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Spins, percolation and height functions
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Abstract

To highlight certain similarities in graphical representations of several well known
two-dimensional models of statistical mechanics, we introduce and study a new family
of models which specializes to these cases after a proper tuning of the parameters.

To be precise, our model consists of two independent standard Potts models,
with possibly different numbers of spins and different coupling constants (the four
parameters of the model), defined jointly on a graph embedded in a surface and its
dual graph, and conditioned on the event that the primal and dual interfaces between
spins of different value do not intersect. We also introduce naturally coupled height
function and bond percolation models, and we discuss fundamental properties of the
resulting joint coupling.

As special cases we recover the standard Potts and random cluster model, the
six-vertex model and loop O(n) model, the random current, double random current
and XOR-Ising model.
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Introduction

Graphical representations are ubiquitous in statistical mechanics and a thorough

understanding of their interplay often leads to a transfer of information between different
models. To capture some of their common features, we introduce a new family of two-
dimensional models with four parameters (q,¢,a,b) € {1,2,...}?
for a graph embedded in a surface, we consider three jointly coupled models (each of

which comes in a primal and a dual version) in the form of

* spin models (o, ¢’) defined on the vertices and faces,
* bond percolation models (w,w’) on the primal and dual edges,

x (0, 1]?. To be precise,

* height functions (h,%’) defined on the vertices and faces whose gradient is a

deterministic and local function of (o, o).
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Spins, percolation and height functions

The starting point is the spin model which is given by a pair of independent primal and
dual Potts models with ¢ and ¢’ spins, and coupling constants satisfying a = e~” and
b=e"" respectively, and conditioned on the event that their interfaces do not intersect
(as we will see, this seemingly strange conditioning is the main reason why the model
acquires some very natural properties). The percolation model is then built on top of
the spin model using additional and independent randomness, and the height function is
a deterministic function of the spin configuration. The relationship between the spin o
and percolation model w (and likewise for ¢’ and w’) is a generalization of the Edwards—
Sokal coupling between Potts and Fortuin-Kasteleyn random cluster models [16,17, 36],
meaning that ¢ is obtained by independent assignments of spins to every cluster of w.
Our model includes as special cases the

* FK(gq') random cluster model fora +b =1,

* (staggered) six-vertex model for g = ¢’ = 2,

* loop O(n) model forg=n, ¢ =2and b =1,

» random current model forg =1, ¢ =2and a® + > =1,

* double random current and XOR-Ising model for ¢ = ¢’ = 2 and

a®+bv? =1.

As a result, we give a unified framework for the known relations between these models [1,
6,9,16,19,22,30,31, 35,37-391.

Moreover the coupling (w,w’, o, 0’, h, h') uncovers a new underlying structure. Indeed,
another contribution of this article is the study of the stochastic interplay between the
three different types of random configurations. For example, a crucial feature of this
coupling will be that for a + b > 1, the two percolation configurations (w,w’) are such
that an edge and its dual edge are never simultaneously open in w and w’ respectively
(but they can be simultaneously closed). We call this the exlusion property. One should
not confuse this with the exact exclusion property which says that an edge is present in
w if and only if its dual edge is absent in w’. This stronger property holds true only on
the line a + b = 1 which corresponds to the classical random cluster model. On the other
hand, the exclusion property does not hold for a 4+ b < 1. In this regime, an edge and its
dual edge are never simultaneously closed in w and w’.

In the present work we use the exclusion property together with the rich structure
of the law of (w,w’, 0,0’ h, k') that includes an Edwards-Sokal-type coupling between
w and o, and the fact that the interfaces separating vertices with different values of o
are contained in w’ (and likewise for ¢’ and w). As a result we prove that the variance
of the height function evaluated at a face is, up to constants, equal to the expected
number of clusters in the percolation model w that surround that face. This implies that
in the self-dual model a = b > 1/2 on the square lattice (when w and w’ have the same
distribution) the height function delocalizes (has unbounded variance) whenever w does
not percolate. Note that this is not a direct consequence since the exclusion property
is not exact as in more classical percolation models. However, the structure of the
coupling is rich enough to obtain this implication. By the Edwards—-Sokal property, the
fact that w does not percolate, is up to technical details (that are for example taken care
of in [29]), implied by the fact that ¢ decorrelates at large distances. This is used in [29]
to provide a proof of delocalization of the height function of the six-vertex model (that
corresponds to ¢ = ¢’ = 2) for the range of parameters a € [1/2,1/v/2 + v/2]. Before,
the only rigorously known cases in this regime were a = 1/2 [19], a = \/5/2 [9, 23],
and its small neighbourhood [18], and a = 1 [7]. Independently of [29] and using more
technically involved arguments, the result was recently also extended in [15] to all
a€[1/2,1].
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The coupling introduced in this paper is also crucially used in the recent proof of
conformal invariance of critical double random currents [13, 14], and together with the
construction of [28] should be relevant in the future study of the critical Ashkin-Teller
model.

We note that in the special case ¢ = ¢’ = 2 and a = b < 1/2 the coupled percolation
models (w,w’) studied here were independently introduced by Ray and Spinka in [37].
For g = ¢’ = 2, the laws of the marginals on w and w’ (but not the full coupling) are also
present in the work of Glazman and Peled [19] on the six-vertex model, and are closely
related to the percolation models introduced by Pfister and Velenik [35]. We also note
that the spin models (o, 0’) are a variant of the interaction-round-a-face model studied
in [4,32].

This article is organized as follows:

* In Sect. 1 we define the model and describe the basic relationship between the
spin, height function and percolation models.

e In Sect. 2 we study the interplay between the spin, percolation and height function
model in more detail. We show an Edwards-Sokal-type coupling between the spins
and the percolation clusters. Moreover we compare the variance of the difference
of the height function between two points with the expected number of clusters
of the percolation model that disconnect these points. Based on this property
we establish in Theorem 2.8 that for the self-dual model on the square lattice
(¢ = ¢ and a = b > 1/2), the lack of percolation implies delocalization of the height
function. In [29] we apply this the six-vertex model.

* In Sec. 3 we show how in special cases we recover other known models of statistical
mechanics mentioned above. Moreover, using duality arguments, we provide an
alternative representation of the planar spin model as a classical unconditional
spin model which turns out to be a special case of the (N,, Ng) model of Do-
many and Riedel [8]. This relation is a generalization of the Ashkin-Teller model
representation of the six-vertex model [31, 39].

1 The model

The basis for our construction will be the Potts model. Let ) be a finite set with ¢
elements. Recall that for a finite graph G = (V, E') and a coupling constant J, the g-state
Potts model [36] is a probability measure on Q" given by

1(s) exp ( —7 Y 1s(w) # s(vg)}), seqQY, (1.1)

Tz
G {v1,v2}€E

where Z¢ 4 is the partition function. To denote the dependence on the parameter, we
will write Z¢ 4 = Z¢ 4(z), where z = e/ — 1. We say that the model is ferromagnetic if
J > 0 (or equivalently x > 0) and antiferromagnetic if J <0 (=1 < z < 0). We note that
our definition is the standard one (see e.g. [21]) up to a rescaling of the weight in (1.1)
by e=7/IEl,

The ¢-state Potts model is directly related to the FK(q) random cluster model [17]
by the classical Edwards-Sokal coupling [16], where for each edge {v1,v2} satisfying
s(v1) = s(vq), one declares it open with probability 1 — e~/ and independently of other
edges. The resulting configuration of open edges ( gives rise to a bond percolation
model which is the random cluster model. Moreover, in this coupling, conditioned on (,
the spins s can be recovered by choosing a uniform spin from @) independently for each
cluster of (, i.e., a connected component of (V, (), including isolated vertices.

We are now ready to define our model.
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Figure 1: A piece of the square lattice (black vertices) and its dual (white vertices)
together with a configuration satisfying the exclusion property (a + b > 1). Note that the
exclusion is not exact. The configurations w and w’ are drawn in blue and red respectively,
and 7n(¢’) C w and n(o) C w’ are represented by solid lines. The spins o, ¢’ and height
functions h, h' are constant on the clusters of w, w’ respectively. The solid lines are both
domain walls (contours) for the spins and level lines for the height functions. In the
coupling, the increments of the heigh function % through different contours of 7(¢’) are
independent if the contours belong to different clusters of w, and otherwise they are
deterministically related to each other

1.1 Spin model

Let M be a compact, orientable surface with no boundary, or the plane. Let G = (V, E)
be a finite connected graph embedded in M in such a way that each face is a topological
disc, and let G* = (U, E*) be its dual also embedded in M, where U is identified with the
set of faces of G. For an edge e € EU E*, we write e* € E U E* for its dual edge. Similarly
for w C EUE*, we define w* = {e* : e € w}.

Fix q,¢' € {1,2,...} and choose two symmetric sets Q, Q' C C, i.e., satisfying Q = —Q
and Q' = —(@Q’, and such that |Q| = ¢ and |Q’| = ¢’. A spin configuration on V (resp. U) is
any function o : V — @ (resp. ¢’ : U — Q). We define the contour configurations n(c) C
E* of o to be the set of all dual edges e* such that the endpoints of the corresponding
primal edge e are assigned different spin by o. We also define 7(¢’) C E in a dual fashion.
The configuration space of our (constrained) spin model is

Y ={(0,0) € Q" x Q" :ne) Nn(c’) =0} (1.2)

In other words, this is the set of all pairs of primal and dual spin configurations (o, c’)
whose interfaces, interpreted as subsets of M, do not intersect. Equivalently,

(0(v1) = o (v2)) (0" (1) — 0" (uz)) = 0 (1.3)

for every pair of a primal edge {v;,v2} and its dual {uy, us}.
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We study a probability measure on ¥ given by
1 /
P(o, 0/) — Ea\n(a )Ib\ﬁ(U)l, (1.4)

where a,b € (0,1] are parameters of the model, and Z = Z(q, ¢/, a, b) is the partition func-
tion. This measure is equivalent to a pair of independent primal and dual ferromagnetic
Potts models with ¢ and ¢’ spins, with coupling constants J = —logb and J' = —loga
respectively, and conditioned on X.

From this definition we immediately get the following description of mutual condi-
tional laws for ¢ and o”’.

Corollary 1.1. Conditioned on the values of o', the spins o are distributed like the ¢-state
Potts model defined on the quotient graph G/n(c’) where each connected component
of n becomes a single vertex. By duality, the analogous statement holds true when the
roles of o and o’ are exchanged.

Remark 1.2. We will only consider homogeneous weights a and b, but most of our
considerations generalize to non-homogeneous situations with a, = e~7/¢* and b.- = e~ 7e,
where J and J’ are arbitrary sets of positive coupling constants on the primal and dual

edges respectively.

1.2 The height function

Assume that M is of genus zero. We say that {v1, u1,v2, u2} is a quad, if {v1,v2} € E
and {v1,v2}* = {u1,us}. For (0,0’) € X, we will consider a height function H : VUU — R
defined up to a constant by the rule: If u € U and v € V belong to the same quad, then

H(u) — H(v) = o(v)o'(u). (1.5)

The constant can be chosen by fixing the value of the function at a particular vertex or
face. That these relations are consistent follows from condition (1.3). Indeed, (1.3) is
equivalent to the fact that the sum of the gradients (1.5) around each quad is zero. We
will denote by h and &' the restriction of H to V and U respectively. Note that if {vy,vs}
and {u1,us} are mutually dual edges, then

h(ve) — h(v1) = o' (u1)(o(v2) — o (v1)) = 0’ (uz) (0 (v2) — o (v1)), (1.6)
W (uz) = B (ur) = o(v1)(0” (u2) — 0’ (u1)) = o(v2)(0’ (u2) — o’ (w1)). (1.7)

It follows from the definition that h is constant on the clusters of constant spin o, and
h' is constant on the clusters of constant spin o”’.

Remark 1.3. For surfaces of higher genus one can define in the same way a height
function on the universal cover of M. Equivalently, one can talk about the increment of
the height function between two points taken along a curve, up to the homotopy of the
curve. We will use the latter definition applied to the torus in Theorem 2.8.

1.3 Bond percolation

We also augment the model with a bond percolation configuration using the following
procedure: Given (o,0’) € ¥ sampled according to P,

1. Declare each primal edge in 7(¢’) and each dual edge in 7(o) open. This is to say
that an edge is open if the corresponding dual edge carries two different spins in
the dual spin configuration.

2. For each pair of a primal and its dual edge e and e* such that neither e € 5(¢’) nor
e* € n(o), and independently of other such pairs, declare the state of the edges
with the following probabilities chosen depending on the value of a + b:
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a+b<1 a+b>1
e open, e* closed a 1-0b
e closed, ¢* open b 1—a
both e, e* open l—a—0 0
both ¢, e* closed 0 a+b—1

Note that in both cases the probability of opening e and e* is1 —band 1 — a
respectively.

We call the resulting set of all open primal and dual edges w and w’ respectively.
Note that w \ n(¢’) is exactly the set of open edges from the Edwards-Sokal coupling
mentioned above applied to the Potts model o on the quotient graph G/n(o’) . By duality,
the same is true for w’ \ n(o) and o’.

A cluster of w, resp. w’, is a connected component of the graph (V,w), resp. (U,w’),
including the isolated vertices. We define

0% = {(w,w’,0,0") : 0 constant on clusters of w and n(c) C w’,
o’ constant on clusters of w’ and n(¢’) C w},
where (0,0') € ¥, to be the space of consistent configurations for the spin model

augmented with the sets of open edges, and we denote by P(w,w’, o, 0’) the probability
measure on (1Y given by the coupling above.

Remark 1.4. We note that the left-hand side of the table above forq=¢' =2anda =10
describes the process studied by Ray and Spinka [37].

For ¢ C E, we write ¢ = E* \ ¢*. It follows from the definition that
wh Cw' fora+b<1, and wiDWw fora+b>1

almost surely. We define Q¥ <; and QX >; respectively to be 23 with these additional
restrictions imposed on w and w’.

Note that if (w,w’,0,0") € QX>;, then w and w’ satisfy the mentioned exclusion
property. Moreover for the boundary case a + b = 1, we have exact exclusion meaning
that w! = w’ almost surely.

Finally, by definition the weight of each configuration (w,w’, 0,0’) € Q¥<; is

g\ P\ (1 gyt 0wl (1.8)
and the weight of (w,w’,0,0") € Q¥4 is
A"l (1 = pYAIE@ (@) (1 _ )l \n@)] (g 4 — 1)E N L) (1.9)

Note that (1.8) is independent of (o, o).

2 Properties of the coupling

In this section we discuss fundamental properties of the coupling between the three
types of random configurations.

2.1 Edwards-Sokal property

It turns out that the clusters of w encode geometrically the stochastic dependencies
of the spin model ¢. This is manifested in the following Edwards-Sokal property of
the coupling between ¢ and w. Clearly, the same holds for w’ and ¢’ by duality. In the
following, for ¢ C E, we denote by V' (£) the set of vertices incident on at least one edge
in &.

1We thank Ron Peled for this observation
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Proposition 2.1. Conditioned on the configuration w,

1. the spin o is distributed like an independent uniform assignment of a spin from @)
to each cluster of w.

2. the spin ¢’ is distributed like the ¢'-state Potts model with coupling constant J
satistying e~/ = 1%, and defined on the dual (V(w),w)* of (V(w),w), i.e., the graph
whose vertices are the faces of w and where two faces are adjacent, if they share
an edge in w. Note that multiple edges and loops are possible.

3. in particular, o and ¢’ are independent.

Proof. We claim that for fixed (w,o’) with n(¢’) C w, the weight of each consistent
configuration (w, o, ¢’), i.e., such that o is constant on the clusters of w, is equal to

aln(”/)‘(l _ b)lw\n(a/)\blel’ 2.1)

where w' = E* \ w*, and in particular is independent of ¢. Indeed this follows from the
fact that each edge in

* (o) contributes weight b by the definition of the spin model,

» wh\ n(0) also contributes weight b since this is the probability that a dual edge
{u1,uz} with o’(u;) = o’(u2) ends up in w' in step (2) of the definition of the edge
percolation model.

This means that conditioned on (w,c’), we have a uniform distribution on all spin
configurations o such that n(c) C w'. This is equivalent to choosing an independent
uniform spin for each cluster of w and we conclude property (1).

Property (2) also follows from (2.1), the definition of the Potts model, and the fact
that the only constraint on ¢’ is that 7(¢’) C w.

Conditional independence of ¢ and ¢’ follows from the fact that (2.1) does not depend
ono. O

We note that property (1) for ¢ = ¢’ = 2 was first studied in [19, 37].

Remark 2.2. Since (1.8) is independent of both ¢ and ¢’ for a + b < 1, property (1) from
the proposition above holds in this case simultaneously for o and ¢’ when conditioned
on (w,w’).

We start by showing how o-spin correlations are described by w-connectivity proba-
bilities in the same way the Potts model correlations are given by the random cluster
connectivity probabilities (the Edwards-Sokal property). Let oy be a random variable
uniformly distributed on Q, and let m(k) = (o}) for k € {0,1,...}. Since we assume that
Q is a symmetric subset of R, we have m(2k +1) = 0. For ¢ CE and vy,...,v; € V, we
define 7(€) to be the partition of {vy,...,v;} induced by the connected components of £.

Proposition 2.3 (o-spin correlations via w-connectivities). Let vy, ...,vxy € V and 74, ...,
rr € {0,1,...}. Then

Elo(v)" o)™ = 3 P(r(w) = P) [[ m( > ),
P

AeP  wjeA

where the sum is taken over all partitions P of {v1,...,vr} such that for all A € P,
> v,e4 T Is even. In particular,

E[o(v1)o(v2)] = m(2)P(vy < vy),
where {v; & vo} is the event that vy and vy are in the same cluster of w.

Proof. It is enough to condition on w and use Proposition 2.1. O
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2.2 Height function variance via nesting of percolation clusters

We will now compare the variance of the difference of the height function h’ between
two faces u; and us to the expected number of clusters of the percolation models that
one has to cross when going from u; to us. We assume here that M is of genus zero
but similar arguments taking into account nontrivial topology of some clusters can be
applied to surfaces of higher genus.

Consider the percolation configuration w, and let ¢ and ¢’ be consistent with w, i.e.,
o is constant on the clusters of w and 7(¢’) C w. For a cluster C of w, define o/ : U — Q'
to be the spin configuration which is equal to ¢’ on the faces incident on C and satisfies
n(o;) C C. In other words, ¢, is the spin configuration obtained from ¢’ by erasing the
contours in 7(c’) which are not contained in C and changing the spins in a consistent
way. Also, denote by ¢(C) the value of o assigned to any vertex in C. Fix uj,us € U, and
let

dh/ = h(ug) — h(u1), and do, = ol(uz) — op(uy).
We claim that

dh' =" o(C)dop. (2.2)
C

To justify this, we will say that a non-trivial cluster C of w disconnects u; from uo, if the
two faces belong to two different connected components of M \ C, where we think of C
as the closed subset of M given by the union of its edges.

Remark 2.4. Note that if C does not disconnect u; from u,, then da’c = 0. Actually if
doj # 0, then C necessarily contains a connected component of 7(¢’) that disconnects u,
from ws.

By the above remark, the sum in (2.2) can be restricted to only these clusters that
disconnect uy from wuy. Let v = {4y,...,%;} be a path of pairwise adjacent faces with
u1 = w1 and u4; = ug, and such that the only non-trivial clusters of w that it crosses are
those that disconnect u; from us, and moreover « crosses each of these clusters only
once. For j € {1,...,1—1}, let v; be one of the two vertices of the edge dual to {a;,%,11}.
By the definition of &’ (1.7) we have

1
dh' =Y "o (v;) (0 (it;) — o' (iLj11))-
Jj=1
Note that as long as v stays in between two clusters of w, the increments in the sum
above are zero since the value of ¢’(%;) is constant. On the other hand, when ~y crosses a
cluster C, then the value of o(v;) is constant and equal to ¢(C), and hence, by a telescopic
sum, the contribution corresponding to C is exactly o(C)do(,. This justifies (2.2).

We will now use this formula to estimate the variance of dh’. To this end, let oy be a
random variable uniformly distributed on @). By property (1) and (2) from Proposition 2.1,
conditioned on w, ¢(C) and o(, are independent, and moreover ¢(C) ~ o and o(C’) ~ o
are independent for different clusters C and C’ of w. Hence, using (2.2) we can write

Var|dh/] :E[(Zo(c)da’c)z}
C
:Z Z E[o(Cy1)dog,0(C2)dog, | w]P(w)

wCEC1,C2Cw

=Y > E[o(C)o(C) | wlEldog, dog, | w]P(w)

wCEC1,C2Cw
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—E[03] 3 3" El(dot)? | w]P(w)

wCECCw

~E[f]E[ > (do})?]
C
=E[0]] > d’E[N,],
d#0

where Ny = Ng(u1,u2) is the number of clusters C of w such that do; = d. Define
Nzo = 340 Na, and let C/2 = max{li[ : i € Q'}. Then |do¢| < C, and from the above
computation we immediately get the following equivalence up to constants.

Proposition 2.5. We have
C?E[0)]E[No] > Var[dh'] > E[o5]E [Ny].
Note that in the special case when ¢’ = 2 and Q' = {—i, ¢}, we actually get the equality
Var[dh'] = 4i*E[o]|E[No].

We note that this identity in the setting of the double random current model and the re-
lated height function was first obtained in [12], where it was used to establish continuity
of the phase transition of the Ising model on any bi-periodic planar graph.

To prove the final result of this section we will need the following description of the
mutual conditional laws for the two bond percolation processes.

Lemma 2.6. Assume that a + b > 1. Then conditioned on (w’,c’), the percolation
configuration w is distributed like n(c') U ¢, where ( is an independent bond percolation
process on (w')" with success probability (1 —b)/a.

Proof. This follows from the fact that, tossing the four-sided die from the right-hand
side of the table in (1), and conditioning on e* being closed, we open e with probability
(1-1b)/a. O

We say that a cluster C’ of w’ disconnects face u; from wus, if either one of the two
faces is in C’, or they belong to two different connected components of M \ C’, where we
think of C’ as the closed subset of M given by the union of its edges. Note that the trivial
clusters containing u; and us satisfy this definition.

The next result compares the number of clusters of w’ disconnecting u; from uy with
the number of clusters C of w which satisfy do, # 0 in the case a + b > 1.

Proposition 2.7. Let N’ = N'(uy,us) be the number of clusters of w’, that disconnect
uy from us. Assume that a +b > 1. Then

E[Nx0] > (1 2)(E[N] - 1).

Proof. Recall that by Proposition 2.1, when conditioned on ’, the spins ¢’ are assigned
to each cluster of w’ independently and uniformly in Q'. Let C1,...,C), be the clusters
of w' that disconnect u; from u, ordered according to the first intersection points
with a chosen path from u; to uz. Note that if two consecutive clusters C;,C;,, are
assigned different spins, then for topological reasons, there must exist a circuit in 7(c’)
disconnecting C; from C;,, and hence also disconnecting u; from u,.

By Lemma 2.6, conditioned on ¢’ and w’, we recover w by choosing randomly edges
from (w’)" and adding them to 7)(¢”’). This means that for every pair C;,C;, , with different
spin ¢’, there exists at least one cluster C of w, disconnecting u; from u,. Moreover, at
least one of these clusters must satisfy do(.(u1,u2) # 0 (since the sum of do, over all such

clusters is nonzero). Since the clusters of w’ are disjoint, the clusters of w corresponding
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to different pairs Cj,C;,, are also disjoint. This means that N is at least equal to
the number of pairs Cj, C;,, with different spin ¢’. The latter is equal in distribution to
the number of nearest neighbour disagreements in an i.i.d. sequence of length N’ and
distribution o¢. Hence, we get the desired inequality by an elementary computation of

the expectation. O

Application to the self-dual model with ¢ = ¢’ and a = b

For ¢ = ¢’ = 2, the question of delocalization at a = b > 1/2 is still open for a large
range of a. One of the difficulties in studying this regime is that, e.g. the classical
Baxter—Kelland-Wu coupling [3] between the six-vertex model and the random cluster
model is no longer a probabilistic construction but involves complex-valued measures.
In our case this is the regime where the marginal of P on w is not positively associated
which is a major technical obstacle. We say that a bond percolation process on an infinite
graph percolates if it contains an infinite cluster. The main contribution of this section is
a partial result saying that no percolation of w is a sufficient condition for delocalization
in the self-dual model.

To make full use of translation invariance, we will consider the model Py, defined
on the square lattice torus T, of size n x n. Self-duality implies that w shifted by (%, %)
(so that T,, becomes T? ~ T,) has the same distribution under P as «’. This property
clearly carries over to any subsequential limit Pz> = limy_, PT%. We talk about
subsequential limits here since there is no evident stochastic monotonicity of the model
that would guarantee the uniqueness of the limit. In our last theorem we show that
if w does not percolate Pz2-almost surely, then w necessarily contains infinitely many
clusters surrounding the origin and hence the associated height function delocalizes.
The first implication is immediate by self-duality whenever w' C «’, but this property
only holds for a = b < 1/2. To get the result in full generality we use the essential fact
that n(o) C ', which in particular implies that if (o) percolates, then so does w’'.

Theorem 2.8. Consider a subsequential limit Py = limg_, o P’Enk of the self-dual model
with ¢ = ¢’ and a = b > 1/2, and assume that

Pz2(w percolates) = 0. (2.3)
Then
Pz (infinitely many clusters of w surround the origin) = 1. (2.4)
and
lim Varp,, (7 (u1) — B (uz)] = . (2.5)

|ur—us|—o0

We note that the particular choice of the path in the statement above is not essential
to the argument.

Remark 2.9. Sincea =b > % we have the exclusion property w* Nw’ = (). One therefore
expects (2.3) to hold true if e.g. one can establish ergodicity of the marginal of P2
onto w. Indeed, if this were true, then by duality, positive probability of percolation would
imply coexistence of disjoint infinite clusters of w and w’, which one does not expect to
happen. However, it is not clear why the infinite volume limit should be ergodic, and
indeed it follows from the results of [11] and Proposition 3.6 that this is not true in the
boundary case a = 1/2 and ¢ > 2.

To prove the theorem, we will need the following lemma. It is highly likely that this
result exists in the literature but we could not find a proper reference, and thus we give
a proof for completeness.
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Lemma 2.10. Condition (2.3) guarantees that property (1) from Proposition 2.1, which
says that under Pr,, the spins o are sampled by independently chosing a spin for each
cluster of w, carries over into the infinite volume limit P-.

Proof. Let S be the law on spin configurations on the vertices of Z? coupled with P
by independently assigning a spin from @ to each cluster of w. We need to prove that
S is equal in distribution to the marginal of P72 on o. To this end, consider a fixed
box A; and € > 0. For L > [, let E; 1, be the event that no cluster of w connects A; to
the boundary of Az, and take L so large that Py2(E; ) > 1 —e. Such L exists since
by (2.3) there are only finite clusters almost surely. Next, take k so large that ny > L
and the total variation distance between the law of Py, and Pyz: restricted to Ay is
smaller than e. This is possible by weak convergence and since Ay, is fixed. Let P; be
the former and P5 the latter law, and denote by (w1, 01) and (ws, 02) the corresponding
configurations restricted to A;. By the classical property of the total variation distance,
there exists a coupling Q of P; and P> satisfying Q(w; = wa,01 = 02) > 1 — ¢, and hence
also Qw1 = wa, 01 = 09, Ez,L) > 1 — 2e. Note that conditioned on the latter event, by
property (1) from Proposition 2.1, S and o; have the same law when restricted to A;.
The last inequality therefore implies that the total variation distance between S and the
marginal of P72 on o restricted to A; is smaller than 2¢. Since [ and ¢ were arbitrary,
this ends the proof. O

We are now ready to prove our last theorem.

Proof of Theorem 2.8. Fori € (), let Perc(i) be the event that the subgraph of Z? induced
by {v : o(v) = i} contains an infinite connected component. By Lemma 2.10 we know that
o is distributed like an independent assignment of a spin to each cluster of w. By (2.3)
all clusters of w are finite almost surely, and hence Perc(:) are tail events with respect to
these independent spin assignments. Therefore by Kolomogorov’s 0-1 law, conditioned
on w, the probability of Perc(i) is either 0 or 1. In the latter case, by symmetry under
spin relabelling, we have that the probability of (), Perc(i) is also 1. Hence,

PZ2( U Perc(i)) =Eg [PZ2< U Perc(i) | w)}
i€Q i€Q
= Eg2 [PZQ( ﬂ Perc(i) | w)}

i€Q
= PZ2( N Perc(z')). (2.6)

i€Q

Note that for topological reasons, on the event Perc(:) N Perc(j) for ¢ # j, there must be
at least one infinite interface in (o) separating two infinite components with different
o-spins. Since n(c) C ', we infer that on the event Perc(i) N Perc(j), the configura-
tion w’ percolates. By self-duality and (2.3), w’ does not percolate a.s., and therefore
P2 (Perc(i) N Perc(j)) = 0 for ¢ # j. Hence by (2.6), Py2(Perc(i)) = 0 for alli € . We
therefore conclude that there are infinitely many clusters of n(o), and hence also of (o),
surrounding the origin a.s. Since w does not percolate and 7(o’) C w a.s., there must be
infinitely many clusters of w surrounding the origin a.s. which gives (2.4).

It is now enough to use (2.4) to deduce delocalization of the height function (2.5).
This can be done in a similar way to the proofs from Sect. 2.2. The arguments need to be
adjusted to the topology of the torus by also considering noncontractible clusters that
may intersect the path along which the increment of the height function is computed.
We leave the details to the reader. O
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3 Relationship with known models

For special values of the parameters a,b and ¢, ¢, we recover various well known
models of statistical mechanics. It will be useful to have an explicit formula for the
probability of w in terms of an associated Potts model. To this end recall the notation
from the beginning of Section 1.

Corollary 3.1. The marginal distribution on (w, ") is given by
P(w,0') q’“(‘“)a‘"((’/”(l — b)‘“\"("/”b‘E\‘“'1{n(gl)gw}, o' eV wCE. 3.1)
Summing over all o/, we get

P(w) & " (152) ¥ Z )y (5220),  w CE. (3.2)

a

Proof. The first equality follows directly from (2.1), and the fact that there are exactly
¢"“) configurations of o which are constant on the clusters of w. We get the second
equality from the fact that

a_\In(@") —a—
o ()" = 2wy (). D

o' (0" Cuw

Note that the Potts model whose partition function appears in (3.2) is ferromagnetic
ifand only ifa + b < 1.

3.1 FK-random cluster model fora+b6 =1

Recall that in this case w’ = w’ almost surely, and hence (1.8) simplifies to
1
P(w,w’,0,0") = Ealwl(l —a)BW (W, 0,0") € Q3 (3.3)

where QY = QEZl N QEgl-

We first consider the case when M is of genus zero. We can readily recognize the
underlying Fortuin-Kasteleyn random cluster model [17] (see e.g. [21] for an exposition
on this classical subject).

Proposition 3.2. Assume that M is of genus zero, and a + b = 1. Let

/

q

P a1

Let k(w) be the number of clusters of w. Then the marginal distribution of P on w is
given by

P(w) o (gq')"pll(1 - p) B\l
which is the FK(qq') random cluster model measure on G with free boundary conditions.

Proof. Consider w C E. Using (3.3), it is enough to count how many pairs of spin
configurations (o, ¢’) € ¥ are compatible with w, meaning that (w,w’, ,0’) € Q%;. By
the definition of Q3,, this is the same as requiring that ¢ is constant on the connected
components of w, and ¢’ is constant on the connected components of wf. Using Euler’s
formula

k(wh) = k(w) + |w| — V| +1

we conclude that the total number of compatible pairs is (qq’ )k(“’)q/ Il const, where
const is independent of w. Plugging this into (3.3) we get

P() o (40')") (ag') (1 = 2) B\ o« (qq'}F<)pll (1 — p)lEV,

which concludes the proof. O
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Remark 3.3. For ¢ = ¢/, the point a = b = 1/2 corresponds to p = ¢/(q + 1) which is the
critical point of the FK(¢?) random cluster model on the square lattice [5].

Corollary 3.4. Assume that M is of genus zero. Let w be distributed according to the
FK(qq') random cluster model with parameter p as above. For each cluster of w, choose a
spin o € Q, and for each cluster of w', choose a spin ¢’ € ' uniformly and independently
of one another. Then (o, c’) has the distribution of the spin model (1.4) with a as above
anda+0b=1.

Proof. This follows from the arguments in the proof above. O

Remark 3.5. » For ¢’ = 1 and «a arbitrary, there is no constraint on ¢ and the coupling
of (0, w) becomes the classical Edwards-Sokal coupling between the g-state Potts
model and the FK(g) random cluster model [16].

e Forq=1,¢ =2and a+b =1, n(c’) is an even subgraph of G, meaning that
the degree of every vertex in (V,n(c’)) is even, and w is distributed like the FK(2)
random cluster model. This coupling of (w,n(c’)) is the same as in the work of
Grimmett and Janson [22].

We now assume that M is a torus. The necessary Euler’s formula takes a slightly
more complicated form in this case. We follow the notation of [10, Section 4.3.2]. Define
d(w) € {0,1,2} depending on the topology of w:

+ if w contains two non-contractible cycles of different homotopy, then §(w) = 2;

* if w contains a non-contractible cycle and all such cycles are homotopic, then §(w) =
L

+ if all connected components of w are contractible, then §(w) = 0.

Note that §(w) + §(w') = 2. With this notation Euler’s formula reads
E(w') = k(w) + w| — 6(w) — V| + 1. (3.4)

Using the same arguments as above, we can prove the following result.

Proposition 3.6. Assume that M is a torus. Then the marginal distribution of P on w is
given by

; —d(w w w
P(w) x (q¢")F @) g 0@ plel(1 — p)lE\el,

where p is an in Proposition 3.2.

In the case ¢ = ¢ this distribution is that of the balanced random cluster model
with parameter q2 as defined in [10]. This model, unlike the standard random cluster
model defined on a torus, exhibits duality meaning that if w is distributed according to
a balanced random cluster model measure, then so is w’. This is clear from the above
result, as w’ = wt.

3.2 The staggered six-vertex model for ¢ = ¢/ =2

Let G* be the medial graph of G where a vertex is placed at the intersection of each
primal edge and its dual, and where two vertices are adjacent if the corresponding pair
of primal or dual edges share an endpoint. Note that the medial graph is 4-regular,
and its faces are in a natural correspondence with V U U - the vertices and faces of G.
Moreover, the dual graph (G*)* is bipartite since the faces of G* corresponding to V can
only be adjacent to the faces corresponding to U and vice versa. Also note that the same
medial graph is obtained if we start with G* instead of G.
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Figure 2: A primal edge (solid), its dual edge (dashed), and four corresponding medial
edges (blue). The figure shows the three types (up to arrow reversal) of local arrow
arrangements in the six-vertex model on the medial graph. The sets of yellow primal and
red dual edges ' and 7 are given by Rys’ mapping. The signs are the values of 5 and &’
from (3.7). We have o’ = n(¢’) and n = n(5)

Let O be the set of assignments to each edge of G* an orientation in such a way that
there are exactly two incoming and two outgoing edges at each vertex of G*. We say
that an element of O is an arrow configuration. The (zero field) staggered six-vertex
model with parameters a,b > 0 (here we assume that the third parameterisc=1) is a
probability measure on arrow configurations proportional to

aNpNe (3.5)

where N; and N, are the numbers of vertices of G* with the local arrow arrangements
of type 1 and 2 respectively [25,26,33]. The three types of local arrangements (each one
has two subtypes) are pictured in Fig. 2.

An observable of interest in the six-vertex model is its height function H defined on
the faces of G*, or equivalently on V U U. It is given by first fixing its value at a chosen
face up of G*. Then for any other face u, one draws a directed path ~ in the dual of G*
(which is the quad graph of G and G*) connecting u¢ to u, and one defines ijL (u) and
Ifll> (u) to be the numbers of arrows in the underlying six-vertex configuration that cross
v from right to left, and from left to right respectively. The height at u is then given by

H(u) = H) (u) — H, (u). (3.6)

In the case of genus zero, the right-hand side is independent of v since the surface is
simply connected and six-vertex configurations form conservative flows. In higher genus
the value of H(u) in general depends on the homotopy class of the path v, and can be
thought of as a function defined on the faces of the universal cover of G*. Note that the
height function has a fixed parity on G and G*.

We define O° to be the set of arrow configurations for which the increment of the
height function along any closed path in the dual of G* is equal to zero mod 4. Note that
0° = O if M is of genus zero.

Rys in [38] introduced a correspondence between O and the set of pairs (n,7') of
certain primal and dual subgraphs that do not intersect (see Fig. 2). We note that
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this representation appeared also in the work of Nienhuis [31], and Boutillier and de
Tiliere [6] where it was used to represent the double Ising model as a free-fermion
six-vertex model.

Lemma 3.7 (Rys’ mapping). Let ¢ = ¢’ = 2. Then for each arrow configuration in O°,
there exist exactly two spin configurations (¢,5') € ¥ that differ by a global sign change,
such thatn = n(5), and ' = n(6’), where n and n are the sets of primal and dual edges
respectively defined from the arrow configuration as in Fig. 2.

This correspondence is a consequence of the following construction. We chose to fix
the height function H to be +1 with equal probability at a fixed face uy € U. We now
define spins & on V and ¢’ on U by

G0) =™, and = &(u) =0, (3.7)

This definition depends only on the values of H mod 4, and since we consider only
configurations from OY, & is a well defined function on the faces of G*. We first claim
that (5,6") € X, which can be checked by inspection in Fig. 2, where the spin ¢’ at the
top was fixed to be +1. On the other hand, knowing the spins (5,6’) € X one can locally
and consistently recover an arrow-configuration constructed as in Fig. 2.

Moreover, by our symmetric choice of H(ug) the distribution of (5,5’) is invariant
under a global sign reversal, and since the weights from (3.5) agree with those from
(1.4), we readily get the following correspondence.

Corollary 3.8. The law of (6,¢") induced by the map (3.7) from the law of the staggered
six-vertex model on G* conditioned on O° has the same distribution as (o, c’) under P.
Moreover, the respective height functions H and H have the same distribution up to a
global additive constant.

Remark 3.9. As mentioned before, our results from previous sections generalize to
the case of nonhomogeneous weights a. and b, that depend on the particular edge. To
obtain the classical (non-staggered) six-vertex model on the square lattice instead of the
staggered one, one has to assign weights a to the horizontal edges and b to the vertical
edges G.

3.3 Random currents for ¢’ = 2 at the the free fermion point o> + 1% =1

Here we again assume that M is of genus zero. A current is simply a function
n:E— {0,1,...,}. For a current n, define w(n) and 7n(n) to be the set of edges with
non-zero and odd values of n respectively. In particular,  C w. We will say that the pair
(n(n),w(n)) is the trace of the current n. We will often identify a current with its trace
as the trace contains all the relevant information for the probability measures that we
will consider.

Let &£ be the collection of sets of edges 7 such that each vertex in V has even degree
in the graph (V, 7). Such n are usually called even subgraphs of G. By I we will denote
the set of all possible traces (w,7) of currents such that n € £. The currents in I' are
commonly called sourceless. Note that since M is either a sphere or the plane, spin
configurations ¢’ : U — {—1,+1} are in a 2-to-1 correspondence with even subgraphs
given by the map ¢’ — n(c’). This is not true for higher genera since then not all
even subgraphs (e.g. a non-contractible cycle on a torus) can be realized as the set of
interfaces of a spin configuration. In what follows we will write n = n(¢”’).

Single random current for ¢ = 1

The single random current measure is induced from the power series expansion of the
Ising model partition function (see e.g. [27]). We have the following observation:
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Corollary 3.10. Assume that M is of genus zero. Let a®> +b> =1, ¢’ =2 and ¢ = 1. Then
P(n,w) oc al (1 —b) VB (g w) €T,
which is the law of the sourceless single random current with a = tanh .J.

Proof. The formula for the probability is a direct consequence of Corollary (3.1). The
identification with the random current measure follows for instance from Lemma 3.1
of [27], by setting a = tanh .J and b = (cosh J) L. O

Double random current for ¢ = 2

The double random current can be defined as the sum of two i.i.d. sourceless single
random currents [20]. It turns out that going from a single current to a double current
amounts to changing ¢ from 1 to 2, and J to 2J:

Corollary 3.11. Assume that M is of genus zero. Let x € (0, 1] be given by a = 2z /(1 +
x?). Moreover, let a®> + b*> = 1 and ¢’ = ¢ = 2. Then

P(n,w) x Qk(w)Hw\xlnl(x?)lw\nl(l _ T?)IE\w\’ (n,w) €T,

which is the law of the sourceless double random current with x = tanh J, or equivalently
a =tanh2J.

Proof. Again, the formula for the probability follows directly from Corollary (3.1). The
identification with the double random current measure follows from Theorem 3.2 of
[27], by setting z = tanh.J and using the fact that since a? + b> = 1, we have b =
(1-a?)/(1+a?). O

Remark 3.12. Recall that the XOR-Ising model is the pointwise product of two i.i.d.
Ising model spin configurations [6, 9,40]. It is known that in the free fermion case
a® 4+ b? = 1, the distribution of ¢ and ¢’ is that of the XOR-Ising model and its dual XOR-
Ising model [6]. It follows from Corollary 3.11 and Proposition 2.1 that an independent
assignment of a £1 spin to the clusters of a double random current yields the XOR-
Ising model configuration. This result was, to our knowledge, first observed during a
discussion of Roland Bauerschmidt, Hugo Duminil-Copin, Aran Raoufi and the author at
IHES in 2017, and was the main inspiration for the considerations in this article.

3.4 Loop O(n) modelforg=n,¢d =2and b=1

Assume that M is of genus zero, and let G be a 3-regular graph e.g. a piece of the
hexagonal lattice. For each spin configuration, ¢’ : U — {—1,1}, (¢’) is a collection of
disjoint loops on G, and each such collection of loops corresponds to exactly two spin
configurations. This implies that for b = 1, the marginal distribution on n = 7(¢”’) is given
by

P(n) o< nfM gl o p# loopsinnfnl, nee,

where = = a/n, and where £ is the set of all collections of disjoint loops on G. In the
second identity, we used the fact that each vertex of G is either isolated in (V,7) or
belongs to exactly two edges of 7 This is the law of the loop O(q) model with parameter
x (see e.g. [34] for an exposition on the subject).

Note that the spin model ¢’ for ¢ = 1 is the standard Ising model. We note that for
real valued n > 1, this model has been studied in [15], where its FKG property (valid for
x < ﬁ) was used to prove existence of macroscopic loops at the Nienhuis’ critical point.
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3.5 o and ¢’ as classical spin models

In this section we assume that M is of genus zero. In this case the spin model o
can be represented via a classical unconstrained spin system, which is a special case of
the model of Domany and Riedel [8] where two Potts models are coupled via a general
four-spin interaction. This property is a consequence of duality in the Potts model, and
is a generalization to arbitrary ¢ and ¢’ of the six-vertex model representation of the
Ashkin-Teller model [31] (see also [6,39]). We note that similar ideas applied to the
model from [8] are present in [2].

We consider a spin model on configurations (s,s’) € QY x Q' v given by the Gibbs-
Boltzmann distribution

fi(s,s") oc exp ( Z Os(v1),s(v) (@ + B(Ss’(vl),s’(vg)))v (3.8)
{Ul,’UQ}EE

where
a=In(2%) and B=In(1+ L), (3.9)

and where ¢, , = 1if z = y and 6, , = 0 otherwise. Note that 3 is always positive, and o
is positive if and only if a + b < 1. These parameters form a two-dimensional subspace of
the parameters of the general model from [8].

Remark 3.13. This spin model can be defined on any finite graph, not necessarily
embedded in a surface.

The following values of parameters are of special interest:

» The case a = 0, or equivalently a + b = 1, corresponds to a ferromagnetic gq’-state
Potts model § with J = 3 > 0. Then, s = § (mod ¢) in distribution.

e For ¢ = 2, the case a« = —f3, or equivalently b — a = 1, on a bipartite graph
corresponds to an antiferromagnetic 2¢-state Potts model s with J = —f. Indeed,
if we flip the value of the s’ spin on all black vertices and call the resulting spin
configuration s”, we have 1 — ¢ (y,).s'(vs) = Os”(v1).s (v2)- Again, s = s (mod ¢) in
distribution.

» The case 2a = —f3, or a® + b? = 1, results in symmetric energy levels —g, 0, g per
bond. For ¢ = ¢’ = 2, it corresponds to the free fermion point in the six-vertex
model. In this case one can write the Hamiltonian as a sum of two independent
Hamiltonians, and as a result represent the system as two statistically independent
copies of the 2-state Potts model (the Ising model). For ¢ = 2 and ¢ > 2, the
model is equivalent to the g-component version of the cubic model of Kim, Levy
and Uffer [24].

Note that by definition (3.8), conditioned on the spins s, the spins s’ do not interact
along edges with a different value of s assigned to both endpoints. This is exactly the
dual picture (zero coupling constant) of the hard-core constraint (1.3) (infinite coupling
constant) for the spin model o. Hence, the following identification of ¢ and s which
should not be surprising.

Proposition 3.14. Assume that M is of genus zero. Then the distributions of ¢ under
P, and of s under [i are the same.

The rest of the article is devoted to the proof of this result which is based on duality
arguments. To this end, we need to recall the high-temperature expansion of the Potts
model partition function and its planar duality. Let G = (V, E) be a finite and not
necessarily connected graph embedded in M, and let G* = (U, E*) be its dual graph.
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We will often drop the parameter ¢ from the notation and write Zs for Zg 4. Recall that
r+1=e’. We have

(x + 1)|E\ZG(3;) = Z exp (J Z 5s(v1),3(v2))

seQV {vi,02}€E

Z H (14 Os(vy),5(00) )

s€eQV {vi,v2}€E

Z Z 2¥11{s constant on clusters of ¢}
s€EQV ECE

= 3 alélgh), (3.10)

¢CE

where k(&) is the number of clusters of € in G, i.e., connected components of the graph
(V,¢) including isolated vertices. Again recall that Euler’s formula for planar graphs
reads

k(&) = f(&) — [l +[VI-1, (3.11)

where f(¢) is the number of faces of £. Note that if we denote ¢f = E* \ ¢*, then
f(€) = k(¢1) is the number of clusters of ¢ in G*. Hence by (3.10) we can write

Zg(x) = (z+1) —E| IVI 12 \EI k(’ET

¢CE
_q|V\—\E\—1<wL+1)‘E‘ 3 ()11 gR(ED
EtCE”
V1B () P @ ) 26 (0
gV E (22 Pl 76 (@), (3.12)

where z* = ¢/x, and where in the third equality we again used (3.10).

Based on Corollary 3.1, we can now prove an intermediate result which gives a
formula for the probability of w in terms of the (primal) Potts model partition function
2V w),q'-

Proposition 3.15. Assume that M is of genus zero. Then, the marginal distribution of
P on w is given by

P((U) e qk(W) (W)‘W‘Z(V’w%q’(%)y wC E. (313)

Proof. Let z* = =9=t and z = g—; = ; q; -, and note that

Z0v(w)w) = q‘v(“’)HV‘Z(VM)‘
Applying duality we get
Z(V(w)w) (T) = ql‘v(“’)lflw‘fl(%)lw‘Z(V(w),w)*(x*) (3.14)
Therefore, by Corollary 3.1 we have
—k(w |W‘ *
g F (125) Y P (W) o Zy(w) ) (z7)
V(@) +lwl+1 ¢ 41 1wl
=q" (F7) " 2w (@)

z+q’

1=V () Hlwl+1+|V(w)[— IVI(z+1)Iw\Z )(x)
z+q’

where in the last equality we used the identity q’ x+1 = % O
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Note that for a +b > 1 and b < 1, we have that + < —1, and hence the Potts
model corresponding to the partition function Z(y . . (z) has a complex-valued coupling
constant J. To complete the proof of Proposition 3.14 we need the following elementary
lemma which effectively turns this coupling constant into a real-valued one.

Lemma 3.16. Let G = (V, E) be a finite graph. Then for allt # —1, we have
> @+ Dz () = 1+t + 1)1P Za (1)
§CE

Proof. We have

S el 4+ )€1 20 (@) = 3 4] ST € lghE)

¢CE ECE §'C¢

— Z Z Hel 1€ 1 gk ()
§CE LY

= Z (1 + ) 1B 1€ () €1 R (€
§'CE

— 1+ )3 ()€ 16+

§'CE
= (1+tz+1)P Za (1),

where in the first and last equality we applied the high-temperature expansion (3.10). O
We can finally identify the distribution of ¢ as that of s.
Proof of Proposition 3.14. Fori € Q and s € QV, we define
Ei(s) = {{v1,v2} €E: s(v1) =s(v2) =i} and E(s)= U E;(s).
i€Q
For £ C V, we denote Zg = Z),¢),y- On one hand, by the definition of the spin

model (3.8), conditioned on s, the s’ spins do not interact whenever the corresponding s
spins are different, and hence we have

fi(s) o (q)VImIV EEIal B TT 1B 2, (e — 1)

i€Q
= (q’)IVIfIV(E(S))\6(a+6)IE(S)\ H ZEi(s)(lq_Z)
i€Q
_ —(1—¢")an|E = /
= (MY O (U PO ] 2 (£2). @3.15)
1€Q
On the other hand, by property (1) from Proposition 2.1, and Proposition 3.15, we have
—(1—¢")a—b\lwl ‘a
P(0) Z (1 u bq) b) Zwvw) (2555)

w consistent with o

= Z (H%W)le<q/)|vw—\vw>l H ZEI@W(%)

w consistent with o i€Q
_ o 1—(1—q")a—b\ €] ()| — > ‘a
— (q/)IVI [V(E(o))l H Z ( ( bq )a ) (q/)IV(E (0))] IV(£)|Z£(17€(aib)
1€QECE; (o)
— o —(1—¢")a\IE > 4
= (q)VIEWVEEN (AUm) EOITT 7, o (L), (3.16)
i€Q

where ‘w consistent with ¢’ means that ¢ is constant on the clusters of w, and where in
the last equality we used Lemma 3.16 with t = (1 —a —b)/band z = ¢'a/(1 — a — b). The
formulas (3.15) and (3.16) are identical and we finish the proof. O
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