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Abstract

This paper focuses on the non-asymptotic concentration of the heteroskedastic Wishart-
type matrices. Suppose Z is a pi-by-p2 random matrix and Z;; ~ N (O,afj) inde-
pendently, we prove the expected spectral norm of Wishart matrix deviations (i.e.,
E||ZZ" —EZZ"|)) is upper bounded by

(1+e¢) {2000R +od+ Coro«y/log(p1 Ap2) + Co? log(p1 /\pg)} ,

where ¢ = max; Y P! 07, 0% = max; > o7 and o7 := max; ; 0;;. A minimax
lower bound is developed that matches this upper bound. Then, we derive the
concentration inequalities, moments, and tail bounds for the heteroskedastic Wishart-
type matrix under more general distributions, such as sub-Gaussian and heavy-tailed
distributions. Next, we consider the cases where Z has homoskedastic columns or
rows (i.e., 0y; = 0; or 0;; ~ o) and derive the rate-optimal Wishart-type concentration
bounds. Finally, we apply the developed tools to identify the sharp signal-to-noise

ratio threshold for consistent clustering in the heteroskedastic clustering problem.
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1 Introduction

Random matrix theory is an important topic in its own right and has been proven to
be a powerful tool in a wide range of applications in statistics, high-energy physics, and
number theory. Wigner matrices, symmetric matrices with mean-zero independent and
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Heteroskedastic Wishart-type concentration

identically distributed (i.i.d.) entries (subject to the symmetry constraint), have been a
particular focus. Asymptotic and non-asymptotic properties of the spectrum of Wigner
matrices have been widely studied in the literature. See, for example, [2, 28, 31] and
the references therein.

Motivated by a range of applications, heteroskedastic Wigner-type matrices, random
matrices with independent heteroskedastic entries, have attracted much recent attention.
A central problem of interest is the characterization of the dependence of the spectral
norm || - || (i.e., the largest singular value of the matrix) of a heteroskedastic Wigner-
type matrix on the variances of its entries. To answer this question, Ajanki, Erdés,
Kriger [1] established the asymptotic behavior of the resolvent, a local law down to
the smallest spectral resolution scale, and bulk universality for the heteroskedastic
Wigner-type matrix. Bandeira and van Handel [4] proved an non-asymptotic upper
bound for the spectral norm. More specifically, let Z = (Z;;) be a p x p heteroskedastic
Wigner-type matrix with Var(Z;;) = afj. Bandeira and van Handel [4] showed that
E|Z| < o+ 0.Vlogp, where 0> = max; ), 07; and 07 = max;; 07; are the column-sum-
wise and entry-wise maximum variances, respectively. This bound was improved by
van Handel [30] to E || Z]| $ o + max; je,) 0];logi. Here, the matrix {0;} is obtained
by permuting the rows and columns of the variance matrix {o;;} such that max; o1 2
max; agj > -+ > max; a;j. Later, Latala and van Handel [20] further improved it to a
tight bound:

E|Z| <o+ ma[x]cr;‘j\/logi. (1.1)
©,j€lp

In addition to the Wigner-type matrix, the Wishart-type matrix, ZZ" —EZZ, also
plays a crucial role in many high-dimensional statistical problems, including the principal
component analysis (PCA) and factor analysis [36], matrix denoising [25], and bipartite
community detection [15]. Though there have been many results on the asymptotic and
non-asymptotic properties of the homoskedastic Wishart-type matrix, where Z has i.i.d
entries (see [8] for an introduction and the references therein), the properties of the
heteroskedastic Wishart-type matrices are much less understood.

Specifically, suppose Z is a p; X p» random matrix with independent and zero-
mean entries. In this paper, we are interested in the Wishart-type concentration:
E||ZZT —EZZT||. Define 62, 0%, 02 as the column-sum-wise, row-sum-wise, and entry-
wise maximum variances:

P1 P2
2 _ 2 2 _ 2 2 _ 2
0¢ = max E 0;j; Op = max E Oijs O =Maxo;;. (1.2)
J i £ ij
1=1 Jj=1

By the symmetrization scheme and the asymmetric Wigner-type concentration inequality
in [4], it is not difficult to show that

E|zzT -EzZ"||<E|zz" -Z/(2")7|| <2E||zZ"| =2E|z|?
2 (1.3)
< (Uc + or + 0./log(p1 A pz))
Since ZZT —EZZ" can be decomposed into a sum of independent random matrices,

P2
77" -Bz2Z" = (2,2} -BZ;Z}),

Jj=1

one can apply the concentration inequality for the sum of independent random matrices
[29, Theorem 1] to show that

E||ZZ" -EZZ"|| S ocory/logps + o (log p2)*. (1.4)
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However, as we will show later, these bounds are not tight.

In this paper, we establish non-asymptotic bounds for the Wishart-type concentration
E||ZZT —EZZT||. The main results include the following. We begin by focusing on
the Gaussian case in Section 2.1 and prove that if all entries of Z are independently
Gaussian,

E HZZ—r — ]EZZTH < 2.0locog + 1.0162 + Cioro\/log(p1 A pa) + Coc?log(pr A p2),
(1.5)

where C;, Cy are some universal constants that does not depend on the variance com-
ponents o¢, oR, 0. or matrix dimensions pi, po. Moreover, we can set the coefficients in
front of ccor and o arbitrarily close to 2 and 1, respectively, at the sacrifice of larger
constants C, Cs in (1.5) (see Theorem 2.1 for details).

We further justify that the constants in 20cor + 07 are essential under the ho-
moskedastic setting. The proof of (1.5) is based on a Wishart-type moment method
provided in Section 2.2. In Section 2.3, we provide a lower bound to show that the
upper bound (1.5) is minimax rate-optimal in a general class of heteroskedastic random
matrices.

We then consider the more general non-Gaussian setting including sub-Gaussian,
sub-exponential, heavy tailed, and bounded distributions in Section 3.1. In particular,
we establish the following concentration bound when the entries have independent
sub-Gaussian distributions:

E HZZT - ]EZZTH < (ac + o + a.\/log(p: /\pg))2 — 0%, (1.6)

Upper bounds for the moments and probability tails of |ZZT — EZZ | are developed in
Section 3.2.

In Sections 3.3 and 3.4, we consider two variance structures arising in statistical
applications and develop tight Wishart-type concentration bounds. If the random matrix
Z has independent sub-Gaussian entries and homoskedastic rows, i.e., 0;; = 0;, we prove
that

p1

p1
E|Z2ZT -EZZ"|| <> o+ |p2 Y _ 0% maxo;.
L= =1

=1 i€lp]

If Z has independent sub-Gaussian entries and homoskedastic column variances, i.e.,
0;; < 04, we prove that

P2

o4 + p; max o2.
plz J plje[m] I

E|ZZT —-EZZT| =
j=1

To illustrate the usefulness of the newly established tools, we apply these tools in
Section 4 to solve a statistical problem in heteroskedastic clustering. Specifically, we
obtain a sharp signal-to-noise ratio threshold to guarantee consistent clustering.

2 Main results

We first introduce the notation to be used in the rest of the paper. LetaAband a Vb
be the minimum and maximum of real numbers a and b, respectively. We use [d] to denote
the set {1,...,d} for any positive integer d. For any vector v, let |||, = (3, |v:|?)'/ be
the vector ¢, norm; specifically, ||v||c = sup; |v;|. For any sequences {a,}, {b,}, denote
a < b (or b, 2 a,) if there exists a uniform constant C' > 0 such that a < Cbh. If ¢ < b and
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a 2 b both hold, we say a < b. For any « > 1, the Orlicz 1, norm of any random variable
X is defined as

[ X[y, =inf{z > 0:Eexp ((|X|/x)%) < 2}.
In the literature [31, 33], a random variable is often called sub-Gaussian, sub-exponential,
or sub-Weibull with tail parameter (1/a), if | X[y, < C, | X|l¢, < C, and | Xy, < C,

respectively. The matrix spectral norm is defined as || X|| = sup, ,, nqﬁrﬁﬁb- The capital

letters C, Ché and lowercase letters c, cq, cy represent the generic large and small
constants, respectively, whose exact values may vary from place to place.

2.1 Concentration of heteroskedastic Wishart matrix

We begin by considering the Gaussian case where the entries Z;; ~ N(0, a?j) inde-
pendently. The following theorem provides an upper bound for the concentration and is
one of the main results of the paper.

Theorem 2.1 (Wishart-type Concentration for Gaussian random matrix). Suppose Z is a

p1-by-p2 random matrix and Z;; ~ N (0, afj) independently. Then for any €;,€2 > 0,

E|zz" -EZZT||

<(1+€) {QJCUR +(1+ 62)0'% + Cy(e1)oro/10g(p1 A p2) + Co(e, 62)03 log(p1 /\p2)} ,
2.1)

where C1(e1) = 10(1 + €1)/[1/1log(1 +€1)] and Ca(er,ea) = (1 + €1)[1/log(1 + €1)]
(2 +24).

€2
Remark 2.2 (Lower bound for the homoskedastic case). If Z has independent and

homoskedastic Gaussian entries, i.e., Z;; ud N(0,1), then o¢ = /p1,0r = /P2, and

Theorem 2.1 implies

E|ZZT —EZZ"|| < (1+¢€) (08 + 20coR) + Ceory/log(p1 A p2) (2.2)

for any € > 0 and constant C. only depending on ¢. On the other hand, we have

Proposition 2.3. If Z is a p;-by-p, matrix with i.i.d. homoskedastic Gaussian entries,
then

.. EB|zzT -EzZZT|
lim inf > 1.

2.3
pip2—oe  2000R + 0% (2.3)

Proposition (2.3) and (2.2) together indicate that (0(2; + 20¢0oR) in the upper bound
of Theorem 2.1 are sharp in the homoskedastic case. In Section 2.3, we establish a
minimax lower bound to show that all four terms in the upper bound (1.6) are essential
when Z is a general heteroskedastic random matrix.

2.2 Proof of Theorem 2.1

The proof of Theorem 2.1 relies on a moment method and the following fact: for a
p-by-p symmetric matrix A (in the context of Theorem 2.1, A = ZZ" —EZZ") and a even
number ¢ < log(p), we have

| Al ~ (tr(A7)".

We introduce two lemmas for the proof of Theorem 2.1. First, Lemma 2.4 builds
a comparison between the g-th moment of the heteroskedastic Wishart-type matrix
Z7ZT —EZZT with a homoskedastic analogue HH' — EHH . The complete proof of
Lemma 2.4 is postponed to Section 5.1.
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Lemma 2.4 (Gaussian Comparison). Suppose Z € RP1*P2 has independent Gaussian
entries: Z;; ~ N(0,07;). Let mi = [0¢] + ¢ — 1 and my = [0%] + ¢ — 1. Suppose
H e R™*™2 has i.id. N(0,1) entries. Then for any q > 2,

po, P2

Etr {(ZZT —EZZT)9) <
r{( )}_<m1 mo

) Etr {(HH" —EHH")?}. (2.4)
Remark 2.5 (Proof sketch of Lemma 2.4). Previously, [4, Proposition 2.1] compared the
moments of the Wigner-type matrices (i.e., Z is symmetric and thus p; = ps = p,o¢c =
or = o) by the expansion Etr(Z%) = Y E(Zuyus Zugus -+ * Zugyu,) @0d counting
the cycles in a reduced unipartite graph:

Uly...,U2qg

Etr(Z%) < Etr(HQ‘I) (2.5)

[021

Compared to the expansion of Wigner-type random matrix Etr(Z2¢), the expansion of
Wishart-type random matrix Etr {(ZZ" —EZZ")?} is much more complicated:

q
Etr {(Z2Z" -EZZT)"} = > E [T (Zuron Zuisron = Topone - Luwmunsn})

uq+1:u1,.‘.,uq6[p1] k=1
V15,09 €[p2]

q
— ... = H ukkaauk+1,vk H EGZO;” (C) (GEJ _ 1)/31](C) ,

ce([p1]x[p2])? (1,5)€[p1] X [p2]
(2.6)

where ([p1] X [p2])? is the set of all cycles of length 2¢ on a p;-by-p» complete bipartite
graph, Gi; = Z;j/0;; are i.i.d. standard normal distributed, and «;;(c), 3;;(c) are some
graphical characteristic quantities of cycle c to be defined later. By gathering the cycles
with the same “shape” s, we can show:

Etr{(ZZT EZZT) <Z H {EG*(G? - }ma,ﬁ(s)
PR 2.7)
{p O_2(mL(S) 1) }QQmR(S)} A {pQO_?;nL(s)(TIQ%('rnR(s)—l)}7

where mq (s), mp(s) and mg(s) are some graphical properties of the cycles with shape
s to be defined later and G ~ N(0, 1). Meanwhile, we can develop a lower bound for the
moment of standard Wishart matrix:

Etr ((HHT EHH")? >Z H E{Ga _ }mmﬁ(s)
s «,/>0 (28)
. {mmémL(s)—Q ,Usz(s)} Y {mQUémL(s) . U;mk(s)_g} .

Lemma 2.4 follows by combining (2.7) and (2.8).

Next, Lemma 2.6 gives an upper bound on the moment of the standard Wishart
matrix. The complete proof is provided in Section 5.1.

Lemma 2.6. Suppose H € R™1*"™2 has i.i.d. standard Gaussian entries. Then for any
integer q > 2,

(E|HHT — EHHT||9)"? < 2\/mmy + ma + A + mz) v + 24,

(Btr {(HH" — BHHT)?})" <2Y/9(my A my)H/e
- (2y/mima + my +4(v/m1 + /m2)V/q + 2q) .
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Remark 2.7 (Proof idea of Lemma 2.6). Let o;(H) be the i-th singular value of H. The
proof of Lemma 2.6 utilizes the following fact:

|HH" —EHH"|| = |[HH" — moly, || = max {0} (H) — ma,ms — 02, (H)}

and the concentration inequalities of the largest and smallest singular values of the
Gaussian ensemble (e.g., [31]). See Section 5.1 for the complete proof.

Now, we are in position to finish the proof of Theorem 2.1.

Proof of Theorem 2.1. Without loss of generality, we assume o2 = max;; ofj = 1. Let
my = [02] +2q — 1,m2 = [0%] + 2q — 1 for some ¢ to be specified later and H be an
m1-by-ms random matrix with i.i.d. standard Gaussian entries. Lemmas 2.4 and 2.6

imply
T T T 20\ /%
E|zZT ~EZZ7|| < (Etr{(ZZ ~EzZ7) })

L 2.4 1/2q
3 {(pl A p?) Bt {HHT — EHHT}Qq}

- mip Mg

Lemma 2.6 1/2 D1 D2 1/2q
< 2724 — N — | mi AN mso (2\/m1m2—|—m1 —|—4(wm1—|—\/m2)\/2q—|—4q)

mi ma

<224 (p) A po)'/? (2000 R + 02 + 1000/ + 100 R+/q + 24q) .
(2.9)

Let ¢ = K[log(p1 Aps)] for K = [M] then we have
E|ZzzT —EZZT|
<91/2K (eq/K) 12 (20’00’R + 0% + 100c+/q + 100R+\/q + 24q)
<(2e)1/2K <20(;0R + (1 + €2)02 + 10VKop\/log(p1 A p2) + <zi + 24) K log(p: /\pg))

<2(1+e€)ocor+ (1+e)(1+ 62)0’%« + C1(e1)or/1og(p1 A p2) + Caler, €2) log(pr A p2).

(2.10)
Here,
Ci(er) = 10(1 + 1)y/1/log(1 +&1)],
Coler, e2) = (1+ 1) [1/log(1 + £1)] (if +24> . 0

2.3 Lower bounds

To show the tightness of the upper bound given earlier, we also develop the following
minimax lower bound for the heteroskedastic Wishart-type concentration.

Theorem 2.8 (Lower bound of heteroskedastic Wishart-type concentration). Suppose
p1,p2 > 4. Consider the following set of p1-by-p, random matrices,

ind 2
Fpl0w,00,0r) =4 Z € RPY*P2 Zij ~ N(Oagij)7p = P1 A\ P2, MaX; j 045 < Oy,
p\Ux, ] - . D2 2 2 P1 2 2 :
max; ) 52, 05 < op,max; y Ly 0 < 06

For any (o.,0R,0c) tuple satisfying min{oc,or} > 0. > max{oc/\/p1,0r/+/P2}, there
exists a random Gaussian matrix Z € F,(o.,0r,oc) such that

E|ZZT —EZZ"| > 0% + ocor + orow\/logp+ a2 log p. (2.11)

EJP 27 (2022), paper 29. https://www.imstat.org/ejp
Page 6/40


https://doi.org/10.1214/22-EJP758
https://imstat.org/journals-and-publications/electronic-journal-of-probability/

Heteroskedastic Wishart-type concentration

The proof of Theorem 2.8 is given in Section 5.1.

Remark 2.9. Theorems 2.1 and 2.8 together establish the minimax optimal rate of
E|ZZ"T —EZZT| in the class of F,(0.,0c,0r). In other words, Theorem 2.8 shows that
(2.1) yields the best upper bound for heteroskedastic Wishart-type concentration among
all the bounds characterized by o¢, or, 0.. We shall point out that the upper bound of
Theorem 2.1 may not be tight for some specific values of {afj}. For example, in Sections
3.3 and 3.4, we develop sharper bounds via a more refined analysis when the Wishart
matrix has near-homoskedastic rows or columns.

Generally speaking, it remains an open problem to develop a heteroskedastic Wishart-
type concentration inequality that is tight for all specific values of {Ufj}. We leave this
problem as future work.

3 Extensions

We consider several extensions of Theorem 2.1 in this section.

3.1 Wishart-type concentration of non-Gaussian random matrices

In this section, we generalize the developed concentration inequality for heteroskedas-
tic Wishart matrices with more general entrywise distributions, such as sub-Gaussian,
sub-exponential, heavy tailed, and bounded distributions. We first introduce the following
lemma as a sub-Gaussian analog of Lemma 2.4.

Lemma 3.1 (Sub-Gaussian comparison). Suppose Z € RP**P2 has independent mean-
zero symmetric sub-Gaussian entries:

EZ;; =0, Var(Z;)= o7

i NZij/oijlle, < k. (3.1)

M € R™*™2 has i.id. standard Gaussian entries. Whenq > 1, my = [62]+q¢— 1,
me = [0%] +q— 1, we have

Etr {(2Z27 —EBZZ7)?} < (Ck)™ (pl A p2> Etr {(HH' —BEHH")"}. (3.2)
mq mao
The proof of Lemma 3.1 is deferred to Section 5.2.

Remark 3.2 (Proof ideas of Lemma 3.1). Compared to the proof of Lemma 2.4, the
proof of Lemma 3.1 requires more delicate scheme to bound EG?}“(C)(G% — 1)8i(©) for
non-standard-Gaussian distributed G;; := Z;;/0;;. To this end, we introduce Lemma 5.2

to bound EG;XJ»"j(C)(ij —1)Pi(¢) by a Gaussian analog:
EGS79(G2, —1)%(©) < (CR)MEG(G? —1)%(©), G ~ N(0,1).

As a consequence of Lemma 3.1, we have the following Wishart-type Concentration
of sub-Gaussian random matrix.

Corollary 3.3 (Wishart-type concentration of sub-Gaussian random matrix). Suppose
7 € RP1*P2 has independent mean-zero sub-Gaussian entries that satisfy (3.1). Then

E HZZT - IEZZTH <k? (O'CCTR + 02 4 opo./log(p1 A p2) + o2 log(py /\pg)) . (3.3)

Proof of Corollary 3.3. When all Z;;’s are symmetrically distributed, Corollary 3.3 fol-
lows from the proof of Theorem 2.1 along with Lemmas 2.6 and 3.1. If Z;;’s are not all
symmetric, let Z’ be an independent copy of Z, then each entry of Z — Z’ has independent

EJP 27 (2022), paper 29. https://www.imstat.org/ejp
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symmetric sub-Gaussian distribution. By Jensen’s inequality, we have
E|zZ" -EzZ"||=E|zZ"+¥Z2/(2) - 2(E2)" —(W2)Z" —2B2Z
—E HE {ZZT + 22T — 22T — (22T - QEZZT‘Z}H
<E [IE{HZZT + 22T - 2(2)T —(2)27 —2®zZ] ’ZH
=E[E|(Z-2)z2-2)"-E(Z-2Z)Z-2")"|]
< K2 (ocaR+aé+aRa*m+af log(p1 /\pg)). O

Next, we turn to the Wishart-type concentration for random matrix Z with heavy-
tailed entries.

Theorem 3.4 (Wishart-type concentration for heavy-tailed random matrix). Suppose
o <1, Z € RP*P> has independent entries, Var(Z;) < o7;, and || Zi; /04|y, < & for all
i,7. Given oc, o0, and o, defined in (1.2), we have

2
E[|227 - 8227 5 (00 + or + 0. (0g(p1 A p2))/2(log(py v p2)) /2 712) " = o

In a variety of applications, the observations and random perturbations are naturally
bounded (e.g., adjacency matrix in network analysis [24] and single-nucleotide polymor-
phisms (SNPs) data in genomics [27]). Thus, we provide a Wishart-type concentration
for entrywise uniformly bounded random matrices as follows.

Theorem 3.5 (Wishart-type concentration of bounded random Matrix). Suppose Z €
Rplsz, EZU = O,Var(Zij) = O’Z-Qj, ‘ZU‘ < B almost SUI'er, then
E|zz" -EzZ7||
<(1+e) {2aCaR + (1+ €2)02 + C1(e1) Bory/Tog(p1 A p2) + Ca(e1, e2) B2 log(py /\pg)} :

where C1(e1) and Cy (€1, €2) are defined as in Theorem 2.1. If we further have max; ; 0;; <
o« and B (log(py /\pg)/pl)l/2 < o, for some o, then

E||ZZ" -EZZ"|| < (1+¢€) (2y/pipz + p1) 02 (3.4)

An immediate application of the previous theorem is the following Wishart-type
concentration for independent Bernoulli random matrices.

Corollary 3.6 (Wishart-type Concentration of Bernoulli Random Matrix). Suppose Z €
RP1*P2 A5 ind Bernoulli(6;;), 0;; < 0. and 6, > C'log(p1 A p2)/p1. Then,

E[(A-0)(4-06)" ~E(A-0)(4-0)"| 5 (vVpip2 +p1) b (3.5)

To prove Theorems 3.4 and 3.5, we establish the corresponding comparison lemmas
for random matrices with heavy tail/bounded distributions, which is more technically
involved from Gaussian/sub-Gaussian distributions due to the essential difference. The
proofs of Theorems 3.4 and 3.5 are provided in Section 5.2.

Remark 3.7. It is helpful to summarize the heteroskedastic Wishart-type concentration
inequalities with Gaussian, sub-Gaussian, heavy-tail, and bounded entries in a unified
form:

E||22T - 822" | < Co{(0c +on+K) = 0%},

where K = o, (log(p1 A p2))/? and Cy > 1 is a constant if the entries of Z are sub-
Gaussian; K = o, (log(p1 A p2))*/?(log(py V p2))'/*~1/? and Cy > 1 is a constant if Z has
bounded ¢, norm; K = C+/log(p1 A p2) and Cy = 1 + ¢ if the entries of Z are bounded;
and K = Co.(log(p1 A p2))'/? and Cy = (1 + ¢) if the entries of Z are Gaussian.
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3.2 Moments and tail bounds

We study the general b-th moment and the tail probability of heteroskedastic Wishart-
type matrix in the following theorem.

Theorem 3.8 (High-order moments and tail probability bounds). Suppose the conditions
in Theorem 2.1 hold. For any b > 0, we have

{IE HZZT — IEZZTHb}l/b < (O’C +or+ 0.\/bVlog(p: /\pg))2 — 0. (3.6)

There exists uniform constant C > 0 such that for any z > 0,

P {HZZT - EZZTH >C <(ac + or + 0.\/log(p1 A p2) +x)2 - 0?;)} < exp(—z?).
(3.7)

Since neither | ZZT —EZZ || nor |ZZT —EZZ"|'/? are Lipschitz continuous in Z,
the classic Talagrand’s concentration inequality [10, Theorem 6.10] does not directly
apply to give the tail probability bound of || ZZT — EZZT||. We instead prove (3.7) via a
more direct moment method. The complete proof is given in Section 5.3.

3.3 Wishart matrix with near-homoskedastic rows

In this section, we consider a special class of heteroskedastic matrices. Let Z €
RRP1*P2 be a random matrix with independent, sub-Gaussian, and zero-mean entries.
Suppose all entries in the same row of Z share similar variance (i.e., there exists

2 such that 0,;; approximately equals o? for all i,7). Then the ps columns of Z, i.e.,
{Z;}2,, have approximately equal covariance matrix, diag(c?,...,0; ). In this case,
1777 = %Z?:l Z.jZ_; is the sample covariance matrix. It is of great interest to
analyze |ZZ" —EZZT|, i.e., the concentration of the sample covariance matrix in both
probability and statistics [3, 12].

Note that Corollary 3.3 directly implies

]E||ZZT—IEZZT||§ZU?+ /ngaf-maXUi—i— p2 log(p1 A p2) max o?. (3.8)

With a more careful analysis, we can derive a better concentration inequality than (3.8)
without the logarithmic terms.

g

Theorem 3.9. Suppose Z is a p1-by-p» random matrix with independent mean-zero sub-
Gaussian entries. If there exist 01,...,0, > 0 such that || Z;;/o;||y, < Ck for constant

Ck >0, then
E|zZT -BzZZ"| <Y o7+ [p2) o maxo;. (3.9)

Remark 3.10. We also note that a similar result of Theorem 3.9 can be derived from
Koltchinskii and Lounici [18]. Their result is based on generic chaining argument with
the assumption that all columns of Z are i.i.d. Here, we assume independence and an
upper bound on the Orlicz-iy» norm of each entry, while allow the distributions to be
non-identical.

The following theorem gives a lower bound on the concentration of Wishart matrix
with homoskedastic rows.

ind

Theorem 3.11. If Z € RP**P2, Z;; '~" N(0,0?), we have

T T 2 / 2. .
IEHZZ EZZ HZZZ.:UI—F pQXi:UZ max o;.
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The proof of Theorem 3.11 is deferred to Section 5.4. Theorems 3.9 and 3.11 render
an exact rate of Wishart-type concentration for random matrices with homoskedastic
rows:

E|lZzZT ~BZZT|| =Y o2+ [p2) o?maxoy, if Var(Zi;) ' N(0,0?).

The rest of this section is dedicated to the proof of Theorems 3.9. We only prove for
Gaussian Wishart-type random matrices since the sub-Gaussian case follows similarly.
We first introduce a key tool to sequentially reduce the number of rows of Z. The tool, as
summarized in the following lemma, may of independent interest.

Lemma 3.12 (Variance contraction inequality of Gaussian random matrix). Suppose
G € RP*P2 and G € RP1—Y*P2 gre two random matrices with independent Gaussian
entries satisfying

2 .
N ~ o?, 1<i<p—2
EGU = EGU = O7 Var(Gij) = (')'1-2]»7 Var(Gij) = { O_lQJ L + 0_2 . i — pL— 11
p1—1, P1,]’ :

In other words, G and G are identical distributed in their first (p1 — 2) rows; the variance
of the last row of GG is the sum of last two rows’ variances of G. Then for any positive
integer q,
~ ~ ~ ~ q
tr (66T —BGGT)") <tr ((GGT -BGET)).
The proof of Lemma 3.12 is provided in Section 5.4. Now we are ready to prove
Theorem 3.9.

Proof of Theorem 3.9. Denote 02 = >, 07, 0, = max; 0;. Assume o, = 1 without loss of
generality. Set g = 2[0%]. We use mathematical induction on p; to show the following
upper bound: for some uniform constant C > 0 (which does not dependent on py, p2, 0¢),
we have

(Bt {(227 - IEZZT)q})l/q < C (0% + \/F200) - (3.10)

e If p; < 2¢q, Lemma 2.4 yields

Etr {(ZZ2" —EZZ7)7} < (pl A p2> Etr {(HH —EHH")"}.
miq meo

Here, H is a m1-by-my dimensional matrix with i.i.d. standard Gaussian entries and
my = [o&]+q—1=3[cc] -1, mg=ps+2[ci] -1 (3.11)

Additionally, by Lemma 2.6,

(B{(z27 ~B227)"})"" < ((:;1 A 5;) Eor { (HHT - ]EHHT)q}>1/q

P1 P2 1
< (E ( A ) my||[HHT — EHHT||q>
my  Mme

Spi/q (2y/mimg + mq + 4(y/m1 + /m2)/q + 2q)

(3.11)
< (2917 C (Vioc +02)

<C (yp20c +02),

which implies (3.10).
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+ Suppose the statement (3.10) holds for Z € RP*~1*P2 for some p; > 2¢, we further
consider the case where Z € RP1*P2, Note that

l=ol=0{2052 20, 20.

By such the ordering,

2 & 2 202 202
2 2 2 2 C C 2
o _,+o S—E 0] =—o0p < —=< <l=o,. (3.12)
p1—1 P1 P — m C 2q = 4"0%1

By Lemma 3.12, we have
tr((227 ~B227)7) < (227 -BZZT)1).
where Z is a (p1 — 1)-by-p2 random matrix with independent entries and

~ N o2, fl1<i<p—2
E(Z) =0, Var((Z)ij){ o2 + o2 if1<i<p1—1
p— P’ - .

By (3.12), we have max; ; Var((Z);;) < o2. Meanwhile, Zf;]l\/ar((Z)ij) =

P10 = oZ. Thus, the induction assumption of (3.10) implies

({227 -Bz2" )} < (B{(22" - EZZT)‘J})W < C (Vpaoc +0%).
By induction, we have proved that (3.10) holds in general. Therefore,
Bl|lz2T -E227| < (Bur { (227 - EZZT)Q})l/q < VP + k. 0

3.4 Wishart matrix with near-homoskedastic columns

Let Z € RP**P2 be a random matrix with independent entries. We consider another
case of interest that all entries in each column of Z have the similar variance (i.e.,
there exist o; such that o;; ~ o7, Vi,i’ € [p1], Vj € [p2]). This model has been used
to characterize heteroskedastic independent samples in statistical applications [17].
Applying Theorem 2.1, one obtains

]EHZZT—EZZTH 5\/@m§ix03+plln?xa? (313)

As the direct upper bound of (3.13) may be sub-optimal, we prove the following upper
and lower bounds via a more careful analysis.

Theorem 3.13. Suppose Z € RP**P2 has independent, mean-zero, and sub-Gaussian
entries. Assume there exist o1,...,0, > 0 such that ||Z;;/cj|y, < Ck for constant

Ck > 0. Then,
E|zz" -EzZ"||< |m ;a;* + m?xag. (3.14)

Theorem 3.14. If Z € R**72, Z;; %' N(0,0%), we have

E HZZT — IEZZTH Z Im ZO’;-L + p1 mjaxa?.
J
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The proof of Theorem 3.14 is deferred to Section 5.5. Now we consider the proof of
Theorem 3.13. Since the Gaussian comparison lemma (Lemma 2.4) cannot give the de-
sired term } %2 | o}, we turn to study the expansion of Etr { (A(ZZ 7))}, where A(ZZT)
equals to ZZ " with all diagonal entries set to zero. The expansion of Etr { (A(ZZ 1))’}
can be related to the cycles in a complete graph for which every edge is visited
{0,4,8,12...} times. Based on this new idea, we introduce the following lemma.

Lemma 3.15. Suppose Z € RP1*P2, 7, N (0, 0};), and 0;; < 0;. For a square matrix
A, let A(A) be A with all diagonal entries set to zero and D(A) be A with all off-diagonal
entries set to zero. For any integer q > 1, suppose H € RP**™ have i.i.d. standard
normal entries and m = | §2=1 0’;1] + g — 1. Then,
Eur{(A(z27))"} < B {(A@HT))*}. (3.15)
The proof of Lemma 3.15 is provided in Section 5.5. Next, we prove Theorem 3.13.

Proof of Theorem 3.13. Denote a?z =5 j 032-, 0+« = max; 0;. Without loss of generality, we
assume o, = 1. Note that E||ZZT —EZZT|| < )—EZZT||+E|A(ZZT)|. 1t
suffices to bound the two terms separately. Since D(ZZ") —EZZ" is a diagonal matrix
with independent diagonal entries, we have

D2

P2
|D(zzT)-EZZT| = max N7 -EY 7}
ot =

1€ pl

With Bernstein inequality and union bound, we have

P2 2
t t
max Z —EY Zh| >t] <2exp (logw—r:(MAJz))-
Jj=1

j=19;

2€[p1]

Integration over the tail further yields

E max Z ]Ef:ij <
= =

i€[p1]

(3.16)

Next, we use moment method to bound E ||A(ZZT)||. For any even positive integer g,
by Lemma 3.15,

E|AizzT)| < (Etr{(A(ZZT))q})l/q < (Etr{(A(HHT))q})l/q. (3.17)

Here H is a p1-by-m random matrix with i.i.d. N(0, 1) entries and m = | m 2,05 N+q-1.

Thus it suffices to bound (Etr { (A(HHT))Q})l/q.
On the one hand, by Lemma 2.6, Vq > 2,

1/q

< 2/pim +m+4(/p1 + Vm)\/q + 2q. (3.18)

On the other hand, note that HD(H HT")-EHHT H = max; , where X, are inde-
pendent centralized y2, random variable. By the Chi-square concentration and union

bound, we have
t2/4
P (max | X > t) < 2exp (logp1 —c ( /\tl/q>> :
i€[p1] m
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Integration gives

E max | X;|? < C? (logqpl + (\/mlogpl)q) . (3.19)

i€[p1]
Then it follows that

(Etr{(A(HHT))q})l/q < (mE[a@n")|")

<p}/* (B|HHT - IEHHTHq)l/q + (B||pET —EHET)|")

(3.18)(3.19)

S pi/q - (Vprm +p1 +4A(Vp1 + Vm)Vg +2q) .

Now we specify ¢ = 2p; and get

1/q

V4 (3.20)

E|azz)) <" (Btr { (A(HET))"})

This together with (3.16) completes the proof of this theorem. O

4 Applications

The concentration bounds established in the previous sections have a range of
applications. In this section, we illustrate the usefulness of the heteroskedastic Wishart-
type concentration by applications to low-rank matrix denoising and heteroskedastic
clustering.

Consider the following “signal + noise” model:

Y =X+2,

where X € RP**P2 is a (approximately) low-rank matrix of interest, Z is the random noise
with independent entries, and Y is the observation. This model has attracted significant
attention in probability and statistics [5, 7, 14, 26], and has also been the prototypical
setting in various applications, such as bipartite stochastic block model [15], exponential
family PCA [22], top-k ranking from pairwise comparison [23]. In these applications, the
leading singular values/vectors of X often contain information of interest. A straight-
forward way to estimate the leading singular values/vectors of X (which are also the
square root eigenvalues and the eigenvectors of X X ') is by evaluating the spectrum
of Y (or equivalently YY 7). Suppose \;(YY "), \i(XX "), v;(YY "), v;(YYT) are the ith
eigenvalue and ith eigenvector of YY T, XX T, respectively. The classic perturbation
theory (e.g., Weyl [34] and David-Kahan [13]) yield the following sharp bounds,

MY - XX < VYT - XX,

IYYT — XXT|
minj—; ;4 1{Aj—1(XXT) = A (XX T)}H

[os(YYT) £o;(YY )2 S

Then, a tight upper bound for the perturbation YY T — X X T is critical to quantify the
estimation accuracy of \;(YY "), v;(YY ") to \;(XX "), v;(XX ). By expansion, the
perturbation of YY T — XX T can be written as

YY' - XX =XZ" 4+ ZX" +EZZ" + (22" -EZZ"). (4.1)

Here, EZZ" is a deterministic diagonal matrix; | XZ"| = ||ZX "| are the spectral norm
of a random matrix multiplied by a deterministic matrix, which has been considered in
[32]; The term || ZZ T — ZZ || can often be the dominating and most complicated part in

EJP 27 (2022), paper 29. https://www.imstat.org/ejp
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(4.1) and the heteroskedastic Wishart-type concentration inequality established in the
present paper provides a powerful tool for analyzing it.

We further illustrate through a specific application to high-dimensional heteroskedas-
tic clustering. The clustering is an ubiquitous task in statistics and machine learning
[16]. Suppose we observe a two-component Gaussian mixture:

ind .
Y}ZZJ‘/.L-FEJ', Ej:(Elj,...,Epj)T, Eij kS N(0,0‘?), ]:1,...,77,. (4.2)

Here, p is an unknown deterministic vector in R? and /; € {—1,1} are unknown labels
of two classes. While most existing works focus on the homoskedastic setting, we
consider a heteroskedastic setting where the noise variance o7 may vary across different
coordinates. Then, the sample {Y;}_, can be written in a matrix form, ¥ = X + Z,
where

Y=, V] X =l lay 0] T and Z = (s5)).

Our goal is to cluster {YJ}?:1 into two groups, or equivalently to estimate the hidden
label {/;}_;. Let 9 be the first eigenvector of YYT. As ¢ is an estimation of [, it is
straightforward to cluster as

l; =sgn(v;), j=1,...,n. (4.3)

Applying Theorem 3.13 and perturbation bound of ||XZT || [36, Lemma 3] on (4.1), it can

be shown that
ElYYT —EZZ" - XXT| Snlpulow+nol+ [nd ol
J

Combining this with the Davis-Kahan Theorem [13], we obtain the following result.
Theorem 4.1. Let 0, = max; 0; and & = (3, o)/, The estimator in (4.3) satisfies

o < nlplly o +no? + y/no?

EM(1,1) < 2 Al (4.4)
n|pll

Here, M(l,1) is the misclassification rate defined as

. 1 ) n n
M(L1) = nmm{21{liﬂi}, 21{1#&}}. (4.5)
i=1 i=1

The complete proof of Theorem 4.1 is deferred to Section 5.6. By (4.4), the clustering

is consistent (i.e., EM(I,1) = o(1)) as long as
lially > o v (3 /n*/4). (4.6)

The following lower bound shows that the signal-noise-ration condition (4.6) is necessary
to ensure a consistent classification. The proof is provided in Section 5.6.

Theorem 4.2. Suppose o, < & < p'/*o,. Consider the following class of distributions
on R™"*P:

_ 7, T o ind 2
Potray = v v < x e, X N0 ) 2

Il = X max; o < 0., 377 0ff < 6*
There exists a universal constant ¢ > 0, such that if A < ¢ (.. V (6/n'/*)), we have

inf sup EM(,1) > 1/4.
I Py a(ox,0)
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5 Additional proofs

5.1 Proofs for main results

In this section, we collect the proofs of upper and lower bound results in Section 2
including Lemma 2.4, Lemma 2.6, Proposition 2.3 and Theorem 4.2.

Proof of Lemma 2.4. This proof shares similarity but shows more distinct aspects, com-
pared with the one of Wigner-type [4, Proposition 2.1]. We assume ¢, = 1 throughout
the proof without loss of generality. We divide the proof into two steps, which targets on
the two sides of the inequalities, respectively.

p1

Step 1. One can check that EZZT = diag ({ v o?, } ) Consider the following
i=1

expansion,

q
Etr{(ZZ" —~EZZT)?} = Z H(ZZT—EZZT)%%H
coUg,ugr1€lp1] k=1
q
= H uk1UkZuk+1»7Jk 1{Uk Uk+1}EZuk vk) (5.1)
UL s ,uq,uq+16[p1] = 'Uke[P2

q
_ 2
- | | ( U,V uk+1,vk ~ Oup,op 1{Uk:uk+1}) :

UL yeeeyUg,y Uq+1€[p1] o=
Vlgeeny [pg]
Here, the indices are in module g, i.e., u; = u441. Next, we consider the bipartite graph
from [p1] on [po] and the cycles of length 2¢, i.e., ¢ := (u1 = v1 = us > v2 = ... = ug —
Vg — Ugt+1 = u1). For any (4,7) € [p1] X [p2], let

a;j(c) = Card {k : (ur = 1,vp = J,up41 # i) Or (up, # 4,V = J, U1 = 1)}

‘ . (5.2)
Bij(c) = Card{k : up = up41 =%, v, = j}.

Then, «;;(£) is the number of times that the edge (i, j) is visited exactly once by sub-path
up — vk — ug+1; Bij(c) is the number of times that the edge (4, ) is visited twice by
sub-path 4, — vy — uk41 (back and forth). Since Z;;/0;; has i.i.d. standard normal
distribution, we have

Ew{(zZT ~EZ2Z7)} = Y I Ez»©(z3-0%)™"
c€([p1]x[p2])? (i,5)€[p1] X [p2]
— a;j(c)+2p;;(c) aij(e) (v2 _ 1\Pii(e)
c€([p1]x[p2])9 (i.5)€[p1]x [p2] (4,9)€[p1]x [p2]
q
aij(C B'L (c)
= Z H o0 T g1, 08 H EG®ii(©) (G2 _ 1) ile)
c€([p1]x[p2])? k=1 (4,5)€[p1] X [p2]

Here G denotes a N(0,1) random variable. Next, let m, g(c) be the number of edges
which appear « times in (ur — vg) or (vp — ug41) with up # ugy1, and S times in
(ug — vg — Ug+1) With up = ugy;. More rigorously,

Ma,g(c) := Card{(i,j) € [p1] X [p2] : 8=k : ur = ugy1 =i, v = j}, 5.
a = [{k : exactly one of uy or ugy; =i,v; = ]\} ‘

For any cycle ¢, we define its shape s(u) by relabeling the vertices in order of appearance.
For example, the cycle 2 -4 -3 —+2' -2 —+4 —-5—1 — 2has shape 1 — 1’ —
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2—+2"—-1—1 —3—3 — 1. Here i denotes the left vertex while i’ denotes the right
vertex. It is easy to see for any two cycles ¢ and ¢’ with the same shape, we must have
Mma,g(c) = mqy g(c’). Thus we can well define m, g(s(c)) := mq, g(c). Based on previous
discussions,

BG7 (@* - 1) = [ (B¢ - 1) )

(4,9)E[p1]x [p2] a,B>0

Then a natural observation is that EG*(G? — 1)# > 0 for all non-negative a, 3 and
EG*(G? —1)# = 0 if and only if o is an odd or a = 0,3 = 1 (see Lemma 5.2 in Appendix
A for details). We then define even shape set S, ;, as

Spipo = {s(c) :mqap(s(c)) =0forall a,3 s.t.aisanoddora=0,5=1}. (5.6)

Then the right hand side of (5.5) is nonzero only for s(c) € S, ,, and the expansion (5.3)
can be further rewritten as

Etr{(ZzZ" —-EZZ")1}

q
- Z Z H Ouge, v Oupt,vp H {EGO‘(GZ _ 1)5}7”&1/3(50)

S0ESp, py c18(c)=s0 k=1 @50 (5.7)
_ Z H {EGO‘(GZ _ 1 ma p(s0) Z H O g, v Otgoq1, 0 -
S0ESp, ,py @,>0 c:s(c)=sg k=1

Now denote mp(sp) and mpg(sg) be the number of distinct left and right nodes that is
visited by cycles with shape sy, we have the following lemma:

Lemma 5.1. Suppose o, < 1. Then for any shape sy € Sp, p,.

q

2 2 2 2 2 —2
Z H Uukavkauk+17vk = (pla o) ORmR(SO)> A (p20 e ls0) RmR(SO) ) :

c:s(c)=sg k=1

Proof. The proof of Lemma 5.1 is an analogue of [4, Lemma 2.5]. We first show

q

2 -2 2
Z H O-ukvvka-ukJrl,Uk S plaCmL(SO) URmR(SO)' (5‘8)

c:s(c)=sg k=1

Suppose so = (s1,51,---,8¢,5;), let (k) = min{j : s; = k}, i.e., the first time in any
cycle of shape so at which its kth distinct left vertex is visited. Similarly we define
r(k) = min{j : s, = k}. Now let ¢ = (uy,v1, - uq,vy) be a cycle with shape sy. Then
the following m L(So) distinct edges from right vertex to left vertex will appear in order:
Vi(2)—1 > UL2)> Vi(3)—1 — U3)s " s Vl(mp(so))—1 7 Ul(mp(so))- Similarly, we have mR(SO)
edges from left vertex to right vertex: w,) — vr),Ur2) = Ur@2), " > Ur(mg(so)) —
Ur(mp(so))- 1 addition, these my + mpg — 1 edges are distinct by the definition of / (k) and
r(k). We claim each of these my, + mg — 1 edges appear at least twice. Suppose one of
the above edges only appear once, then we must have m; o(s(c)) > 1, which contradicts
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S0 € Sp,+p,- Now for a fixed starting vertex u; = u € [p;], we can bound

q
E | | O, vk Otgog 1,0k

CUI=U f=1
s(c)=so

< E 0'2 ’ N 0'2 . 0'2 .. 0'2
— ( Upr(1)Vr(1) Ur(mp(sg)) Vr(mp(sg)) Uy(2),v(2)—1

’ Ul(my (sg)) Yi(mp(sg))—1
2 2
= O’ ... O’
Z ( asr(1)7b1 me(So)>

as
r(mp(sgp))’
a2# Fam (sq) €P1]

b1 F#bm o (sg) E[P2]
: 0’32717 ’ e Ugm, (s ))b ’
Sl2)—1 L0 (m g (sg)) —1

< Usz(So)Jé(mL(So)—l)’

Then (5.8) follows by taking different initial vertices u € [p;]. Similarly we can show

q

2mr(so) 2mp(so)—2
E H Tupor Tupgr o < P20¢ ORr
c:s(c)=sg k=1

and the proof is complete.
Combining (5.7) and Lemma 5.1, we obtain
Etr{(ZzZ" —-EZZ")"}

= Z H {EG*(G? —1)5}mawﬁ(50)

S0ESp; ,py ,5>0 (5.9)

S PN I T )

Step 2. Next, we consider the expansion for Etr ((HH ")?), where H € R™*™2 is with
i.i.d. standard Gaussian entries. We similarly expand as Step 1 to obtain

Etr (HH™ — mal,,,)9)

= > II {Eeo (@ - 17" e s(e) = sl

S0ESp, ,py @,3>0

ST E{e@ - Py

S()E‘Spl,p2 a,3>0

. ml(ml — 1) cee (m1 — mL(so) + l)mg(mg — 1) cee (TTLQ — mR(So) + 1)
Provided that m; = [02] + ¢ — 1 and ma = [0%] + ¢ — 1, mp(so), mgr(so) < ¢, we have

ml(ml — 1) cee (m1 — mL(So) + 1) . m2(m2 — 1) e (m2 — mR(So) + 1)
>my - (my —my(so) + l)mL(SO)_l - (m1 —mg(so) + 1)mR(SO)

2myp, (sp)—2 2mpg(so)
>Mmi0o ‘o .

Similarly;,

ml(ml — 1) cee (m1 — mL(So) + 1) . mg(mg — 1) s (mg — mR(So) + 1)

2 2 -2
ZUCmL(SO) . mQURmR(SO) )
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These all together imply

Etr (HH —mol,)%) > S [[ E{Ge@ —1)pyme™

So ESpl+p2 a,3>0

. {mlaémL(so)72 . O.f%mﬂ,(so)} v {mzaémL(SO) _0_12%7%1?.(50)72} .

(5.10)
By comparing (5.9) and (5.10), we have finally proved that
Bt {(22T —Bz27)1} < (pl A pQ) o { (HHT ~BHHT) . 0
miq mo

Proof of Lemma 2.6. Let W = max {omax(H) — \/mz — /M1, /M2 — \/M1 — Omin(M), 0},
by the tail bound of i.i.d. Gaussian matrix (c.f., [31, Corollary 5.35]), P (W >1t) <
2exp(—t?/2) for all t > 0. Thus for any ¢ > 1,

EW? :q/ t1IP (W > t)dt < 2q/ 0L exp(—t2/2)dt = 22 qI'(¢/2).
0 0

Since

|HHT —EHH|| =|HH —maly, || = max {07, (H) — ma,ms — o5, (H) }

< (W 4 /m1 + m3a)” —ma (5.11)
=2/mimo +mq + w? + 2(\/m1 + \/mg)W,

we have
(B|HHT —BHHT|7)"
<2/mims + my + (EW2)Y9 4 2(/my + /mz) (EW9)Y1

q+1 1/q q 1/q
<2\/mims +ma + (2971q0(q)) " + 2(v/m1 + vma) (22qr(q/z)) .
Next we claim y

(271q1(@) " < 20, (2aT(/2)) " < 22, (5.12)

One can verify (5.12) for 2 < ¢ < 10 by calculation. When ¢ > 11, (5.12) can be verified
by the Gamma function upper bound in [6]. In summary, we have

(BIEHT —BHAT|9)"" < 2y/mms + my + A/ + v/mz)va + 2.

which has finished the proof of the first part of this lemma.

For the second part, when m; < mo, since HH' —EHH ' is an m1-by-m matrix, we
know tr((HH'" —EHH")") is the sum of m, eigenvalues of (HH' —EHH")?, while
each of these eigenvalues are no more than |HH ' —EHH " ||9. Thus,

Etr{(HHT - EHHT)q} <Em||HHT —EHHT |
<(mi1 Ama) - (2y/mimg +m1 +4(v/m1 + vVma)/q + 2q)7.

When m; > ms, we shall note that rank(HH ") < my and EHH " = myl,,,. Then,

(HHT —BHET) — (1)fm3L, =3 (-ma)r (ﬂf{) (HHT),
k=1

EJP 27 (2022), paper 29. https://www.imstat.org/ejp
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which shares the eigenspace of HH " and has rank no more than ms. Thus,

Etr{(HHT - EHHT)q} = Etr { (HHT —EHHT)" - (—1)qmglml} +tr (=)Mo, )
<myF H (HHT —BHH")" = (=1)%miL,, || + mymd

<mg {(2\/m1m2 +mq +4(y/m1 + /m2)\/q + 2¢)? + mg} +mymd
<2my (2y/mims +my +4(ym1 + /ma) /g + 29)°
:2(m1 A\ mg) (2\/@4‘ mi + 4(\/1’71 + \/@)\/&"‘t‘ 2q)q .

where the last inequality is due to m; > mo. O

Proof of Proposition 2.3. Since Z;; w N(0,1), we have EZZ T = pyI,, and

E|zZT —EZZ"||=E|ZZT — poL, || = E (|22 7| — p2) = E||Z]]> — p2.

Since ||Z]| /(\/P1 + +/P2) — 1 as p1, p2 tend to infinity [31, Theorem 5.31],

E|zzT —-Ezz7 ElZIZ —
tim int 22 . Ls i EIZP=p2 0
P1,p2—00 20c0Rp + 0% p1,p2—00 2,/P1P2 + P1

Proof of Theorem 2.8. 1t suffices to prove the following separate lower bounds to prove
this theorem.

sup E|ZZT —-EZZ"| > o%; (5.13)
ZeFp(04,00,0R)

sup E|ZZ" ~EZZ"| 2 ocor; (5.14)
ZeFp(0x,00,0R)

sup E|ZZT —EZZ"| 2 oro./logp + o2 logp. (5.15)
ZEFp(0x,00,0R)

1. We first set 0;1 = o¢/\/P1; 045 = 0, > 2. If Z;; ~ N(O,Ufj) independently, it is
easy to check that Z € F,, ,,(0«,0r,0¢c). Then Z is zero except the first column.

Suppose the first column of Z is z, then ZZ' —EZZT = 22" — iIpl,
p1

E|Z2ZT —EZZ"| =E|zz" — 0&/pill > El|zz" || — 0&/p1 = E|2|3 — 0&/p1
>0g(1—1/p1) > cog,

which has shown (5.13).
2. Letky = |0%/02], ko = |0%/0?|. Construct

g = d O 1SSk, 1S5 <k
Y 0, otherwise.

By such a construction, Z;; ~ N(0,02) for 1 <i < ky,1 <j < ke; Z;; = 0 otherwise.
Thus,

T )2 T T T)2
E(Z;2} —BZ;2}) =EZ,;2} 2,2} — (BZ;Z]})
=E||Z;5Z,2} — otlx, = (k1 + 1)o%.

Here, the last equality is due to

(k1—1+3)0'3, 1<i=14 <k
(EllZ,;3252]), 0 1<i#i <k

i,

=E|Z,|3%i;Zv; = {

EJP 27 (2022), paper 29. https://www.imstat.org/ejp
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Thus,
ko

N E{2,2] ~EZ;2]}’|| = ||(k1 + DkoolI|| = (k1 + 1)kao?.

j=1

Note that ZZ" — EZZT can be decomposed as the sum of independent random

matrices,
ko

T T T T
77" -8zZ" =Y {2,;2} -BZ;Z}}.
j=1
We apply the bound for expected norm of random matrices sum [29] and obtain

E|ZZ" ~EZZ"| 2v/(k1 + Dkoot = \/(LU%/JEJ +1)- lok/o2] ot

2\/(0%/03) -0%/(202) - o} (since o > 0,)

ZO—RO—C-

We thus have shown (5.14).

3. Set k; = LU%/UEJ, ko = \_J%/afj, m = [(p1/k1) A (pa/k2)|. If ks > (logp)?, then
or > o, logp and (5.15) can be implied by (5.14). So we assume k; < (logp)?, thus

D1 D2 p1 D2 1 »p
k >k — AN — ] > —= A > —
1= (le 2@) =2 " 2(logp)? = 2 (logp)?

and log(kim) > clogp. Let

B m
—N—
(04;) = B = diag(B, B,...,B,B,0) ¢ RP**P2 B =0,1;,1] .

Then we can rewrite down Z in rowwise form as

B 0 07
Bl 0 0
Z=10 Bl O c®rrX® B B €R™, Br . Brom 4 N(0,0204,).
0 Ba, 0

0 0

By taking a look at the expression of | ZZT — EZZT||, we know

1227 —BZ2Z7|| > max |B]8; —kyol|.

<j<kim

Note that 3] 8;/02 ~ X3, By the lower bound of right-tail of Chi-square distribution
(Corollary 3 in [37]), we have P (ﬂ;rﬁj — koo? > o2z) > cexp (—C(x A %z)) Since

P (maxﬂjTﬂj — kyo? > Jfas) =1-P <maxﬂjTﬂj — koo? < Jfa:)
J J

klm
= 1= J[ (=P (578 — kao? 2 022))
j=1
x2 kim
21<1cexp<C(:ﬂ/\)>) ,
ko
EJP 27 (2022), paper 29. https://www.imstat.org/ejp
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Taking z = ¢ (w/kg log(kim) vV log(k:lm)> for some ¢; such that —C (a: A %) >
—log(kim), we get

(eemn (o )= i) 5o

T T T 2
E||zz" -EZZ HzElg%imﬁj B; — koo?

Thus,

>supzo? - P (maxﬂjﬂj — kyo? > zaf)
>0 J

>ei(1—e) (\/ k2 log(kim) v log(klm))
>co? (\/ ko log(kim) + log(klm)> > co,or\/1ogp+ cologp. O

5.2 Proofs for non-Gaussian distributions

In this section, we collect the proofs of concentration for the non-Gaussian Wishart-
type matrix (Lemma 3.1, Theorem 3.4 and Theorem 3.5) in Section 3.1.

Proof of Lemma 3.1. Following the notations and proof idea of Lemma 2.4, we have the
same expansion of Etr {(ZZT —EZZ")?} as (5.3):

EBu{(Z27 -E2Z7)} = ) [I  Ez9 (22 -02)™"
c€([p1]x[p2])? (4,5)€[p1] X [p2]

q
_ Z H G s H ]EG;);iJ(C) (G?j . 1)ﬁij(c) ,

c€([p1]x[p2])? k=1 (i,3)€[p1] X [p2]

(5.16)

where G;; := Z,;/0;;. Different from (5.3), E;; in (5.16) may not have N (0, 1) distribution.
To overcome this difficulty, we introduce the following lemma to bound EES(E?; — 1)°
via a Gaussian analogue.

Lemma 5.2 (Gaussian moments). Suppose G ~ N(0,1), a, 8 are non-negative integers,
then

(@a+28-DN>EG¥G?-1)P > (a+28-3)!!- (a+3—1), ifaiseven;

{ EG*(G? - 1)% =0, ifaisodd. 17
Here for odd k, k!! = k(k — 2)--- 1. Especially, (—1)!! = 1,(=3)!! = —1. More generally, if
Z has symmetric distribution and satisfies

Var(Z) =1, ||Z]y, = sg;fq—l/Q(E\Z\q)l/q < k. (5.18)
a>
Then for any integers a, 3 > 0,
|EZ*(Z% - 1)°| < (Cr)*T*PEG*(G® — 1)P (5.19)
for some uniform constant C' > 0.
Proof of Lemma 5.2. See Appendix. O
EJP 27 (2022), paper 29. https://www.imstat.org/ejp
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Now, Combining (5.16) and (5.19), we have
Etr {(ZZ" -EZZ")"}

q
< Y Ilowwouon I (©@0@m@EE© (52 - 1)

c€([p1]x[p2])e k=1 (i,5)€lp1]x [p2]
q
_ (Cl{)2q Z H Tuupson Turesr o H EG©s (e) (G2 o 1)/37‘4'((3) .
ce([p1]x[p2])? k=1 (i,5)€[p1]x [p2]

The rest of the proof can similarly proceed as we did in proving Lemma 2.4. O
Proof of Theorem 3.4. Let b := 2/a > 2 and E;; := Z;;/0;;. By definition, we have

sup, q_%(]E|Eij|q)1/q < k. Thus for any o, 3 > 0,

’EEQ E2 | = |EEa E2 1)1{|E,-j\<1} +EEQ'(E2' - )'Bl{lEu|>1}|

sa28) (5.20)

<1+ E[Ey[*H? < (Cr)* (o +28)
We introduce the following technical lemma.
Lemma 5.3. Let G, G be independent N (0, 1) and let F; be i.i.d. copy of G|G|*~". Then,
EES(E} — 1) < (Cyr)*PPEFS(F] —1)°. (5.21)
Here C), is some constant which only depend on b.
Proof of Lemma 5.3. See Appendix. O

Now let G;;,G; be iid. N(0,1) and define F;; = G;;|G;;/""'. Let Z be a random
matrix with entries Z;; = o;;F;;. Then, by Lemma 5.3 and the similar proof in Lemma
3.1, we have

Etr {(Z22T —EZ27)7} < (Cypr)* Etr {(ZZ - EZZT)Q} .
Thus,

]EHZZT _]EZZTH g (Etr{(ZZT —]EZZT)2q}>1/2q
(5.22)
S (Cb’{)Q (Etr{(ZZT _ EZZT)Qq})l/Qq '

1/2q
~ ~ ~ q
Let ¢ = [log(p1 A p2)], now it suffices to upper bound (E HZZT — ]EZZTH > . We de-

|2b 2 =2

, 0 = max; Y72 07| G|

fine & O'C = Imax; Zz 1 0' |G” and ¢, = max; O'Z'j|éij|b71

and apply Theorem 2.1 conditionally on G:

~ o~ -~ 2q ~
E {tr { (ZZT - EZZT) } ’G]
2 2 2 29
< (1 (60 + 6c0R + oco«/1og(p1 A p2) + o3 log(p: /\pg)) .

Then,

1/2q
(Etr { (227 - EZZT>2q})
(5.23)

< € (6]l + 1900 nlz, + 107 oy V081 Ap2) + 521, log(or A p2).

Here || X |24 := (IE|X|??)'/24 is the {54-norm of random variable X. Now we bound ||52 qu
H&é”h and HUCng separately.
EJP 27 (2022), paper 29. https://www.imstat.org/ejp
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|&f||2q. For any a > 0, since

~ t2 t2
P (max |Gij| > t) < 2exp (—2 + 10g(p1p2)> < 2exp (—4) , Yt > 2+/log(pip2),
z)-j

integration yields

2/a

o0 a (o) ‘
Emax|Gy;|* = / P (maX|Gij > tl/“) dt < (2 log(.mpz)) +/ 2e” T dt
2,7 0 2,7 0
o a
= (4log(p1p2)) /? 4 daT (§> .
Then it follows that

- 1/2q
H&f”zq <ol <E H}%X|Gij|4(b1)Q>

1/2q (5.24)
< o2 ((410g(p1p2))2(b_1)q +16(b — 1)qI" (2(b — 1)q))
S 02 (log(pip2)" ' +¢"1) S o2 log" " (p1 V p2).

‘5%“2(1 and &%H. By the moment bound of supremum of empirical process [9,

Theorem 11],

p1
1521, = Hmj@mZo?ﬂGiﬂ%Q

i=1 2¢
P1
<E 2 A 12b-2 ~2 5.25
~ 121]%};2 i=1 G'LJ|G1]‘ +qHU*H2q ( :
P1 _ .
< ]Emjaxz (O'Z'Qj|Gij|2b_2 - EU?j|Gij|2b_2) +o+4q H&szq-
i=1
Denote Y; = Y7, (afj\éij|%*2 - Eafj|éij|2b*2), it suffices to bound Emax; Y;. To

this end, we introduce the following Generalized Bernstein-Orlicz norm defined in
[19]. For a random variable X, let

1 Xllg, , = inf{n >0:EW, (X|/n)] <1}

be the ¥, ;-norm where V¥, j, is defined via its inverse function

U (1) == \/log(1+t) + Llog(1 + )/, vt >0.

. 4b—10_f
Now fix j € [pz] andleta=1/(b—1) and L = m By [19, Theorem 3.1],
P1
1Yilly, , <O\ > ok
i=1

P1
Py =C Za;‘j{\/iJrLtl/a} <2exp(—t), t>0.

i=1

This yields

P (] > ¢ {ocovi+ o)) <2exp(-1),  t20,

EJP 27 (2022), paper 29. https://www.imstat.org/ejp
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which can be rewritten as

t2 t 1/(1’71)

Applying union bound, we get

t2 t 1/(b-1)
]P(maX|Yj|2t> <2exp | logps —c 22/\<2> , t > 0.
j 0¢0? o2

Now it follows that
Emaxi@ﬁEmaXDﬂ:/ IP(maX|Yj|>t> dt
J j 0 j

<C (Jca* Viogps + o} logb_l(m))

max |Y;| > t> dt

tl/ (b—1)
Sy

00
+ /
C(o’co* VIog p2+02logb~1(p2)

<C (Uco*\/logpz + o} logb 1 )

oo
+/ <exp < ) + exp
0 UCU*

<oco.y/1ogpa + o2 1log"* (p2)

S0 + o2 log" ™ (pa).

Combining with (5.25), we obtained

||O'CH2 O'C + o} log 1(p1 V pa) log(p1 A p2). (5.26)
Similarly we can obtain
lorllsg < o +021og" ! (p1 V p2) log(p1 A p2). (5.27)
Combining (5.23), (5.24), (5.26), (5.27) and applying Cauchy-Schwarz inequality, we
obtain
E HZZT - ]EZZTH < 0% + oroc + oroy 1og "V 2 (py v pa)\/log(py A p2)
+021og"  (p1 V p2) log(p1 A p2).

This completes the proof. O

Proof of Theorem 3.5. We first prove the following comparison Lemma.

Lemma 5.4. Suppose 7 is a p1-by-p, random matrix with independent entries satisfying
EZ;; = 0,Var(Z;;) = 0”, Z| < 1. H is an m;-by-my dimensional matrix with i.i.d.
standard Gaussian entries. When g > 1, my = [02] +q— 1, ma = [0%] + ¢ — 1, we have

Etr{(22T —EZZ7)7} < < A m) Etr {(HH —BHH")"}.
mi mo

Proof. Recall Z € RP**P2, |Z| < 1 almost surely, EZ;; = 0, Var(Z;;) = o . Similarly as
the proof of Lemma 2.4, let ¢ = (u1,v1,...,uq,vq) € ([p1 X [p2]])? be the cycle of length

EJP 27 (2022), paper 29. https://www.imstat.org/ejp
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2¢ on bipartite graph [p1] — [p2], @;;(c) and §;;(c) be defined as (5.2). We similarly have
the following expansion,

q
E{(zz"-Ezz")} = > E[[(zz"-Ez2Z"),u,.

ur,ug €] J=1

q
=E Z H uJ’UJ Uavuj+1 1{“1—u7+1} Z EZ uJ,vJ

u17~»-»uq€[m]j:1 v; €[p2] v €[p2]

— E 2
- EH ( UjsVj “J+1 vi O-uj7vj1{uj:uj+1}>

u1,uq€fpr]  J=1
’Ul,.u,vqe[pz]

= Z H IEZZ.“(C) (Z’L2_] o O'?j)ﬂij(c) .

ce([p]x[p2])? (i,5)€lp1]x [p2]

Since Z;; is symmetric distributed and EZ?; = we have

Z_]’
EZa (Z2 _01])5 :07 if o is odd or {0520762 1}

For any (i,7) € [p1] x [p2], we shall note that 0 < Z?; < 1and |Z}; — 0;;| < 1. If a > 2 and
o is even,

2 aij(e)=2 (2
E|Z;;| - 12, (Zi; —

gi?j)ﬁz‘j(c)| < EZIQJ =02

zj;

aij(c) 2 2 51‘7‘ c _
E ‘Zij (Zij - Uij) i) =

ifa >0, 8> 2, one has

— gfj)ﬁz‘j (e)—2

aij(c) 2 2 Bij c
E ‘Zij (Zij - Uij) (e) ij

2 242 aij(e) (2
<E(Z;; — o) ’ZijJ Z
4 4 2 2 4 2 4 2
SEZij — 0y < EZij N Zijl5 — Oy = 035 — 045 < 035
Therefore, for any «, 5 > 0, we have

o7 - EG* (G? — 1)5, « is even and (o, 3) # (0,0);
1, a=0,8=0;
=0, « is odd.

EZ3(Z} — o})°

Here, G ~ N(0,1). Thus,
E{(zz" -EzZ")"}
a;j(cC 51(‘:)
< > II  oilen©suez0oBEG @ (G2 = 1)
ce(p1]x[p2])7 (i.5)Elp1] X [p2]

Let s be the shape of any loop ¢ € ([p1] % [p2])?, mr(s) and mpr(s) be the number of
distinct left and right nodes respectively visited by any c with shape s; mq g(s) = mq g(c)
is defined as (5.4)). Then,

E{(zz" -EzZ")"}

a;j(c B’L( )
< I o)t @)200y EG™ @ (G2 = 1)77°

ce([p]x[p2])? (i,5)€lp1] X [p2]

e O S | | R A

(2,5)Elp1] x [p2] @,>0
c has shape S ¢ pass (4, j) for positive even times o is even
2 -2 2 2 2 2 Ma,p(S
SZ (plO_CmL(s) O_RmR(s) /\pQO_CmL( ) mR (s)— ) H {Ga 1)5} p(s) .
s a,B>0
[eY is even
EJP 27 (2022), paper 29. https://www.imstat.org/ejp
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On the other hand, we have
Etr (HH' —-EHH'")?) =Etr (HH' - mQIml)Q)
:Zml"'(mlme(S)Jrl)'mQ - (m2 — mpg(s) H E{G*(G* - }ma'ﬂ(s).
S

a,3>0

Provided that m; = [02 V1] + ¢— 1 and ms = [0% V 1] + ¢ — 1, we have

mr(s)— —1)--- - 1 mp(s

o7 < = 1) ,Slml (sl 1) o < ma(mi—2) - (ma—my (s)+1);
1

mr, (s m —2)-- - 1
Ué L(s) < mi(mi—1)--- (mi—my(s)+1), 0122 R(s)—2 < ma(my ) 1517:2 mr(s) + )
Thus

Etr{(ZzZ" -EZZ")"} < ( A ) Etr {(HH" —EHH ")},
mq mo

which has finished the proof of this lemma. O

Assume B = 1 without loss of generality. With Lemma 5.4 and Lemma 2.6, the proof
of Theorem refth:heter-wishart-bounded is the same as Theorem 2.1. O

5.3 Proof for tail bounds

Proof of Theorem 3.8. Without loss of generality, we assume o, = 1. Let ¢ > 2 be an
even integer. Let

my = [0&] +qgb—1, mo=[0%] +qb—1.
By Lemmas 2.4 and 2.6,

TA\m1 mg

Etr { (zz7 - IEZZT)qb} < (pl A ) Etr (HH' —EHH")?)

< (pl A “) (ma A ma) (24/mrs + mn + A(y/mr + v/m2)v/ab + 20b) "

mq mo
qb
<(p1 A p2) (2«/m1m2 +my +4(y/m1 + V/m2)v/gb+ 2qb)
Thus,
1/
E|z2T -B277|| < (B (727 -E227)") "
1/q b
<(p1 A p2) (2\/m1m2 +m1 +4(y/m1 + /m2)\/qb + 2qb)
b
= {(pl /\pg)l/(qb) (2\/m1m2 +my +4(y/m1 + /m2)\/qb + 2qb)}
b

< {C’(pl A pg)t/(ab) (aRcrc + 02+ (op+0c)Vgb+ qb)} .

We set ¢ = 2[log(p1 A p2)/b] and consider the following two cases:
1. If b > log(p1 A p2), we have ¢ = 2 and
b
BlzzT —-B227 | < {C(p1 A p2) 1/ (20) (aRac + 0%+ (op +0c)Vb+ b)}

§{C((UC+UR+\[) —O'R>}b.
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2. If b < log(p1 A p2), we have
2log(p1 A p2)/b < q = 2[log(p1 A p2)/b] < 2 (log(p1 A p2)/b+ 1) < 4log(ps A p2)/b.
Then,
E|z2T -EzZ7 |
S{g(pl A po)V/ (2log(p1/p2)
(URUC + 0%+ (0 + 0c)\/4log(p1 A pa) + 4log(pr A pz)) }b
<{¢ (toe +on+ Viogln nm))? - 2)

In summary, there exists a uniform constant C; > 0 such that

b
E|zz" ~E227|" < {Co ((oc +on+ VEVIoal Ap)” —02)} -

In fact, the statement holds for all b > 0 including non-integers.
Next we consider the tail bound inequality for |ZZT — EZZT|. Let C; be a to-be-
specified constant. By Markov inequality,

P (HZZT - IEZZTH >C ((ac +or + Vlog(py Ap2) + )% — a%))

E|zzT -EzZ7|’
<

{01 ((UC +or ++/log(p1 Ap2) + )% — U%)}b

Co ((ac +og ++/bVlog(ps Aps))? — aé)

Ch ((Uc + or + /log(p1 Ap2) + )% — 0(2;)

b

We set b = 22, C; = eC), we have
P (HZZT ~EZZT|| > ¢4 ((crc +og +/log(py Apa) + )% — aé))

Co ((oc + o+ VIoglpr Ap2) + VB? — 2.

C ((UC +og + +/log(p1 Ap2) +x)% — 0'%.)

= exp(—a?).

Therefore, we have finished the proof of this theorem. O

5.4 Proofs for Section 3.3

Proof of Lemma 3.12. The proof of this lemma relies on a more careful counting scheme
for each cycle. For convenience, we define

) , )
i . o2, 1<i<p —2,1 <5 < po;
67 = Var(G;;) = Ed . .
bowGo = {00 a5

(Go)ij = Gij/oij, 1 <i<p2,1 <j<pi; (Go)ij=Gy;/6:ij,1<i<pi—1,1<j<ps

as the variances and standardizations of each entry of G and G. Since the proof is
lengthy, we divide into steps for a better presentation.
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Step 1. In thi~s step, we consider the expansions for both Etr(GGT — EGGT)? and
Etr(GGT — EGGT)4,

q
Etr {(GGT — EGGT)Q} =k Z H (GGT o EGGT)uk,uk+1
Up,...,uqg€[p1] k=1
q

Z E H Oup,vr Ougkt1,0k ((Go)ukﬂ)k (Go)uk+1,vk - 1{uk:uk+1})

ui,...,uq€[p1] k=1
V1,0,V €[p2] (5.28)

)OED DY

QC[q] uqe €[p1—2] v1,...,v4€[p2]

q
Z E H Oug, vk Ougs1,vk ((Go)uk,vk (Go)uk+1,vk - l{uk:uk+1})

ug€{pi—1,p1} k=1

Here w441 := ;. Similarly,
Etr {(ééT - EGG‘T)Q} - | | (GGT - EéGT)

u1,...,ug€[p1—1] k=1
=2 X X

QC[q] uqc €[p1—2] v1,...,v4€[p2]

q
. { Z E H 6uk,vk5—uk+1,vk ((Gﬂ)uk,vk (G())Uk+1,vk - l{uk—“k+1})} '

uUQ=pi —1 k=1

Uk, Uk+1

Thus, in order prove this lemma, we only need show for any fixed v1,...,v, € [p2],
Q C [g], uqe € [p1 — 2], one has

q
Z E H Oug, vk Oupt,vp ((Go)ukﬂ% (Go)uk+lyvk - 1{Uk:Uk+1})

ug€{pi—1,p2} k=1 (5.29)
. ) ) .
<E H &ﬁkavk&ﬂ«k+17vk ((Go)ﬂkﬂ’k (Go)ﬂk+1,vk - 1{ﬂk:ﬁk+1}) .
k=1
Here,
U =up € [p1 — 2],if k€ Q% @ =p; —1,ifk e Q. (5.30)

Step 2. To prove (5.29), we shall first recall that the definition of uy,...,ug,v1,...,vq
are cyclic, i.e., u; = uq41, we also denote vy = v,. Thus,

q q
E | I Oup,vr Oupqr,vp = E I | Ouge,vr Oug,vp—1

ug€{p1—1,p1} k=1 ug€{p1—1,p1} k=1

= H Oug,vr Oug,op—1 <H Op1—1,000p1—Lvg_y T H Uplkao’plyvk—l>
keQe ke keQ

< H Oug, v Oug,vk—1 H (O—pl_lﬂ)kapl_lﬂ)k—l Jro—plﬂ)ka-plﬂ)k—l)
keQe keQ

Cauchy-Schwarz 1/2
~ ~ 2 2 2 2
< H Tup,ve Tug,vp—1 ° H <(UP1*1’711« + Upl,vk) ’ (Uplfl,vk—l + Jphvk—l))

keQe keQ

= H Tup,vox Tup,v—1 H Opy—1,0.0p1— 1001
keQe keQ
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q q
= E : H Oup,or Oug,vp—1 = § H Ouge,vp Oupg,vp (5.31)
1 k=1

uQ=pi— uo=p1—1k=1
Step 3. For any fixed Q = {k : u;, € [p1 — 2]} and a cycle ¢ = (u; — v1 — Uy — v — ... —
uqy — vg — u1) such that ug € {p1 — 1,p} and ug € [p1 — 2], recall @y is defined as (5.30).
We aim to show in this step that

q q
H GO ukﬂ)k Go)uk+1 vk l{uk uk+1} H ( uk Vg Go)ukﬂﬂ)k 1{ﬁk:ﬁk+1}) :
- - (5.32)
We can rearrange the left hand side and the right hand side of (5.32) to
P1 P2 p1i—1 p2 -
EH H Go a” GO )B"j’ and I H H GQ Oé” Go )ﬁij.
i=1j5=1 i=1 j=1

Here, ayj, 8ij, &uj, and B;; are defined as

= |{k‘ : (uk = i,’l)k = j,uk+1 75 Z) or (uk 75 i,’l)k Zj, Uk+1 = Z)}|,
ﬁm = |{k CUE = U1 = i,Uk :J}|a
dij = Hk : (ak = ivvk = ja ak-i-l 7é 7’) or (ﬁk % i7vk = ja ﬂk-ﬁ-l = Z)}|
Biy = {k : @ = g1 = i,0 = 5}
Then, «;; (or &;;) is the number of times that the edge (7, j;) is visited exactly once by
sub-path u;, — vp — upy1 (Or Uy — vp — Uky1); Bi; (or By;) is the number of times
that the edge (i, ) is visited twice (back and forth) by sub-path u; — vy — wug41 (or
up — UV — ak-‘,—l)- _
Here, by comparing the order of (Go);; and (Go);; in these two monomials (5.32),
&ij, Bij, oy, Bij are related as
dij = oy, Bij =By, f1<i<p—21<j<n,
The relationship among &, 1.7, Bp1—1.5» ¥y —1.5> Vpy i By 1.5 Bpy . 1S More involved. To
analyze them, for any fixed 1 < 5 < p; we define
D=k (ur = vp = wper) = (01 = 1) = j = {p1 — L, }°)
or ({p1 = Lp}* = j = (= 1))},

D= |{k (= vk = urgn) = (01— 5 = {pr— Lpa}) or ({pr — Lpi}* = 5 — pi)},
o) = {k + (ur = vp = ) = (01— 1) > 5 = (pr — D)},
O)|%(W—WW%WHF#M%j%mHM

=H{k: (ur = vp = upr1) = ((pr —1) = j = p1)or (p1 = j— (p1 — 1))}

Then by definitions, we have

Qp,—1,j = e+, Qp,,j = e + 2, Qp,—1,j = e +2;

Bu-ri =5, Bpg =2, Bp-ry=25 +af +af.

We introduce the following Lemma before we proceed.

Lemma 5.5. Suppose 71, Z2 are independent and symmetric distributed random vari-
ables. Var(Z,) = Var(Z3) = llpss || Z2]lwp < k. G is standard Gaussian distributed.

For any non-negative integers x1,...,25, we have
Bz Zgates (23 — 1) (23 - 1))
< (CK,)II+$2+2($3+I4+$5)EGI1+$2 (G2 _ 1)w3+w4+w5.

(5.33)
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Especially when Z,, Z,, G are all standard Gaussian,
EZ{ 7 25245 (27 — 1)" (25 — 1)™| < EG™ 72 (G? — 1)*stratos, (5.34)
Proof. See Appendix. O
By Lemma 5.5,

[B(Go)pr 1y (Go)py -1,y = D] - [B(Go)y, 5 (o), = 1)

P1,J
) 42 2@ 25 420D 2
:‘E(Go)pilf (Go)p,—1; = D)™ |- |E(Go),? ;™ ((Go)p, ; — 1)™
S C N C) I 29 LG () 5 \& A Bpy—1,j
<E(Go)yr 15" ((Go)p, 15 = )™ 5845 = B(Go), 11 ((Go)p, —15 — 1)1
Thus,
P1 P2 p1—1 p2 -
EHH (Go); a” Go ﬁu <E H H Go O‘” Go )ﬁ"j. (5.35)
i=1j5=1 i=1 j=1

This gives (5.32).
Step 4. Combining (5.31) and (5.32), we finally have

q
Z E H Oup, v Ougq1,0k ((Go)uk,vk (Go)uk+1,vk - l{uk:uk+1})

ug€{p1—1,p1} k=1

q
= E I I Oup vk Oupqr,vk

ug€{p1—1,p1} k=1

::]Q

((Go)uk Vi (GO)Uk+17vk - 1{Uk:uk+1})

=~
Il
_

(5.32)

q
< § H Oup, v, Oupyr,op E
uae{p1—1,p1} k=1 k
q

< E H O—uk,vkauk+1,vk ((Go)ﬂk,vk (Go)ak+17vk - 1{ﬂk:ﬂk+1}) )
k=1

<

((GO)ﬂ,k,vk (Go)gsr,on — l{ak:ﬂk+1})

Il
—

(5. 31)

which yields (5.29) and additionally finishes the proof of this lemma. O

Proof of Theorem 3.11. Denote o2 = ", 02,0, = max; 04, Z = [Z1,...,Zp,], and Sy, =
ZkZ]j — EZkZ];r. Then

E||zZ" -EzZ"|=E

p2
> S
k=1
By the lower bound for expected norm of independent random matrices sum [29, Theorem
I and Section 1.3],

P2 1/2
E|zZT -EZZT| > ( EY 55, ) + Emax || S| (5.36)
k=1 b
If Z;j ~ N(0,02) for any i € [p1],j € [p2]. Note that
p1
(EZ,z] Zkz,j)ij =EZ; Z ZE 70,
1=1
30} + o? (Zz¢101>7 t=17; 7d1ag({20 +0 Uc fll)
0, i # 7,
(EZ,Z])" = diag(a?,...,0%).
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Thus,
b2 b2
E> SiSy || =D _E(Ze2Z) - BZu2{ ) (212} —EZpZ))
k=1 k=1
P2
=D Ezc2{ 2,2 - (B2, 2] )
k=1
= Hdiag ({01»2020 + o} ) H = ol 40202,

Meanwhile, let i* € [p] such that suppose o, = o;+, then

E|Si|| =E|ZcZ, —EZiZ || > E||Zc 2} || — |EZcZ) || = 0& — o2

E[|Skll = B[l (Sk)ii-

Combining the previous two inequalities, we have E||Sk|| > co2. Consequently,

> caf.

=E|Z%, — EZZ,

(5.36)
E|zzT -EzZ7| 5§6 0%+ \/P20.0C. O

5.5 Proofs for Section 3.4

Proof of Lemma 3.15. Since the diagonal of A(ZZ") is zero, we have the following
expansion,

(Azz"))

Bn{(azzN)'}= > E

u1,...,u1 €[p1] k

q
= Z I (1{uk?éuk+1}zukﬂ)kZuk+17vk) .
=1

UL yeery ui€[p1] kK
v1,...04€[p2]

q
Uk, Uk 41

(5.37)

Again, the indices on u are in module ¢, i.e., u1 = ug+1. For a cycle ¢ := (u3 — v; — ug —
vy = ... = uqy — vy — u1), recall the definition of «;;(c):

a;j(c) = Card {k : (ur, =%, v = J,up41 # 1) Or (up # 4,V = J,Upt1 = 1)}

for any i € [p;] and j € [p2], which counts how many times edge ¢ — j or j — ¢ are visited.
Now the expansion in (5.37) can be further written as

AL D SR 01 (R B I |
k=1 (

ce(lp]x[p2])? i,5)€[p1]x [p2]

q
Z (H 1{uk¢uk+1}0'uk,vkO'uk+1,vk> . H EG“i () (538)
(i,5)€

ce([pa]x[p2])? \k=1 [p1]x[p2]

q
Z (H l{uwéuk+1}at2)k> : H EGYii(c)
(

ce([pa]x[p2])? \k=1 i,3)€[p1]x[p2]

We define m,(c) be the number of edges which appear « times in the cycle c:
meq(c) = Card {(i,7) € [p1] X [p2] : [{k : ux OT up1 = 4,0 = 4, }| = o}
Let s(c) be the shape of ¢, we have

[ EGow© =[] BGmteD,

(i,5)E[p1]x [p2] a>0
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where G ~ N(0, 1). Next we define the following shape family:
Spi.ps = {s(c) : m/,(c) =0 for all odd «; and uy # uj+1 forallk =1,...,q}.

Based on the notations above, one can check the expansion in (5.38) can be further
simplified to

Bn{(azz) = > 0¥ (H ka> T] EGmeeo

S0ESp, ,py c:8(c)=sg a>0

= > J[EGmE M (ﬁa§k>

S0ESp ,py @0 c:s(c)=sg \k=1

(5.39)

For a fixed shape sy € S;, p,, let mp(so) (mr(so)) be the number of distinct left (right)
vertexes visited by cycles with shape so. Now we bound - . —, (ITi=, 07,) via mr(so)
and mg(sp). To this end, we first present three facts for any cycles with shape sg:

» Each visited edges must appear at least twice in the cycles;

» For each right vertex in the cycle, its predecessor and successor in left vertex set
must be different;

» The cycle is uniquely defined by specifying m, (sq) left vertexes and mpg(sp) right
vertexes; moreover, the summation term is free of the index of the left visited
vertexes.

These three observations, together with the assumption o, = 1, yield the following
bound:

mpg(so)

Z (HU ) <pi(pr — 1)+ (p1 — mz(so) Zo— ) (5.40)

c:s(c)=sg \k=1

Next we make comparison between Etr { (A(ZZ 7))’} and Etr { (A(HH"))?}, where H
is a p1-by-m random matrix with i.i.d. standard Gaussian entries. Similar, as above, we
have

Etr{(A(HHT))q}: S J[EG™ 3 [fe:s(c) =so}l.
S0ESp ,pp @20 c:s(c)=so

D2

Setting m = [3%2,

0§l +q—1, we have

e :s() = so}| = pr(pr — 1)+ (p1 — ma(so) + Lym(m = 1)- - (m — mp(so) + 1)

>pi(pr — 1)+ (pr — mp(so) + 1)(m — mp(s) + 1)™7(=0)
mpg(so) (541)

> pi(p1 — 1)+ (pr — mz(so) Za
Combining (5.40) and (5.41), we finish the proof. O
Proof of Theorem 3.14. Denote aR = ZJ j,a* = max; 0;. We use the general lower

bound for expected norm of independent random matrices sum [29, Theorem I and
Section 1.3] as we did in the proof of Theorem 3.11. Since Z;; ~ N(OJ?), for any
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k € [p2],
P1
(EZv2{ Z12{),; = BZix ) ZirZjn
=1
= { e B DT I ding (4 2)00)
(BEZp20)° = ol L.
Thus,
P2 P2 P2 P2
EY SuSi || =Y BZ.2) 22 — (BZ.Z)])?| = ||(p1 + 1) (Z ag> L, =p1 > op.
k=1 k=1 k=1 k=1

On the other hand,
B max || S| > max B [|Sx|| > max {E || 22} || - [BZxZ{ ||} = (o1 — Do

Combining the previous two inequalities and (5.36) in the proof of Theorem 3.11, we
obtain

(5.36)
E|zzT -E2Z7|| 2 O
5.6 Proofs for heteroskedastic clustering
Proof of Theorem 4.1. We first introduce following three lemmas.
Lemma 5.6. For any « € {—1,+1}" and z € R with ||z||2 = 1 we have
2
d(z,sgn(z)) <n S
) — \/ﬁ 2
Here d represents the Hamming distance: d(x,z) = Y7 1 1{z,24:}-
Proof. See [21]. O

Lemma 5.7. Assume that Z € RP**P2 has independent sub-Gaussian entries, Var(Z;;) =
2 2 2 2 _ 2 2 _ 2
0, 00 =Max; y 05, O = MaX; ), 0;;, 0, = max;;0;;. Assume that ||Z;; /0|, < k.

LetV € Oy, , be a fixed orthogonal matrix. Then,

.’L‘4 ]}2
P(|EV| > 2 <2 Or —ming ——5 5, 5 5
(IEV] > 2(oc +2) < 2050 (57— min { 2y 55 )

E|EV| < oc + wrt/*(o,00)Y? + kr'/?0,.
Proof. See [36, Lemma 3]. .

Lemma 5.8 (Davis-Kahan). Let A be an n-by-n symmetric matrix with eigenvalues
[A1] > |A2] > -+, with |Ak| — |Ak+1] > 29. Let B be a symmetric matrix such that | B|| < 4.
Let Ay, and (A + B)j be the spaces spanned by the top k eigenvectors of the respective
matrices. Then

B
[T — AL (A+ B)|| < w

Proof. See [13]. O
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Now we are ready for the proof. Recall that Y = X + Z, we can write
YY'=XXT+XZ2"+ X" 4227

(5.42)
=XX"+XZ"'+2ZX"+ (22" -EZ2Z")+EZZ".

Since EZZT = ( P 105 ) I, the leading eigenvector of YTY (i.e., 9) is the same as that
of

XX+ X2"+2ZX"+ (22" -E227).
Since ﬁl is the leading eigenvector of X " X, it follows that

~ Lemma 5.6

' *Lemmass E||XZT +ZX"T +2ZZT —EZZ"|
EM(1,1) < ]Emiln <

2 nlull
_2B|ZXT||+E| 272 -BZT 4|
nlully
Lemlga57 7’L||/L||20'*+EHZTZ EZTZH
n |l
Theore<m 3.13 p ||N|| 0w + nZizl a? 4+ na’f
~ n |l '

Proof of Theorem 4.2. We only need to prove the lower bound under the following two
situations:

—l:tl
Vn

O

e when A\ < ¢y0,, there exists {aZ _, such that max; o; < oy, Z a < &% and the
lower bound holds;

e when )\ < CQO’/’T?,I/4 there exists {o;}/_, such that max; 0; < o,, Y, o} 4 and the
lower bound holds.

We start with the first case. We specify 01 = o0, and take oy, ..., 0, to be arbitrary values
that satisfy the constraint of P ;(o.,7). Consider the metric space {—1,1}" with the

metric
el

By [35, Lemma 4], when n > 6, we can find some constant ¢y, such that there exists a
subset {I(V), ... 1M} c {~1,1}" satisfying

1 7@y _ L ; 1) (2
MU 1) nmln{’ #1;

MU 1)) > 1/3 V1<ip <ig <N

and N > exp(con). Let Y@ = 1 (10)" 4 7z € RP*", where Zi; "% N(0,02). Let y =
[A\,0,---,0]", then the KL-divergence between Y (*) and Y (*2) for i; # i is

) . 1 ) 2
Dy (Y |y (2)y = 3 Z 72;@ (1) _ g(G2) , < 4n2§:10j_2u? = 4no; 2N\ = 4n\? /o2

(5.43)

By the generalized Fano’s lemma, we have

A~ =

Ccon

inf  sup  EM(I,1) > % <1 -

4n)\%/o? +10g2) -
I Pia(ow,5) N

In the last inequality we use the assumption that A < ¢;0? for some sufficiently small
constant c;.

Now we consider the second situation. We specify o} =03 = ... =0, = 5° When the
variance structure reduces to a homoskedastic structure, we have the following lower
bound result which is already established.
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Lemma 5.9. Suppose 02 = - -+ = og = 1, there exists co, C such that ifn > C,

inf sup EM(I,1) > 1/4.
! Hulllzﬁw(p/fgl)l/4

e{-1,1}
Proof. See [11, Theorem 6]. O
Based on Lemma 5.9 and homoskedasticity of 1« and o, if we set X < <7 - (2)V* =
col/ nt/4 in our setting, we obtain
inf sup EM(,1) > 1/4.
I Pa(0.,5)
This finishes the proof. O
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A Proofs of technical lemmas
We collect the proofs of Lemma 5.2, 5.3, and 5.5 in this section.

Proof of Lemma 5.2. We first consider the proof of (5.17). Note that if G ~ N(0, 1),

EG? — (d—1D!, d>0, and d is even;
10, d >0, and d is odd.

In addition, (—1)!! =1, (—3)!! = —1. When « is odd, only odd moments of G appear in the
expansion of G*(G? —1)#, then clearly EG*(G? — 1) = 0. When « is even and o+ 2 > 4,

B B
EGY(G? —1)? =) EG*T72(—1)/ (5-) => (-1)(a+28-2j -1 p!

> Z {(06-1-26—2:7"—"1)”5!_(a+25—2(j+1)_1)nﬁ!}
0<j<p CEFIL (B—5—1G+1)!
J 1s even

¥ m+ﬂﬁ—%—3W@.“a+%pgj—nu+1%%ﬁ—ﬁ}

- — (4 |
05528 (B=HN 5+ 1)!
j is even
s Ifj =3,

(a+28— 2;—3)"%3' {(@4+28-2j—1)(G+1)—(8—4)}

(B— )G+ 1)!
« — 33!
,( ZFﬁQB )?] f))'ﬁ (a+2ﬂ—2‘j71)(]‘+1)20;

cIfp-1>5>512

B

(@+28-2j-1)(+1) = (a+28— 2(ﬁ—1)—1)(2+1> L

5= 28—
- if0<j< 21,
(@+28-2j—1)(G+1)>a+28—(B—1)—1>p—].
Thus, we always have

(a+28—25—3)1p!
(B=G + 1!

and

(@ +28-2j—1)(j+1)—(B—1)} >0, Y0<j<B,jiseven,

a+2/3—2y — 318!
— NG+ 1)
:(a—i—Qﬂ—S)!!~(cz—i—ﬁ—l)7

which has finished the proof of (5.17).
Next we consider the upper bound of EG*(G? — 1)7.

B B
EGY(G? —1)? = Y BG*T~2(-1)) (6> => (-1 (a+28-2j -1 b

0
EGY(G? - 1) ZZ

Ale+28-2j-1)(G+1) - (B-4)}

2 i) "% B
(@+28-2i— N (a+28— 2(j+1)—1)”5!}
— 1" = —
slorzgm ol Zﬁ{ B (711G + 1)
jis odd

~ar25-n- 3 EEBEH IR (28 -2 - )+ 1) - (3- 1))
0<j<p ' '

j is odd
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Similarly as the previous argument, we can show for any odd 1 < j < S5,

(a+28—25—3)11p!
(B =G+ 1!

Ala+28-2-1)(G+1)=(8-4)} >0,
thus,
EG*(G? — 1) < (a+28 1)L
Then we consider the proof of sub-Gaussian case (5.19). When « is odd, the statement
clearly holds as Z®(Z? — 1)” has symmetric distribution then EZ%(Z2 —1)? = 0. When «
is even, since Z2? > 0, we must have |Z? — 1| = max{Z? — 1,1 — Z?} < Z? V 1, thus
[EZ%(Z% - 1)°| <|EZ*(Z% — 1)P1yz<1y + BZ*(Z? — 1)P1{ 7151
<1+ Ez%|22|° = E|Z|*+?P + 1.

Since EZ? = 1, we have x > 1/1/2. Thus,
E|Z|a+26 +1< (HJF 1)a+2ﬁ(a + 25)(a+2ﬁ)/2 < (3R)a+26(a + 26)(a+26)/2.

It is easy to see (5.19) holds when o + 25 < 2.
When o + 23 > 4, by the relationship between double factorial and Gamma function!
and the lower bound of Gamma function [6], we have

| 2@/2%—1F o 1
28 — 3)!! =" T (S4B8-14= —1
(@ +28-3a+a-) =21 (G- 143) @+5-1)

20/ a4 B-1) o w-a
> NG V2rate ™ (2° + /34 0.04)
>O—(at28) (o + 25)(a+25)/2 = (Cr)**?P(a + 25)(a+2/3)/2 >EZ%(Z% -1)P.

1/4

Here, = = %H O

Proof of Lemma 5.3. Firstly we have

J

_ L jL e
7\/%:;0( Y (B—J)J'( - ( 5 )
» P N — Dz +1
G J; {(ﬁj)!j!< j— -2 F( ; >
_ ﬁ' B (b— 1)(1._2) b—l _2)+1
(5—371)(]“)( M= r( )}
1 B! R (b 1)z —2) + 1
2 2 G r(= )

G+ V(= 1) = (B-3)],

where z; := a+23—2j and the last inequality comes from the strictly increasing property
of Gamma function. By the proof of Lemma 5.2, we know

B!
(B =)' +1)!

1See https://en.wikipedia.org/wiki/Double_factorial

(z; =3 (G + Dz —1) = (B—-3)) 20
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Thus,

Y

EFe(F% —1)f > 2P 1 (b—l)(a+25—2)+1)

Nz 2
1 Motz . <a+2ﬂ—1>F((b—l)(a+2ﬁ—2)+1)

(a+28— 3. 252 (

-2
s 2 2

When o + 25 > (2 + b_%) V 5, by the lower bound of Gamma function [6], we further
have

b(at28-2) /4
2

EFY(F2 —1)% >2.2 rev (224 % 1 0.04) " yre v (2 Y 1 0.04)’

> ()2 (a4 28) T2/ (b — 1) (o + 28)) DT/
> (c;))a'i‘Qﬁ . (Oé + Qﬁ)b(a—iﬂﬁ)/?,

a+25-3 _ (b=1)(a+2B-2)—1
2 - 2

where z = and ¢, > 0 is some constant that only depends on

7

When 2 < a+28 < (2 + %) V 5, we can find another universal constant cg’ such that

l2b<a+§[3—2) r <0¢ + 225 - 1> T <(b — (« +22ﬁ -2)+ 1) > (Cg/)oHrZﬂ o+ 25)b(a+26)/2-
s

In conclusion, we proved that
EF(F —1)7 > (Cyr)* TP - EEG (B}, —1)°

for any «, 8 > 0. Thus (5.21) is proved. O
Proof of Lemma 5.5. If either (x1,z3,25) = (0,0,0) or (z2,x4,25) = (0,0,0), the state-
ment (5.33) immediately follows from the proof of Lemma 5.2 and the statement of
(5.34) becomes identity; if either x; + x5 or x5 4+ x5 is odd, the left hand side of (5.33)
(5.34) are zero since Z; and Z, are symmetric distributed and independent. Meanwhile,
the right hand side of (5.33) is non-negative (Lemma 5.2), thus (5.33) holds if either
x1 + 5 Or T3 + x5 is odd. When (21, z3,25) = (0, 1,0) (or (22,24, 25) = (0, 1,0)), by similar
arguments one can show (5.33) holds.

Thus we only need to prove the inequality when both z; + x5 and z5 + 5 are even,

and
T+ x5 +x3>2, and x9+ x5+ x4 > 2.

By Lemma 5.2, we have
[B27 e g2 (22 - 1723 - 1)
Bz (22— 1) - (255 (23 - 1))
< (CK)$1+E2+2(m3+$4+m5) ) |(EGz1+m5 (G2 - 1):1:3) ) (EGzz+m5 (G2 - 1):1:4)|
<(Cr)mteet2(@ateatas) (p) 4 g0 4 2mg — D) - (29 + 25 + 224 — 1)1,
Since for any odd positive integers z,y, z!! - y!! < (x + y — 1)!!, we have
(x1 + x5 + 223 — DI (o + 25 + 224 — D! < (21 + 22 + 2(23 + 24 + 25) — 3)!!
Therefore,
(Bt g (2 1) (2 - 1)
<(Cr)mteet2@steatas) (p) 4 gy 4 2(xg + x4 4 x5) — 3)! - (21 + @9 + 23 + 24 + 5)

Lemma 5.2

< (Cﬁ)w1+w2+2(w3+w4+w5) . E(G2 _ 1)w3+x4+w5 G$1+$27
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which has finished the proof of (5.33).
If 71, Z5, G are standard Gaussian, by Lemma 5.2,

(B2 232(22 — 1) (23 — 1) (2122)"|
(27 (22— 1) | (B25 (2 - 1)
<(z1 4+ x5 + 223 — D - (22 + x5 + 224 — 1)!!
<(z14a2+2(x3+ g +25) =3 (21 + 22+ 23 + 24 + 25)
EGTt (G2 — q)Tsteatas

which has finished the proof of (5.34).
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