering transform. Here, jk,1, jk,2, jk,3,... are the scale
parameters for the k-th layer of the tree, where k ∈ N.

where M ∈ N is the depth of ST, {j1, j2, . . . , jM} ⊂ {. . . , J − 2, J − 1, J} is a set of
scale parameters, J ∈ Z determines the range of interest in the frequency domain,
{ψj1 , . . . , ψjM } is a family of wavelets generated from a selected mother wavelet ψ, and
A : C→ C is the chosen activation function. This construction is called the scattering
network . See Figure 1 for its structure. The associated M -th order ST coefficients are
then computed through the pooling process

SJ [j1, j2, . . . , jM ]X(t) := U [j1, j2, . . . , jM ]X ? φJ(t), t ∈ R,

where φJ is a low-pass filter, and it is usually chosen to be the father wavelet associated
with ψ and J so that the Littlewood-Paley condition is satisfied. We mention that ST can
also be defined with the Gabor transform [9, 12] and others [27, 7], but we focus on the
wavelet transform considered in [20] in this paper. In most applications, only the first-
and second-order ST coefficients are used because extracting higher-order information
brings additional computational costs, except [1, 2], which shows the potential benefit of
considering higher order ST coefficients. There are various choices for the activation
A; for example, A(·) = | · | [20, 2, 17], A(·) = | · |2 [4, 3], and more general functions
like Lipschtiz-continuous functions [28, 16]. We mention that A(·) = | · |2 is considered
to speed up the computation of deeper scattering networks [4], since the computation
could be carried out without leaving the Fourier domain. When A(·) = | · |2, we call the
resulting transform the ST with the quadratic nonlinearity (STQN).

There have been several theoretical supports established for ST. If the mother wavelet
and the low-pass filter φJ satisfy the Littlewood-Paley condition and A(·) = |·|, the ST coef-
ficients are approximately invariant to time shifts and stable to small time-warping defor-
mation [20]. These properties have been generalized to Lipschitz-continuous activation
functions [16]. Similar time invariance and stability to deformation results are discussed
in [28] under a different setting. The authors of [3] proved that the STQN coefficients sat-
isfy the Lipschitz continuous property; that is, ‖SJ [j1, j2, . . . , jM ]X−SJ [j1, j2, . . . , jM ]Y ‖L2

can be controlled by ‖X − Y ‖L2 for any X,Y ∈ L2, if some conditions on the wavelets,
the low-pass filter and the L∞ norm of inputs hold. The authors of [18, Figure 4] showed
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that the decay of the STQN coefficients depend on the number of sinusoidal components
contained in the signal and STQN has the ability to disentangle multiple factors of
variability in the spectral envelope. In addition to the above results in the deterministic
setup, ST has also been studied from the probabilistic point of view. The authors of
[6] found that the second-order ST with A(·) = | · | can be applied to characterize the
self-similarity and intermittency properties of random processes with stationary incre-
ments by computing the second moment of the second-order ST of X and observing its
behavior with respect to the scale parameters j1 and j2. This result has been extended
to general Lipschtiz-continuous activation functions [16].

Despite the above results, however, due to the nonlinearity of the activation function
and its subsequent convolution, the behavior of higher order ST with a random process
input is still open. Precisely, when M > 2, since the input U [j1, j2, . . . , jM−1]X to the
M -th layer of the scattering network is neither a Gaussian process nor a subordinated
Gaussian process even when X is a stationary Gaussian process or a Gaussian process
with stationary increments, it is challenging to study ST with random processes when
M > 2. Motivated by its practical usefulness and theoretical challenges, in this work we
focus on exploring STQN with depth M ≥ 2 from the probabilistic point of view, in which
the inputs are the stationary Gaussian processes, or Gaussian processes with stationary
increments.

To this end, several analysis techniques are needed. First, we derive a recursive for-
mula to handle the intricate nonlinearity of STQN by representing U [j1, j2, . . . , jM ]X by a
linear combination of Wiener chaos that comes from Wiener-Itô integrals of functions de-
fined iteratively from the spectral density function of the Gaussian random process. Then,
we apply the Stein’s method [23] and the product formula for Wiener-Itô integrals [19] to
prove that the total variation (TV) distance between σ−2jMU [j1, j2, . . . , jM ]X(2jM t) and the

square of the standard normal random variable is O(2−jM/2) for each fixed t ∈ R, where
σ2
jM

= E [U [j1, j2, . . . , jM ]X(·)]. Moreover, we prove that 2jMU [j1, j2, . . . , jM ]X(2jM ·) con-
verges to a weakly dependent chi-square process with one degree of freedom in the finite
dimensional distribution sense as jM →∞. We shall mention that the proof in this work
is inspired by [21], where the Malliavin calculus and Stein’s method are combined to
derive explicit bounds in the Gaussian and Gamma approximations of random variables
in a fixed Wiener chaos of a general Gaussian process. The works [21, Proposition
3.7] and [22, Theorem 5.1.3 and Remark 5.1.4] provide error bounds for the Gaussian
approximation of a finite sum of multiple Wiener-Itô integrals. For applying them to our
work and ensuring that the approximation error converges to zero when jM →∞, we
need to analyze the intricate covariance structure between different orders of Wiener
chaos in a slightly different way.

Last but not the least, we should mention that the theoretical properties mentioned
above are interesting from the machine learning perspective because the time invariance
and stability to small local deformation are desirable when data analysts handle real-
world data. Aside from having these invariant properties, the ST coefficients keeps
multi-scale information [2, 5] within the signal X by applying {U [jm,1], U [jm,2], ...} on the
outputs of the previous neurons {U [jm−1,1], U [jm−1,2], ...}, where m = 2, 3, ...,M , before
taking the convolution with the low-pass filter φJ as shown in Figure 1. In the appendix,
these properties are described in more concrete terms for the possible interest of readers.
On the other hand, note that there are many time series that can be modeled by random
processes; for example, fetal heart rate [8], brain waves [15, 14], respiration [29], marine
bioacoustics [4], and audio [1, 13]. While ST has been successfully applied to these
signals that can be modeled by random processes, to our knowledge, there are limited
theoretical results available to guide data analysts. The theoretical justification of how
ST acts on random processes we provide in this paper would fill in this gap. With this
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relationship in mind, the results of ST could connect data analysts and probabilists. In
sum, a theoretical understanding of ST, particularly its behavior in stochastic processes,
would help guide us to better understand how to apply ST to analyze datasets that can
be modeled by random processes.

The rest of the paper is organized as follows. In Section 2, we summarize necessary
material for ST and present some preliminaries about the Wiener-Itô integrals and the
Malliavin calculus. In Section 3, we state our main results, including Theorems 1, 2, and
3. The proofs of our main results and some technical lemmas are given in Section 4.
Table 1 below contains a list of frequently used symbols and abbreviations.

Table 1: List of frequently used symbols and abbreviations

Symbol Description

? Convolution operator
M Depth of the scattering network
±λ1:p Abbreviation for ±(λ1, λ2, . . . , λp) ∈ Rp
λ+1:p, dλ1:p, Abbreviation for λ1 + λ2 + · · ·+ λp and dλ1 dλ2 · · · dλp
j1:m Vector of scale parameters for the wavelet transform in the first

m layers

ψ, ψ̂, ψj(·) Mother wavelet, its Fourier transform, and its scaled version
2−jψ(2−j ·)

X Stationary Gaussian process
U [j]X Modulus-squared wavelet transform of X defined by U [j]X =

|ψj ? X|2
U [j1:m] The m-th order scattering transform defined by

U [jm]U [jm−1] · · ·U [j1]

T [j1:m+1]X (U [j1:m]X) ? ψjm+1

α Vanishing-moment parameter for ψ defined by ψ̂(·) = Cψ̂(·)| · |α
fZ Spectral density of the covariance function of a process Z
β Singularity parameter for fX defined through fX(·) = CX(·)| · |β−1
H Hilber space {f ∈ L2(R) | f(−λ) = f(λ) for all λ ∈ R}
H
⊗p

(H
�p

) The p-th (symmetric) tensor product of the Hilbert space H
W Complex-valued Gaussian random measure
Ip p-fold Wiener-Itô integrals for p ∈ N (I0: the identity map)

f̃ Canonical symmetrization of function f
f ⊗r g, f⊗̃rg The r-th contraction of f and g, and its canonical symmetrization

L2(Ω, H
⊗p

) Random functions f in H
⊗p

with E‖f‖2L2(Rp) <∞
Mr 2M−1 − 2r for r = 0, 1, . . . , 2M−2 − 1

{MF (Mr)
t }2

M−2−1
r=0 Integrands in the Wiener-Itô decomposition of T [j1:M ]X

{M G̃(2M−2`)
t }2M−1

`=0 Integrands in the Wiener-Itô decomposition of U [j1:M ]X

an = O(bn) For sequences {an} and {bn}, there exists a constant C > 0 such
that |an| ≤ C|bn| when n is sufficiently large.
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2 Preliminaries

2.1 Scattering transform

Let ψ ∈ L1(R) ∩ L2(R) be the mother wavelet, which satisfies
∫
R
ψ(t)dt = 0. A family

of real-valued functions {ψj(t) | j ∈ Z, t ∈ R} is called a wavelet family, where

ψj(t) =
1

2j
ψ

(
t

2j

)
.

Denote the Fourier transform of ψ by ψ̂, which is defined as

ψ̂(λ) =

∫
R

e−iλtψ(t)dt.

Because ψ ∈ L1(R) ∩ L2(R) and
∫
R
ψ(t)dt = 0, ψ̂ ∈ C0(R) ∩ L2(R) with ψ̂(0) = 0. We

make the following assumption.

Assumption 1. We assume that ψ̂ ∈ L1(R) and there exists a bounded and continuous
complex-valued function Cψ̂, which is positive at the origin (i.e., Cψ̂(0) > 0), such that ψ̂
can be expressed as

ψ̂(λ) = Cψ̂(λ)|λ|α

for some α > 0.

Remark 1. Consider the vanishing moment N of ψ defined as

N = max

{
n ∈ N |

∫
R

t`ψ(t)dt = 0 for ` = 0, 1, . . . , n− 1, and

∫
R

tnψ(t)dt 6= 0

}
.

The parameter α in Assumption 1 satisfies α ≥ N by the Taylor expansion. Assumption
1 with α ≥ 1 holds for commonly used wavelets, including the real part of complex
Morlet wavelet (α = 1), the Mexican hat wavelet (α = 2), and the Daubechies-K wavelet
(α = K/2), where K = 2, 4, . . . , 20. We shall mention that for those wavelet functions
whose Fourier transform ψ̂ vanishes in a neighborhood of the origin, e.g., the Meyer
wavelet, all results in this paper hold.

Given a locally bounded function X : R→ R, the wavelet transform of X is defined as

X ? ψj(t) =

∫
R

X(s)ψj(t− s)ds, j ∈ Z, t ∈ R. (2.1)

The first-order STQN of X is obtained by composing the wavelet transform of X with
the nonlinear operator | · |2; that is,

U [j1]X(t) = |X ? ψj1(t)|2, j1 ∈ Z.

Fix M ≥ 1 to be the order (or depth) of ST. The M -th order STQN of X is defined
iteratively as

U [j1, j2, . . . , jM ]X(t) := U [jM ]U [jM−1] · · ·U [j2]U [j1]X(t) =: U [j1:M ]X(t) ,

where j1, j2, . . . , jM ∈ Z and j1:M := [j1, . . . , jM ] ∈ ZM is introduced to simplify the heavy
notation for the upcoming proof. Denote the wavelet transform of the output of the M -th
order STQN of X by

T [j1:M+1]X = U [j1:M ]X ? ψjM+1
. (2.2)

We define T [j1]X = X ? ψj1 . By definition, the operators U and T have the relationship

U [j1:M ]X = |T [j1:M ]X|2 . (2.3)
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2.2 Stationary Gaussian processes

In this section, we prepare materials about stationary Gaussian random processes.
Let H = {f ∈ L2(R) | f(−λ) = f(λ) for all λ ∈ R} be a complex Hilbert space with the
inner product 〈f, g〉 =

∫
R
f(λ)g(λ)dλ, and let W be a complex-valued Gaussian random

measure on R satisfying

W (∆1) = W (−∆1), E[W (∆1)] = 0, and E
[
W (∆1)W (∆2)

]
= Leb(∆1 ∩∆2) (2.4)

for any ∆1,∆2 ∈ B(R), where Leb is the Lebesgue measure on R and B(R) is the Borel σ-
algebra on R. For every f ∈ H, we define W (f) =

∫
R
f(λ)W (dλ). Due to (2.4), W (f) ∈ R

and E[W (f)W (g)] = 〈f, g〉. Hence, W = {W (f) | f ∈ H} can be viewed as a centered
isonormal Gaussian process over H [22, Section 2.1]. Let (Ω,FW ,P) be a probability
space, where the σ-algebra FW is generated by W .

Let X be a mean-square continuous and stationary real Gaussian random process
with the constant mean E[X(s)] = µ ∈ R and the covariance function RX :

RX(t1 − t2) = E[X(t1)X(t2)]− E[X(t1)]E[X(t2)], t1, t2 ∈ R.

Note that RX is continuous by the assumption of X. Since
∫
R
ψ(s)ds = 0, X ? ψj(t) =

[X − µ] ? ψj(t) , and hence we can assume that E[X(s)] = 0 without loss of generality. By
the Bochner-Khinchin theorem, there exists a unique nonnegative measure FX : B(R)→
[0, ∞) such that FX(∆) = FX(−∆) for any ∆ ∈ B(R) and

RX(t) =

∫
R

eiλtFX(dλ), t ∈ R. (2.5)

The measure FX is called the spectral measure of the covariance function RX .

Assumption 2. The spectral measure FX has the density fX and

fX(λ) =
CX(λ)

|λ|1−β
,

where β ∈ (0, 1) is the Hurst index of long-range dependence and CX is a bounded and
continuous function from R to [0,∞) such that CX(λ) decays faster than |λ|−β−ε for
some ε > 0 when |λ| → ∞.

If the function CX in Assumption 2 satisfies CX(0) > 0, then X is a long-range
dependent process [10, 26] because fX has a singularity at 0. Note that the spectral
density function fX is even and nonnegative with

∫
R
fX(λ)dλ = RX(0).

Under Assumption 2, (2.5) can be rewritten as

RX(t) =

∫
R

eiλtfX(λ)dλ, t ∈ R.

By the Karhunen theorem, the Gaussian process X has the representation

X(t) =

∫
R

eiλt
√
fX(λ)W (dλ), t ∈ R. (2.6)

By substituting (2.6) into (2.1), the continuous wavelet transform ofX can be represented
as a Wiener integral

X ? ψj(t) =

∫
R

[∫
R

eiλs
√
fX(λ)W (dλ)

]
ψj(t− s)ds

=

∫
R

[∫
R

eiλsψ(t− s)ds
]√

fX(λ)W (dλ) =

∫
R

eiλtψ̂j(λ)
√
fX(λ)W (dλ), (2.7)

EJP 27 (2022), paper 48.
Page 6/27

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP766
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Asymptotic analysis of scattering transform of Gaussian processes

where the second equality follows from the stochastic Fubini theorem [25, Theorem 2.1].
From (2.7), we know that X ? ψj has the spectral density

fX?ψj
(λ) = fX(λ)|ψ̂j(λ)|2, λ ∈ R,

and

U [j1]X(t) =

(∫
R

eiλtψ̂j1(λ)
√
fX(λ)W (dλ)

)2

. (2.8)

Remark 2. It is known since the works of Itô [11] and Yaglom [30] that if a Gaussian
random process X is increment-stationary in the sense that for any s, s′, t, t′ and h ∈ R,

E [(X(t+ h)−X(s+ h)) (X(t′ + h)−X(s′ + h))] = E [(X(t)−X(s)) (X(t′)−X(s′))]

and if the covariance between the increments over time intervals I and I ′ tends to zero
when min{|a− b| | a ∈ I, b ∈ I ′} → ∞, then X admits a spectral representation

X(t) = c+

∫
R

(
eitλ − 1

)
Z(dλ), t ∈ R, (2.9)

where c ∈ R and Z(dλ) is a complex-valued Gaussian random measure on R with spectral
measure FX . If the spectral measure FX has a density fX , then (2.9) can be rewritten as

X(t) = c+

∫
R

(
eitλ − 1

)√
fX(λ)W (dλ), t ∈ R.

By the mean-zero property of the wavelet,

X ? ψj(t) =

∫
R

[∫
R

(
eit
′λ − 1

)√
fX(λ)W (dλ)

]
ψj(t− t′)dt′

=

∫
R

eitλψ̂j(λ)
√
fX(λ)W (dλ). (2.10)

From the consistency between (2.7) and (2.10), we know that the all results below hold
for Gaussian random processes with stationary increments, including the fractional
Brownian motions, when the associated conditions are fulfilled.

2.3 Wiener-Itô integrals and Wiener chaos expansion

In this section, we describe how to express the STQN of stationary Gaussian random
processes in terms of the Wiener chaos expansion that comes from Wiener-Itô integrals of
functions defined iteratively from the spectral density function of the Gaussian random
process. Given an integer p ≥ 2, the p-th tensor product of the Hilbert space H is

denoted by H
⊗p

. According to [19, p. 27], f ∈ H⊗p if and only if f = f(λ1, . . . , λp), where
(λ1, . . . , λp) ∈ Rp, is a complex valued function satisfying f(−λ1, . . . ,−λp) = f(λ1, . . . , λp)

and

‖f‖2
H
⊗p =

∫
Rp

|f(λ1:p)|2dλ1:p <∞ ,

where λp1:p2 means (λp1 , λp1+1, . . . , λp2) ∈ Rp2−p1+1 and dλp1:p2 means dλp1dλp1+1 · · · dλp2
when p2 > p1. For any f, g ∈ H⊗p, their inner product is defined as

〈f, g〉
H
⊗p =

∫
Rp

f(λ1:p)g(λ1:p)dλ1:p =

∫
Rp

f(λ1:p)g(−λ1:p)dλ1:p .

The subscripts of ‖f‖2
H
⊗p and 〈f, g〉

H
⊗p will be ignored as they can be inferred from

the number of variables of f and g. The p-th symmetric tensor product of H is de-

noted by H
�p

, which contains those functions f ∈ H⊗p satisfying f(λπ(1), . . . , λπ(p)) =
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f(λ1, . . . , λp), where π is any permutation of the set {1, 2, . . . , p}. Because H
�p

is a

Hilbert subspace of H
⊗p

, the norm and inner product in H
�p

are defined in the same
way as in H

⊗p
. For any f ∈ H⊗p, where p ∈ N, the p-fold Wiener-Itô integrals of f with

respect to the random measure W is defined by

Ip(f) =

∫ ′
Rp

f(λ1:p)W (dλ1) · · ·W (dλp),

where
∫ ′

means that the integral excludes the diagonal hyperplanes λk = ∓λk′ for

k, k′ ∈ {1, . . . , p} and k 6= k′. Note that Ip(f) = Ip(f̃), where f̃ ∈ H�p is the canonical
symmetrization of f defined as

f̃(λ1:p) =
1

p!

∑
π

f(λπ(1), . . . , λπ(p)), (2.11)

where the sum runs over all permutations π of {1, . . . , p}. By default, I0 is the identity
map, i.e., I0(f) = f for any function f .

For p ∈ N ∪ {0}, let hp be the Hermite polynomial of degree p, which is defined by

hp(y) = (−1)pe
y2

2
dp

dyp
e−

y2

2 , y ∈ R.

We write Hp to denote the closed linear subspace of L2(Ω,FW ,P) generated by the
random variables of type hp(W (g)), g ∈ H, ‖g‖ = 1. The space Hp is called the p-

th Wiener chaos of W . According to [19, 24, 21, 22], Ip(f̃) ∈ Hp for any f ∈ H
⊗p

.
Furthermore, every F ∈ L2(Ω,FW ,P) admits a unique expansion of the type

F = E[F ] +

∞∑
p=1

Proj(F | Hp),

where Proj(F | Hp) ∈ Hp and the above series converges in L2(Ω,FW ,P). The following
product formula allows us to express the output of STQN in terms of a linear combination
of Wiener chaos, which is the first tool used in this paper.

Lemma 1 (Product Formula [19, 22]). Let p, q ≥ 1. If f ∈ H�p and g ∈ H�q, then

Ip(f)Iq(g) =

p∧q∑
r=0

r!

(
p

r

)(
q

r

)
Ip+q−2r (f ⊗r g) ,

where f ⊗r g is the rth contraction of f and g defined as

f ⊗r g(λ1:p+q−2r) =

∫
Rr

f(τ1:r, λ1:p−r)g(−τ1:r, λp−r+1:p+q−2r)dτ1:r

for r = 1, 2, . . . , p ∧ q. When r = 0, set f ⊗0 g = f ⊗ g.

Note that f ⊗r g ∈ H
⊗p+q−2r

, but it may not be symmetric. Let f⊗̃rg be the canonical

symmetrization of f ⊗r g. For any f ∈ H
�p

, by noting that the expectation of any
Wiener-Itô integral equals to zero, Lemma 1 implies

E
[
|Ip(f)|2

]
= E

[
p∑
r=0

r!

(
p

r

)2

I2p−2r (f ⊗r f)

]
= p!f ⊗p f = p!‖f‖2L2(Rp),

which is the so-called isometry property of the multiple Wiener-Itô integrals.
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We now express the STQN of X using the product formula. By applying Lemma 1 to
(2.8),

U [j1]X(t) =

∫ ′
R2

ei(λ1+λ2)tψ̂j1(λ1)
√
fX(λ1)ψ̂j1(λ2)

√
fX(λ2)W (dλ1)W (dλ2) + ‖fX?ψj1

‖1.
(2.12)

Denote {
1G̃

(0)
t = ‖fX?ψj1

‖1,
1G̃

(2)
t (λ1, λ2) = ei(λ1+λ2)tψ̂j1(λ1)

√
fX(λ1)ψ̂j1(λ2)

√
fX(λ2).

(2.13)

The first-order STQN of X can be rewritten as

U [j1]X(t) = I2

(
1G̃

(2)
t

)
+ 1G̃

(0)
t .

By the property
∫
R
ψj2(t− t′)dt′ = 0 and (2.12),

T [j1:2]X(t) =

∫
R

I2

(
1G̃

(2)
t′

)
ψj2(t− t′)dt′. (2.14)

Because (2.13) shows that

1G̃
(2)
t (λ1, λ2) = 1G̃

(2)
0 (λ1, λ2) ei(λ1+λ2)t, (2.15)

2F
(2)
t (λ1, λ2) :=

∫
R

1G̃
(2)
t′ (λ1, λ2)ψj2(t− t′)dt′ = 1G̃

(2)
t (λ1, λ2)ψ̂j2 (λ1 + λ2) , (2.16)

which depends on t in the same way. More concretely,

2F
(2)
t (λ1, λ2) = ei(λ1+λ2)tψ̂j1(λ1)

√
fX(λ1)ψ̂j1(λ2)

√
fX(λ2)ψ̂j2 (λ1 + λ2) .

By substituting (2.16) into (2.14), we get

T [j1:2]X(t) =I2

(
2F

(2)
t

)
. (2.17)

By the product formula again with p = q = 2 and f = g = 2F
(2)
t ,

U [j1:2]X(t) = [T [j1:2]X(t)]
2

=
[
I2

(
2F

(2)
t

)]2
=

2∑
r=0

I4−2r

(
2G̃

(4−2r)
t

)
, (2.18)

where
2G̃

(4−2r)
t = r!

(
2

r

)(
2

r

)
2F

(2)
t ⊗̃r2F

(2)
t ∈ H�4−2r (2.19)

for each t ∈ R. From (2.15) and (2.16), we have

2G̃
(4−2r)
t (λ1:4−2r) = eiλ

+
1:4−2rt 2G̃

(4−2r)
0 (λ1:4−2r) (2.20)

for r = 0, 1, where λ+p1:p2 means λp1 + λp1+1 + . . .+ λp2 ∈ R for p2 > p1 ≥ 1. For general
cases, we have the following result.

Lemma 2. For every integer M ≥ 2 and stationary Gaussian process X, the random
processes T [j1:M ]X and U [j1:M ]X arising from STQN of X have the Wiener-Itô decompo-
sition as follows

T [j1:M ]X(t) =

2M−2−1∑
r=0

I2M−1−2r

(
MF

(2M−1−2r)
t

)
(2.21)
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1G̃ 2F 2G̃ 3F 3G̃ 4F 4G̃ · · ·

Figure 2: Flow chart for the recursive computation in (2.23) and (2.24).

and

U [j1:M ]X(t) =

2M−1∑
`=0

I2M−2`

(
M G̃

(2M−2`)
t

)
, (2.22)

where the integrands, MF (2M−1−2r)
t and M G̃

(2M−2`)
t , are defined by using the following

recursive formula starting with (2.13). For ` = 0, 1, . . . , 2M−1,

M G̃
(2M−2`)
t (λ1:2M−2`) :=

2M−2−1∑
r,r′=0

(`− r − r′)!
(

2M−1 − 2r

`− r − r′

)(
2M−1 − 2r′

`− r − r′

)
×MF

(2M−1−2r)
t ⊗̃`−r−r′MF (2M−1−2r′)

t (λ1:2M−2`), (2.23)

where for r = 0, 1, . . . , 2M−2 − 1,

MF
(2M−1−2r)
t (λ1:2M−1−2r) := M−1G̃

(2M−1−2r)
t (λ1:2M−1−2r)ψ̂jM (λ+

1:2M−1−2r). (2.24)

For the binomial coefficients in (2.23), we use the following rule: for any A,B,C ∈ Z,(
A

C

)(
B

C

)
= 0 if C < 0 or min{A,B} < C.

The proof of Lemma 2 is based on the mathematical induction method, which can be
found in Section 4.1. For the functions generated by the recursive formula (2.23) and
(2.24) with the initial term (2.13), we have the following observation, which will be used
in the proof of Lemma 2 and Proposition 2. The first one is

M G̃
(2M−2`)
t (λ1:2M−2`) = exp

(
itλ+

1:2M−2`

)
M G̃

(2M−2`)
0 (λ1:2M−2`) (2.25)

for ` = 0, 1, . . . , 2M−1 − 1 and the second one is

MF
(2M−1−2r)
t (λ1:2M−1−2r) = exp

(
itλ+

1:2M−1−2r

)
MF

(2M−1−2r)
0 (λ1:2M−1−2r) (2.26)

for r = 0, 1, . . . , 2M−2 − 1, which are generalization of, for instance, (2.16) and (2.20).

2.4 Elements of Malliavin calculus

Let S denote the set of all random variables S of the form

s(W (f1), . . . ,W (fn)),

where n ≥ 1, s : Rn → R is a C∞-function such that s and its partial derivatives have
at most polynomial growth, and fi ∈ H, i = 1, . . . , n. We denote by L2(Ω) the set of
FW -measurable random variables whose second moments exist. The space S is dense in
L2(Ω) [22, Lemma 2.3.1].

Definition 1. For every integers n, p ≥ 1, the p-th Malliavin derivative of

S = s(W (f1), . . . ,W (fn)) ∈ S

with respect to W is defined by

DpS =

n∑
i1,...,ip=1

∂ps

∂xi1 · · · ∂xip
(W (f1), . . . ,W (fn))fi1 ⊗ · · · ⊗ fip . (2.27)
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Because the sum in (2.27) runs over all partial derivatives, DpS belongs to L2(Ω, H
�p

).
The Malliavin derivative of multiple Wiener-Itô integrals have the following property.
The proof can be found in [22, Proposition 2.7.4].

Lemma 3 ([22]). For every integer p ≥ 1 and u ∈ H⊗p,

DIp(u) = pIp−1(ũ), (2.28)

where ũ is the canonical symmetrization of u defined through (2.11) and

Ip−1(ũ)(·) =

∫ ′
Rp−1

ũ(λ1, . . . , λp−1, ·)W (dλ1) · · ·W (dλp−1).

On the other hand, for all r ∈ N, p ∈ N and q ∈ [1,∞],

‖Ip(f)‖Dr,q ≤ cr,p,q‖f‖H⊗p , f ∈ H�p, (2.29)

where cr,p,q > 0 is an universal constant and

‖Ip(f)‖Dr,q :=
(
E[|Ip(f)|q] + E[‖DIp(f)‖q

H
] + · · ·+ E[‖DrIp(f)‖q

H
⊗r ]
)1/q

. (2.30)

We note that (2.29) is a special case of the Meyer’s inequality [24, Proposition 1.5.7].
Finally, for applying the normal approximation error bounds in [21, 22] to solve our
problem, we need the following definition.

Definition 2. For any F ∈ L2(Ω,FW ,P), the pseudo-inverse of the infinitesimal genera-
tor L of the Ornstein-Uhlenbeck semigroup, denoted as L−1, is defined as

L−1F = −
∞∑
p=1

1

p
Proj(F | Hp). (2.31)

The details about the semigroup of the Ornstein-Uhlenbeck semigroup and its in-
finitesimal generator can be found in [22, Section 2.8].

3 Main results

As mentioned in Section 1, we will present large-scale limit theorems about the
non-Gaussian random process U [j1:M ]X arising from STQNs of stationary Gaussian
processes.

3.1 Convergence rate of STQNs with random inputs

Let N be a standard normal random variable and σ2
jM

= EU [j1:M ]X(t). The total
variation (TV) distance between the distributions of 1

σ2
jM

U [j1:M ]X(2jM t) and the square

of N is defined by

dTV

(
1

σ2
jM

U [j1:M ]X(2jM t), N 2

)
= sup
h:R→[0,1]

∣∣∣∣∣E
[
h
( 1

σ2
jM

U [j1:M ]X(2jM t)
)]
− E

[
h(N 2)

]∣∣∣∣∣ ,
where the supremum is taken over Borel functions h taking values in [0, 1]. Because the
composition function h(| · |2) also takes values in [0, 1],

dTV

(
1

σ2
jM

U [j1:M ]X(2jM t), N 2

)
≤ sup
h:R→[0,1]

∣∣∣∣E [h( 1

σjM
T [j1:M ]X(2jM t)

)]
− E [h(N )]

∣∣∣∣
=dTV

(
1

σjM
T [j1:M ]X(2jM t), N

)
. (3.1)
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Lemma 4 ([22]). Let F be a FW -measurable random variable such that E[|F |2] +

E[‖DF‖2
H

] <∞, E[F ] = 0 and E[F 2] = 1. Then

dTV (F,N ) ≤ 2
√

Var (〈DF,−DL−1F 〉).

In the proposition below, we apply Lemma 4 (see also Theorem 5.1.3 and Remark 5.1.4
in [22]) to the right hand side of (3.1) to get an upper bound for dTV

(
1

σ2
jM

U [j1:M ]X(2jM t),

N 2
)
.

Proposition 1. For every stationary Gaussian process X, integer M ≥ 2, and j1:M =

[j1, . . . , jM ] ∈ ZM , the TV distance between the distributions of the non-Gaussian variable
1

σ2
jM

U [j1:M ]X(2jM t) and the square of the standard normal random variable N has an

upper bound

dTV

(
1

σ2
jM

U [j1:M ]X(2jM t), N 2

)
≤ 2

σ2
jM

UjM (t, t), (3.2)

where

UjM (s, t) =

2M−2−1∑
r=0

(2M−1 − 2r)

2M−1−2r−1∑
`=1

(`− 1)!

(
2M−1 − 2r − 1

`− 1

)2√
(2M − 4r − 2`)!

×‖MF (2M−1−2r)
2jM s

⊗` MF (2M−1−2r)
2jM t

‖
H
⊗2M−4r−2`

+

2M−2−1∑
r,r′=0
r 6=r′

(2M−1 − 2r′)

2M−1−2(r∨r′)∑
`=1

(`− 1)!

(
2M−1 − 2r − 1

`− 1

)(
2M−1 − 2r′ − 1

`− 1

)

×
√

(2M − 2r − 2r′ − 2`)! ‖MF (2M−1−2r)
2jM s

⊗` MF (2M−1−2r′)
2jM t

‖
H
⊗2M−2r−2r′−2` (3.3)

for s, t ∈ R, and the family of functions {MF (2M−1−2r)
2jM t

| r = 0, 1, . . . , 2M−2 − 1} is defined
through the recursive formula (2.23) and (2.24).

In practice, the scale parameters are set with jm+1 ≥ jm, where m ∈ N, for the
continuous wavelet transform in the scattering network in order to use the neuron
U [jm+1] in the (m+ 1)-th layer to extract larger-scale features from the outputs of the
neuron U [jm+1] in the m-th layer. This is supported by the fact that the spectrum of
the magnitude of the continuous wavelet transform is mainly supported on the lower
frequency area. See [20] for more discussion. For fixed j1, j2, . . . , jM−1 ∈ Z, the
behavior of UjM and σ2

jM
when jM is sufficiently large will be discussed in Proposition 2,

whose proof relies on the following estimate, and its proof is given in Section 4.3.

Lemma 5. For every M ∈ N, there exists a constant CM > 0, which depends on
j1, ..., jM−1 but is independent of jM and t, such that

∣∣∣MG̃(2M−2`)
t (λ1:2M−2`)

∣∣∣ ≤ CM 2M−2`∏
k=1

√
fX?ψj1

(λk) (3.4)

for ` = 0, 1, . . . , 2M−1 − 1.

Proposition 2. (a) If the parameter α in Assumption 1 and the parameter β in As-
sumption 2 satisfy 2α + β ≥ 1, then for any j1, . . . , jM−1 ∈ Z, integer M ≥ 2, r, r′ ∈
{0, 1, . . . , 2M−2 − 1}, and s, t ∈ R,

2
3
2 jM

∥∥∥MF (2M−1−2r)
2jM s

⊗` MF (2M−1−2r′)
2jM t

∥∥∥
H
⊗2M−2r−2r′−2`
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converges when jM → ∞, where ` ∈ {1, 2, . . . , 2M−1 − 2r − 1} for the case r = r′ and
` ∈ {1, 2, . . . , 2M−1−2(r∨r′)} for the case r 6= r′. It further implies that lim

jM→∞
2

3
2 jMUjM (s, t)

exists and is finite, where UjM is defined in (3.3).
(b) Under the same condition, i.e., 2α+ β ≥ 1,

lim
jM→∞

2jMσ2
jM =

2M−2−1∑
r=0

Mr! c
(Mr) ‖ψ̂‖2,

where Mr = 2M−1 − 2r and

c(Mr) =

∫
RMr−1

∣∣∣M−1G̃(Mr)
0 (u1:Mr−1,−u+1:Mr−1)

∣∣∣2du1:Mr−1. (3.5)

The condition 2α + β ≥ 1 is used for ensuring ‖fX?ψj1
‖∞ < ∞, which allows us

to apply the Lebesgue dominated convergence theorem in the proof. Note that this
condition could be easily achieved for widely used wavelets, including the Daubechies
wavelets, the Morlet wavelet, the Mexican hat wavelet, etc, since α ≥ 1

2 holds for those
wavelets. The proofs of Lemma 5 and Proposition 2 can be found in Section 4.3 and
Section 4.4, respectively. By Propositions 1 and 2, we get the first main result as follows.

Theorem 1. Let ψ be a real-valued mother wavelet satisfying Assumption 1, and X be a
stationary Gaussian process satisfying Assumption 2. If the parameter α in Assumption
1 and the parameter β in Assumption 2 satisfy 2α + β ≥ 1, then for each fixed t ∈ R,
integer M ≥ 2, and j1, . . . , jM−1 ∈ Z, when jM is sufficiently large,

dTV

(
1

σ2
jM

U [j1:M ]X(t), N 2

)
= O(2−

1
2 jM ).

The theorem above implies that for each fixed t ∈ R,

1

σ2
jM

U [j1:M ]X(t)⇒ N 2

in the distribution sense when jM →∞, and hence together with Proposition 2 we have

2jMU [j1:M ]X(t)⇒

2M−2−1∑
r=0

Mr! c
(Mr) ‖ψ̂‖2

N 2

when jM →∞.

3.2 Multivariate normal approximation of 2
jM
2 T [j1:M ]X(2jM t)

In this section, we further show that 2jMU [j1:M ]X converges in the finite dimensional
distribution sense and derive the covariance function of the limiting process. Our
approach is based on the following lemma coming from the multidimensional Stein’s
method [22, Theorem 6.1.2].

Lemma 6 ([22]). For any integer d ≥ 2, let F = (F1, . . . , Fd)
> be a FW -measurable

random vector such that E[|Fi|4] + E[‖DFi‖4H ] < ∞ and E[Fi] = 0 for i = 1, . . . , d. Let

[C(i, j)]1≤i,j≤d be a symmetric non-negative definite matrix in Rd×d, and let NC be a
d-dimensional normal random vector with mean zero and covariance matrix C. Then, for
any twice differentiable function h : Rd → R with

‖h′′‖∞ := sup
1≤i,j≤d

sup
x∈Rd

∣∣∣ ∂2h

∂xi∂xj
(x1, . . . , xd)

∣∣∣ <∞,
EJP 27 (2022), paper 48.

Page 13/27
https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP766
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Asymptotic analysis of scattering transform of Gaussian processes

we have

|E[h(F)]− E[h(NC)]| ≤ 1

2
‖h′′‖∞

√√√√ d∑
i,j=1

E

[(
C(i, j)−

〈
DFj ,−DL−1Fi

〉)2]
. (3.6)

With Lemma 6, we proceed to study 2jMU [j1:M ]X in the finite dimensional distribution
sense. We start from checking conditions needed for Lemma 6. For any t1, t2, . . . , td ∈ R,
let

Fi := 2
jM
2 T [j1:M ]X(2jM ti) = 2

jM
2

2M−2−1∑
r=0

I2M−1−2r

(
MF

(2M−1−2r)
2jM ti

) (3.7)

for i = 1, 2, . . . , d. By (2.29) and (2.30), the condition E[|Fi|4] + E[‖DFi‖4H ] < ∞ holds.

On the other hand, because 0 ≤ r ≤ 2M−2 − 1 in the summation (3.7), Fi is a linear
combination of Wiener chaos of order greater than or equal to 2, which implies that
E[Fi] = 0. Set the covariance matrix of (F1, . . . , Fd)

> as CjM ∈ Rd×d; that is,

CjM (i, j) := E[FiFj ], (3.8)

where 1 ≤ i, j ≤ d, which satisfies the requirement of symmetric and non-negative
definite for the matrix C in Lemma 6. Moreover, we claim that it can be expressed as

CjM (i, j) = 2jM
2M−2−1∑
r=0

Mr!
MF

(Mr)

2jM ti
⊗Mr

MF
(Mr)

2jM tj
, (3.9)

where Mr = 2M−1 − 2r. The proof of (3.9) can be found in Section 4.5. Because all
conditions in Lemma 6 are satisfied, the inequality (3.6) holds with C = CjM . Next, we
deal with the right hand side of (3.6). To this end, we apply the Malliavin calculus, the
equality (3.9) and Proposition 2. The result is summarized as follows, and its proof is
relegated to Section 4.6.

Theorem 2. Let ψ be a real-valued mother wavelet satisfying Assumption 1, and X

be a stationary Gaussian process satisfying Assumption 2. Given integers d,M ≥ 2,
j1, . . . , jM ∈ Z, and t1, t2, . . . , td ∈ R, define

F =
(

2
jM
2 T [j1:M ]X(2jM t1), . . . , 2

jM
2 T [j1:M ]X(2jM td)

)>
∈ Rd

and let CjM be its covariance matrix. If the parameter α in Assumption 1 and the
parameter β in Assumption 2 satisfy 2α+β ≥ 1, then for any twice differentiable function
h : Rd → R with ‖h′′‖∞ <∞, we have

∣∣∣E[h(F)]− E[h(NCjM
)]
∣∣∣ ≤ 1

2
‖h′′‖∞

d∑
i,j=1

2jMUjM (tj , ti) = ‖h′′‖∞O(2−
1
2 jM ) (3.10)

when jM is sufficiently large, where NCjM
is a d-dimensional normal random vector with

mean zero and covariance matrix CjM .

By considering the special cases h(x) = cos(〈ζ,x〉) and h(x) = sin(〈ζ,x〉), where
x, ζ ∈ Rd, (3.10) implies that the distance between the characteristic function of the
random vector F and that of NCjM

converges to zero as jM →∞. More precisely,∣∣∣E [ei〈ζ,F〉]− E [ei〈ζ,NCjM
〉
] ∣∣∣ ≤ |ζ|2O(2−

1
2 jM ). (3.11)

The following proposition shows that the covariance matrix CjM converges as jM →∞.

EJP 27 (2022), paper 48.
Page 14/27

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP766
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Asymptotic analysis of scattering transform of Gaussian processes

Proposition 3. Let the assumptions and notation of Theorem 2 prevail. Then, for any
i, j ∈ {1, 2, . . . , d}, we have

C∞(i, j) := lim
jM→∞

CjM (i, j) =

2M−2−1∑
r=0

Mr! c
(Mr)

∫
R

ei(ti−tj)z
∣∣∣ψ̂(z)

∣∣∣2 dz, (3.12)

where Mr = 2M−1 − 2r, the constant c(Mr) is defined in (3.5).

The proof of Proposition 3 is in Section 4.7. Let NC∞ be a d-dimensional normal
random vector with mean zero and covariance matrix C∞. Because both NCjM

and
NC∞ are normal random vectors with mean 0, Proposition 3 implies that for any ζ =

[ζ1, . . . , ζd] ∈ Rd

E
[
e
i〈ζ,NCjM

〉
]
→ E

[
ei〈ζ,NC∞ 〉

]
(3.13)

when jM →∞. By combining (3.11) and (3.13), we get∣∣∣E [ei〈ζ,F〉]− E [ei〈ζ,NC∞ 〉
] ∣∣∣

≤
∣∣∣E [ei〈ζ,F〉]− E [ei〈ζ,NCjM

〉
] ∣∣∣+

∣∣∣E [ei〈ζ,NCjM
〉
]
− E

[
ei〈ζ,NC∞ 〉

] ∣∣∣→ 0

when jM →∞. Therefore, when jM →∞,

E
[
ei〈ζ,F〉

]
→ E

[
ei〈ζ,NC∞ 〉

]
for all ζ ∈ Rd, where NC∞ is a d-dimensional normal random vector with mean zero
and covariance matrix C∞ given in (3.12). It implies that the rescaled random process

{2
jM
2 T [j1:M ]X(2jM t) | t ∈ R} converges to a Gaussian process, denoted by {G(t) | t ∈ R},

in the finite dimensional distribution sense and

Cov (G(t1), G(t2)) =

2M−2−1∑
r=0

Mr! c
(Mr)

∫
R

ei(t1−t2)z
∣∣∣ψ̂(z)

∣∣∣2 dz, t1, t2 ∈ R.

By the continuous mapping theorem and the well-known equality Cov (U2, V 2) =

2Cov(U, V )2 when U and V are jointly Gaussian, we get a corresponding result for
the rescaled random process {2jMU [j1:M ]X(2jM t) | t ∈ R} as follows.

Theorem 3. Let the assumptions and notation of Theorem 2 prevail. The rescaled
random process {2jMU [j1:M ]X(2jM t) | t ∈ R} converges to the square of the stationary
Gaussian process {G(t) | t ∈ R} in the finite dimensional distribution sense. Moreover,
the covariance function of the limiting process G2 has the following expression

Cov
(
G2(t1), G2(t2)

)
= 2Cov (G(t1), G(t2))

2

for t1, t2 ∈ R.

Theorem 3 implies that when jM →∞,

2jMU [j1:M ]X(2jM t)⇒

2M−2−1∑
r=0

Mr! c
(Mr) ‖ψ̂‖2

χ2(t)

in the finite dimensional distribution sense, where {χ2(t) | t ∈ R} is a chi-square process
with one degree of freedom and

Cov
(
χ2(t1), χ2(t2)

)
=2

∫
R

ei(t1−t2)z

(
|ψ̂(z)|
‖ψ̂‖2

)2

dz

2

.
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Remark 3. It is worth mentioning that in our previous work [16], we considered the
second-order ST with stationary Gaussian processes and Gaussian processes with station-
ary increments as inputs, where we apply the Wiener chaos expansion and the Feynman
diagram method to derive the central and non-central limit theorem, and the delicate
interaction between mother wavelets and activation functions are explored. Different
from [16], the analysis techniques in this work allows us to get a general form for the
Wiener-Itô decomposition of the outputs of STQNs without depth limitation, and the
current approach is non-asymptotic, i.e., the Stein’s method is applied to estimate the
distance between the outputs of STQNs and their scaling limits. For commonly used
wavelet functions, the current work provides information about the convergence speed
of the rescaled random processes arising from STQNs, which cannot be obtained from
our previous work. Furthermore, the technique used in the current work can be applied
to study the same issue for polynomial activated STs by using more complicated product
formula to obtain the Wiener-Itô decomposition of the corresponding outputs, which is
not explored in this work.

4 Proofs

4.1 Proof of Lemma 2

In the following, we prove (2.21) and (2.22) by the mathematical induction method.
• When M = 2, not only (2.23) and (2.24) can be simplified as (2.19) and (2.16)

respectively, but also (2.21) and (2.22) become (2.17) and (2.18). Hence, the statement
in Lemma 2 holds for M = 2.
• Suppose that the statement in Lemma 2 holds for M = m, where m ≥ 2.
• Now we start to prove the statement in Lemma 2 for M = m+ 1. By the definition

(2.2),

T [j1:m+1]X(t) =U [j1:m]X ? ψjm+1
(t)

=

∫
R

2m−1∑
`=0

I2m−2`

(
mG̃

(2m−2`)
t′

)
ψjm+1

(t− t′)dt′, (4.1)

where the second equality follows from the induction hypothesis. By (2.25),∫
R

mG̃
(2m−2`)
t′ (λ1:2m−2`)ψjm+1(t− t′)dt′ = mG̃

(2m−2`)
t (λ1:2m−2`)ψ̂jm+1(λ+1:2m−2`). (4.2)

We recognize that the right hand side of (4.2) is just the right hand side of (2.24), i.e,
m+1F

(2m−2`)
t (λ1:2m−2`). Hence, (4.1) and (4.2) imply that

T [j1:m+1]X(t) =

2m−1∑
`=0

I2m−2`

(
m+1F

(2m−2`)
t

)
(4.3)

and we get (2.21) with M = m+ 1. Next, by the relationship (2.3) and (4.3),

U [j1:m+1]X(t) = [T [j1:m+1]X(t)]
2

=

2m−1∑
r=0

I2m−2r

(
m+1F

(2m−2r)
t

)2

=

2m−1∑
r,r′=0

I2m−2r

(
m+1F

(2m−2r)
t

)
I2m−2r′

(
m+1F

(2m−2r′)
t

)

=

2m−1∑
r,r′=0

2m−2(r∨r′)∑
p=0

p!

(
2m − 2r

p

)(
2m − 2r′

p

)
I2m+1−2(r+r′+p)

(
m+1F

(2m−2r)
t ⊗p m+1F

(2m−2r′)
t

)
,
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where the last equality follows from the product formula, i.e., Lemma 1. Denote ` =

r + r′ + p. Because 0 ≤ p ≤ 2m − 2(r ∨ r′), we have r + r′ ≤ ` ≤ 2m − |r − r′|. Hence,

U [j1:m+1]X(t) =

2m−1∑
r,r′=0

2m∑
`=0

1{r+r′≤`≤2m−|r−r′|}(`− r − r′)!
(

2m − 2r

`− r − r′

)(
2m − 2r′

`− r − r′

)
× I2m+1−2`

(
m+1F

(2m−2r)
t ⊗`−r−r′ m+1F

(2m−2r′)
t

)
,

where the indicator function 1{r+r′≤`≤2m−|r−r′|} can be ignored by setting(
2m − 2r

`− r − r′

)(
2m − 2r′

`− r − r′

)
= 0 if `− r − r′ < 0 or min {2m − 2r, 2m − 2r′} < `− r − r′.

By the linearity of the Wiener integrals,

U [j1:m+1]X(t) =

2m∑
`=0

I2m+1−2`

 2m−1∑
r,r′=0

(`− r − r′)!
(

2m − 2r

`− r − r′

)(
2m − 2r′

`− r − r′

)
× m+1F

(2m−2r)
t ⊗`−r−r′ m+1F

(2m−2r′)
t

)
.

We recognize that the function inside the integrand of the (2m+1 − 2`)-fold Wiener
integrals above coincides with the right hand side of (2.23) with M = m + 1, i.e.,
m+1G̃

(2m+1−2`)
t . Hence,

U [j1:m+1]X(t) =

2m∑
`=0

I2m+1−2`

(
m+1G̃

(2m+1−2`)
t

)
,

which is just (2.22) with M = m + 1. Therefore, we finish the inductive step and the
proof.

4.2 Proof of Proposition 1

From (2.21), we know that

T [j1:M ]X(2jM t) =

2M−2−1∑
r=0

I2M−1−2r

(
MF

(2M−1−2r)
2jM t

)
, (4.4)

which satisfies E[T [j1:M ]X(2jM t)] = 0 and E

[∣∣∣T [j1:M ]X(2jM t)
∣∣∣2] = σ2

jM
< ∞. On the

other hand, by (4.4) and Lemma 3,

DT [j1:M ]X(2jM t) =

2M−2−1∑
r=0

(
2M−1 − 2r

)
I2M−1−2r−1

(
MF

(2M−1−2r)
2jM t

)
. (4.5)

By (2.29) and (2.30), E
[
‖DT [j1:M ]X(2jM t)‖2

H

]
< ∞. The observations above show

that F := 1
σjM

T [j1:M ]X(2jM t) satisfies all conditions in Lemma 4. Hence, we have

dTV (F,N ) ≤ 2
√

Var (〈DF,−DL−1F 〉). By the definition of L−1 in (2.31),

−DL−1F =D

 1

σjM

2M−2−1∑
r=0

1

2M−1 − 2r
I2M−1−2r

(
MF

(2M−1−2r)
2jM t

)
=

1

σjM

2M−2−1∑
r=0

I2M−1−2r−1

(
MF

(2M−1−2r)
2jM t

)
. (4.6)
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By (4.5) and (4.6),

Var
(
〈DF,−DL−1F 〉

)
= Var

(
1

σ2
jM

I

)
, (4.7)

where

I :=
〈2M−2−1∑

r=0

MrIMr−1

(
MF

(Mr)

2jM t

)
,

2M−2−1∑
r=0

IMr−1

(
MF

(Mr)

2jM t

)〉

and Mr = 2M−1 − 2r. Before computing Var (I), we expand I by Lemma 1 as follows

I =σ2
jM +

2M−2−1∑
r=0

Mr

Mr−1∑
`=1

(`− 1)!

(
Mr − 1

`− 1

)2

I2Mr−2`

(
MF

(Mr)

2jM t
⊗` MF (Mr)

2jM t

)

+

2M−2−1∑
r,r′=0
r 6=r′

Mr′

Mr∧Mr′∑
`=1

(`− 1)!

(
Mr − 1

`− 1

)(
Mr′ − 1

`− 1

)
IMr+Mr′−2`

(
MF

(Mr)

2jM t
⊗` MF (Mr′ )

2jM t

)
.

By the Minkowski inequality,

√
Var (I) = E

{[∣∣∣I − σ2
jM

∣∣∣2]} 1
2

≤
2M−2−1∑
r=0

Mr

Mr−1∑
`=1

(`− 1)!

(
Mr − 1

`− 1

)2{
E

[∣∣∣I2Mr−2`

(
MF

(Mr)

2jM t
⊗` MF (Mr)

2jM t

) ∣∣∣2]} 1
2

(4.8)

+

2M−2−1∑
r,r′=0
r 6=r′

Mr′

Mr∧Mr′∑
`=1

(`− 1)!

(
Mr − 1

`− 1

)(
Mr′ − 1

`− 1

){
E

[∣∣∣IMr+Mr′−2`

(
MF

(Mr)

2jM t
⊗` MF (Mr′ )

2jM t

) ∣∣∣2]} 1
2

.

For the expectations above, the isometry property of the Wiener-Itô integrals implies
that

E

[∣∣∣IMr+Mr′−2`

(
MF

(Mr)

2jM t
⊗` MF (Mr′ )

2jM t

) ∣∣∣2] = (Mr +Mr′ − 2`)!
∥∥∥MF (Mr)

2jM t
⊗` MF (Mr′ )

2jM t

∥∥∥2 .
Therefore, the upper bound in (3.2) follows from combining (4.7) and (4.8).

4.3 Proof of Lemma 5

We prove this lemma by mathematical induction. For M = 1, (2.13) implies that (3.4)
holds with C1 = 1. Suppose that (3.4) holds for M = m−1, where m is an integer greater
than or equal to 2. By (2.23),

mG̃
(2m−2`)
t =

2m−2−1∑
r,r′=0

(`− r − r′)!
(

2m−1 − 2r

`− r − r′

)(
2m−1 − 2r′

`− r − r′

)
mF

(2m−1−2r)
t ⊗̃`−r−r′mF (2m−1−2r′)

t .

(4.9)
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From (2.24), we know that for r = 0, 1, . . . , 2m−2 − 1,∣∣∣mF (2m−1−2r)
t (x1, . . . , x2m−1−2r)

∣∣∣
=
∣∣∣m−1G̃(2m−1−2r)

t (x1, . . . , x2m−1−2r)ψ̂jm(x1, . . . , x2m−1−2r)
∣∣∣

≤‖ψ̂‖∞
∣∣∣m−1G̃(2m−1−2r)

t (x1, . . . , x2m−1−2r)
∣∣∣

≤‖ψ̂‖∞

Cm−12m−1−2r∏
k=1

√
fX?ψj1

(xk)

 ,
where the last inequality is obtained from the assumption, i.e., (4.9) with M = m − 1.
Hence, ∣∣∣mF (2m−1−2r)

t ⊗̃`−r−r′mF (2m−1−2r′)
t (λ1:2m−2`)

∣∣∣
≤‖ψ̂‖2∞C2

m−1‖fX?ψj1
‖`−r−r

′

1

2m−2`∏
k=1

√
fX?ψj1

(λk).

By substituting the inequality above into (4.9), we get

∣∣∣mG̃(2m−2`)
t (λ1:2m−2`)

∣∣∣ ≤
2m−2−1∑
r,r′=0

(`− r − r′)!
(

2m−1 − 2r

`− r − r′

)(
2m−1 − 2r′

`− r − r′

)
‖fX?ψj1

‖`−r−r
′

1


×

[
‖ψ̂‖2∞C2

m−1

2m−2`∏
k=1

√
fX?ψj1

(λk)

]
.

By the principle of mathematical induction, (3.4) holds for all M ∈ N.

4.4 Proof of Proposition 2

(a) For r, r′ ∈ {0, 1, . . . , 2M−2 − 1}, by the recursive relationship (2.24),∥∥∥MF (Mr)

2jM s
⊗` MF (Mr′ )

2jM t

∥∥∥2
H
⊗Mr+M

r′−2`

=

∫
R

Mr+M
r′−2`

dλ1:Mr+Mr′−2`

[ ∫
R`

M−1G̃
(Mr)

2jM s
(τ1:`, λ1:Mr−`)ψ̂jM (τ+1:` + λ+1:Mr−`)

×M−1G̃
(Mr′ )

2jM t
(−τ1:`, λMr−`+1:Mr+Mr′−2`)ψ̂jM (−τ+1:` + λ+Mr−`+1:Mr+Mr′−2`

)dτ1:`

]
×
[∫
R`

M−1G̃
(Mr)

2jM s
(η1:`, λ1:Mr−`)ψ̂jM (η+1:` + λ+1:Mr−`)

×M−1G̃(Mr′ )

2jM t
(−η1:`, λMr−`+1:Mr+Mr′−2`)ψ̂jM (−η+1:` + λ+Mr−`+1:Mr+Mr′−2`

)dη1:`

]
,

where ` ∈ {1, . . . ,Mr − 1} when r = r′, and ` ∈ {1, . . . ,Mr ∧ Mr′} when r 6= r′. By
considering the change of variables

ui = τi, i = 1, . . . , `− 1 for ` > 1,

vi = ηi, i = 1, . . . , `− 1 for ` > 1,

wi = λi, i = 1, . . . ,Mr +Mr′ − 2`− 1,

x = 2jM
(
τ+1:` + λ+1:Mr−`

)
,

y = 2jM
(
−τ+1:` + λ+Mr−`+1:Mr+Mr′−2`

)
,

z = 2jM
(
η+1:` + λ+1:Mr−`

)
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and noting that ψ̂jM (·) = ψ̂(2jM ·), we have

23jM
∥∥∥MF (Mr)

2jM s
⊗` MF (Mr′ )

2jM t

∥∥∥2
H
⊗Mr+M

r′−2`

=

∫
R

Mr+M
r′

M−1G̃
(Mr)

2jM s
(u1:`−1, u

∗
` , w1:Mr−`)

×M−1G̃(Mr′ )

2jM t
(−u1:`−1,−u∗` , wMr−`+1:Mr+Mr′−2`−1, w

∗
Mr+Mr′−2`)

×M−1G̃
(Mr)

2jM s
(v1:`−1, v∗` , w1:Mr−`)

×M−1G̃(Mr′ )

2jM t
(−v1:`−1,−v∗` , wMr−`+1:Mr+Mr′−2`−1, w

∗
Mr+Mr′−2`

)

× ψ̂(x)ψ̂(y)ψ̂(z)ψ̂(x+ y − z) du1:`−1 dv1:`−1 dw1:Mr+Mr′−2`−1 dx dy dz, (4.10)

where u∗` = 2−jMx − u1 − · · · − u`−1 − w1 − · · · − wMr−`, v
∗
` = 2−jM z − v1 − · · · − v`−1 −

w1 − · · · − wMr−`, and w∗Mr+Mr′−2` = 2−jMx + 2−jM y − w1 − · · · − wMr+Mr′−2`−1. In the
following, we show that the limit of the integrand on the right hand side of the equality
(4.10) exists when jM →∞.

• For the second component of the integrand in (4.10), by (2.25),

M−1G̃
(Mr′ )

2jM t
(−u1:`−1,−u∗` , wMr−`+1:Mr+Mr′−2`−1, w

∗
Mr+Mr′−2`)

= exp
{
i2jM t

[
−u+1:`−1 − u

∗
` + w+

Mr−`+1:Mr+Mr′−2`−1
+ w∗Mr+Mr′−2`

]}
×M−1G̃

(Mr′ )
0 (−u1:`−1,−u∗` , wMr−`+1:Mr+Mr′−2`−1, w

∗
Mr+Mr′−2`)

= eity ×M−1G̃
(Mr′ )
0 (−u1:`−1,−u∗` , wMr−`+1:Mr+Mr′−2`−1, w

∗
Mr+Mr′−2`)

→ eity×M−1G̃(Mr′ )
0 (−u1:`−1, u+1:`−1 + w+

1:Mr−`, wMr−`+1:Mr+Mr′−2`−1

,−w+
1:Mr+Mr′−2`−1

)

when jM →∞.

• For the fourth component of the integrand in (4.10),

M−1G̃
(Mr′ )

2jM t
(−v1:`−1,−v∗` , wMr−`+1:Mr+Mr′−2`−1, w

∗
Mr+Mr′−2`)

= exp
{
i2jM t

[
−v+1:`−1 − v

∗
` + w+

Mr−`+1:Mr+Mr′−2`−1
+ w∗Mr+Mr′−2`

]}
×M−1G̃

(Mr′ )
0 (−v1:`−1,−v∗` , wMr−`+1:Mr+Mr′−2`−1, w

∗
Mr+Mr′−2`)

= eit(x+y−z) M−1G̃
(Mr′ )
0 (−v1:`−1,−v∗` , wMr−`+1:Mr+Mr′−2`−1, w

∗
Mr+Mr′−2`)

→ eit(x+y−z) M−1G̃
(Mr′ )
0 (−v1:`−1, v+1:`−1 + w+

1:Mr−`, wMr−`+1:Mr+Mr′−2`−1

,−w+
1:Mr+Mr′−2`−1

)

when jM →∞.

• Similarly, for the first and third components of the integrand in (4.10), we have

M−1G̃
(Mr)

2jM s
(u1:`−1, u

∗
` , w1:Mr−`)→ eisx M−1G̃

(Mr)
0 (u1:`−1,−u+1:`−1 −w

+
1:Mr−`, w1:Mr−`)

and

M−1G̃
(Mr)

2jM s
(v1:`−1, v

∗
` , w1:Mr−`)→ eisz M−1G̃

(Mr)
0 (v1:`−1,−v+1:`−1 − w

+
1:Mr−`, w1:Mr−`)

respectively when jM →∞.
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On the other hand, by Lemma 5, for the integrand in (4.10), there exists a constant
C > 0, which is independent of jM , such that

sup
x,y,z∈R

∣∣∣M−1G̃(Mr)

2jM s
(u1:`−1, u

∗
` , w1:Mr−`)

×M−1G̃(Mr′ )

2jM t
(−u1:`−1,−u∗` , wMr−`+1:Mr+Mr′−2`−1, w

∗
Mr+Mr′−2`)

×M−1G̃
(Mr)

2jM s
(v1:`−1, v∗` , w1:Mr−`)

×M−1G̃(Mr′ )

2jM t
(−v1:`−1,−v∗` , wMr−`+1:Mr+Mr′−2`−1, w

∗
Mr+Mr′−2`

)
∣∣∣

≤C
[

sup
x,y,z∈R

fX?ψj1
(u∗` )fX?ψj1

(v∗` )fX?ψj1
(w∗Mr+Mr′−2`)

]

×

[
`−1∏
k=1

fX?ψj1
(uk)fX?ψj1

(vk)

]Mr+Mr′−2`−1∏
k=1

fX?ψj1
(wk)

 . (4.11)

If 2α+ β ≥ 1, then fX?ψj1
(·) = 22αj1 |Cψ̂(2j1 ·)|2CX(·)| · |2α+β−1 is not only integrable, but

also bounded, which implies that the right hand side of (4.11) is integrable with respect
to (u1:`−1, v1:`−1, w1:Mr+Mr′−2`−1). By the Lebesgue dominated convergence theorem, we

know that lim
jM→∞

23jM
∥∥MF (Mr)

2jM s
⊗` MF (Mr′ )

2jM t

∥∥2
H
⊗Mr+M

r′−2` exists and satisfies

lim
jM→∞

23jM
∥∥∥MF (Mr)

2jM s
⊗` MF (Mr′ )

2jM t

∥∥∥2
H
⊗Mr+M

r′−2`

≤C‖fX?ψj1
‖Mr+Mr′−3
1 ‖fX?ψj1

‖3∞
∫
R3

∣∣∣ψ̂(x)ψ̂(y)ψ̂(z)ψ̂(x+ y − z)
∣∣∣ dx dy dz.

The proof of the statement (a) is completed.
(b) For r ∈ {0, 1, . . . , 2M−2 − 1}, by (2.21) and the orthogonal property of multiple

Wiener-Itô integrals,

σ2
jM = E

∣∣∣T [j1:M ]X(2jM t)
∣∣∣2 = E

∣∣∣2M−2−1∑
r=0

IMr

(
MF

(Mr)

2jM t

) ∣∣∣2 =

2M−2−1∑
r=0

Mr!‖MF (Mr)

2jM t
‖2
H
⊗Mr .

(4.12)

From (2.26), we know that the value of ‖MF (Mr)

2jM t
‖2
H
⊗Mr does not change along with the

time variable. Hence, we choose t = 0. From (2.24), for each r ∈ {0, 1, . . . , 2M−2 − 1},

‖MF (Mr)
0 ‖2

H
⊗Mr =

∫
RMr

∣∣∣M−1G̃(Mr)
0 (λ1:Mr

)ψ̂jM (λ+1:Mr
)
∣∣∣2 dλ1:Mr

.

By changing of variables ui = λi for i = 1, . . . ,Mr − 1 and z = 2jM (λ1 + · · ·+ λMr
),

2jM ‖MF (Mr)
0 ‖2

H
⊗Mr =

∫
RMr

∣∣∣M−1G̃(Mr)
0 (u1:Mr−1, 2

−jM z − u+1:Mr−1)
∣∣∣2|ψ̂(z)|2 du1:Mr−1 dz.

For the integrand of the integral above, by Lemma 5, there exists a constant CM , which
is independent of jM , such that∣∣∣M−1G̃(Mr)

0 (u1:Mr−1, 2
−jM z − u+1:Mr−1)

∣∣∣2 ≤ C2
MfX?ψj1

(2−jM z − u+1:Mr−1)

Mr−1∏
k=1

fX?ψj1
(uk).

Under the assumption 2α+β ≥ 1, fX?ψj1
is not only integrable, but also bounded. Hence,

we can again apply the Lebesgue dominated convergence theorem to get

lim
jM→∞

2jM ‖MF (Mr)
0 ‖2H⊗Mr = c(Mr)‖ψ̂‖2, (4.13)

where c(Mr) is defined in (3.5). The proof is finished by combining (4.12) and (4.13).
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4.5 Proof of the equality (3.9)

From the definition of CjM (i, j) in (3.8), i.e., CjM (i, j) = E[FiFj ] and the definition of

Fi in (3.7), i.e., Fi = 2
jM
2 T [j1:M ]X(2jM ti), we have

CjM (i, j) = 2jME
[
T [j1:M ]X(2jM ti)T [j1:M ]X(2jM tj)

]
.

By replacing T [j1:M ]X with its Wiener-Itô decomposition in (2.21),

CjM (i, j) = 2jME


2M−2−1∑

r=0

IMr

(
MF

(Mr)

2jM ti

)2M−2−1∑
r′=0

IMr′

(
MF

(Mr′ )

2jM tj

)
= 2jM

2M−2−1∑
r=0

E
[
IMr

(
MF

(Mr)

2jM ti

)
IMr

(
MF

(Mr)

2jM tj

)]
, (4.14)

where the last equality follows from the orthogonal property of the multiple Wiener
integrals. For r ∈ {0, 1, . . . , 2M−2 − 1}, by Lemma 1,

IMr

(
MF

(Mr)

2jM ti

)
IMr

(
MF

(Mr)

2jM tj

)
=

Mr∑
`=0

`!

(
Mr

`

)(
Mr

`

)
I2Mr−2`

(
MF

(Mr)

2jM ti
⊗` MF (Mr)

2jM tj

)
.

Because the expectation of the Wiener integrals is equal to zero except the constant
term,

E
[
IMr

(
MF

(Mr)

2jM ti

)
IMr

(
MF

(Mr)

2jM tj

)]
= Mr!

MF
(Mr)

2jM ti
⊗Mr

MF
(Mr)

2jM tj
. (4.15)

The equality (3.9) follows from substituting (4.15) into (4.14).

4.6 Proof of Theorem 2

As mentioned before the statement of Theorem 2, all conditions in Lemma 6 are
satisfied when the random vector F and the matrix C are given by (3.7) and (3.8). Hence,

it suffices to study the behavior of E

[(
CjM (i, j)−

〈
DFj ,−DL−1Fi

〉)2]
.

By (2.31) and (2.28), we have

DFj =

2M−2−1∑
r=0

MrIMr−1

(
MF

(Mr)

2jM tj

)
and

−DL−1Fi = 2
jM
2 D

2M−2−1∑
r=0

1

Mr
IMr

(
MF

(Mr)

2jM ti

) = 2
jM
2

2M−2−1∑
r=0

IMr−1

(
MF

(Mr)

2jM ti

) .
Therefore,

〈
DFj ,−DL−1Fi

〉
= 2jM

〈2M−2−1∑
r=0

MrIMr−1

(
MF

(Mr)

2jM tj

)
,

2M−2−1∑
r′=0

IMr′−1

(
MF

(Mr′ )

2jM ti

)〉
.

(4.16)

By Lemma 1, (4.16) can be rewritten as follows

〈
DFj ,−DL−1Fi

〉
= 2jM

2M−2−1∑
r=0

Mr!
[
MF

(Mr)

2jM tj
⊗Mr

MF
(Mr)

2jM ti

]
+ I1 + I2, (4.17)
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where

I1 = 2jM
2M−2−1∑
r=0

Mr

Mr−1∑
`=1

(`− 1)!

(
Mr − 1

`− 1

)2

I2Mr−2`

(
MF

(Mr)

2jM tj
⊗` MF (Mr)

2jM ti

)
and

I2 = 2jM
2M−2−1∑
r,r′=0
r 6=r′

Mr

Mr∧Mr′∑
`=1

(`− 1)!

(
Mr − 1

`− 1

)(
Mr′ − 1

`− 1

)
IMr+Mr′−2`

(
MF

(Mr)

2jM tj
⊗` MF (Mr′ )

2jM ti

)
.

We recognize that the first term in (4.17) coincides with the expression (3.9) of CjM (i, j).
By the Minkowski inequality,√

E

[(
CjM (i, j)−

〈
DFj ,−DL−1Fi

〉)2]
=
√
E [|I1 + I2|2]

≤
√
E [|I1|2] +

√
E [|I2|2] = 2jMUjM (tj , ti),

where UjM (·, ·) is defined in (3.3). By Proposition 2, we know that lim
jM→∞

2
3
2 jMUjM (·, ·)

exists. Hence, for i, j ∈ {1, 2, . . . , d}, we get√
E

[(
CjM (i, j)−

〈
DFj ,−DL−1Fi

〉)2]
= O(2−

1
2 jM )

when jM is sufficiently large.

4.7 Proof of Proposition 3

By the equality (3.9), it suffices to prove that 2jM MF
(Mr)

2jM ti
⊗Mr

MF
(Mr)

2jM tj
converges

when jM →∞ for each r ∈ {0, 1, . . . , 2M−2 − 1}. By (2.24),

MF
(Mr)

2jM ti
⊗Mr

MF
(Mr)

2jM tj
=

∫
RMr

MF
(Mr)

2jM ti
(λ1:Mr ) MF

(Mr)

2jM tj
(λ1:Mr ) dλ1:Mr

=

∫
RMr

[
M−1G̃

(Mr)

2jM ti
(λ1:Mr

)ψ̂jM (λ+1:Mr
)
] [

M−1G̃
(Mr)

2jM tj
(λ1:Mr

)ψ̂jM (λ+1:Mr
)
]
dλ1:Mr

=

∫
RMr

[
M−1G̃

(Mr)

2jM ti
(λ1:Mr ) M−1G̃

(Mr)

2jM tj
(λ1:Mr )

] ∣∣∣ψ̂jM (λ+1:Mr
)
∣∣∣2 dλ1:Mr .

From the recursive formula (2.23) and (2.24) with the initial term (2.13), we know that
M−1G̃

(Mr)
t (λ1:Mr

) satisfies

M−1G̃
(Mr)
t (λ1:Mr

) = M−1G̃
(Mr)
0 (λ1:Mr

) exp
(
itλ+1:Mr

)
.

Hence,

MF
(Mr)

2jM ti
⊗Mr

MF
(Mr)

2jM tj

=

∫
RMr

exp
(
i2jM (ti − tj)λ+1:Mr

) ∣∣∣M−1G̃(Mr)
0 (λ1:Mr )

∣∣∣2∣∣∣ψ̂jM (λ+1:Mr
)
∣∣∣2 dλ1:Mr .

By changing of variables {
uk = λk for k = 1, 2, . . . ,Mr − 1,

z = 2jMλ+1:Mr
,
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(a) X1
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(b) X2

Figure 3: Testing signals

we get

2jM MF
(Mr)

2jM ti
⊗Mr

MF
(Mr)

2jM tj

=

∫
RMr

ei(ti−tj)z
∣∣∣M−1G̃(Mr)

0 (u1:Mr−1, 2
−jM z − u+1:Mr−1)

∣∣∣2∣∣∣ψ̂(z)
∣∣∣2 du1:Mr−1 dz.

Under the condition 2α + β ≥ 1, we apply Lemma 5 and the Lebesgue dominated
convergence theorem to get

lim
jM→∞

2jMMF
(Mr)

2jM ti
⊗Mr

MF
(Mr)

2jM tj

=

∫
R

ei(ti−tj)z
{∫

RMr−1

∣∣∣M−1G̃(Mr)
0 (u1:Mr−1,−u+1:Mr−1)

∣∣∣2 du1:Mr−1

} ∣∣∣ψ̂(z)
∣∣∣2 dz.

Note that the integral inside the curly brackets above is just the constant c(Mr) defined
in (3.5).

Appendix: illustration of the stability of the multi-scale informa-
tion extracted by STQN with respect to time shifting and small
deformations

For the purpose of showing the effect of time shifting and distortion on the outputs of
STQN, we consider two testing signals X1 and X2, where

X1(t) =

[∑
k∈Z

e−(t−10k)
2

]
cos(2πω1t) +

[∑
k∈Z

e−(t−10k+5)2

]
cos(2πω2t), t ∈ R,

ω1 = 2 and ω2 = 4.5 (units: Hz), while X2 is obtained by time warping X1 and shifting
the deformed signal by 5 seconds. These two signals are displayed in Figure 3. In Figure
4, the magnitudes of outputs of U [j1], SJ [j1], U [50, j2], and SJ [50, j2] at different scales
and time are represented by colors. The similarity between Figure 4(c) and Figure 4(d)
(see also Figure 4(i) and Figure 4(j)), shows that the STQN coefficients are stable to
time shifting and small deformations. Moreover, the location of peak scales in Figure
4(c) and 4(d) show that X1 and X2 have frequency components around 2 Hz and 4.5 Hz
(corresponding to j1 ≈ 50 and j1 ≈ 7) during some periods within a 30-second interval.
Figure 4(e) and Figure 4(f) were obtained by setting j1 = 50 and computing the values of
U [50]X1 and U [50]X2 for each time point. These two figures show that the 2-Hz activities
in X1 and X2 occur per 10 second interval approximately, i.e., at the frequency 0.1 Hz.
This observation can also be obtained from the visualization of the second-order STQN
coefficients in Figure 4(i) and Figure 4(j) by finding the peak scales. Hence, the STQN
has the ability on extracting multi-scale information from signals.
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(c) SJdbj1ecX1
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(h) Udb50, j2ecX2
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(i) SJdb50, j2ecX1
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Figure 4: Illustration of the stability of the STQN coefficients to time shifting and small
deformations.
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