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Abstract

This paper is devoted to the asymptotic analysis of the amnesic elephant random
walk (AERW) using a martingale approach. More precisely, our analysis relies on
asymptotic results for multidimensional martingales with matrix normalization. In
the diffusive and critical regimes, we establish the almost sure convergence and the
quadratic strong law for the position of the AERW. The law of iterated logarithm is
given in the critical regime. The distributional convergences of the AERW to Gaussian
processes are also provided. In the superdiffusive regime, we prove the distributional
convergence as well as the mean square convergence of the AERW.
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1 Introduction

The Elephant Random Walk (ERW) is a discrete-time random walk, introduced by
Schütz and Trimper [19] in the early 2000s. At first, the ERW was used in order to
see how long-range memory affects the random walk and induces a crossover from a
diffusive to superdiffusive behavior. It was referred to as the ERW in allusion to the
traditional saying that elephants can always remember anywhere they have been. The
elephant starts at the origin at time zero, S0 = 0. At time n = 1, the elephant moves one
step to the right with probability q and to the left with probability 1 − q for some q in
[0, 1]. Afterwards, at time n+ 1, the elephant chooses uniformly at random an integer k
among the previous times 1, . . . , n. Then, it moves exactly in the same direction as that
of time k with probability p or the opposite direction with the probability 1− p, where the
parameter p stands for the memory parameter of the ERW. The position of the elephant
at time n+ 1 is given by

Sn+1 = Sn +Xn+1 (1.1)

where Xn+1 is the (n+ 1)-th increment of the random walk, such that

Xn+1 = αn+1Xβn+1
(1.2)
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Introducing smooth amnesia to the memory of the ERW

where αn+1 ∼ R(p) and βn+1 ∼ U(1, n) are mutually independent and independant of the
past. The ERW shows three differents regimes depending on the location of its memory
parameter p with respect to the critical value p = 3/4.

On the one hand, a wide literature is now available on the ERW in dimension d = 1

thanks to a variety of approaches. Baur and Bertoin [1] used the connection to Pólya-type
urns as well as functional limit theorems for multitype branching processes due to Janson.
Bercu [3] and Coletti et al. [10] used martingales to obtain the almost sure convergence
and asymptotic normality, among other results. Kürsten [16] and Businger [9] used the
construction of random trees with Bernoulli percolation. A strong law of large numbers
and a central limit theorem for the position of the ERW, properly normalized, were
established in the diffusive regime p < 3/4 and the critical regime p = 3/4, see [1, 3, 10]
and the refrences therein. In the superdiffusive regime p > 3/4, Bercu [3] proved that
the limit of the position of the ERW is not Gaussian and Kubota and Takei [15] showed
that the fluctuation of the ERW around this limit is Gaussian.

On the other hand, over the last years, various processes derivated from the ERW
have recevied a lot of attention. Bercu and Laulin in [6] extended all the results of [3] to
the multi-dimensional ERW (MERW) where d ≥ 1 and to its center of mass [7] using a
martingale approach, while Bertenghi used the connection [8] to Pólya-type urns for the
MERW. The ERW with stops or minimal RW, changing in particular the distribution of αn,
has also been investigated [4, 5, 12, 18]. The ERW with reinforced memory has been
studied by Baur [2] via the urn approach, and Laulin [17] using martingales.

The idea of this paper is to use the approach developped in [7] and [17] to study
how changing the memory allows us to induce amnesia to the ERW. More precisely,
the distribution of the memory βn of our new variation of the ERW is such that the
probability of choosing a fixed instant k ∈ N∗ at time n ≥ k decreases approximatly with
rate kβ/nβ+1 for some amnesia parameter β ≥ 0.

The very interesting question of amnesic elephant random walk (AERW) has not been
investigated a lot. Gut and Stadmüller [13, 14] studied variations of the memory for the
special cases of ERW with delays or gradually increasing memory. In [14] the elephant
could stop and only remember the first (and second) step it tooks. Consequently, it did
not induced a phase transition. In [13], the elephant only remembered a portion of its
past (recent or distant), this portion being fixed or depending on the time n, but was
always “small”.

The entire study we conduct below can be generalized when β < 0 is not an integer.
This can be interpreted as cases where the elephant remembers more vividly the first
steps it performed.

The AERW will appear to be non-Markovian, as the reinfroced ERW. However, unlike
the reinforced ERW, the AERW can not be studied using Pólya-type urns. The major
change for the AERW is that the distribution of the memory βn in equation (1.2) is no
longer uniform but depends on the amnesia parameter β ≥ 0. In this approach, the
elephant chooses an instant according to βn+1 as follows,

P(βn+1 = k) =
(β + 1)Γ(k + β)Γ(n)

Γ(k)Γ(n+ β + 1)
=

(β + 1)

n

µk
µn+1

for 1 ≤ k ≤ n, (1.3)

where

µn =

n−1∏
k=1

(
1 +

β

k

)
=

Γ(n+ β)

Γ(n)Γ(β + 1)
. (1.4)

The case β = 0 corresponds to the traditionnal ERW. As β grows, the probability of
choosing a recent instant gets bigger, see the illustrative Figure 1.
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β = 0 β = 1 β = 2

β = 3 β = 10 β = 100

Figure 1: Mass function of the memory depending on the value of β.

We have by definition of the step Xn+1 given in (1.2) and the distribution βn+1 (1.3) that

E[Xn+1 | Fn] = E[αn+1]E[Xβn+1 | Fn] = (2p− 1)E
[ n∑
k=1

Xk1βn+1=k | Fn
]

=
(2p− 1)(β + 1)

nµn+1

n∑
k=1

Xkµk. (1.5)

Then, denote a = 2p− 1 and

Yn =

n∑
k=1

Xkµk. (1.6)

We deduce from (1.5) that

E[Yn+1 | Fn] =
(

1 +
a(β + 1)

n

)
Yn. (1.7)

Hereafter, for any n ≥ 1, let

an =

n−1∏
k=1

γ−1
k =

Γ(n)Γ(a(β + 1) + 1)

Γ(n+ a(β + 1))
where γn = 1 +

a(β + 1)

n
. (1.8)

It follows from standard resultats on the Gamma function that

lim
n→∞

na(β+1)an = Γ(a(β + 1) + 1) (1.9)

and

lim
n→∞

n−βµn =
1

Γ(β + 1)
. (1.10)

Our strategy for proving asymptotic results for the AERW is as follows. On the one hand,
the behavior of the position Sn is closely related to the one of the sequences (Mn) and
(Nn) defined, for all n ≥ 0, by

Mn = anYn and Nn = Sn +
a(β + 1)

β − a(β + 1)
µ−1
n Yn. (1.11)
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We immediatly get from (1.7) and (1.8) that (Mn) is a locally square-integrable martingale
adapted to (Fn). Moreover, we have from (1.5) that

E
[
Sn+1 +

a(β + 1)

β − a(β + 1)
µ−1
n+1Yn+1 | Fn

]
= Sn +

a(β + 1)

β − a(β + 1)
µ−1
n Yn

which also means that (Nn) is also a locally square-integrable martingale adapted to Fn.
On the other hand, we can rewrite Sn as

Sn = Nn −
a(β + 1)

β − a(β + 1)
(µnan)−1Mn (1.12)

and equation (1.12) allows us to establish the asymptotic behavior of the AERW via an
extensive use of the martingale theory.

Moreover, the reader can notice that the previous definition of Nn is not valid if
β = a(β + 1), hence we will assume in the rest of the paper that β 6= a(β + 1).

The main results of this paper are given in Section 2. We first investigate the diffusive
regime and we establish the strong law of large numbers, the law of iterated logarithm
and the quadratic strong law for the AERW. The functional central limit theorem is also
provided. Next, we prove similar results in the critical regime. Finally, we establish a
strong limit theorem in the superdiffusive regime. Our martingale approach is described
in Section 3. Finally, we give some of the technical proofs in Section 4.

2 Main results

2.1 The diffusive regime

We start by investigating the diffusive regime, which corresponds to the case p <
4β+3

4(β+1) .

Theorem 2.1. We have the almost sure convergence

lim
n→∞

Sn
n

= 0 a.s. (2.1)

Theorem 2.2. We have the quadratic strong law

lim
n→∞

1

log n

n∑
k=1

S2
k

k2
=

2β + 1− a
(1− a)(1 + 2β − 2a(β + 1))

a.s. (2.2)

In the following Theorem, D([0,∞[) stands the Skorokhod space of right-continuous
functions with left-hand limits.

Theorem 2.3. The following convergence in distribution in D([0,∞[) holds(Sbntc√
n
, t ≥ 0

)
=⇒

(
Wt, t ≥ 0

)
(2.3)

where
(
Wt, t ≥ 0

)
is a real-valued centered Gaussian process starting from the origin

with covariance

E[WsWt] =
a(1 + β)(1− a) + aβ

(2(β + 1)(1− a)− 1)(a− β(1− a))(1− a)
s
( t
s

)a−β(1−a)

+
β

(β(1− a)− a)(1− a)
s (2.4)

for 0 < s ≤ t. In particular, we have

Sn√
n

L−→
n→∞

N
(

0,
2β + 1− a

(1− a)(1 + 2β − 2a(β + 1))

)
. (2.5)
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2.2 The critical regime

Hereafter, we investigate the critical regime where p = 4β+3
4(β+1) . It is interesting to

notice that, when β is really large (or β → ∞) the critical regime is reached for the
memory parameter p really close to 1 (or p = 1). Hence, the greater β is, the more there
are values of the memory parameter p for which the AERW stays in the diffusive regime;
but whatever the value of β, we still observe a phase transition.

Theorem 2.4. We have the almost sure convergence

lim
n→∞

Sn√
n log n

= 0 a.s. (2.6)

Theorem 2.5. We have the quadratic strong law

lim
n→∞

1

log log n

n∑
k=1

S2
k

(k log k)2
= (2β + 1)2 a.s. (2.7)

In addition, we also have the law of iterated logarithm

lim sup
n→∞

S2
n

2n log n log log log n
= (2β + 1)2 a.s. (2.8)

Theorem 2.6. The following convergence in distribution in D([0,∞[) holds( Sbntc√
nt log n

, t ≥ 0
)

=⇒ (2β + 1)
(
Bt, t ≥ 0

)
(2.9)

where (Bt, t ≥ 0) is a one-dimensional standard Brownian motion. In particular, we have
the asymptotic normality

Sn√
n log n

L−→
n→∞

N
(

0, (2β + 1)2
)
. (2.10)

2.3 The superdiffusive regime

Finally, we focus our attention on the superdiffusive regime where p > 4β+3
4(β+1) .

Theorem 2.7. We have the following distributional convergence in D([0,∞[)( Sbntc

na(β+1)
, t ≥ 0

)
=⇒ (Λt, t ≥ 0) (2.11)

where the limiting Λt = ta(β+1)Lβ , Lβ being some non-denegerate random variable. We
also have the mean square convergence

lim
n→∞

E
[∣∣∣ Sn
na(β+1)−β − Lβ

∣∣∣2] = 0. (2.12)

Remark 2.8. It is possible to compute the expectation of Lβ , we find

E[Lβ ] =
a(β + 1)(2q − 1)Γ(β + 1)(

a(β + 1)− β
)
Γ
(
a(β + 1) + 1

) (2.13)

while its second order moment is given by

E
[
L2
β

]
=
a2(β + 1)2Γ(β + 1)2Γ

(
2(a− 1)(β + 1) + 1

)(
a(β + 1)− β

)2
Γ
(
(2a− 1)(β + 1) + 1

)2 . (2.14)
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3 A two-dimensional martingale approach

In order to investigate the asymptotic behavior of (Sn), we introduce the two-
dimensional martingale (Mn) defined by

Mn =

(
Nn
Mn

)
(3.1)

where (Mn) and (Nn) are the two locally square-integrable martingales introduced
in (1.11). As for the CMERW and the RERW, the main difficulty we face is that the
predictable quadratic variations of (Mn) and (Nn) increase to infinity with two different
speeds. A matrix normalization will again be necessary to establish the asymptotic
behavior of the AERW. We will alternatively study (Mn), (Mn) or (Nn). Denote the
martingale increment εn+1 = Yn+1 − γnYn. We obtain that

∆Mn+1 =Mn+1 −Mn =

(
Sn+1 − Sn + a(β+1)

β−a(β+1)

(Yn+1

µn+1
− Yn

µn

)
an+1Yn+1 − anYn

)

=

((
1 + a(β+1)

β−a(β+1)

)
Xn+1 − a(β+1)

(β−a(β+1))µn+1

β
nYn

an+1εn+1

)

=

(
β

(β−a(β+1))µn+1

(
Xn+1µn+1 − (γn − 1)Yn

)
an+1εn+1.

)

=
( β

(β−a(β+1))µn+1

an+1

)
εn+1.

We also obtain that

E[ε2
n+1 | Fn] = E[Y 2

n+1 | Fn]− γ2
nY

2
n = Y 2

n + 2(γn − 1)Y 2
n + µ2

n+1 − γ2
nY

2
n

= µ2
n+1 − (γn − 1)2Y 2

n . (3.2)

Therefore, we deduce that

E
[
(∆Mn+1)(∆Mn+1)T | Fn

]
= (µ2

n+1 − (γn − 1)2Y 2
n )

((
β

(β−a(β+1))µn+1

)2 βan+1

(β−a(β+1))µn+1
βan+1

(β−a(β+1))µn+1
a2
n+1

)
.

We are now able to compute the quadratic variation ofMn

〈M〉n =

n−1∑
k=0

Kk − ξn, where Kk =

((
β

(β−a(β+1))

)2 βak+1µk+1

(β−a(β+1))
βak+1µk+1

(β−a(β+1)) (ak+1µk+1)2

)
(3.3)

and ξn =
∑n−1
k=0(γk − 1)2Y 2

kKk. Hereafter, we immediatly deduce from (3.3) that

〈M〉n =

n∑
k=1

(akµk)2 − ζn where ζn =

n∑
k=1

a2
k+1(γk − 1)2Y 2

k (3.4)

and

〈N〉n =
( β

β − a(β + 1)

)2

n. (3.5)

The asympotic behavior of Mn is closely related to the one of wn =
∑n
k=1(akµk)2 as one

can observe that we always have 〈M〉n ≤ wn and that ζn is negligeable when compared
to wn, see (4.5) for more details. Consequently, it follows from the definitions of (an) and
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(µn) that we have three regimes of behavior for (Mn). In the diffusive regime where is
p < 4β+3

4(β+1) or a < 1− 1
2(β+1) ,

lim
n→∞

wn
n1−2(a(β+1)−β)

= ` where ` =
1

1 + 2(β − a(β + 1))

(Γ(a(β + 1) + 1)

Γ(β + 1)

)2

. (3.6)

In the critical regime where p = 4β+3
4(β+1) or a = 1− 1

2(β+1) ,

lim
n→∞

wn
log n

=
(Γ(β + 1 + 1

2 )

Γ(β + 1)

)2

. (3.7)

In the superdiffusive regime where p > 4β+3
4(β+1) or a > 1− 1

2(β+1) ,

lim
n→∞

wn =

∞∑
k=1

(Γ(a(β + 1) + 1)Γ(k + β)

Γ(k + a(β + 1))Γ(β + 1)

)2

< +∞. (3.8)

4 Proofs of the main results

Lemma 4.1. Let (Vn) be the sequence of positive definite diagonal matrices of order 2

given by

Vn =
1√
n

(
1 0

0 a(β+1)
β−a(β+1) (anµn)−1

)
. (4.1)

Let v =

(
1

−1

)
such that

vTVnMn =
Sn√
n
. (4.2)

The quadratric variation of 〈M〉n satisfies in the diffusive regime where is a < 1− 1
2(β+1) ,

lim
n→∞

Vn〈M〉nV Tn = V a.s., where V =
1

(β − a(β + 1))2

(
β2 aβ

1−a
aβ

1−a
a2(β+1)2

1+2β−2a(β+1)

)
. (4.3)

Remark 4.2. Following the same steps as in the proof of Lemma 4.1, we find that in the
critical regime a = 1− 1

2(β+1) , the matrix V and the sequence of normalization matrices

(Vn) have to be replaced by

Wn =
1√

n log n

(
1 0

0 (2β + 1)(anµn)−1

)
and W = (2β + 1)2

(
0 0

0 1

)
. (4.4)

Proof. We obtain from Theorem 2.1, equations (1.9) and (3.6) that

lim
n→∞

Vn〈M〉nV Tn

= lim
n→∞

1

n

( ∑n−1
k=0

(
β

(β−a(β+1))

)2 a(β+1)β
(β−a(β+1))2anµn

∑n−1
k=0 ak+1µk+1

a(β+1)β
(β−a(β+1))2anµn

∑n−1
k=0 ak+1µk+1

( a(β+1)
(β−a(β+1))anµn

)2∑n−1
k=0(ak+1µk+1)2

)

=
1

(β − a(β + 1))2

(
β2 a(β+1)β

β+1−a(β+1)
a(β+1)β

β+1−a(β+1)
a(β+1)2

2(β−a(β+1))+1

)
.

Proof of Theorem 2.1. We shall make extensive use of the strong law of large numbers
for martingales given, e.g. by theorem 1.3.24 of [11]. First, we have for (Mn) that for
any γ > 0,

M2
n = O

(
(logwn)1+γwn

)
a.s.
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which, with equations (1.9) and (3.6) by definition of Mn ensures that

Y 2
n

n2
= O

(
(log n)1+γ n

1+2(β−a(β+1))

n2(1−a(β+1))

)
a.s.

Moreover, as µn is asymptotically equivalent to nβ , we obtain that

lim
n→∞

Yn
µnn

= 0 a.s. (4.5)

By the same token as before, we have that for any γ > 0,

N2
n = O

(
(log n)1+γn

)
a.s. (4.6)

which by definition of (Nn) gives us(
Sn − a(β+1)

β−a(β+1)µ
−1
n Yn

)2
n2

= O
( (log n)1+γ

n

)
a.s.

Proof of Theorem 2.3. In order to apply Theorem A.2 from [17], we must verify that
(H.1), (H.2) and (H.3) are satisfied.

(H.1) We have from (4.3) and the fact that abntc is asymtotically equivalent to
t−a(β+1)an that almost surely Vn〈M〉bntcV Tn −→

n→∞
Vt where

Vt =
1

(β − a(β + 1))2

(
β2t aβ

1−a t
1+β−a(β+1)

aβ
1−a t

1+β−a(β+1) a2(β+1)2

1+2β−2a(β+1) t
1+2β−2a(β+1)

)
.

(H.2) In order to verify that Lindeberg’s condition is satisfied, we start by deducing
from (1.11) together with (3.1) and Vn given by (4.1) that for all 1 ≤ k ≤ n

‖Vn∆Mk‖2 =
1

(β − a(β + 1))2n

(β2

µ2
k

+
a2a2

k

(anµn)2

)
ε2
k. (4.7)

It follows from (1.9) that a−2
n

∑n
k=1 a

2
k = O(n) and a−4

n

∑n
k=1 a

4
k = O(n) Hence, using that

the sequence (εn) is bounded

sup
1≤k≤n

|εk| ≤ (β + 2)µk ≤ (β + 2)µn a.s. (4.8)

we find that
n∑
k=1

E
[
‖Vn∆Mk‖4 | Fk−1

]
= O

( 1

n

)
a.s.

which ensures that Lindeberg’s condition (H.2) holds almost surely, that is for all ε > 0,
Moreover, we have that for all ε > 0,

lim
n→∞

n∑
k=1

E
[
‖Vn∆Mk‖21{‖Vn∆Mk‖>ε} | Fk−1

]
≤ lim
n→∞

1

ε2

n∑
k=1

E
[
‖Vn∆Mk‖4 | Fk−1

]
=0 a.s.

(4.9)
Since VnV

−1
bntc converges, we immediatly obtain that

lim
n→∞

bntc∑
k=1

E
[
‖Vn∆Mk‖21{‖Vn∆Mk‖>ε} | Fk−1

]
= 0 a.s.

(H.3) In this particular case, we have Vt = tK1 + tα2K2 + tα3K3 where

α2 = 1− a(β + 1) > 0 and α3 = 1− 2a(β + 1) > 0

ECP 27 (2022), paper 54.
Page 8/12

https://www.imstat.org/ecp

https://doi.org/10.1214/22-ECP495
https://imstat.org/journals-and-publications/electronic-communications-in-probability/


Introducing smooth amnesia to the memory of the ERW

as a < 1− 1
2(β+1) , and the matrix are symmetric

K1 =
β2

(β − a(β + 1))2

(
1 0

0 0

)
, K2 =

aβ

(1− a)(β − a(β + 1))2

(
0 1

1 0

)
,

K3 =
a2(β + 1)2

(1 + 2β − 2a(β + 1))(β − a(β + 1))2

(
0 0

0 1

)
.

Consequently, we obtain that(
VnMbntc, t ≥ 0

)
=⇒

(
Bt, t ≥ 0

)
where B is defined as in Theorem A.2 from [17]. Finally, using the fact that Sbntc is

asymptotically equivalent to Nbntc+ tβ−a(β+1) a(β+1)
β−a(β+1) (µnan)−1Mbntc, and multiplying by

ut =
(

1

ta(β+1)−β

)
, we conclude

( 1√
n
Sbntc, t ≥ 0

)
=⇒

(
Wt, t ≥ 0

)
(4.10)

where Wt = uTt Bt. It only remains to compute the covariance function of (Wt) that is for
0 ≤ s ≤ t

E
[
WsWt

]
= uTs E

[
BsBTt

]
ut = uTs Vsut = uTs

(
sK1 + s1+β−a(β+1)K2 + s1+2β−2a(β+1)K3)ut

=
β2

(β − a(β + 1))2
s+

aβs1+β−a(β+1)

(1− a)(β − a(β + 1))2
(sa(β+1)−β + ta(β+1)−β)

+
a2(β + 1)2

(1 + 2β − 2a(β + 1))(β − a(β + 1))2
s1+2β−2a(β+1)(st)a(β+1)−β

=
a(1 + β)(1− a) + aβ

(2(β + 1)(1− a)− 1)(a− β(1− a))(1− a)
s
( t
s

)a−β(1−a)

+
β

(β(1− a)− a)(1− a)
s.

Proof of Theorem 2.2. We need to check that all the hypotheses of Theorem A.3 in [17]
are satisfied. Thanks to Lemma 4.1, hypothesis (H.1) holds almost surely. We also
immediately obtain from (4.9) that (H.2) is verified almost surely when t = 1.

Hereafter, we need to verify (H.4) is satisfied in the special case β = 2 that is

∞∑
n=1

1(
log(detV −1

n )2
)2E[‖Vn∆Mn‖4

∣∣Fn−1

]
<∞ a.s.

We immediately have from (4.1)

detV −1
n =

β − a(β + 1)

a(β + 1)
anµn

√
n. (4.11)

Hence, we obtain from (1.9) and (4.11) that

lim
n→∞

log(detV −1
n )2

log n
= 1 + 2β − 2a(β + 1). (4.12)

Therefore, we can replace log(detV −1
n )2 by log n in (4). Hereafter, we obtain from (4.7)

and (4.8) that

∞∑
n=2

1

(log n)2
E
[
‖Vn∆Mn‖4

∣∣Fn−1

]
= O

( ∞∑
n=1

1

(n log n)2

)
. (4.13)
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Thus, (4.13) guarentees that (H.4) is verified. We are now going to apply the quadratic
strong law given by Theorem A.3 in [17]. We get from equation (4.12) that

lim
n→∞

1

log n

n∑
k=1

( (detVk)2 − (detVk+1)2

(detVk)2

)
VkMkMT

k V
T
k =

(
1 + 2β − 2a(β + 1)

)
V a.s.

(4.14)
However, we obtain from (1.9) and (4.11) that

lim
n→∞

n
( (detVn)2 − (detVn+1)2

(detVn)2

)
= 1 + 2β − 2a(β + 1). (4.15)

Finally, we can deduce from (4.2), (4.14) and (4.15) that

lim
n→∞

1

log n

n∑
k=1

S2
k

k2
= vTV v a.s. (4.16)

which completes the proof of Theorem 2.2 as

vTV v =
2β + 1− a

(1− a)(1 + 2β − 2a(β + 1))
. (4.17)

The proofs of Theorems 2.4 and 2.6 follows essentially the same lines as the ones in
the diffusive regimes, provided one exchange Vn with Wn, and shall not be explicited
here.

Proof of Theorem 2.5. The proof of the quadratic strong law (2.7) is left to the reader as
it follows essentially the same lines as that of (2.2). We shall now proceed to the proof
of the law of iterated logarithm given by (2.8). On the one hand, it follows from (1.9)
and (3.6) that

+∞∑
n=1

a4
n

w2
n

<∞. (4.18)

Moreover, we have from (3.4) and (3.5) that

lim
n→∞

〈M〉n
wn

= 1 a.s. and lim
n→∞

〈N〉n
n

=
( β

β − a(β + 1)

)2

a.s.

Consequently, we deduce from the law of iterated logarithm for martingales due to Stout,
see Corollary 6.4.25 in [11], that (Mn) satisfies when a = 1− 1/2(β + 1)

lim sup
n→∞

Mn

(2wn log logwn)1/2
= − lim inf

n→∞

Mn

(2wn log logwn)1/2
= 1 a.s.

However, as anw
−1/2
n is asymptotically equivalent to (n2β+1 log n)−1/2, we immediately

obtain from (3.7) that

lim sup
n→∞

n−βYn
(2n log n log log log n)1/2

= − lim inf
n→∞

n−βYn
(2n log n log log log n)1/2

= 1 a.s. (4.19)

The law of iterated logarithm for martingales also allow us to find that (Nn) satisfies

lim sup
n→∞

Nn
(2n log log n)1/2

= − lim inf
n→∞

Nn
(2n log log n)1/2

=
√

4β2 a.s.

which ensures that

lim sup
n→∞

Nn
(2n log n log log log n)1/2

= 0 a.s.
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Hence, we deduce from (1.12) and (4.19) that

lim sup
n→∞

Sn
(2n log n log log log n)1/2

= lim sup
n→∞

Nn + (2β + 1)(µnan)−1Mn

(2n log n log log log n)1/2

= lim sup
n→∞

(2β + 1)Yn
(2n2β+1 log n log log log n)1/2

= − lim inf
n→∞

(2β + 1)Yn
(2n2β+1 log n log log log n)1/2

= − lim inf
n→∞

Sn
(2n log n log log log n)1/2

.

Hence, we obtain that

lim sup
n→∞

S2
n

2n log n log log log n
= lim sup

n→∞
(2β + 1)2 Y 2

n

2n log n log log log n
= (2β + 1)2.

Proof of Theorem 2.7. Hereafter, we shall again make extensive use of the strong law
of large numbers for martingales given, e.g. by Theorem 1.3.24 of [11] in order to
prove (2.11). When a > 1 − 1

2(β+1) , we have from (3.8) that wn converges. Hence, as

〈M〉n ≤ wn, we clealy have that 〈M〉∞ <∞ almost surely and we can conclude that

lim
n→∞

Mn = M a.s. where M =

∞∑
k=1

akεk

which, with equation (3.8) and by definition of Mn, ensures that

lim
n→∞

Yn
na(β+1)

= Y a.s. where Y =
1

Γ(a(β + 1) + 1)
M. (4.20)

Moreover, equation (4.6) still holds in the super diffusive regime, which gives us for all
t ≥ 0 (

Sn + a(β+1)
β−a(β+1) (µn)−1Yn)2

n2a(β+1)−2β
= O

( (log n)1+γ

n2a(β+1)−2β−1

)
a.s.

We know that a > 1− 1
2(β+1) in the superdiffusive regime, which ensures that 2a(β+ 1)−

2β − 1 > 0. Then, we obtain thanks to (1.10) and (4.5) that for all t ≥ 0

lim
n→∞

Sbntc

bntca(β+1)−β +
a(β + 1)

β − a(β + 1)

Ybntc

bntca(β+1)
= 0 a.s. (4.21)

The convergences (4.20) and (4.21) hold almost surely and bntc is asymptotically equiva-
lent to nt which implies

lim
n→∞

Sbntc

na(β+1)
= ta(β+1)Lβ a.s. (4.22)

Finally, the fact that (4.22) holds almost surely ensures that it also holds for the finite-
dimensional distributions, and we obtain (2.11) with Λt = ta(β+1)Lβ and Lβ = a(β+1)

a(β+1)−βY .
We shall now proceed to the proof of the mean square convergence (2.12). On the

one hand, as M0 = 0 we have from (3.4) that

E
[
M2
n

]
= E

[
〈M〉n

]
≤ wn.

Hence, we obtain from (3.8) that supn≥1E
[
M2
n

]
<∞, which ensures that the martingale

(Mn) is bounded in L2. Therefore, we have the mean square convergence

lim
n→∞

E
[∣∣Mn −M

∣∣2] = 0

which implies that

lim
n→∞

E
[∣∣∣ Yn
na(β+1)

− Y
∣∣∣2] = 0. (4.23)
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Introducing smooth amnesia to the memory of the ERW

On the other hand, for any n ≥ 0, the martingale (Nn) satisfies

E
[
N2
n

]
= E

[
〈N〉n

]
≤
( β

β − a(β + 1)

)2

n

and since a(β + 1)− β > 1
2 we obtain

lim
n→∞

E
[∣∣∣ Nn
na(β+1)−β

∣∣∣2] = 0. (4.24)

Finally, we obtain the mean square convergence (2.12) from (4.23) and (4.24).
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