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Global solutions for the stochastic reaction-diffusion
equation with super-linear multiplicative noise and

strong dissipativity
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Abstract

A condition is identified that implies that solutions to the stochastic reaction-diffusion
equation ∂u

∂t
= Au + f(u) + σ(u)Ẇ on a bounded spatial domain never explode.

We consider the case where σ grows polynomially and f is polynomially dissipative,
meaning that f strongly forces solutions toward finite values. This result demonstrates
the role that the deterministic forcing term f plays in preventing explosion.
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1 Introduction

We investigate the role that dissipative forcing plays in preventing explosion of solu-
tions to the stochastic reaction-diffusion equation (SRDE) defined on an open bounded
domain D ⊂ Rd with appropriately smooth boundary

∂u

∂t
(t, x) = Au(t, x) + f(u(t, x)) + σ(u(t, x))Ẇ (t, x)

u(t, x) = 0, x ∈ ∂D,
u(0, x) = u0(x).

(1.1)

In the above equation, A is a second-order linear operator and Ẇ is a Gaussian noise.
The function f(u(t, x)) models a state-dependent external force and σ(u(t, x))Ẇ models
a state-dependent stochastic forcing.

The presence of stochastic forcing can cause solutions to become arbitrarily large with
positive probability and may even cause solutions to explode in finite time. Mueller and
collaborators [24, 25, 27, 26] investigated explosion for solutions to (1.1) when A = ∆,
f(u) ≡ 0, Ẇ is a space-time white noise and the spatial dimension is d = 1. Solutions

*Boston University, United States of America. E-mail: msalins@bu.edu

https://imstat.org/journals-and-publications/electronic-journal-of-probability/
https://doi.org/10.1214/22-EJP740
https://ams.org/mathscinet/msc/msc2020.html
mailto:msalins@bu.edu


SRDE with strong dissipativity

can explode in finite time if |σ(u)| > c|u|γ for some c > 0 and γ > 3
2 . Furthermore,

this 3
2 power is critical in the sense that solutions never explode if |σ(u)| ≤ C(1 + |u|γ)

for some C > 0 and γ < 3
2 . For other investigations of explosion of similar equations

see [8, 9, 16, 1]. In this paper, we demonstrate that γ can be arbitrarily large and
solutions will never explode as long as the strong stochastic forcing is compensated by
an appropriately strong dissipative forcing f .

Early investigations of these reaction-diffusion equations proved that there exists a
unique solution to (1.1) whenever f and σ are both globally Lipschitz continuous with at
most linear growth [19, 30, 13, 29, 31, 11, 20, 28, 12]. Linearly growing f , however, will
not be strong enough to prevent the expansive effects of a superlinearly growing σ. The
existence of global solutions for (1.1) when σ is locally Lipschitz continuous with linear
growth and f is strongly dissipative with polynomial growth was established by Cerrai
[4]. The restriction to polynomial growing f is common in the literature [21, 18, 2, 6], but
Da Prato and Röckner [10] and Marinelli and Röckner [23] proved that the polynomial
growth restriction can be relaxed, and that existence and uniqueness of solutions to (1.1)
is implied by a monotonicity condition on f . See also [22, 7, 23, 17]. These monotonicity
conditions allow for strongly dissipative forcing terms.

In this paper, we assume σ grows polynomially like |σ(u)| ≤ K2(1 + |u|γ) for some
γ > 1 and we assume that there exist K1 > 0, c0 > 0, and β > 1 such that f(u)sign(u) ≤
−K1|u|β for |u| > c0. In particular, this means that f(u) pushes solutions away from ±∞
when |u| is large. This strong dissipation can counteract the expansive effects of the
stochastic forcing, preventing explosion.

Before introducing the exact relationship between β and γ that implies that the
solutions to the reaction-diffusion are global, consider a related problem for a finite
dimensional stochastic differential equation defined on Rd. Let B(t) be a d-dimensional
Wiener process, let β, γ > 0, and let X(t) solve

dX(t) = −|X(t)|β−1X(t)dt+ (1 + |X(t)|)γdB(t), X(0) = x ∈ Rd. (1.2)

For R > 0, let τR = inf{t > 0 : |X(t)| > R}. The coefficients are all locally Lipschitz
continuous, so X(t ∧ τR) is a well-defined stochastic process. By Ito formula, for any
R > 0, T > 0,

E|X(T ∧ τR)|2 ≤ |x|2 + E

∫ T∧τR

0

(
−2|X(t ∧ τR)|β+1 + (1 + |X(t ∧ τR)|)2γ

)
dt. (1.3)

If γ ∈ [0, 1] then the multiplicative noise coefficent is sublinear and a Grönwall argument
proves that for some C > 0 independent of R,

E|X(T ∧ τR)|2 ≤ (|x|2 + CT )eCT . (1.4)

Letting R→∞ we see that solutions cannot explode. The value of β ≥ 0 does not affect
explosion if γ ∈ [0, 1].

We are particularly interested in the case where γ > 1 so that the multiplicative noise
term is superlinear. A Grönwall argument cannot be used in this setting, but if β is large
enough so that

γ <
β + 1

2
(1.5)

then the integrand in (1.3) is uniformly bounded by a constant independent of R. There-
fore, for any R > 0, T > 0,

E|X(T ∧ τR)|2 ≤ |x|2 + CT. (1.6)

We can prove that solutions to the finite dimensional SDE never explode by taking the
limit as R→∞ on the left.
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SRDE with strong dissipativity

In the case of SRDEs (1.1), however, such an Ito formula argument will not work
unless the stochastic forcing has a trace-class covariance. We will not assume trace-class
covariance in general, although we will prove that the conditions of our main result are
almost the same as the Ito formula condition (1.5) in the trace-class setting.

If σ grows at most linearly (γ ∈ [0, 1]) and f is dissipative, then solutions to (1.1)
cannot explode in finite time (see, for example, [4]). When σ grows polynomially,
however, solutions can explode unless the superlinear stochastic force is compensated
by an appropriately strong dissipative force [27, 26]. For this reason, we only study the
case where both γ > 1 and β > 1.

The main result of this paper (Theorem 2.7) proves that mild solutions to the stochas-
tic reaction diffusion-equation never explode if

γ < 1 +
(1− η)(β − 1)

2
(1.7)

where η ∈ [0, 1) is a constant that describes the balance between the eigenvalues of the
elliptic operator A and of the noise Ẇ (see Assumption 2.2, below). Note that when
η = 0 (1.5) and (1.7) coincide.

A mild solution to (1.1) solves the integral equation

u(t) = S(t)u(0) +

∫ t

0

S(t− s)f(u(s))ds+

∫ t

0

S(t− s)σ(u(s))dW (s) (1.8)

where S(t) is the semigroup generated by the elliptic operator A. The spatial variable is
suppressed in the above equation.

Instead of using Ito formula, we will take advantage of the fact that super-linear
dissipativity terms like f(u) = −|u|β−1u lead to estimates on the solutions that are
independent of the initial data. Consider, for example, the deterministic ordinary
differential equation

dφ

dt
= −|φ(t)|β−1φ(t). (1.9)

The solution to this equation is

φ(t) = ±
(
|φ(0)|−(β−1) + (β − 1)t

)− 1
β−1

. (1.10)

Unlike in the linear (β = 1) case, when β > 1 we can obtain bounds that are independent
of initial data. In particular, for any t > 0,

|φ(t)| ≤ Ct−
1

β−1 for any initial data. (1.11)

A similar bound will hold for the mild solution. Lemma 3.3 below proves that if the
stochastic convolution term

Z(t) :=

∫ t

0

S(t− s)σ(u(s))dW (s) (1.12)

is relatively small compared to u in the sense that |Z(t)|L∞(D) ≤ 1
3 |u(t)|L∞(D) for t ∈ [0, T ],

then

|u(t)|L∞(D) ≤
3

2

(
|u(0)|−(β−1)

L∞(D) +
K1

2β(β − 1)
t

)− 1
β−1

(1.13)

On the other hand, estimates from [4, 5] prove that the pth moments of the supremum
of the stochastic convolution (1.12) satisfy bounds like

E sup
t∈[0,T ]

sup
x∈D
|Z(t, x)|p ≤ CpE

∫ T

0

E

(∫ t

0

(t− s)−2α−η|σ(u(s))|2L∞(D)ds

) p
2

dt (1.14)
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where η ∈ (0, 1) is the constant in (1.7) and α ∈
(
0, 1−η

2

)
. Because σ(u) grows like |u|γ

and u(t) decays like (1.13) due to the strong dissipativity of f , the inner integral can be
bounded by

C|u(0)|2L∞(D)

∫ t

0

(t− s)−η−2αs−
2(γ−1)
(β−1) ds. (1.15)

The Beta function
∫ t

0
(t− s)−η−2αs−

2(γ−1)
(β−1) ds is uniformly bounded for t ∈ [0, 1] if and only

if

η + 2α+
2(γ − 1)

(β − 1)
≤ 1, (1.16)

which is equivalent to condition (1.7). Despite the fact that σ is superlinear, the esti-
mates (1.14)–(1.15) show that the size of the stochastic convolution only depends linearly
on the initial value of u(0).

To make these ideas rigorous, we introduce a sequence of stopping times that keep
track of when the spatial L∞ norm triples or falls to one-third of its previous value.
Under condition (1.7), we prove using the ideas above that the L∞ norm cannot triple in
a short amount of time. This prevents the mild solutions from exploding.

In Section 2 we introduce our assumptions and state the main result. In Section 3 we
recall important estimates from [4, 5] and we prove new estimates on solutions that are
uniform with respect to initial data. In Section 4, we prove the main result. We conclude
with a discussion in Section 5 about the relationship between the main result of this
paper and Mueller’s explosion results [26].

2 Notation, assumptions and main result

2.1 Notation

Let D ⊂ Rd be an open, bounded domain. For p ∈ [1,+∞), define Lp(D) to be the
Banach space of functions v : D → R such that the norm

|v|Lp(D) :=

(∫
D

|v(x)|pdx
) 1
p

(2.1)

is finite. When p = +∞, the L∞(D) norm is

|v|L∞(D) := sup
x∈D
|v(x)|. (2.2)

Define C0(D̄) to be the subset of L∞(D) of continuous functions v : D̄ → R such
that v(x) = 0 for x ∈ ∂D. Define C0([0, T ] × D̄) to be the set of continuous functions
v : [0, T ]× D̄ → R such that v(t, x) = 0 for x ∈ ∂D, endowed with the supremum norm

|v|C0([0,T ]×D̄) := sup
t∈[0,T ]

sup
x∈D̄
|v(t, x)|. (2.3)

2.2 Assumptions

We make the following assumptions about the differential operator A, the noise Ẇ ,
and the deterministic and stochastic forcing terms f and σ in (1.1).

Assumption 2.1. A is a second-order elliptic differential operator

Aφ(x) =

d∑
i=1

d∑
j=1

aij(x)
∂2φ

∂xi∂xj
+

d∑
i=1

bi(x)
∂φ

∂xi
(2.4)

where aij are continuously differentiable on D̄ and bi are continuous on D.
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SRDE with strong dissipativity

As observed in [4], we can assume without loss of generality that A is self-adjoint.
We make this assumption throughout the rest of the paper.

Let A be the realization of A in L2(D) with the Dirichlet boundary conditions. There
exists a sequence of eigenvalues 0 ≤ α1 ≤ α2 ≤ ... and eigenfunctions ek ∈ L2(D)∩C0(D)

such that [15, Chapter 6.5]

Aek = −αkek and |ek|L2(D) = 1. (2.5)

Assumption 2.2. There exists a sequence of numbers λj ≥ 0 and a sequence of i.i.d.
one-dimensional Brownian motions {Bj(t)}j∈N such that formally

Ẇ (t, x) =

∞∑
k=1

λjej(x)dBj(t). (2.6)

Furthermore, there exist exponents θ > 0 and ρ ∈ [2,+∞) such that
(∑∞

j=1 λ
ρ
j |ej |2L∞(D)

) 2
ρ

< +∞, if ρ ∈ [2,+∞),

supj λj < +∞ if ρ = +∞,
(2.7)

∞∑
k=1

α−θk |ek|
2
L∞(D) < +∞, (2.8)

and

η :=
θ(ρ− 2)

ρ
< 1. (2.9)

The constant η < 1 defined in (2.9) is central to our analysis and shows up as a
condition in our main theorem. The trace-class noise case corresponds to ρ = 2 implying
that η = 0. In the case of space-time white noise on a one-dimensional spatial interval,
we can take ρ = +∞ and η = θ can be any number larger than 1

2 .

Assumption 2.3. f : R → R and σ : R → R are continuous functions. There exist
powers β, γ > 1 and constants c0 > 0 and K1,K2 > 0 such that

f(u)sign(u) ≤ −K1|u|β for |u| > c0, (2.10)

|σ(u)| ≤ K2(1 + |u|γ) for u ∈ Rd (2.11)

and

γ < 1 +
(1− η)(β − 1)

2
. (2.12)

Notice that in the trace-class noise situation where η = 0, condition (2.12) matches
condition (1.5) from the SDE case.

Assumption 2.4. The initial data u0 ∈ C0(D̄).

2.3 Main result

Under Assumption 2.1, the realization A of A in L2(D) generates a C0 semigroup
S(t).

Definition 2.5. A C0(D̄)-valued process u(t) is local mild solution to (1.1) if

u(t) = S(t)u0 +

∫ t

0

S(t− s)f(u(s))ds+

∫ t

0

S(t− s)σ(u(s))dW (s) (2.13)

for all t ∈ [0, Tn] for any n where Tn is the stopping time

Tn := inf{t > 0 : |u(t)|L∞(D) ≥ n}. (2.14)
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Definition 2.6. A mild solution u is global if u(t) solves (2.13) for all t > 0, with
probability one. In other words, a solution is global if it never explodes.

Now we present our main theorem.

Theorem 2.7. Under Assumptions 2.1–2.4, any local mild solution to (1.1) is a global
solution.

The proof of Theorem 2.7 is in Section 4.

Remark 2.8. Notice that we make no claims about existence or uniqueness of mild
solutions. Instead, we claim that if a local mild solution exists, then it cannot explode in
finite time. If we add the reasonable assumption that f and σ are both locally Lipschitz
continuous then a standard localization argument proves that there exists a unique
local, mild solution (see for example [4, Proof of Theorem 5.3]). We do not include
this assumption to emphasize that it is really the tail behaviors (2.10), (2.11), and the
condition (2.12) that prevent explosion.

3 Estimates

3.1 Moment bounds of the supremum of the stochastic convolution

By the factorization method of Da Prato and Zabczyk [11, Chapter 5.3.1] (see also
[4]), a stochastic integral

Z(t) =

∫ t

0

S(t− s)σ(u(s))dW (s) (3.1)

can be written as

Z(t) =
sin(πα)

π

∫ t

0

(t− s)α−1S(t− s)Zα(s)ds (3.2)

where α ∈ (0, 1) and

Zα(t) =

∫ t

0

(t− s)−αS(t− s)σ(u(s))dW (s). (3.3)

Now let τ be a stopping time with respect to the natural filtration of W (t). Using the
factorization formula, Z(t ∧ τ) can be written as

Z(t ∧ τ) =
sin(πα)

π

∫ t∧τ

0

(t ∧ τ − s)α−1S(t ∧ τ − s)Zα(s)ds. (3.4)

This is also equal to

Z(t ∧ τ) =
sin(πα)

π

∫ t∧τ

0

(t ∧ τ − s)α−1S(t ∧ τ − s)Z̃α(s)ds (3.5)

where

Z̃α(t) =

∫ t

0

(t− s)−αS(t− s)σ(u(s))1{s≤τ}dW (s). (3.6)

Expressions (3.4) and (3.5) are equal because Zα(t) = Z̃α(t) for all t ≤ τ .
We prove the following two propositions in the appendix.

Proposition 3.1. Let α ∈
(
0, 1−η

2

)
and p ≥ 2. For any t > 0,

E|Z̃α(t)|pLp(D) ≤ Cα,pE
(∫ t

0

(t− s)−η−2α|σ(u(s))|2L∞(D)1{s≤τ}ds

) p
2

(3.7)
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Proposition 3.2. Let τ be a stopping time with respect to the natural filtration of W (t).
If E supt∈[0,τ ] |u(t)|pL∞(D) < +∞, then (t, x) 7→ Z(t ∧ τ, x) is almost surely continuous.

Furthermore, for any α ∈
(
0, 1−η

2

)
, ζ ∈ (0, 2α) and p > max

{
d
ζ ,

1
α− ζ2

}
,

E sup
s∈[0,t]

sup
x∈D
|Z(s, x)|p ≤ Cα,ζ,ptp(α−

ζ
2 )−1

∫ t

0

E|Z̃α(s)|pLp(D)ds. (3.8)

The proofs of Propositions 3.1 and 3.2 are very similar to the proofs of [4, Theorem
4.2] and [5, Lemma 4.1], although the inclusion of the stopping time is slightly different.
For completeness, we include the proofs in the appendix.

3.2 Uniform bounds

Before directly analyzing the properties of the mild solution (2.13), we consider
an associated deterministic problem. Let z ∈ C0([0, T ] × D̄) be a continuous function
of space and time and assume that u(t) solves the integral equation (with the spatial
variable suppressed)

u(t) = S(t)u0 +

∫ t

0

S(t− s)f(u(s))ds+ z(t) (3.9)

If u(t) is a mild solution to (1.1), then u(t) satisfies (3.9) where z(t) is replaced with the
stochastic convolution (3.1).

Lemma 3.3. Assume that z, u ∈ C0([0, T ]×D) solve (3.9). If

|z(t)|L∞(D) ≤
1

3
|u(t)|L∞(D) and 3c0 < |u(t)|L∞(D) for all t ∈ [0, T ], (3.10)

then for all t ∈ [0, T ],

|u(t)|L∞(D) ≤
3

2

(
|u(0)|−(β−1)

L∞(D) +
K1

2β(β − 1)
t

)− 1
β−1

. (3.11)

Proof. Assume that z(t) and u(t) are as described above. Let v(t) = u(t) − z(t) =

S(t)u0 +
∫ t

0
S(t − s)f(v(s) + z(s))ds. Then v is weakly differentiable and weakly solves

the partial differential equation

∂v

∂t
(t, x) = Av(t, x) + f(v(t, x) + z(t, x)). (3.12)

By a standard Yosida approximation argument (see Proposition 6.2.2 of [3] or Theorem
7.7 of [11]), we can assume without loss of generality that v is a strong solution of (3.12).
By Proposition D.4 in the appendix of [11], t 7→ |v(t)|L∞(D) is left-differentiable and

d−

dt
|v(t)|L∞(D) ≤ Av(t, xt)sign(v(t, xt)) + f(v(t, xt) + z(t, xt))sign(v(t, xt)) (3.13)

where xt ∈ D is a maximizer satisfying

|v(t)|L∞(D) = |v(t, xt)| = v(t, xt)sign(v(t, xt)). (3.14)

Because A is elliptic, by the convexity of a function at its maximum or minimum,

Av(t, xt)sign(v(t, xt)) ≤ 0. (3.15)

By the triangle inequality,

|v(t)|L∞(D) ≥ |u(t)|L∞(D) − |z(t)|L∞(D). (3.16)
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By assumption, for t ∈ [0, T ], 3|z(t)|L∞(D) ≤ |u(t)|L∞(D), and therefore,

|v(t)|L∞(D) ≥ 2|z(t)|L∞(D). (3.17)

From these estimates it follows that

|v(t, xt) + z(t, xt)| ≥ |v(t)|L∞(D) − |z(t)|L∞(D) ≥
1

2
|v(t)|L∞(D). (3.18)

And by the assumption that |u(t)|L∞(D) > 3c0, we see that

|v(t)|L∞(D) ≥ |u(t)|L∞(D) − |z(t)|L∞(D) ≥
2

3
|u(t)|L∞(D) ≥ 2c0. (3.19)

Therefore, by (3.18) for t ∈ [0, T ],

|v(t, xt) + z(t, xt)| ≥
1

2
|v(t)|L∞(D) ≥ c0. (3.20)

By (3.17), sign(v(t, xt)) = sign(v(t, xt) + z(t, xt)). Therefore, by (2.10), (3.13), (3.15),
and (3.18), for t ∈ [0, T ],

d−

dt
|v(t)|L∞(D) ≤ −

K1

2β
|v(t)|βL∞(D). (3.21)

Let F (u) = −(β − 1)u−(β−1) so that F ′(u) = u−β. Then because F is differentiable
and increasing,

d−

dt
F (|v(t)|L∞(D)) ≤ −

K1

2β
(3.22)

and therefore,

F (|v(t)|L∞(D)) ≤ F (|u(0)|L∞(D))−
K1t

2β
(3.23)

and

|v(t)|L∞(D) ≤
(
|u(0)|−(β−1)

L∞(D) +
K1t

2β(β − 1)

)− 1
β−1

. (3.24)

Finally, we use the estimate (3.19) to see that

|u(t)|L∞(D) ≤
3

2
|v(t)|L∞(D) ≤

3

2

(
|u(0)|−(β−1)

L∞(D) +
K1t

2β(β − 1)

)− 1
β−1

. (3.25)

4 Proof of Theorem 2.7

To prove that mild solutions to (1.1) are global in time, we build a sequence of stopping
times. Let u(t) be a mild solution to (1.1). Let c0 be the constant from Assumption 2.3
and let

τ0 = inf{t ≥ 0 : |u(t)|L∞(D) = 3nc0 for some n ∈ {1, 2, 3, 4, ...}}

τk+1 =


inf{t ≥ τk : |u(t)|L∞(D) ≥ 32c0} if |u(τk)|L∞(D) = 3c0

inf{t ≥ τk : |u(t)|L∞(D) ≥ 3|u(τk)|L∞(D)

or |u(t)|L∞(D) ≤ 1
3 |u(τk)|L∞(D)} if |u(τk)|L∞(D) ≥ 32c0.

(4.1)

If mild solutions explode in finite time then |u(τk)|L∞(D) will diverge to +∞ while
supk τk < +∞. We will demonstrate that this cannot happen.

Lemma 4.1. There exist constants C > 0 and q > 1, independent of n, k, and ε > 0, such
that for any ε > 0, any k ∈ N, and any n ∈ {2, 3, 4, 5, 6, ...},

P
(
|u(τk+1)|L∞(D) = 3|u(τk)|L∞(D) and τk+1 − τk < ε

∣∣∣ |u(τk)| = 3nc0

)
≤ Cεq. (4.2)
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SRDE with strong dissipativity

Proof. Because u(t) is a local mild solution to (1.1), for t ∈ [0, τk+1 − τk] and k ∈ N, u(t)

solves

u(t+ τk) = S(t)u(τk) +

∫ τk+t

τk

S(t+ τk − s)f(u(s))ds

+

∫ τk+t

τk

S(t+ τk − s)σ(u(s))dW (s)

= S(t)u(τk) +

∫ t

0

S(t− s)f(u(s+ τk))ds

+

∫ t

0

S(t− s)σ(u(s+ τk))dW (s+ τk). (4.3)

Because dW (t) is white in time, s 7→ dW (s + τk) conditioned on Fτk has the same
distribution as s 7→ dW (s). Without loss of generality, we can assume that k = 0 and it
suffices to prove that

P
(
|u(τ1)|L∞(D) = 3|u(0)|L∞(D) and τ1 < ε

∣∣∣ |u(0)| = 3nc0

)
≤ Cεq. (4.4)

The mild solution u solves

u(t) = S(t)u(0) +

∫ t

0

S(t− s)f(u(s))ds+

∫ t

0

S(t− s)σ(u(s))dW (s). (4.5)

Define Z(t) =
∫ t

0
S(t− s)σ(u(s))dW (s).

By Lemma 3.3, if supt∈[0,ε∧τ1] |Z(t)|L∞(D) ≤ 1
3 inf [0,ε∧τ1] |u(t)|L∞(D) and |u(0)|L∞(D) =

3nc0, then for all t ∈ [0, ε ∧ τ1],

|u(t)|L∞(D) ≤
3

2

(
|u(0)|−(β−1)

L∞(D) +
K1

2β(β − 1)
t

)− 1
β−1

≤ 3

2
|u(0)|L∞(D), (4.6)

implying that |u(t)|L∞(D) cannot reach 3|u(0)|L∞(D) for t < ε ∧ τ1. Therefore,

P
(
|u(τ1)|L∞(D) = 3|u(0)|L∞(D) and τ1 < ε

∣∣∣ |u(0)| = 3nc0

)
≤ P

(
sup

t∈[0,ε∧τ1]

|Z(t)|L∞(D) >
1

3
inf

t∈[0,ε∧τ1]
|u(t)|L∞(D)

∣∣∣ |u(0)|L∞(D) = 3nc0

)

≤ P

(
sup

t∈[0,ε∧τ1]

|Z(t)|L∞(D) ≥ 3n−2c0

∣∣∣ |u(0)|L∞(D) = 3nc0

)
. (4.7)

The last inequality in the above display is a consequence of the definition of τ1 in (4.1).
The value of |u(t)|L∞(D) cannot drop below 1

3 |u(0)|L∞(D) = 3n−1c0 if t ∈ [0, τ1].

Define the stopping time τ̃1 = inf{t > 0 : |Z(t)|L∞(D) ≥ 3n−2c0} and notice that

P

(
sup

t∈[0,ε∧τ1]

|Z(t)|L∞(D) ≥ 3n−2c0

∣∣∣ |u(0)|L∞(D) = 3nc0

)

= P

(
sup

t∈[0,ε∧τ1∧τ̃1]

|Z(t)|L∞(D) ≥ 3n−2c0

∣∣∣ |u(0)|L∞(D) = 3nc0

)
. (4.8)
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SRDE with strong dissipativity

By Chebyshev’s inequality and (3.8), for α, ζ, and p to be specified soon,

P

(
sup

t∈[0,ε∧τ1∧τ̃1]

|Z(t)|L∞(D) ≥ 3n−2c0

∣∣∣ |u(0)|L∞(D) = 3nc0

)

≤
E supt∈[0,ε∧τ1∧τ̃1] |Z(t)|pL∞(D)

3p(n−2)cp0

≤
Cεp(α−

ζ
2 )−1

∫ ε
0
E|Z̃α(s)|pLp(D)ds

3p(n−2)cp0
(4.9)

where

Z̃α(t) =

∫ t

0

(t− s)−αS(t− s)σ(u(s))1{s≤τ1∧τ̃1}dW (s). (4.10)

By (3.7), for t ∈ [0, ε],

E|Z̃α(t)|pLp(D) ≤ CE
(∫ t

0

(t− s)−2α−η|σ(u(s))|2L∞(D)1{s≤τ1∧τ̃1}ds

) p
2

. (4.11)

By (2.11),

E|Z̃α(t)|pLp(D) ≤ CE
(∫ t

0

(t− s)−2α−η(1 + |u(s)|2γL∞(D))1{s≤τ1∧τ̃1}ds

) p
2

. (4.12)

By the definitions of τ1 and τ̃1, |Z(t)|L∞(D) ≤ 1
3 |u(t)|L∞(D) for t ∈ [0, τ1∧τ̃1]. By Lemma 3.3,

for t ∈ [0, ε]

E|Z̃α(t)|pLp(D)

≤ CE
(∫ t

0

(t− s)−2α−η
(

1 +
(
|u(0)|−(β−1) + Cs

)− 2γ
β−1

)
ds

) p
2

. (4.13)

Now we make the observation that(
|u(0)|−(β−1) + Cs

)− 2γ
β−1 ≤ C|u(0)|2s−

2(γ−1)
β−1 . (4.14)

leading to the estimate that

E|Z̃α(t)|pLp(D) ≤ C
(∫ t

0

(t− s)−2α−η
(

1 + |u(0)|2s−
(2(γ−1))
β−1

)
ds

) p
2

(4.15)

In Assumption 2.3, we assumed that γ < 1 + (1−η)(β−1)
2 . Therefore, we can choose

α ∈ (0, 1) small enough so that

2α+ η +
2(γ − 1)

(β − 1)
= 1. (4.16)

Therefore, the integral
∫ t

0
(t− s)−2α−ηs−

2(γ−1)
β−1 ds = π

sin(π(2α+η)) in (4.15) is a Beta function

whose value does not depend on t. For t ∈ [0, ε],

E|Z̃α(t)|pLp(D) ≤ C(ε(1−2α−η) p2 + |u(0)|pL∞(D)). (4.17)
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SRDE with strong dissipativity

Now that α has been chosen, we choose ζ ∈ (0, 2α) and p > 1
α− ζ2

large enough so that

pζ > d (the spatial dimension). Then plugging this into (4.9),

P

(
sup

t∈[0,ε∧τ1∧τ̃1]

|Z(t)|L∞(D) ≥ 3n−2c0

∣∣∣ |u(0)|L∞(D) = 3nc0

)

≤
Cεp(α−ζ)−1

∫ ε
0

(ε(1−2α−η) p2 + 3npcp0)ds

3p(n−2)cp0

≤ Cεp(α−
ζ
2 ). (4.18)

We can set q = p(α− ζ
2 ) > 1 to finish the proof.

The n = 1 case was excluded from the previous lemma because it is slightly different
and significantly easier to prove.

Lemma 4.2. There exists C > 0, q > 1, and ε0 > 0 such that for any ε ∈ (0, ε0) and
k ∈ N,

P
(
τk+1 − τk > ε

∣∣∣ |u(τk)|L∞(D) = 3c0

)
≤ Cεq. (4.19)

Proof. As we argued at the beginning of the proof of Lemma 4.1, we can assume without
loss of generality that k = 0. It suffices to prove that

P
(
τ1 > ε

∣∣∣ |u(0)|L∞(D) = 3c0

)
≤ Cεq. (4.20)

If |u(0)| = 3c0, then the next step of the Markov chain must go up to |u(τ1)|L∞(D) = 32c0.
See (4.1).

For t ∈ [0, τ1], |u(t)|L∞(D) ≤ 32c0. Because f and σ are both continuous, there exists
K > 0 such that

|f(u(t))|L∞(D) ≤ K and |σ(u(t))|L∞(D) ≤ K for t ∈ [0, τ1].

Let

Z(t) =

∫ t

0

S(t− s)σ(u(s))dw(s) (4.21)

so that by the definition of the mild solution (2.13), if |u(0)|L∞(D) = 3c0, then for ε > 0,

sup
t∈[0,ε∧τ1]

|u(t)|L∞(D)

≤ |u(0)|L∞(D) + sup
t∈[0,ε∧τ1]

∣∣∣∣∫ t

0

S(t− s)f(u(s))ds

∣∣∣∣
L∞(D)

+ sup
t∈[0,ε∧τ1]

|Z(t)|L∞(D)

≤ 3c0 +Kε+ sup
t∈[0,ε∧τ1]

|Z(t)|L∞(D) . (4.22)

Therefore, if supt∈[0,ε∧τ1] |u(t)|L∞(D) > 32c0, then

sup
t∈[0,ε∧τ1]

|Z(t)|L∞(D) > 32c0 − 3c0 −Kε. (4.23)

By the factorization method (3.7)–(3.8), choosing p, ζ, α to have the same values as
in (4.18)

E sup
t∈[0,ε∧τ1]

|Z(t)|pL∞(D) ≤ Cε
p(α− ζ2 )Kp. (4.24)
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SRDE with strong dissipativity

By Chebyshev’s inequality,

P
(
τ1 < ε

∣∣∣ |u(0)|L∞(D) = 3c0

)
≤ P

(
sup

t∈[0,ε∧τ1]

|Z(t)|L∞(D) > 32c0 − 3c0 −Kε
∣∣∣ |u(0)|L∞(D) = 3c0

)

≤ Cεp(α−
ζ
2 )Kp

(32c0 − 3c0 −Kε)p
. (4.25)

Now we prove Theorem 2.7.

Proof of Theorem 2.7. Let τk be defined as in (4.1). By Lemmas 4.1– 4.2, there exists
C > 0 and q > 1 such that for any k ∈ N, and small ε > 0

P(τk+1 − τk < ε and |u(τk+1)|L∞(D) = 3|u(τk)|L∞(D)) ≤ Cεq. (4.26)

In particular, for any k ∈ N,

P

(
τk+1 − τk <

1

k
and |u(τk+1)|L∞(D) = 3|u(τk)|L∞(D)

)
≤ C

kq
. (4.27)

Because q > 1,

∞∑
k=1

P

(
τk+1 − τk <

1

k
and |u(τk+1)|L∞(D) = 3|u(τk)|L∞(D)

)
< +∞. (4.28)

By the Borel-Cantelli Lemma, with probability one there exists a (random) index N0(ω) >

0 such that for all k ≥ N0(ω), either

τk+1 − τk ≥
1

k
or |u(τk+1)|L∞(D) =

1

3
|u(τk)|L∞(D). (4.29)

Either the |u(τk)|L∞(D) decreases, or the time required increase is greater than 1
k .

From the definition of τk, mink≥N0(ω) |u(τk)|L∞(D) is attained. We can choose N1(ω) >

N0(ω) such that for k ≥ N1(ω), |u(τk)|L∞(D) ≥ |u(τN1(ω))|L∞(D).

For any m ≥ N1(ω) > N0(ω),

m∑
k=N1(ω)

(τk+1 − τk) ≥
m∑

k=N1(ω)

1

k
1{|u(τk+1)|L∞(D)=3|u(τk)|L∞(D)}. (4.30)

Because of the definition of N1, there must always be more steps where |u(τk)|L∞(D)

increases than steps where it decreases. Therefore, for any m ≥ N1(ω)

Um(ω) :=

m−1∑
N1(ω)

1{|u(τk+1)|L∞(D)=3|u(τk)|L∞(D)} ≥
(m−N1(ω))

2
(4.31)
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By the summation by parts formula and (4.31)

m∑
N1(ω)

1

k
1{|u(τk+1)|L∞(D)=3|u(τk)|L∞(D)}

=

m∑
N1(ω)

1

k
(Uk+1(ω)− Uk(ω))

=
Um+1(ω)

m
−

m∑
k=N1(ω)+1

Uk(ω)

(
1

k
− 1

k − 1

)

=
Um(ω)

m
+

∑
k=N1(ω)+1

Uk(ω)

(
1

k(k − 1)

)

≥ m−N1(ω)

2m
+

m∑
k=N1(ω)+1

(k −N1(ω))

2k(k − 1)
. (4.32)

This sum diverges as m→ +∞.
Therefore, by (4.30),

∞∑
k=N1(ω)

(τk+1 − τk) = +∞ with probability one (4.33)

and the solutions cannot explode in finite time.

5 Comparison with Mueller’s result [26]

Consider the case of a stochastic heat equation on a one-dimensional interval domain
D = [0, π] exposed to a space-time white noise and a polynomially dissipative forcing

∂u
∂t (t, x) = ∆u(t, x)− |u(t, x)|β−1u(t, x) + (1 + |u(t, x)|γ)Ẇ (t, x),

u(t, 0) = u(t, π) = 0,

u(0, x) = u0(x).

(5.1)

The eigenvalues of the ∂2

∂x2 operator are −αk = −k2, for k ∈ N and the eigenfunctions

are ek(x) =
√

2
π sin(kx) are uniformly bounded. We take Ẇ to be space-time white noise.

In the language of Assumption 2.2, this means that λj ≡ 1. This satisfies the assumptions
of (2.9) for any β > 1

2 , ρ = +∞ and η = θ > 1
2 .

Theorem 2.7 proves that mild solutions to (5.1) never explode for all γ, β satisfying
β > 1 and

γ < 1 +
β − 1

4
=

3 + β

4
. (5.2)

Mueller [26] proved that when f ≡ 0, solutions can explode in finite time whenever
γ > 3

2 . Theorem 2.7 proves that adding sufficiently strong dissipative forcing to the
equation prevents explosion for arbitrarily large γ.

Mueller [26] also proved that when f ≡ 0 and γ < 3
2 , that solutions never explode.

This is due to the dissipative effects of the Laplace operator. Theorem 2.7 focuses on the
role that the dissipativity of f plays, but ignores the dissipation due to ∆. A stronger
result is possible by combining the results of [26] and Theorem 2.7. to conclude that any
mild solution to (5.1) will be global in time for all

γ < max

{
3

2
,

3 + β

4

}
. (5.3)

Mueller’s result dominates when β ≤ 3 and Theorem 2.7 dominates when β > 3.
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A Moment bounds for the stochastic convolution

In this appendix we prove Propositions 3.1–3.2.

Proof of Proposition 3.1. This is similar to Lemma 4.1 of [5]. Let K(t, x, y) =∑∞
k=1 e

−αktek(x)ek(y) be the kernel of the semigroup for t ≥ 0, x, y ∈ D. In this way, for
x ∈ D, from Assumption 2.2

Z̃α(t, x) =

∫ t

0

∫
D

(t− s)−αK(t− s, x, y)σ(u(s, y))1{s≤τ}W (dyds)

=

∞∑
j=1

∫ t

0

∫
D

(t− s)−αK(t− s, x− y)σ(u(s, y))1{s≤τ}λjej(y)dydBj(s). (A.1)

For any fixed x, this is a real-valued stochastic integral. By the BDG inequality,

E|Z̃α(t, x)|p

≤ CpE

 ∞∑
j=1

∫ t

0

(t− s)−2α1{s≤τ}

(∫
D

K(t− s, x, y)σ(u(s, y))ej(y)dy

)2

λ2
jds


p
2

(A.2)

Apply a Hölder inequality to the infinite sum

∞∑
j=1

λ2
j

(∫
D

K(t− s, x, y)σ(u(s, y))ej(y)dy

)2

≤

 ∞∑
j=1

λρj

(∫
D

K(t− s, x, y)σ(u(s, y))ej(y)dy

)2
 2

ρ

×

 ∞∑
j=1

(∫
D

K(t− s, x, y)σ(u(s, y))ej(y)dy

)2


ρ−2
ρ

. (A.3)

Because K is the kernel of a contraction semigroup, for any j ∈ N,

(∫
D

K(t− s, x, y)σ(u(s, y))ej(y)dy

)2

≤ |σ(u(s))|2L∞(D)|ej |
2
L∞(D). (A.4)

Applying this estimate to the first term of the product

∞∑
j=1

(∫
D

K(t− s, x, y)σ(u(s, y))ej(y)λjdy

)2

≤

 ∞∑
j=1

λρj |σ(u(s))|2L∞(D)|ej |
2
L∞(D)

 2
ρ

×

 ∞∑
j=1

(∫
D

K(t− s, x, y)σ(u(s, y))ej(y)dy

)2


ρ−2
ρ

. (A.5)
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On the other hand, because {ej} is a complete orthonormal basis of L2(D),

∞∑
j=1

(∫
D

K(t− s, x, y)σ(u(s, y))ej(y)dy

)2

=

∫
D

|K(t− s, x, y)|2|σ(u(s, y))|2dy

≤ |σ(u(s))|2L∞(D)

∫
D

|K(t− s, x, y)|2dy. (A.6)

Using the fact that {ek} is a complete orthonormal basis of L2(D),∫
D

(K(t− s, x, y))2dy =

∫
D

( ∞∑
k=1

e−αk(t−s)ek(x)ek(y)

)2

dy

=

∞∑
k=1

e−2αk(t−s)|ek(x)|2. (A.7)

By Assumption (2.8) and the fact that supu>0 u
θe−u =: cθ < +∞,∫

D

(K(t− s, x, y))2dy ≤
∞∑
k=1

e−2αk(t−s)|ek(x)|2

≤
∞∑
k=1

(2αk(t− s))θ

(2αk(t− s))θ
e−2αk(t−s)|ek|2L∞(D) ≤ C(t− s)−θ. (A.8)

Combining all of these estimates and using the fact that θ(ρ−2)
ρ = η, we conclude that for

any fixed x ∈ D,

E|Z̃α(t, x)|p ≤ Cp,αE
(∫ t

0

|σ(u(s))|2L∞(D)(t− s)
−η−2α1{s≤τ}ds

) p
2

(A.9)

This estimate is uniform with respect to x ∈ D so if we integrate over all x ∈ D,

E|Z̃α(t)|pLp(D) ≤ Cp,αE
(∫ t

0

|σ(u(s))|2L∞(D)1{s≤τ}(t− s)
−η−2αds

) p
2

. (A.10)

with a larger constant.

Before we present the proof of this Proposition 3.2, we introduce the fractional
Sobolev spaces W ζ,p(D) for ζ ∈ (0, 1) and p ≥ 1. The W ζ,p space is endowed with the
norm

|ϕ|p
W ζ,p(D)

= |ϕ|pLp(D) +

∫
D

∫
D

|ϕ(x)− ϕ(y)|p

|x− y|d+ζp
dxdy. (A.11)

In the above expression d is the spatial dimension of D. We use two important facts
about these fractional Sobolev spaces. The fractional Sobolev embedding theorem [14,
Theorem 8.2] implies that when ζp > d, W ζ,p embeds continuously into the Hölder space
Cϑ(D) with ϑ = ζp−d

p . There exists a constant Cζ,p such that for all ϕ ∈W ζ,p,

|ϕ|Cϑ ≤ Cζ,p|ϕ|W ζ,p . (A.12)

Furthermore, regularizing properties of elliptic semigroups imply that there exists
Cζ,p > 0 such that for any t > 0, and ϕ ∈ Lp(D),

|S(t)ϕ|W ζ,p(D) ≤ Ct−
ζ
2 |ϕ|Lp(D) (A.13)
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Proof of Proposition 3.2. Let α ∈
(
0, 1−η

2

)
, ζ ∈ (0, 2α). By the factorization lemma,

Z(t ∧ τ) =
sin(πα)

π

∫ t∧τ

0

(t ∧ τ − s)α−1S(t ∧ τ − s)Z̃α(s)ds. (A.14)

By Propositon 5.9 of [11] along with (A.12)–(A.13), (t, x) 7→ Z(t ∧ τ, x) is almost surely

continuous. By (A.12)–(A.13) and Hölder’s inequality, for p > max
{
d
ζ ,

1
α− ζ2

}
,

E sup
t∈[0,T ]

sup
x∈D
|Z(t ∧ τ, x)|p

≤ C sup
t∈[0,T ]

∣∣∣∣∫ t∧τ

0

(t ∧ τ − s)α−1− ζ2 |Z̃α(s)|pLp(D)ds

∣∣∣∣p

≤ C

(∫ T

0

s
(α−1− ζ

2
)p

p−1 ds

)p−1 ∫ T

0

E|Z̃α(s)|pLp(D)ds

≤ Cα,ζ,p,TT p(α−
ζ
2 )−1

∫ T

0

E|Z̃α(s)|pLp(D)ds. (A.15)
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