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Abstract

This paper adapts the recently developed rigorous application of the supersymmetric
transfer matrix approach for the Hermitian 1d band matrices to the case of the
orthogonal symmetry. We consider N ×N block band matrices consisting of W ×W
random Gaussian blocks (parametrized by j, k ∈ Λ = [1, n] ∩ Z, N = nW ) with
a fixed entry’s variance Jjk = W−1(δj,k + β∆j,k) in each block. Considering the
limit W,n → ∞, we prove that the behaviour of the second correlation function of
characteristic polynomials of such matrices in the bulk of the spectrum exhibit a
crossover near the threshold W ∼

√
N .

Keywords: SUSY; random band matrices; real symmetric case; universality; characteristic
polynomials.
MSC2020 subject classifications: 60B20.
Submitted to EJP on June 15, 2021, final version accepted on January 29, 2022.

1 Introduction

Starting from the works of Erdős, Yau, Schlein with co-authors (see [16] and reference
therein) and Tao and Vu (see, e.g., [35]), significant progress in understanding of
universal behaviour of local eigenvalues statistics of many random graph and random
matrix models were achieved. However, for the random matrices with spacial structure
our understanding is much more limited.

One of the most important such models is the ensemble of random band matrices
(RBM), i.e. N ×N matrices having non-zero entries only in a strip of width 2W near the
main diagonal. Such matrices interpolate between mean-field type Wigner matrices (Her-
mitian or real symmetric matrices with i.i.d. random entries) and random Schrödinger
operators, which have only a random diagonal potential in addition to the deterministic
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SUSY approach to 1d RBM

Laplacian on a box in Zd. The density of states ρ of a general class of RBM with W � 1

is given by the well-known Wigner semicircle law (see [3, 24]):

ρ(E) =
1

2π

√
4− E2, E ∈ [−2, 2]. (1.1)

The main long standing problem in the field is to prove a fundamental physical conjec-
ture formulated in late 80s (see [10], [17]). The conjecture states that the eigenvectors
of N × N RBM are completely delocalized and the local spectral statistics governed
by the Wigner-Dyson statistics for large bandwidth W (i.e. the local behaviour is the
same as for Wigner matrices), and by Poisson statistics for a small W (with exponentially
localized eigenvectors). This is the analogue of the celebrated Anderson metal-insulator
transition for random Schrödinger operators (see [34] for more details).

The transition (crossover) for RBM in one spacial dimension is conjectured to occur
around the critical value W =

√
N . The conjecture is supported by physical derivation

due to Fyodorov and Mirlin (see [17]), and also by the so-called Thouless scaling. On the
mathematical level of rigour, localization of eigenvectors in the bulk of the spectrum was
first shown for W � N1/8 [27], and then the bound was improved to N1/7 [26]. On the
other side, by a development of the Erdős-Schlein-Yau approach to Wigner matrices (see
[16]), there were obtained some results where the weaker form of delocalization was
proved for W � N6/7 in [14], W � N4/5 in [15], W � N7/9 in [18]. The combination
of this approach with the new ideas based on quantum unique ergodicity gave first
GUE/GOE gap distributions for RBM with W ∼ N [5], and then were developed in [6]–[7],
[38] to obtain bulk universality and complete delocalization in the range W � N3/4 (see
review [4] for the details).

There is a completely different approach which allows to work with random operators
with a non-trivial spacial structure based on supersymmetry techniques (SUSY). It
is widely used in the physics literature (see e.g. reviews [13], [23]) but its rigorous
mathematical application is usually quite difficult and it requires to incorporate various
analytic and statistical mechanics techniques. However, for the 1d Hermitian RBM of
a certain type it was successfully done both for correlation functions of characteristic
polynomials and for usual correlation functions. More precisely, combining SUSY with
a delicate steepest descent method and transfer matrix techniques, we were able to
perform a complete study of the local regime of characteristic polynomials for Hermitian
Gaussian 1d RBM (see [29] for the regime W �

√
N , [30] for the regime W �

√
N , and

[32] for the regime W ∼
√
N ), and also obtain the first rigorous universality result for

the second order correlation function for the whole delocalized region W �
√
N (see

[31]).
Let us mention also that SUSY approach was also applied to obtain the detailed

information of the density of states for the Hermitian RBM of higher dimensions (see
[11], [12]).

There are much less rigorous applications of SUSY techniques for the case of real
symmetric matrices, since the SUSY integral representations are more complicated
for the case of orthogonal symmetry. However, the technique of [29] was successfully
adapted in [33] to the study of characteristic polynomials for real symmetric Gaussian 1d
RBM in the delocalized regime W �

√
N . In this paper we want to perform the complete

study of characteristic polynomials for real symmetric Gaussian 1d RBM adapting the
SUSY transfer matrix techniques of [30], [32] to the case of orthogonal symmetry. This is
an important step towards the proof of the universality of the usual correlation functions
for the case of real symmetric 1d RBM, as well as for the general development of rigorous
application of SUSY approach for the real symmetric case.

The model we are going to consider is different from the model of 1d RBM considered
in [29]–[30], [32] and in [33], but coincides with the model considered in [31]. Namely,
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SUSY approach to 1d RBM

we consider real symmetric block band matrices, i.e. real symmetric matrices HN ,
N = nW with elements Hjk,αγ , where j, k ∈ 1, . . . , n (they parametrize the lattice sites)
and α, β = 1, . . . ,W (they parametrize the orbitals on each site). The entries Hjk,αγ are
random Gaussian variables with mean zero such that

〈Hj1k1,α1β1Hj2k2,α2β2〉 = δj1k2δj2k1δα1β2δβ1α2Jj1k1 . (1.2)

Here Jjk ≥ 0 are matrix elements of the positive-definite symmetric n× n matrix J , such
that

n∑
j=1

Jjk = 1/W.

The probability law of HN can be written in the form

PN (dHN ) = exp
{
− 1

4

∑
j,k∈Λ

W∑
α,γ=1

H2
jk,αγ

Jjk

}
dHN , (1.3)

where

dHN =
∏
j<k

∏
αγ

dHjk,αγ√
2πJjk

∏
j

∏
α<γ

dHjj,αγ√
2πJjj

∏
j

∏
α

dHjj,αα√
4πJjj

.

Such models were first introduced and studied by Wegner (see [28], [37]) (and sometimes
they are also called Wegner’s orbital models).

As in [31], we consider the case

J = 1/W + β∆(0)/W, β < 1/4, (1.4)

where W � 1 and ∆(0) is the discrete Laplacian on [1, n] ∩ Z with Neumann boundary
conditions. Clearly, this model is one of the possible realizations of the Gaussian random
band matrices with the band width 2W + 1 (note that the model can be defined similarly
in any dimensions d > 1 taking j, k ∈ [1, n]d ∩Zd in (1.2)).

The main interest of this paper is to study the behaviour of correlation functions (or
the mixed moments) of characteristic polynomials which can be defined as

F2k(Λ) =

∫ 2k∏
s=1

det(λs −HN )Pn(dHN ), (1.5)

where Pn(dHN ) is defined in (1.3), and Λ = diag {λ1, . . . , λ2k} are real or complex
parameters that may depend on N . As in the Hermitian case, correlation functions of
characteristic polynomials of real symmetric 1d RBM are expected to exhibit a crossover
near the threshold W ∼

√
N : it is expected that they the same local behaviour as for

GOE for W �
√
N , and the different behaviour for W �

√
N .

The asymptotic local behaviour in the bulk of the spectrum of the 2k-point mixed
moment for GOE is well-known. It was proved for k = 1 by Brézin and Hikami [8] (based
on SUSY approach), and for general k by Borodin and Strahov [9] (with a different
techniques) that

F2k

(
Λ0 + ξ̂/Nρ(E)

)
= CN,k

Pf
{
DS(π(ξi − ξj))

}2k

i,j=1

4(ξ1, . . . , ξ2k)
(1 + o(1)),

where CN,k is some multiplicative constant depending on N , k,

DS(x) = − 3

x

d

dx

sinx

x
= 3
( sinx

x3
− cosx

x2

)
, (1.6)

EJP 27 (2022), paper 24.
Page 3/29

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP747
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


SUSY approach to 1d RBM

4(ξ1, . . . , ξk) is the Vandermonde determinant of ξ1, . . . , ξk, and

ξ̂ = diag {ξ1, . . . , ξ2k}, Λ0 = E · I.

In particular, for k = 1 we have

F2

(
Λ0 + ξ̂/Nρ(E)

)
= CN

( sin(π(ξ1 − ξ2))

π3(ξ1 − ξ2)3
− cos(π(ξ1 − ξ2))

π2(ξ1 − ξ2)2

)
(1 + o(1)),

The last formula was proved also for real symmetric Wigner and general sample covari-
ance matrices (see [20]).

Set

λ1 = E +
ξ

2Nρ(E)
, λ2 = E − ξ

2Nρ(E)
, (1.7)

where E ∈ (−2, 2), ρ is defined in (1.1), and ξ is a real parameter varying in any compact
set K ⊂ R, and define

D2 = F
1/2
2 (E,E). (1.8)

The main result of the paper is the following theorem:

Theorem 1.1. For the real symmetric 1d block random band matrices HN , N = nW of
(1.2)–(1.4) we have

lim
n→∞

F̄2

(
E +

ξ

2Nρ(E)
, E − ξ

2Nρ(E)

)
=


DS(πξ), W � n� 1;

(e−C
∗∆−iξπν̂ · 1, 1), n = C∗W

1, 1�W ≤ n/ log2 n,

where DS(x) is defined in (1.6), C∗ = C∗/(2πρ(E))2 with ρ(E) of (1.1), and ε is any
sufficiently small positive number. In this formula ∆ is a Laplace-Bertrami operator on
S̊p(2) = Sp(2)/Sp(1) × Sp(1), Sp(n) is a compact symplectic group of 2n × 2n unitary
symplectic matrices, and (·, ·) is an inner product on L2[S̊p(2), dµ], where dµ is the Haar
measure on S̊p(2). ν̂ is an operator of multiplication by

ν(Q) = 1− 2(|Q12|2 + |Q14|2) (1.9)

on S̊p(2). Notice that the since N = nW , the transition happens at W ∼
√
N .

1.1 Notation

We denote by C, C1, etc. various W and N -independent quantities below, which can
be different in different formulas. Integrals without limits denote the integration (or the
multiple integration) over the whole real axis, or over the Grassmann variables.

Moreover,

• W is a size of the block, and n is the number of blocks in a row, so N = nW is the
size of the matrix H of (1.2);

• E
{
. . .
}

is an expectation with respect to the measure (1.3);

• a± =
iE ±

√
4− E2

2
= e±iα0 ;

• σ =

(
0 1

−1 0

)
, σ′ =

(
0 1

1 0

)
;

• D0 =

(
a+ 0

0 a−

)
, Λ =

(
λ1 0

0 λ2

)
, ξ̂ =

(
ξ 0

0 −ξ

)
, L =

(
1 0

0 −1

)
;

• D0,4 =

(
D0 0

0 D0

)
, ξ̂4 =

(
ξ̂ 0

0 ξ̂

)
, L4 =

(
L 0

0 L

)
;
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• Λ0 = E · I2, Λ0,4 = E · I4;

• U(n) is a group of n×n unitary matrices; unitary symplectic group Sp(n) is a group
of 2n× 2n unitary matrices Q which admit the relation

Q

(
0 In
−In 0

)
Qt =

(
0 In
−In 0

)
.

• Ů(2) = U(2)/
(
U(1)× U(1)

)
, S̊p(2) = Sp(2)/

(
Sp(1)× Sp(1)

)
;

• T = {z ∈ C : |z| = 1}, ωA = {z ∈ C : |z| = 1 +A/n};
• dµ is the Haar measure on Ů(2), dµ is the Haar measure on S̊p(2);

• c± = 1 + a−2
± ; t∗ = (2πρ(E))2

• We denote by ā the vector (a1, a2);

2 Integral representation

The main aim of this section is to derive the following proposition

Proposition 2.1. The second correlation function (1.5) of the characteristic polynomials
for 1d real symmetric Gaussian block band matrices (1.2)–(1.4) can be represented as
follows:

F2

(
Λ0 +

ξ̂

2Nρ(E)

)
= Cn,W

∫
exp

{βW
4

n∑
j=2

Tr (Fj − Fj−1)2
}

(2.1)

× exp
{W

4

n∑
j=1

(
TrF 2

j − 2iTrFj
(
Λ0,4 +

ξ̂4
2Nρ(E)

))} n∏
j=1

(
detFj

)−W/2 n∏
j=1

dFj ,

where Λ0,4 and ξ̂4 are defined in Notation, N = nW , CnW is some constant depending
on W and n but not on ξ̂, and Fj ∈ Sp(2) are unitary symplectic 4× 4 matrices.

Proof. Introduce the following Grassmann fields:

Ψl = {ψtjl}tj=1,..,n, ψjl = (ψjl1, ψjl2, . . . , ψjlW )t, l = 1, 2.

Using (A.7) (see Appendix A) we obtain

F2(λ1, λ2) = E
{∫

exp{−Ψ+
1 (λ1 −HN )Ψ1 −Ψ+

2 (λ2 −HN )Ψ2}dΨ
}

=

∫
dΨ exp

{
− λ1Ψ+

1 Ψ1 − λ2Ψ+
2 Ψ2

}
×E
{

exp
{ ∑
j<k

∑
α,γ

Hjk,αγ(ηjk,αγ + ηkj,γα) +
∑
j

∑
α≤γ

Hjk,αγ(ηjk,αγ + ηkj,γα)
}}

,

where

dΨ =

n∏
j=1

W∏
α=1

2∏
l=1

dψjlαdψjlα,

ηjk,αγ = ψj1αψk1γ + ψj2αψk2γ , if j 6= k or α 6= γ;

ηjj,αα = (ψj1αψj1α + ψj2αψj2α)/2.

Averaging over (1.3), we get

F2(λ1, λ2) =

∫
dΨ exp{−λ1Ψ+

1 Ψ1 − λ2Ψ+
2 Ψ2}

× exp
{

1
2

∑
j<k,α,γ

Jjk (ηjk,αγ + ηkj,γα)2 + 1
2

∑
j,α<γ

Jjj (ηjj,αγ + ηjj,γα)2 +
∑
j,α

Jjj η
2
jj,αα

}
.
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It is easy to see that

1

2

∑
α,γ

(ηjk,αγ + ηkj,γα)2 =− (ψ+
j1ψ̄j2)(ψtk1ψk2)− (ψ+

k1ψ̄k2)(ψtj1ψj2)− (ψ+
j1ψj1)(ψ+

k1ψk1)

− (ψ+
j2ψj2)(ψ+

k2ψk2)− (ψ+
j1ψj2)(ψ+

k2ψk1)− (ψ+
k1ψk2)(ψ+

j2ψj1)

=− 1

2
Tr F̃jF̃k,∑

l=1,2

λlΨ
+
l Ψl =

1

2

n∑
j=1

Tr F̃jΛ4

where

F̃j =


ψ+
j1ψj1 ψ+

j1ψj2 0 ψ+
j1ψ̄j2

ψ+
j2ψj1 ψ+

j2ψj2 ψ+
j2ψ̄j1 0

0 ψtj1ψj2 ψ+
j1ψj1 ψ+

j2ψj1
ψtj2ψj1 0 ψ+

j1ψj2 ψ+
j2ψj2

 , Λ4 =


λ1 0 0 0

0 λ2 0 0

0 0 λ1 0

0 0 0 λ2

 .

Applying the superbosonization formula (see Proposition A.1, Appendix A), we obtain

F2(λ1, λ2) = C ′nW

∫
exp

{
− 1

4

n∑
j,k=1

JjkTrFjFk −
1

2

n∑
j,k=1

TrFjΛ4

} n∏
j=1

(detFj)
−W/2

∏
j=1

dFj ,

where {Fj}nj=1 are unitary symplectic 4 × 4 matrices from Sp(2), and C ′nW is some
constant depending on W and n but not on λ1, λ2. Shifting Fj → iWFj and plugging in
(1.7), we get Proposition 2.1.

3 Representation in the operator form

To study (2.1), we are going to apply the transfer matrix approach.
Namely, introduce

F(X) = exp
{
W
(1

8
TrX2 − iE

4
TrX − 1

4
Tr logX − C+

)}
, (3.1)

Fξ(X) = F(X) · Fn,ξ(X), Fn,ξ(X) := exp
{
− i

8nρ(E)
TrXξ̂4

}
,

where

C+ =
a2

+

2
− iEa+ − log a+

is chosen in such a way that |F(X)| = 1 in the saddle-points (see (4.2) later).
Let also K,Kξ : Sp(2)→ Sp(2) be the operators with the kernels

K(X,Y ) =
W 3

2π3
F(X) exp

{βW
4

Tr (X − Y )2
}
F(Y ); (3.2)

Kξ(X,Y ) =
W 3

2π3
Fξ(X) exp

{βW
4

Tr (X − Y )2
}
Fξ(Y ). (3.3)

Then Proposition 2.1 can be reformulated as

F2

(
E +

ξ

2Nρ(E)
, E − ξ

2Nρ(E)

)
= C̃n,W (Kn−1

ξ Fξ, F̄ξ), (3.4)

where (·, ·) is a standard inner product in Sp(2) with respect to the Haar measure dµ,
and C̃nW is some constant depending on W and n but not on ξ.
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For an arbitrary compact operator M denote by λj(M) the jth (by modulus) eigen-
value of M , so that |λ0(M)| ≥ |λ1(M)| ≥ . . . .

Since Kξ is a compact operator, one can rewrite

(Kn−1
ξ Fξ, F̄ξ) =

∞∑
j=0

λn−1
j (Kξ)cj , with cj = (Fξ, ψj)(F̄ξ, ψ̃j),

where {ψj} are eigenvectors corresponding to {λj(Kξ)}, and {ψ̃j} are the eigenvectors
of K†ξ . Similar equality is true if we replace Kξ and Fξ by K and F . Hence, to study
(2.1), it suffices to study the eigenvalues and eigenvectors of Kξ, K.

4 Sketch of the proof of Theorem 1.1

As was mentioned above, we are interested in the analysis of the spectral properties
of Kξ of (3.3) (see (3.4)). It appears that it is simpler to work with the resolvent analog
of (3.4)

(Kn−1
ξ f, g) = − 1

2πi

∮
L
zn−1(Gξ(z)f, g)dz, Gξ(z) = (Kξ − z)−1, (4.1)

where L is any closed contour which encloses all eigenvalues of Kξ.
The idea of the proof is very close to [30]–[32]. To outline it, we start with the

following definition

Definition 4.1. We say that the operator An,W is equivalent to Bn,W (An,W ∼ Bn,W ) on
some contour L if∫

L
zn−1((An,W − z)−1f, ḡ)dz =

∫
L
zn−1((Bn,W − z)−1f, ḡ)dz (1 + o(1)), n,W →∞,

with some particular functions f, g depending of the problem.

The aim is to find some operator equivalent to Kξ whose spectral analysis is more
accessible. Now we are going to discuss how this was done on the ideological level. The
specific choice of the contour L and functions f , g for each step will be discussed in
details in Section 6.

It is easy to check that the stationary points of the function F of (3.1) are

X+ = a+ · I4, X− = a− · I4; (4.2)

X±(Q) = QD0,4Q
∗, Q ∈ S̊p(2)

where a±, D0,4 are defined in Notation. Recall also that the value of |F| at points (4.2) is
1.

The first step in the proof of Theorem 1.1 is to apply the saddle-point approximation.
Roughly speaking, we show that if we introduce the projection Prs onto the W−1/2 logW -
neighbourhoods of the saddle points X+, X− and the saddle “surface” X±, then in the
sense of Definition 4.1

Kξ ∼ Pr
s
Kξ Pr

s
=: Ks,ξ.

Moreover, one can show that only the neighbourhood of the saddle “surface” X± gives
the main contribution to the integral. The proof is based on a study of a quadratic
approximation of a function F of (3.1). Let us also emphasize, that for the block band
matrices (1.2)–(1.4) this step is much simpler than for the model considered in [30]–[32]
due to the large coefficient W in the exponent of F . This analysis will be performed in
details in Section 5.
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To study the operator Ks,ξ near the saddle “surface” X± we use the “polar coordi-
nates”. Namely, the matrices from Sp(2) have two eigenvalues aj , bj ∈ T = {z : |z| = 1}
of the multiplicity two and can be considered as quaternion 2 × 2 matrices. In this
language Fj are quaternion unitary matrices, and so they can be diagonalized by the
quaternion unitary 2× 2 matrices from S̊p(2) (see, e.g., [22], Chapter 2.4).

Change the variables to Fj = Q∗jAj,4Qj , where Aj,4 = diag {a1j , a2j , a1j , a2j}, eigen-

values a1j , a2j ∈ T, and Qj ∈ S̊p(2). Then dFj of (2.1) becomes (see, e.g., [22])

π2

12
(a1j − a2j)

4 dāj dµ(Qj),

where

dāj =
da1j

2πi

da2j

2πi
,

and dµ(Qj) is the normalized to unity Haar measure on the symplectic group S̊p(2). Thus
we get

(Kn−1
ξ Fξ, F̄ξ) =

π2n

12n

∫
(a11 − a21)2Fξ(a11, a21, Q1)(a1n − a2n)2Fξ(a1n, a2n, Qn)

×
n−1∏
j=1

(
(a1j − a2j)

2(a1,j+1 − a2,j+1)2Kξ(Fj , Fj+1)
) n∏
j=1

dāj dµ(Qj).

Introduce

t = (a1 − a2)(a′1 − a′2). (4.3)

Then we obtain

F2

(
E +

ξ

2Nρ(E)
, E − ξ

2Nρ(E)

)
= C̃ ′n,W (Kn−1

ξ f, f̄), (4.4)

where now (·, ·) is a standard inner product in L2[T2] × L2[S̊p(2), dµ(Q)], and C̃ ′nW is
some constant depending on W and n but not on ξ. Here

f(a1, a2, Q) = (a1 − a2)2Fξ(a1, a2, Q), (4.5)

and Kξ = Fn,ξKFn,ξ is an integral operator in L2[T2]× L2[S̊p(2), dµ(Q)] defined by the
kernel

Kξ(X,Y ) = Fn,ξ(a1, a2, Q)K(a1, a2, Q; a′1, a
′
2, Q

′)Fn,ξ(a
′
1, a
′
2, Q

′), (4.6)

where

K(a1, a2, Q; a′1, a
′
2, Q

′) = Aa(ā, ā′)K∗(t, Q1, Q2);

K∗(t, Q,Q
′) :=

β2W 2t2

6
· exp{−tβWS

(
Q(Q′)∗

)
}, S(Q) = |Q12|2 + |Q14|2; (4.7)

Fn,ξ(a, b,Q) = exp{−iξπ · ν(a− b,Q)/n};

ν(p,Q) =
p

4πρ(E)
TrQL4Q

∗L4 =
p

2πρ(E)
(1− 2S(Q)) (4.8)

with t of (4.3). K∗ here is a contribution of the symplectic group S̊p(2) into operator K,
and exp{−iξπ · ν(x,Q)/n} comes from the 1/n-order perturbation Fn,ξ of F appearing in
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Fξ (see (3.1)). Operator Aa is a contribution of eigenvalues a1, a2 and it has the form

Aa(ā; ā′) = A(a1, a
′
1)A(a2, a

′
2), (4.9)

A(a, a′) =
(W

2π

)1/2

e−WΦ(a,a′);

Φ(x, y) =
β

2
(x− y)2 − 1

2
ϕ0(x)− 1

2
ϕ0(y) + <ϕ0(a+);

ϕ0(x) = x2/2− ixE − log x. (4.10)

Observe that the operator K∗(t, Q,Q′) with some t > 0 is self-adjoint and its kernel
depends only on S

(
Q(Q′)∗

)
. Thus by the standard representation theory arguments (see

e.g. [19], [36]), its eigenfunctions are the the same as for Laplace-Bertrami operator on
Sp(2). More precisely:

Proposition 4.2. Consider any self-adjoint integral operator M in L2[S̊p(2), dµ(Q)]. If its
kernelM(Q,Q′) depends only onQ(Q′)∗, then its eigenvectors coincide with eigenvectors
of Laplace-Bertrami operator on S̊p(2). Moreover, if the subspace

L2[S, dµ(Q)] ⊂ L2[S̊p(2), dµ(Q)]

of the functions depending on S(Q) (see (4.7)) only is invariant under M , then it can be
diagonalized by the eigenfunctions

φj(Q) = (−1)jP2j(
√
S(Q)), (4.11)

where P2j(x) are orthogonal with respect to the weight (1−x2)x3 on [0, 1] polynomials of
degree 2j, φ0(x) = 1 (polynomials P2j can be written as P2j(x) = cjFhg(−j, j+3, 2; 1−x2),
where Fhg is a hypergeometric function, and cj is a normalization constant, see [19], Ch.
5). In addition, the following holds

(2x2 − 1)P2j(x) =
j + 3

2j + 3
P2j+2(x) +

j

2j + 3
P2j−2(x), (4.12)

so the operator ν̂ of multiplication on ν(x,Q) of (4.8) is three diagonal in basis (4.11),
and

(ν̂ · φ0, φ0) = 0. (4.13)

If M(Q1, Q2) = K∗(t, Q1, Q2) of (4.7), then the corresponding eigenvalues {λj(t)}∞j=0, if
t > d > 0, where d is some absolute positive constant, have the form

λj(t) = 1− (j + 1)(j + 2)

Wt
+O((j2/Wt)2) +O(e−tW ). (4.14)

The proof of the proposition can be found in Appendix B.

Notice that, according to Proposition 4.2, since F(Q), Fξ(Q) are the functions of
S(Q) only, in what follows we can consider restrictions of Kξ, K, and K∗ of (4.7) to
L2[S, dµ(Q)] (to simplify notations we will denote these restrictions by the same letters).

In addition, it follows from Proposition 4.2 that if we introduce the following basis in
L2[R2]× L2[S, dµ(Q)]

Ψk̄,j(ā, Q) = Ψk̄(ā)φj(Q),

Ψk̄(ā) = ψk1(a1)ψk2(a2),
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where k̄ = (k1, k2), and {ψk(x)}∞k=0 is a certain basis in L2[R], then the matrix of K of
(4.7) in this basis has a “block diagonal structure”, which means that

(KΨk̄′,j ,Ψk̄,j1) = 0, j 6= j1 (4.15)

(KΨk̄′,j ,Ψk̄,j) = (KjΨk̄′ ,Ψk̄)

=

∫
λj(t)Aa(ā, ā′)ψk1(a1)ψk2(a2)ψk′1(a′1)ψk′2(a′2)

da1da2da
′
1da
′
2

(2πi)4
.

The next step in the proof of Theorem 1.1 is to show that we can restrict the number of
φj to

l = max{1, [log n ·
√
W/
√
n]}. (4.16)

l is chosen in such a way that l2n/W � log n. More precisely, we are going to show that
in the sense of Definition 4.1

Ks,ξ ∼ PlKs,ξPl =: Ks,l,ξ,

where Pl is the projection on the linear span of {Ψk̄,j(ā, Q)}j≤l−1.
For the further resolvent analysis we want to integrate out ā to change t in the

definition of K∗ and a1−a2, a′1−a′2 in the definition of Fn,ξ (see (4.3), (4.6) – (4.7)) by their
saddle-point values t∗ = (a+ − a−)2 = 4π2ρ(E)2 and a+ − a− = 2πρ(E) correspondingly.
We are going to show that only the top eigenvalue of A gives a contribution. More
precisely we want to show that in the sense of Definition 4.1

λ0(Ks,l)
−1Ks,l,ξ ∼ K̂∗ξ,l (4.17)

where

K̂∗ξ,l = (λ0(K∗0))−1PlK∗ξ Pl, (4.18)

K∗ξ(Q1, Q2) =
W 2t2∗β

2

6
· e−βt∗WS(Q1Q

∗
2) · e−iξπ(ν(2πρ(E),Q1)+ν(2πρ(E),Q2))/n

and Pl is the projection on {φj(Q)}j≤l−1. Here K∗0 is K∗ξ with ξ = 0.
Now (4.17), (4.1) and Definition 4.1 give

F2

(
E +

ξ

2Nρ(E)
, E − ξ

2Nρ(E)

)
= Cn,W

(
K̂n−1
∗ξ,l fξ, f̄ξ

)
(1 + o(1))

= Cn,Wλ0(Ks,l)
n−1f2

0 (K̂n−1
∗ξ,l 1, 1)(1 + o(1)),

where f0 = (f,Ψ0̄), and we used that fξ asymptotically can be replaced by f ⊗ 1, where
f does not depend on ξ and Qj . Similarly

D2 = Cn,W

(
K̂n−1
∗0,l fξ, f̄ξ

)
(1 + o(1)) = Cn,Wλ0(Ks,l)

nf2
0 (K̂n−1

∗0,l 1, 1)(1 + o(1)).

According to Proposition 4.2, φ0(Q) = 1 is an eigenvector of K̂∗0 of (4.18) with ξ = 0 and
the corresponding eigenvalue is 1, thus

(K̂n−1
∗0,l 1, 1) = 1.

Hence

F̄2

(
E +

ξ

2Nρ(E)
, E − ξ

2Nρ(E)

)
= (K̂n−1

∗ξ,l 1, 1)(1 + o(1)). (4.19)

Recall that according to Proposition 4.2 the eigenvectors of K̂∗0,l are (4.11) and the
corresponding eigenvalues are (see (4.14))

λj := λj(t∗) = 1− j(j + 3)/t∗W +O((j(j + 3)/W )2), j = 0, 1 . . . , l − 1. (4.20)
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Moreover, it follows from (4.6)–(4.7) that

K̂∗ξ,l = K̂∗0,l − n−1πiξν̂l + o(n−1), ν̂l = Plν̂Pl, (4.21)

where ν̂ is the operator of multiplication by (1.9), and o(1/n) means some operator whose
norm is o(1/n). Thus the eigenvalues of K̂∗ξ,l are in the n−1-neighbourhood of λj .

In the localized regime W−1 � n−1 we have l = 1, thus only λ0(K̂∗ξ) contributes to
(4.19). Since (see Proposition 4.2)

(ν̂ 1, 1) = 0,

we get
λ0(K̂∗ξ) = 1 + o(n−1),

and so the limit of (4.19) is 1 (see the end of Section 6 for more details).
In the delocalized regime all eigenvalues of K∗ξ,l contribute to (4.19), but Kn−1

∗0,l → I

(roughly speaking, this means that the second term in the r.h.s. of (4.20) does not give a
contribution). Hence we have

K̂∗ξ,l ≈ 1− n−1iξπν̂l ⇒ (Kn−1
∗ξ 1, 1)→ (e−iξπν̂1, 1) = DS(πξ)

with DS(πξ) of (1.6) (see (B.2) and the end of Section 6 for more details).
In the critical regime W−1 = C∗n

−1 all eigenvalues of K̂∗ξ,l contribute, but now both
second term in the r.h.s. of (4.20) and 1/n-order term in the r.h.s. of (4.21) make an
impact.

As it was mentioned above, the Laplace-Bertrami operator ∆ on L2[S, dµ] has eigen-
vectors (4.11) with corresponding eigenvalues

λ∗j = j(j + 3).

Thus, 1− n−1C∗∆ with C∗ = C∗/t∗ has the same basis of eigenvectors with eigenvalues
1− j(j + 3)/t∗W .

Recall that we are interested in j ≤ l − 1 ∼ logW (since Pl is the projection on
{φj}j≤l−1). Hence, according to (4.20)– (4.21), in the regime W−1 = C∗n

−1 we can write

K̂∗ξ,l = Pl
(
1− n−1(C∗∆ + iξπν

)
)Pl + o(n−1),

which implies
(K̂n−1
∗ξ,l 1, 1)→ (e−C

∗∆−iξπν̂1, 1), (4.22)

and finishes the proof of Theorem 1.1. The detailed proof of (4.22) is given in Section 6
(see Lemma 6.5).

5 Saddle-point analysis

Recall that the stationary points of the function F of (3.1) are defined in (4.2).
We start the proof from the restriction of the integration with respect to āi, ā′i by the

neighbourhood of a±. Set

Ω+ ={x : |x− a+| ≤ logW/W 1/2}, Ω− = {x : |x− a−| ≤ logW/W 1/2},

Ω̃± ={a1, a
′
1 ∈ Ω+, a2, a

′
2 ∈ Ω−},

Ω̃+ ={a1, a
′
1, a2, a

′
2 ∈ Ω+}, (5.1)

Ω̃− ={a1, a
′
1, a2, a

′
2 ∈ Ω−}

and let 1Ω̃±
, 1Ω̃+

1Ω̃−
be indicator functions of the above domains.
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Lemma 5.1. Given A(a, a′) of (4.9), we have∫
T\(Ω+∪Ω−)

|A(a, a′)||da′| ≤ Ce−c log2W . (5.2)

Proof. Recall that
a± = e±iα0 ,

and write for the parametrization a = eiϕ, a′ = eiϕ
′

−<Φ(eiϕ, eiϕ
′
) =− β(cosϕ− cosϕ′)2/2 + β(sinϕ− sinϕ′)2/2− sin2 ϕ+ sin2 ϕ′

2

+
E(sinϕ+ sinϕ′)

2
+ sin2 α0 − E sinα0

= −β(cosϕ− cosϕ′)2/2 + β(sinϕ− sinϕ′)2/2

− (sinϕ− sinα0)2/2− (sinϕ′ − sinα0)2/2

≤ β(sinϕ− sinϕ′)2/2− (sinϕ− sinα0)2/2− (sinϕ′ − sinα0)2/2

≤ −(1− 2β)(sinϕ− sinα0)2/2− (1− 2β)(sinϕ′ − sinα0)2/2.

Here we have used sinα0 = E/2. We have also for a′ ∈ T \ (Ω+ ∪ Ω−)

| sinϕ′ − sinα0| ≥ C logW/
√
W.

Since β < 1/4, this implies (5.2)

Lemma 5.1 yields that∫
dQ′dā′(1− 1Ω̃±

− 1Ω̃+
− 1Ω̃−

)‖K‖ ≤ e−c log2W (5.3)

Let us prove the following simple proposition

Proposition 5.2. Let the matrix H(z) have the block form

H(z) =

(
H11(z) H12(z)

H21(z) H22(z)

)
.

Then

G(z) := H−1(z) =

(
G11 −G11H12H

−1
22

−H−1
22 H21G11 H−1

22 +H−1
22 H21G11H12H

−1
22

)
(5.4)

G11 = (H11 −H12H
−1
22 H21)−1,

If H−1
22 is an analytic function for |z| > 1− δ, and ‖H−1

22 ‖ ≤ C, then∮
ωA

zn−1(G(z)f, g)dz =

∮
ωA

zn−1(G11f
(1)(z), g(1)(z))dz +O(e−nc) (5.5)

f (1)(z) = f0 −H12H
−1
22 f1, g(1)(z) = g0 −HT

21(HT
22)−1g1

where ωA = {z : |z| = 1 + A/n}, f = (f0, f1), g = (g0, g1) where f0 and g0 are the
projection of f and g on the subspace corresponding to H11, while f1 and g1 are the
projection of f and g on the subspace corresponding to H22.

Proof. Formula (5.4) is the well-known block matrix inversion formula. Now apply the
formula (5.4) and write∮

ωA

zn−1(G(z)f, g)dz =

∮
ωA

zn−1(G11f
(1)(z), g(1)(z))dz +

∮
ωA

zn−1(H−1
22 f1, g1)dz.
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For the second integral change the integration contour from ωA to |z| = 1− δ. Then the
inequality

|z|n−1 ≤ (1− δ)n−1 ≤ Ce−nc

yields (5.5).

Notice that since ‖K‖ ≤ 1 and |Fn,ξ| ≤ 1+C/n, we can find such A that all eigenvalues
of Kξ lie inside ωA = {z : |z| = 1 +A/n}.

Set

H11(z) = H11−z = (1Ω̃±
Kξ 1Ω̃±

)⊕(1Ω̃+
Kξ 1Ω̃+

)⊕(1Ω̃−
Kξ 1Ω̃−

)−z = Kξ,±⊕Kξ,+⊕Kξ,−−z.

Then (5.3) yields
‖H22‖+ ‖H12‖+ ‖H21‖ ≤ Ce−c log2W .

Therefore, for any |z| > 1
2

‖H12(H22 − z)−1H21‖ ≤ Ce−c log2W .

Moreover, it will be proven below that

‖(H11 − z)−1‖ ≤ Cn, z ∈ ωA,

and so for G11 of (5.4) we have

‖G11 − (H11 − z)−1‖ ≤ e−c log2W/2.

Here we have used W ≥ nε. Thus we obtain by Proposition 5.2∮
ωA

zn−1(Gξ(z)f, g)dz =

∮
ωA

zn−1((H11 − z)−1f, g)dz +O(e−c log2W/2) +O(e−nc1), (5.6)

where Gξ(z) is a resolvent of Kξ (see (4.1)). In view of the block structure of H11, its
resolvent also has a block structure, hence∮

ωA

zn−1(Gξ(z)f, g)dz =

∮
ωA

zn−1(Gξ,±(z)f±, g±)dz +

∮
ωA

zn−1(Gξ,+(z)f+, g+)dz

+

∮
ωA

zn−1(Gξ,−(z)f−, g−)dz = Iξ,± + Iξ,+ + Iξ,−, (5.7)

where

Gξ,± =(Kξ,± − z)−1, Gξ,+(z) = (Kξ,+ − z)−1, Gξ,−(z) = (Kξ,− − z)−1

and f±, f+, f−, g±, g+, g− are projections of f and g onto the subspaces corresponding to
Kξ,±, Kξ,+, Kξ,−. One can perform similar analysis for K instead of Kξ and define I±,
I+, and I−.

In the next sections we are going to study each integral Iξ,±, Iξ,+, and Iξ,− separately.
It will be shown below (see Section 7) that that Iξ,+ and Iξ,− are exponentially small
comparable to Iξ,±, so the main task is to study Iξ,±.

6 Analysis of Iξ,±

As was mentioned in Section 4, to analyze K± and Kξ,± we are going to use the polar
decomposition (4.6)–(4.10).

We start with the analysis of operator Aa of (4.9) in the domain Ω̃± of (5.1).
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To this end, we are going to consider quadratic approximation of A(a, a′) defined in
(4.9). Make a change of variables

a1i = a+(1 + iθ+ã1i/
√
W ), a2i = a−(1 + iθ−ã2i/

√
W ), (6.1)

where θ± are some complex constants with |θ±| = 1 which will be determined later (see
(6.5)). Notice that the Jacobian of (6.1) is a constant depending on n,W but not on ξ,
thus it does not contribute to C̃ ′n,W (see (4.4)). Define

A+(ã, ã′) = 1Ω+A
(
a+(1 + iθ+ã/

√
W ), a+(1 + iθ+ã

′/
√
W )
)

1Ω+ , (6.2)

A−(ã, ã′) = 1Ω−A
(
a−(1 + iθ−ã/

√
W ), a−(1 + iθ−ã

′/
√
W )
)

1Ω− .

Then

Kξ,±(a1, a2, Q; a′1, a
′
2, Q

′)

= A+(ã1, ã
′
1)A−(ã2, ã

′
2)K∗(t, Q,Q

′)e−
iξπ
n

(
ν(a1−a2,Q)+ν(a′1−a

′
2,Q
′)
)
. (6.3)

Since ϕ′′0(a+) = c+ (see (4.10) and (1.1)), it is easy to see that the kernel A+ of (6.2)
takes the form

A+(ã, ã′) = A+
∗ (ã, ã′)(1 +W−1/2p̂+(ã))(1 +W−1/2p̂+(ã′)) +O(e−c log2W ), (6.4)

A+
∗ (ã, ã′) =

a+θ+√
2π

exp
{

(a+θ+)2
[
β(ã− ã′)2/2− c+ã2/4− c+(ã′)2/4

]}
p̂+(ã) = ic3+ã

3 − c4+ã
4W−1/2 − ic5+ã

5W−1 + . . .

where the coefficients c3+, c4+, . . . are expressed in terms of the derivatives of ϕ0 at a+.
Similarly A− of (6.2) can be approximated via A−∗ defined similarly to A+

∗ in (6.4).

It is easy to check that for β < 1/4 the real parts of the eigenvalues α1,+, α2,+ of the
quadratic form (

a2
+( c+2 − β) a2

+β

a2
+β a2

+( c+2 − β)

)
in the exponent of A+

∗ of (6.4) are positive. Same is true for A−∗ . Denote

θ± = (|κ±|/κ±)1/2, κ± = (α1,±α2,±)1/2 = a2
±
(
c2±/4− βc±

)1/2
, (6.5)

with c± of (1.1). Notice that θ± is defined in such a way that

<(θ2
±α1,±) > 0, <(θ2

±α2,±) > 0.

Now introduce the orthonormal bases

ψ±k (ã) = |κ±|1/4Hk(|κ±|1/2ã)e−|κ±|ã
2/2, (6.6)

where {Hk(x)} are Hermite polynomials which are orthonormal with the weight e−x
2

:

Hk(x) = (2k−1/2k!
√

2π)−1/2ex
2

(
d

dx
)ke−x

2

.

Below we will need the following lemma
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Lemma 6.1. (i) Let κ+, κ− be defined as in (6.5). Then the matrices of the operators
A+
∗ andA−∗ are diagonal in the basis {ψ+

k } and {ψ−k }, and corresponding eigenvalues
have the form

λ±k = λk(A±∗ ) = λ±0 · qk±, k = 0, 1, 2 . . . (6.7)

with

λ±0 = (κ±/a
2
± + c±/2− β)−1/2, (6.8)

q± =
β

κ±/a2
± + c±/2− β

, |q±| < 1.

Notice that |q±| < 1 implies
|λ±0 | ≤ β−1/2. (6.9)

The matrices of operators A+ and A− of (6.2) have the form

(A±)k,k = λ±0 · qk± +O(1/W ), (6.10)

(A±)k,k′ = O(W−1/2)(δ|k−k′|,1 + δ|k−k′|,3)

+O(W−1)δ|k−k′|,2 +O(W−(|k−k′|−3)/2), k 6= k′.

(ii) The eigenvalues of operator

A± = 1Ω̃±

(
λ0(t)Aa

)
1Ω̃±

(6.11)

are λ+
0 λ
−
0 q

k
+q

l
− +O(1/W ), k, l = 0, 1, .. and they are solutions of the equation

(A±)0,0 − z − (A±)(12)((A±)(22) − z)−1(A±)(21) = 0, (6.12)

where

A± =

(
A00 A(12)

A(21) A(22)

)
according to the decomposition {ψ+

k1
ψ−k2} = {ψ+

0 ψ
−
0 }⊕{ψ

+
k1
ψ−k2}k̄ 6=0 with k̄ = (k1, k2).

Here λ0(t) is the top eigenvalue of K∗(t, Q,Q′) (see (4.14)).

The top eigenvalue of K± has the form

λ0(K±) = λ0(A±) = λ+
0 λ
−
0 +O(1/W ).

Proof. To simplify formulas, we consider the kernel (see (6.4)–(6.5))

M(x, y) = a+(2π)−1/2e−(Ax,x)/2, x̄ = (x, y), A =

(
µ ν

ν µ

)
, λ± = µ± ν, <λ± > 0.

Then, taking κ =
√
µ2 − ν2 =

√
λ+λ−, we obtain

a+(2π)−1/2

∫
e−(Ax,x)/2+κy2/2(

d

dy
)ke−κy

2

dy

= qk · a+(µ+ κ)−1/2eκx
2/2
( d
dx

)k
e−κx

2

, q =
ν

µ+ κ
,

so eκy
2/2( ddy )ke−κy

2

, k = 0, 1, . . . are the eigenvectors of M . Since M is compact, we have
|q| < 1. Notice also that

a+(µ+ κ±)−1/2 = λ±0 .
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Now if we change the variables

x1 = θx, y1 = θy, θ = e−i(arg λ++arg λ−)/4 = e−iarg κ/2,

then for the new matrix Ã = θ2A has eigenvalues θ2λ+, θ
2λ−, whose real parts are still

positive, κ̃ = |κ|, and q̃ = q. This finishes the proof of (6.7)–(6.8).
Formula (6.10) follows directly from (6.4) and the fact that the Gaussian integral of

x2k+1 is zero, and it immediately gives the statement about eigenvalues of A± (it is easy
to see that λ0(t) does not change anything since it has only ã/W 3/2 and ã′/W 3/2).

Equation (6.12) can be obtained from the standard Schur inversion formula. The rest
of part (ii) follows directly from (i) and Proposition 4.2.

Now we are going to normalize K±, Kξ,± by λ0(K±):

K̂± = λ0(K±)−1K±, K̂ξ,± = λ0(K±)−1Kξ,± (6.13)

with K±,ξ of (6.3). Notice that
K̂± = Â± · K̂∗ (6.14)

where
Â± = (λ0(A±))−1A±, K̂∗(t, Q,Q

′) = (λ0(t))−1K∗(t, Q,Q
′),

so both top eigenvalues of Â±, K̂∗ are 1, and

λ̂j(K̂∗) = 1− j(j + 3)

tW
+O((j2/tW )2), j = 1, 2, . . . . (6.15)

Therefore, it is easy to see that all eigenvalues of K̂±, K̂ξ,± lie inside ωA = {z : |z| =

1 +A/n}. Thus, we get

I±,ξ = −2πi(Kn−1
ξ,± f, g) = −2πi · λ0(K±)n−1(K̂n−1

ξ,± f, g)

= λ0(K±)n−1

∫
ωA

zn−1(Ĝξ(z)f, g)dz,

where
Ĝξ(z) = (K̂ξ,± − z)−1.

Similarly we can rewrite I±.
Consider the matrix of K̂ξ,± in the basis

Ψk̄,j(ã1, ã2, Q) = ψ+
k1

(ã1)ψ−k2(ã2)φj(Q), k1, k2, j ≥ 0, (6.16)

with ψ±k of (6.6), and φj of (4.11). Let H1 = {Ψk̄,j}j≤l−1 and

L2(R2)× L2(S̊p(2), dµ(Q)) = H1 ⊕H2, (6.17)

and write

K̂± =

(
K̂(11) K̂(12)

K̂(21) K̂(22)

)
, K̂ξ,± =

(
K̂

(11)
ξ K̂

(12)
ξ

K̂
(21)
ξ K̂

(22)
ξ

)
(6.18)

according to this decomposition. We will need the following simple lemma

Lemma 6.2. Given decomposition (6.18), we have

K̂(12) = K̂(21) = 0, ‖K̂(12)
ξ ‖ ≤ C

n
, ‖K̂(21)

ξ ‖ ≤ C

n
; (6.19)

and for |z| ≥ 1 +A/n with big enough A we have

‖(K̂(11)
ξ − z)−1‖ ≤ Cn, (6.20)

‖(K̂(22)
ξ − z)−1‖ ≤ CW/l2, (6.21)

and same is valid for K̂.
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Proof of Lemma 6.2. The bound (6.19) follows follows from the block-diagonal structure
of K̂± with respect to the basis (6.16) (see (4.15)), and the fact that K̂±,ξ is 1/n-order
perturbation of K̂±.

The bound (6.20) follows from

‖K̂(11)
ξ ‖ ≤ 1 + c/n,

since for big enough A

‖(K̂(11)
ξ − z)−1‖ ≤ |z|−1

∞∑
k=0

(
‖K(11)

ξ ‖
|z|

)k
≤ Cn.

Similarly, according to (4.14)–(4.15), we get

‖K̂(22)‖ ≤ 1− Cl(l + 3)

W

and, since l2/W ∼ log2 n/n for W ≥ Cn and l2/W � n−1 for W � n,

‖K̂(22)
ξ ‖ ≤ 1− Cl2

W
,

which implies (6.21).

The next step is to prove that we can consider only the upper-left block K(11)
ξ of Kξ

(see (6.18)). More precisely, we are going to prove

Lemma 6.3. We have∫
ωA

zn−1(Ĝξ(z)f, f̄)dz =

∫
ωA

zn−1(Ĝ1,ξ(z) f1, f̄1)dz +O
(W log n

l2n

)
,

where
Ĝ1,ξ(z) = (K̂

(11)
ξ − z)−1,

and we decomposed f = (f1, f2) with respect to the decomposition (6.17). Notice that

W log n

l2n
≤ 1

log n
.

Proof. Using the well-known Schur inversion formula we get

(K̂ξ − z)−1 =

(
Ĝ

(11)
ξ −Ĝ(11)

ξ K̂
(12)
ξ Ĝ2,ξ

−Ĝ2,ξK̂
(21)
ξ Ĝ

(11)
ξ Ĝ2,ξ + Ĝ2,ξK̂

(21)
ξ Ĝ

(11)
ξ K̂

(12)
ξ Ĝ2,ξ

)
,

where

Ĝ2,ξ(z) = (K̂
(22)
ξ − z)−1,

Ĝ
(11)
ξ = (K̂

(11)
ξ − z − K̂(12)

ξ Ĝ2,ξK̂
(21)
ξ )−1 = (1− Ĝ1,ξK̂

(12)
ξ Ĝ2,ξK̂

(21)
ξ )−1Ĝ1,ξ.

Thus∫
ωA

zn−1((Kξ − z)−1f, f̄)dz =

∫
ωA

zn−1
(

(G
(11)
ξ f1, f̄1)− (G

(11)
ξ K

(12)
ξ G2,ξf2, f̄1)

)
dz (6.22)

−
∫
ωA

zn−1(G2,ξK
(21)
ξ G

(11)
ξ f1, f̄2)dz

+

∫
ωA

zn−1((G2,ξ +G2,ξK
(21)
ξ G

(11)
ξ K

(12)
ξ G2,ξ)f2, f̄2)dz.
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Denoting
R = (1− Ĝ1,ξK̂

(12)
ξ Ĝ2,ξK̂

(21)
ξ )−1,

we get
Ĝ

(11)
ξ = RĜ1,ξ.

According to (6.19)–(6.21), we obtain

‖Ĝ1,ξK̂
(12)
ξ Ĝ2,ξK̂

(21)
ξ ‖ ≤ Cn · 1

n2
· W
l2

=
CW

l2n
.

Therefore,

‖1−R‖ ≤ CW

l2n
,

which together with (6.20) implies∣∣∣ ∫
ωA

zn−1
((
Ĝ

(11)
ξ − Ĝ1,ξ

)
f1, f̄1

)∣∣∣ =
∣∣∣ ∫
ωA

zn−1
(

(1−R)G1,ξ

)
f1, f̄1

)∣∣∣
≤ C‖1−R‖ · ‖f1‖2 ·

∫
ωA

|dz|
|z − 1|

≤ CW log n

l2n
.

It is easy to see also that
‖f2‖ ≤ C/n,

and because of the consideration above

‖Ĝ2,ξ + Ĝ2,ξK̂
(21)
ξ Ĝ

(11)
ξ K̂

(12)
ξ Ĝ2,ξ‖ ≤ CW/l2,

‖Ĝ2,ξK̂
(21)
ξ Ĝ

(11)
ξ ‖ ≤ CW/l2, ‖Ĝ(11)

ξ K̂
(12)
ξ Ĝ2,ξ‖ ≤ CW/l2,

so other terms in (6.22) are also small.

The next step is to show that we can consider only the projection of K̂(11)
ξ , K̂(11) on

the linear span of {Ψ0,j}j≤l (see (6.16)). We prove

Lemma 6.4. Let Pl be the projection on {φj}l−1
j=0 of (4.11), ∆l = Pl∆Pl, and ν̂l = Plν̂Pl

with ν̂ defined in (1.9). Then∫
ωA

zn−1(Ĝ1,ξ(z) f1, f̄1)dz = O
( (l − 1)2n

W 3/2

)
+O

( 1

W 1/2

)
+

∫
ωA

ζn−1
((
Pl −

1

t∗W
∆l −

iπξ

n
ν̂l − ζ +O

( (l − 1)4

W 2

))−1

f0, f̄0

)
dζ,

where O(x) is an operator whose norm is bounded by Cx which does not depend on ζ,
and

f0 = (f,Ψ0̄).

Recall l = 1 forW � n and (l−1)2n/W 3/2 ∼ log2 n/W 1/2 forW ≥ Cn, and t∗ = (2πρ(E))2.

A similar formula is true for Ĝ1 (i.e. for K̂(11) instead of K̂(11)
ξ ).

Proof. Write K̂(11)
ξ − z, K̂(11) − z in the block form

K̂(11) − z =

(
M1 M12

M21 M2

)
, K̂

(11)
ξ − z =

(
M1,ξ M12,ξ

M21,ξ M2,ξ

)
according to decomposition

H1 =M1 ⊕M2,
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whereM1 is a linear span of Ψ
(l)
0 = {Ψ0,j}j≤l (see (6.16)).

Set

G0
1,ξ(z) = (M11,ξ −M12,ξM

−1
22,ξM21,ξ)

−1 G0
1(z) = (M11 −M12M

−1
22 M21)−1

Then, using Proposition 5.2, we get∮
ωA

zn−1(G(z)f1, f̄1)dz =

∮
ωA

zn−1(G0
1f

(1)(z), g(1)(z))dz +O(e−nc),∮
ωA

zn−1(Gξ(z)f1, f̄1)dz =

∮
ωA

zn−1(G0
1,ξf

(1)(z), g(1)(z))dz +O(e−nc),

where f (1), g(1) are defined as in (5.5).
Recall that

K̂(11) − z = (ÂPlK̂∗PlΨ
(l)
0 ,Ψ

(l)
0 )− z.

Set

PlK̂∗Pl = Pl − K̃l.

Then K̃l, according to (6.15), is a diagonal matrix with eigenvalues

λ̃j(t) = j(j + 3)/tW +O((j2/tW )2), j = 0, . . . , l − 1.

Since (4.3) and (6.1) imply

t =
(
a+ − a− +

iθ+a+ã1 − iθ−a−ã2)√
W

)(
a+ − a− +

iθ+a+ã
′
1 − iθ−a−ã′2)√
W

)
,

K̃l can be rewritten as

K̃l = ∆l/t∗W +Oa

( (l − 1)2

W 3/2

)
+O

( (l − 1)4

W 2

)
(6.23)

with t∗ = (a+ − a−)2 = (2πρ(E))2. Here Oa(X) is a diagonal in {φj}l−1
j=0 operator of the

type O(X) whose eigenvalues are linear in a, a′.
Now, since, according to Lemma 6.1, Â00 = 1 +O(1/W ), substituting (6.23), we get

(ÂK̃lΨ
(l)
0 ,Ψ

(l)
0 )jj = (λ̃j(t)Âψ

+
0 ψ
−
0 , ψ

+
0 ψ
−
0 ) =

j(j + 3)

t∗W
·
(

1 +O
( j2

W

))
Therefore,

K̂(11) − z = Â00Pl − z −∆l/t∗W +O((l − 1)4/W 2).

Similarly

M12 = Â12 ⊗ Pl +O
( (l − 1)2

W 3/2

)
,

M21 = Â21 ⊗ Pl +O
( (l − 1)2

W 3/2

)
,

M22 = Â22 ⊗ Pl − z +O
( (l − 1)2

W

)
.

Notice also that because of Lemma 6.1

‖Â12‖ ≤W−1/2, ‖Â21‖ ≤W−1/2, ‖(Â22 − z)−1‖ ≤ C.
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Hence

M11 −M12M
−1
22 M21 = A00Pl −∆l/t∗W − z − Â12(Â22 − z)−1Â21Pl +Oz

( (l − 1)2

W 2

)
+O

( (l − 1)4

W 2

)
= Pl −∆l/t∗W − z −W−1g1(z)Pl +O

( (l − 1)4

W 2

)
,

where

g1(z) = Â00 − 1− Â12(Â22 − z)−1Â21 +Oz((l − 1)2/W )−O∗((l − 1)2/W )

is analytic and bounded in {z : |z − 1| < δ} for small enough δ (recall l2/W ≤ log2 n/n

and ‖Â22‖ ≤ |q±| < 1 with q± of (6.8) according to Lemma 6.1). Here Oz(·) is an operator
of type O(·) which may depend on z, and O∗(·) is an operator Oz(·) with substitution
z = 1. Lemma 6.1 implies also

g1(1) = 0. (6.24)

Now set

ζ(z) = z +W−1g1(z). (6.25)

Since g1(z) has a bounded derivative in {z : |z − 1| < δ}, we get

ζ ′(z) = 1 +O(1/W ),

and the Implicit Function Theorem implies that there exists the inverse function z(ζ)

with a derivative of order 1 +O(1/W ). In addition, by (6.24), ζ(1) = 1, so the image of
{z : |z − 1| < δ} lies in {ζ : δ/2 < |ζ − 1| < 2δ}, and it is easy to show that

z(ζ) = ζ +W−1g̃1(ζ),

where g̃1 is a bounded analytic in {ζ : |ζ − 1| < 2δ}, and g̃1(1) = 0.
Now we consider the contour ω̃A = {z : dist{z; [1−C(l− 1)(l+ 2)/W ; 1]} ≤ A/n} and

the contour L2 = {|z| ≤ |q±|+ 1

2
< 1} with q± of (6.8). It is easy to see that ω̃A ∪ L2

encircles all the eigenvalues of K̂(11), K̂(11)
ξ (see (4.14) – (4.15) and Lemma 6.1). But for

z ∈ L2

|z|n−1 ≤ e−cn,

so the contribution of the integral over L2 is small, and we need to consider integral over
ω̃A only. It follows from (6.24)–(6.25) and the consideration above that ζ(z), z ∈ ω̃A will
be inside ω̃2A, and so, since l = 1 for W � n and l2/W ∼ log2 n/n for W ≥ Cn, we get

z(ζ) = ζ +O((l − 1)2/W 2) +O(1/nW ),

hence

zn−1 =

{
ζn−1 +O(log2 n/W ), W ≥ Cn,
ζn−1 +O(1/W ), W � n.

(6.26)

Notice also that for z ∈ ω̃A

‖(Pl −∆l/t∗W − ζ(z))−1‖ ≤ Cn,

thus

‖G0
1‖ = ‖(Pl −∆l/t∗W − ζ(z) +O((l − 1)4/W 2))−1‖ ≤ ‖(Pl −∆l/t∗W − ζ(z))−1‖

×
∥∥∥(1 +O((l − 1)4/W 2) · (Pl −∆l/t∗W − ζ(z))−1

)−1∥∥∥ ≤ Cn.
EJP 27 (2022), paper 24.

Page 20/29
https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP747
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


SUSY approach to 1d RBM

Hence, recalling l = 1 and ‖ω̃A‖ = C/n for W � n and |ω̃A| ≤ C(l − 1)2/W for W ≥ Cn,
and ‖f (1)(z)− f0‖ ≤ C/

√
W , we obtain∮

ω̃A

zn−1(G0
1(z)f (1)(z), g(1)(z))dz

=

∮
ω̃A

zn−1(G0
1(z)f0, f̄0)dz +O((l − 1)2n/W 3/2) +O(1/W 1/2).

According to (6.26), this can be further transformed as∮
ω̃A

zn−1(G0
1(z)f0,f̄0)dz = O

( (l − 1)4n2

W 3

)
+O

( 1

W

)
+

∮
ζ(ω̃A)

ζn−1((Pl −∆l/t∗W − ζ +O((l − 1)4/W 2))−1f0, f̄0)dζ,

and the contour now can be changed back to ωA (notice l4n2/W 3 = log4 n/W , l4/W 2 =

log2 n/Wn for W ≥ Cn).

In order to perform the same analysis for K̂(11)
ξ notice that

‖M12‖ ≤ C/
√
W, M12,ξ = M12 +O

( 1

n
√
W

)
;

‖M21‖ ≤ C/
√
W, M21,ξ = M21 +O

( 1

n
√
W

)
;

‖M−1
22 ‖ ≤ C, M22,ξ = M22 +O

( 1

n

)
,

and

M11,ξ = (APlFn,ξK∗Fn,ξPlΨ0,Ψ0)− z = M11 −A00 ·
iπξ

n
Plν̂Pl +O

( 1

n
√
W

)
.

Thus, since A00 = 1 +O(1/W ), we have

M1,ξ −M12,ξM
−1
22,ξM21,ξ = M11 −M12M

−1
22 M21 −

iπξ

n
Plν̂Pl +O

( 1

n
√
W

)
,

and hence we can apply same consideration as above.

Now let us analyze∫
ωA

ζn−1
((
Pl −

1

t∗W
∆l −

iπξ

n
ν̂l − ζ +O((l − 1)4/W 2)

)−1

f0, f̄0

)
dζ

• localized regime: W� n. In this regime l = 1, so we need to study∫
ωA

ζn−1
((
P1 −

iπξ

n
ν̂1 − ζ

)−1

f0, f̄0

)
dζ

= −2πi · ‖f0‖2
((
P1 −

iπξ

n
ν̂1

)n−1

1, 1
)
.

But since φ0 = 1 and ν̂1 = P1ν̂P1, ν̂ · 1 = φ1 (see (1.9) and Proposition 4.2), we
obtain

(P1 −
iπξ

n
ν̂1

)
1 = 1− iπξ

n
P1φ1 = 1,

which implies ((
P1 −

iπξ

n
ν̂1

)n−1

1, 1
)

= 1,

thus Theorem 1.1 in the regime W � n.
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• critical regime: n = C∗W.

Again we need to study
(
Kn−1

0 f0, f0

)
with

K0 = Pl −
1

t∗W
∆l −

iπξ

n
ν̂l +O(l4/W 2) = Pl −

C∗

n
∆l −

iπξ

n
ν̂l +O(log4 n/n2),

(6.27)

where C∗ = C∗/t∗. It is enough to prove

Lemma 6.5. Given (4.18), if n = C∗W , l = [logW ] we have

(Kn−1
0 1, 1)→ (e−C

∗∆−iξπν̂1, 1), n,W →∞,

with ν̂, ∆ as in Theorem 1.1.

Similar Lemma is proved in [32], but for the sake of completeness we repeat the
proof here.

Proof of Lemma 6.5. Notice that

K0 = Pl − n−1C∗∆l −
iξπ

n
ν̂l +O(log4 n/n2) = Ple

−n−1(C∗∆l+iξπν̂l)+O(log4 n/n2)Pl.

Thus

Kn−1
0 = Ple

−C∗∆l−iξπν̂lPl +O(log4 n/n),

ans so

(Kn−1
0 1, 1) = (e−C

∗∆l−iξπν̂l1, 1) +O(log4 n/n).

Consider the basis {φj} of (4.11). In this basis the Laplace-Bertarami operator
∆ is diagonal, and the operator ν̂ is three diagonal (since it corresponds to the
multiplication by 2x2 − 1, see (1.9) and (4.12)). To simplify notations, let F be an
operator of multiplication by (iπξν) and ∆̃ = C∗∆. Set

D = ∆̃ + F,

D(l) = ∆̃ + F (l),

where F (l) be the matrix F where we put Fl−1,l = Fl,l−1 = 0. It is evident that
(recall φ0 = 1)

(e−D
(l)

φ0, φ0) =
(
e−PlDPlφ0, φ0

)
= (e−Pl(C

∗∆+iξπν)Pl1, 1).

Thus, we are left to prove that((
e−D − e−D

(l))
φ0, φ0

)
→ 0. (6.28)

Notice that both e−D, e−D
(l)

are bounded operators, and |F | ≤ C, |F (l)| ≤ C. We
will use the well-known Duhamel formula

e−tA1 − e−tA2 =

t∫
0

e−(t−s)A2(A1 −A2)e−sA1ds. (6.29)
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For A1 = D, A2 = D(l) and t = 1 it gives∣∣∣(e−D − e−D(l))
φ0

∣∣∣ =
∣∣∣ ∫ 1

0

e−(1−s)D(l)

(F − F (l))e−sDφ0 ds
∣∣∣

=
∣∣∣ ∫ 1

0

e−(1−s)D(l)

(Fl−1 · El−1,l + Fl · El,l−1)e−sDφ0 ds
∣∣∣

=
∣∣∣ ∫ 1

0

e−(1−s)D(l)
(
Flφl

(
e−sDφ0, φl−1

)
+ Fl−1φl−1

(
e−sDφ0, φl

))
ds
∣∣∣

≤ C
(∣∣(e−sDφ0, φl−1

)∣∣+
∣∣(e−sDφ0, φl

)∣∣).
Here El−1,l is an operator whose matrix in the basis {φj} has 1 at (l−1, l) place and
zeros everywhere else, and El,l−1 is defined in a similar way. Fl−1, Fl are (l − 1, l)

and (l, l − 1) elements of the matrix F in the same basis.

Now let us bound
∣∣(e−sDφ0, φl

)∣∣. To this end, apply Duhamel’s formula (6.29)

p = [l/2] times with A1 = D and A2 = ∆̃. We obtain

(
e−sDφ0, φl

)
=

p∑
j=1

∫
s1+..+sj≤s

(
e−s1∆Fe−s2∆F . . . e−sj∆φ0, φl) ds1..dsj

+

∫
s1+..+sp≤s

(
e−s1DFe−s2∆F . . . e−sp∆φ0, φl) ds1..dsp.

Since e−s∆ is diagonal in the basis {φj}, and F is only three diagonal, the expression
e−s1∆Fe−s2∆F . . . e−sj∆φ0 is in the linear span of {φk}jk=0, and thus the sum above
is 0. Hence∣∣∣(e−sDφ0, φl

)∣∣∣ ≤ ∣∣∣ ∫
s1+..+sp≤s

(
e−s1DFe−s2∆F . . . e−sp∆φ0, φl) ds1..dsp

∣∣∣
≤ Cl

∣∣∣ ∫
s1+..+sp≤s

ds1..dsp

∣∣∣ =
Clsl

l!
≤ C1e

−l log l → 0,

which finishes the proof of (6.28).

• delocalized regime: W� n. Since in this regime l4/W 2 = C log4 n/n2, we get∫
ωA

ζn−1
((
Pl −

C∗
W

∆l −
iπξ

n
ν̂l − ζ +O(l4/W 2)

)−1

f0, f̄0

)
dζ

=

∫
ωA

ζn−1
((
Pl −

C∗
W

∆l −
iπξ

n
ν̂l − ζ

)−1

f0, f̄0

)
dζ +O(log4 n/n),

Hence we need to study

|f0|2
∫
ωA

zn−1
((
Pl −

C∗
W

∆l −
iπξ

n
ν̂l − z

)−1

1, 1
)
dz

Now let us define

m =
3

√
W

n
, m→∞,

in order to get
m2n

W
=

1

m
→ 0.
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Set

G(z) = (Pl −
C∗
W

∆l −
iπξ

n
ν̂l − z)−1, G(m)(z) = (Pm −

C∗
W

∆m −
iπξ

n
ν̂m − z)−1,

G(m,l)(z) = (Pl −
C∗
W

∆l −
iπξ

n
ν̂l,m − z)−1,

where ν̂l,m has the same matrix as a tridiagonal operator ν̂l but with (m,m+ 1) and
(m+ 1,m) elements equal to 0, and Pm is a projection on {φj}j≤m, ∆m = Pm∆Pm,
ν̂m = Pmν̂Pm. Notice that ν̂l,m has a block diagonal structure with blocks m×m
and (l −m)× (l −m), thus

(G(m,l)(z)1, 1) = (G(m)(z)1, 1). (6.30)

We are going to prove∫
ωA

zn−1
(
G(z) · 1, 1

)
dz =

∫
ωA

zn−1
(
G(m,l)(z) · 1, 1

)
dz +O(1/m). (6.31)

Then, if we define

G
(m)
0 (z) = (Pm −

iπξ

n
ν̂m − z)−1, (6.32)

we can write using (6.30) and the standard resolvent identity(
G(m,l)(z) · 1, 1

)
= (G(m)(z)1, 1) = (G

(m)
0 (z)1, 1) + (G(m)(z)

(C∗
W

∆m

)
G

(m)
0 (z)1, 1).

But

‖C∗
W

∆m‖ ≤
Cm2

W
≤ 1

mn
,

hence, since both resolvent can be bounded by |z − 1|−1, we get∣∣∣ ∫
ωA

zn−1(G(m)(z)
(C∗
W

∆m

)
G

(m)
0 (z)1, 1)dz

∣∣∣ ≤ C

mn

∫
ωA

|dz|
|z − 1|2

≤ C

m
, (6.33)

where we have used ∫
ωA

|dz|
|z − 1|2

≤ Cn. (6.34)

Now (6.30)–(6.33) imply

|f0|2
∫
ωA

zn−1(G(z)1, 1)dz = |f0|2
∫
ωA

zn−1(G
(m)
0 (z)1, 1)dz +O(1/m)

= −2πi · |f0|2 ·
((
Pm −

iπξ

n
ν̂m

)n−1

1, 1
)

+O(1/m).

Since ν̂ is bounded, we can easily change ν̂m to ν̂ and use(
1− iπξ

n
ν̂
)n−1

= e−iπξν̂ +O(1/n),

which implies Theorem 1.1.

Therefore we are left to prove (6.31). First we will need a bound

Lemma 6.6. For |z| ≥ 1 +A/n we have

|Gij(z)| ≤
C

|z − 1|
e−δ|i−j|,

where C and δ depends only on A. Same is true for G(m,l)(z).
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Notice that since ν̂ is bounded 3-diagonal matrix (see (4.12)), and Pl −
C∗
W

∆l is

diagonal, Lemma 6.6 follows from the standard Combes-Thomas arguments (see,
e.g., [25], Ch 13, Proposition 13.13.1)).

Using the resolvent identity we can write∫
ωA

zn−1
(
G(z) · 1, 1

)
dz =

∫
ωA

zn−1
(
G(m,l)(z) · 1, 1

)
dz

+

∫
ωA

zn−1
(
G(z)

(δν̂
n

)
G(m,l)(z) · 1, 1

)
dz, (6.35)

where δν̂ = iπξ(ν̂l− ν̂l,m), i.e. the matrix with only two non-zero elements (m,m+1)

and (m+ 1,m). Rewrite(
G(z)

(δν̂
n

)
G(m,l)(z)1, 1

)
=

(δν̂)m,m+1

n
G

(m,l)
m+1,0(z)G∗0m(z) +

(δν̂)m+1,m

n
G

(m,l)
m,0 (z)G∗0,m+1(z). (6.36)

But according to Lemma 6.6

|G(m,l)
m+1,0(z)| ≤ C

|z − 1|
e−δm,

and similar bounds hold for other resolvent elements in (6.36). Thus∣∣∣ ∫
ωA

zn−1
(
G(z)

(δν̂
n

)
G(m,l)(z)1, 1

)
dz
∣∣∣ ≤ Ce−2δm

n

∫
ωA

|dz|
|z − 1|2

≤ Ce−2δm,

where we have used (6.34). This and (6.35) yield (6.31).

7 Analysis of I+ and I−

Since the integrals I+ and I− are similar, we can consider I+ only. In this case we will
consider {Fi} of Proposition 2.1 as a S̊p(2) matrix which is in W−1/2-neigbourhood of
a+I4. Then Fi can be parametrized as Fi = a+(I+ iθ+Xi/

√
W ), where Xi is a quaternion

Hermitian matrix

Xj =


ã1j w̃j1 0 w̃j2
w̃j1 ãj2 −w̃j2 0

0 −w̃j2 ãj1 w̃j1
w̃j2 0 w̃j1 ãj2

 ,

where w̃j1 = (xj + iyj)/
√

2, w̃j2 = (pj + iqj)/
√

2. This change transforms the measure
dFi to

(ia+θ+)6

4
W−3dã1idã2idx̃i dỹi dp̃idq̃i.

We need to keep the same C̃ ′n,W as in (4.4), so in the parametrization above the

operator K+
+ has the form

K+
+ (X,X ′) = β2A+

a (ā, x, y, p, q; ā′, x′, y′, p′, q′)(1 + o(1)),

where

A+
a (ā, x, y, p, q; ā′, x′, y′, p′, q′)

= A+(ã1, ã
′
1)A+(ã2, ã

′
2)A+(x, x′)A+(y, y′)A+(p, p′)A+(q, q′).
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with A+ of (6.4).
Similarly to Lemma 6.1 one can get that the largest eigenvalue of A+

a is β2(λ+
0 )6 +

O(W−1) (see (6.8)), and the next eigenvalue is smaller then β2(λ+
0 )6(1− δ). Remember

that we have normalization λ0(K±)−1, and λ0(K±) = λ+
0 λ
−
0 +O(1/W ) (see Lemma 6.1).

But, according to (6.9), β|λ+
0 |2 < 1, thus

‖λ0(K±)−1K+‖ < 1− δ,

and so
I+ = O(e−cn).

A SUSY techniques

Here we provide the basic formulas and definitions of SUSY approach used in Section
2.

Let us consider two sets of formal variables {ψj}nj=1, {ψj}nj=1, which satisfy the
anticommutation conditions

ψjψk + ψkψj = ψjψk + ψkψj = ψjψk + ψkψj = 0, j, k = 1, . . . , n. (A.1)

Note that this definition implies ψ2
j = ψ

2

j = 0. These two sets of variables {ψj}nj=1 and

{ψj}nj=1 generate the Grassmann algebra A. Taking into account that ψ2
j = 0, we have

that all elements of A are polynomials of {ψj}nj=1 and {ψj}nj=1 of degree at most one in
each variable. We can also define functions of the Grassmann variables. Let χ be an
element of A, i.e.

χ = a+

n∑
j=1

(ajψj + bjψj) +
∑
j 6=k

(aj,kψjψk + bj,kψjψk + cj,kψjψk) + . . . . (A.2)

For any sufficiently smooth function f we define by f(χ) the element of A obtained by
substituting χ − a in the Taylor series of f at the point a. Since χ is a polynomial of
{ψj}nj=1, {ψj}nj=1 of the form (A.2), according to (A.1) there exists such l that (χ−a)l = 0,
and hence the series terminates after a finite number of terms and so f(χ) ∈ A.

For example, we have

exp{aψ1ψ1} = 1 + aψ1ψ1 + (aψ1ψ1)2/2 + . . . = 1 + aψ1ψ1,

exp{a11ψ1ψ1 + a12ψ1ψ2 + a21ψ2ψ1 + a22ψ2ψ2} = 1 + a11ψ1ψ1

+ a12ψ1ψ2 + a21ψ2ψ1 + a22ψ2ψ2 + (a11ψ1ψ1 + a12ψ1ψ2 (A.3)

+ a21ψ2ψ1 + a22ψ2ψ2)2/2 + . . . = 1 + a11ψ1ψ1 + a12ψ1ψ2 + a21ψ2ψ1

+ a22ψ2ψ2 + (a11a22 − a12a21)ψ1ψ1ψ2ψ2.

Following Berezin [2], we define the operation of integration with respect to the anti-
commuting variables in a formal way:∫

dψj =

∫
dψj = 0,

∫
ψjdψj =

∫
ψjdψj = 1, (A.4)

and then extend the definition to the general element of A by linearity. A multiple integral
is defined to be a repeated integral. Assume also that the “differentials” dψj and dψk
anticommute with each other and with the variables ψj and ψk. Thus, according to the
definition, if

f(ψ1, . . . , ψk) = p0 +

k∑
j1=1

pj1ψj1 +
∑
j1<j2

pj1,j2ψj1ψj2 + . . .+ p1,2,...,kψ1 . . . ψk,
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then ∫
f(ψ1, . . . , ψk)dψk . . . d ψ1 = p1,2,...,k. (A.5)

Let A be an ordinary Hermitian matrix with positive real part. The following Gaussian
integral is well-known∫

exp
{
−

n∑
j,k=1

Ajkzjzk

} n∏
j=1

d<zjd=zj
π

=
1

detA
. (A.6)

One of the important formulas of the Grassmann variables theory is the analog of this
formula for the Grassmann algebra (see [2]):∫

exp
{
−

n∑
j,k=1

Ajkψjψk

} n∏
j=1

dψjdψj = detA, (A.7)

where A now is any n× n matrix.
For n = 1 and 2 this formula follows immediately from (A.3) and (A.5).
We will also need the following proposition

Proposition A.1 (see [21] and references therein). Let ψj = (ψj1, . . . , ψjm)t, j = 1, . . . , p

be the Grassman vectors, and let F be some function that depends only on combinations

ψ+ψ :=
{ m∑
α=1

ψ̄jαψkα

}p
j,k=1

, ψψt :=
{ m∑
α=1

ψjαψkα

}p
j,k=1

, ψ+ψ̄ :=
{ m∑
α=1

ψ̄jαψ̄kα

}p
j,k=1

and set

dΨ =

p∏
j=1

m∏
α=1

dψ̄jαdψjα.

Assume also that m ≥ p. Then∫
F

(
ψ+ψ ψ+ψ̄

ψtψ ψ+ψ

)
dΦdΨ = Cp,m

∫
F (Q) · det−m/2Qdµ(Q),

where Cp,m is some constant depending on p and m, Q ∈ Sp(p), and dµ(Q) is a Haar
measure over Sp(p).

B Proof of Proposition 4.2

The first part of Proposition 4.2 follows from the standard representation theory
arguments and can be found e.g. in [19], Ch.5. The recurrence relation (4.12) follows
from the recurrence relation for hypergeometric functions, see e.g. [1].

Notice also that operator ν̂ correspond to the multiplication on c(2x2 − 1) with
x =

√
S(Q) (see (4.8)). Thus, (4.12) gives that ν̂φ0 is proportional to φ1, which implies

(4.13).
To get the asymptotic expression (4.14) for the eigenvalues of K∗ we need the

Itzykson-Zuber formula of the integration over S̊p(2) (for the proof see, e.g., [33])

Proposition B.1. If p 6= 0, then∫
S̊p(2)

exp{−pS
(
Q(Q′)∗

)
}dµ(Q′) =

6

p2

(
1− 2/p+ e−p

(
1 + 2/p

))
. (B.1)

Moreover, ∫
S̊p(2)

exp{iπξ − 2iπξS
(
Q
)
}dµ(Q) = DS(πξ). (B.2)
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Given (4.12), it is easy to check that P2n(0) = (−1)n, and the coefficient at x2 of P2n

is (−1)n−1n(n+ 3)/2. Therefore

λj(t) =
p2

6

∫
S̊p(2)

exp{−pS
(
Q
)
}(−1)jP2j(Q) dµ(Q)

=
p2

6

∫
S̊p(2)

exp{−pS
(
Q
)
}
(

1− j(j + 3)

2
S(Q) + . . .

)
dµ(Q)

= 1− 2

p
+
p2

6

(
− 12

p3

(
1− 2

p

)
+

6

p2
· 2

p2

)
· j(j + 3)

2
+O((j2/Wt)2)

= 1− (j + 1)(j + 2)

Wt
+O((j2/Wt)2)

with p = Wt. Here we used j(j + 3) + 2 = (j + 1)(j + 2), (B.1), and∫
S̊p(2)

exp{−pS
(
Q
)
}(S(Q))k dµ(Q) = (−1)k

( d
dp

)k ∫
S̊p(2)

exp{−pS
(
Q
)
} dµ(Q).
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