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Abstract

We prove the sharpness of the percolation phase transition for a class of Cox percola-
tion models, i.e., models of continuum percolation in a random environment. The key
requirements are that the environment has a finite range of dependence, satisfies a
local boundedness condition and can be constructed from a discrete iid random field,
however the FKG inequality need not hold. The proof combines the OSSS inequality
with a coarse-graining construction that allows us to compare different notions of
influence.
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1 Introduction

The field of continuum percolation deals with the existence and properties of giant
connected components of a geometric graph on a stochastic system of points scattered
at random in Euclidean space [13]. Since its early days, continuum percolation has
attracted attention from researchers in wireless communication [7]. This appeal is based
on the prospect of using the asymptotic theory to predict the behavior of large systems
of devices that interact in a peer-to-peer fashion.
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Sharp phase transition for Cox percolation

So far, the majority of results assume that the devices are scattered entirely at
random in the infinite Euclidean plane, in the sense that they form a homogeneous
Poisson point process. However, this assumption is in stark contrast with the topology of
modern wireless networks, where devices are located predominantly on the streets of
large cities, see Figure 1. This discrepancy has motivated research in the direction of
Cox percolation, which can be thought of as a model of continuum percolation where the
node distribution is governed by a random environment [9]. Another option is to allow
the connection radii to be governed by the random environment [1].

Figure 1: Devices (blue) scattered at random on the
edges of a Poisson–Delaunay triangulation.

Motivated by the need to extend the basic
findings from percolation theory to random
environments, [9, Theorems 2.4, 2.6] devel-
oped general conditions on the random en-
vironment ensuring a non-trivial phase tran-
sition. However, any progress beyond these
findings was limited by the fact that the vast
majority of environments relevant for applica-
tions do not satisfy the FKG inequality, which
is a basic building block in percolation theory.

Recently, it has been discovered [5]
that the OSSS-inequality (O’Donnell, Saks,
Schramm & Servedio) is a powerful tool for
analyzing percolation systems with complex
spatial correlations [10, 16]. Since the OSSS
inequality does not rely on the FKG inequal-
ity, it is particularly attractive for analyzing
Cox percolation.

Our main result shows how to apply the
OSSS inequality to establish the sharpness of the phase transition in a Cox percolation
model built on a random environment subject to a set of general conditions. The main
features that we require from the environment are a ‘factor of iid’ representation with
finite range of dependence, and uniform local boundedness of the node intensity. We
always work in the annealed model where the percolation probabilities average both
over the environment and the particle placement. As a prototypical illustration of the
general methodology, we apply our results to properly modified models. Here, before
building the Delaunay triangulation, we first superimpose the Poisson process of vertices
with a sparse grid and we impose an upper bound on the spatial device intensity.

As announced, the key tool to establish the main result is the OSSS inequality. How-
ever, in the context of Cox percolation, the standard approaches from the literature do
not apply immediately since there are two sources of randomness: (i) the random config-
uration of nodes, and (ii) the random environment. Applying the OSSS inequality leads
to a variance bound involving influences with respect to both sources of randomness. In
contrast, when applying Russo’s formula for the derivative of the percolation probability,
only influences with respect to random node locations appear. In order to convert one
type of influence to another, we will rely on a coarse-graining strategy. This approach is
broadly similar to arguments provided by [4, 18] for different discrete and continuum
percolation models. The general idea is that, when comparing pivotality with respect
to different parameters, it can be substantially simpler to work with coarse-grained
pivotality rather than with point-wise pivotality. In [18], the pivotality with respect to
the percolation parameter is compared to the pivotality with respect to a parameter
controlling the range of the model. Since [18] deals with unbounded range models,
the individual steps are delicate and the arguments need to be very quantitative. In
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Sharp phase transition for Cox percolation

contrast, since we work only on a single scale, our proof is much more concise and we
do not need to invoke the FKG inequality. We also note that [3] considers percolation
in non-FKG but finite-range models. However, while one of the major innovations of
[3] is a Russo-type inequality used in the Gaussian setting, there is no need to do any
comparison of pivotals.

The rest of the manuscript is organized as follows. In Section 2, we define a general
framework for ‘factor of iid’ representations of Cox processes, and provide Delaunay-
based examples that are covered by this framework. Next, we state the main results,
namely Proposition 3.2 and Theorem 3.3 on the non-triviality and the sharpness of the
phase transition. Finally, these results are proven in Sections 4 and 5 respectively.

2 Factor of iid representations of Cox point processes

Recall that a Cox point process is a Poisson point process whose intensity measure
(‘environment’) is a random Borel measure on Rd. In this section, we define a general
class of Cox point processes in which both, the environment and the Poisson points,
may be ‘locally’ constructed from (independent) iid processes in the background. This
representation will be crucial in the proof of our main results, where we will also assume
stronger properties such as finite-range dependence and uniform boundedness.

The framework is broad enough to cover environments that are absolutely continuous
with respect to the Lebesgue measure, e.g., supported on a random closed set of full
dimension (see Remark 2.2), and also singular environments, e.g., supported on lower-
dimensional structures such as hyperplanes or line-segments. In Section 2.2 below, we
give examples of the both types motivated by wireless communications.

2.1 Definition

First we introduce a class F of environments which possess a ‘factor of iid’ repre-
sentation. We fix a large scale M ≥ 1 and a fine scale b such that b−1 is an integer
exceeding 2

√
dbM ; the scale M will later encode the dependency range of the environ-

ment, whereas the environment will be constructed on the scale Mb. Then, a random
Borel measure E on Rd is in class F if it is of the form

E(·) :=
∑
x∈bZd

Ex(·;Y ), Ex(·;Y ) := Ux(Y )Qx(·;Y ),

where

(i) Y := {Yz}z∈Zd is an iid family of random elements taking values in some measurable
space,

(ii) Ux := Ux(Y ) is a random variable with values in [0,∞),

(iii) Qx(·) := Qx(·;Y ) is a random probability measure in the cube Q(x; b,M) := Mx+

[0,Mb]d, and

(iv) Qx(·;Y ) and Ux(Y ) are translation covariant, i.e., Qx+z0(A+Mz0; {Yz+z0}z∈Zd) =

Qx(A; {Yz}z∈Zd) for any z0 ∈ Zd, x ∈ bZd and measurable event A ⊂ Q(x; b,M),
and similarly for Ux.

The intuition behind this construction is that the randomness of the environment enters
via the iid field Y . Then, Qx and Ux encode respectively the distribution of the locations
and the mean number of particles in the cube Q(x; b,M).

For an environment E ∈ F and intensity parameter λ > 0, we next construct a
Cox point process Xs with intensity λE . To this end we fix a bimeasurable bijection
Γ: [0,Mb]d → [0, 1], and note that the push-forward Γ∗(Qx(·;Y )) is a random probability
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Sharp phase transition for Cox percolation

measure on [0, 1] whose cumulative distribution function will henceforth be denoted by
Φx(t) := Φx(t;Y ). Next, we let

V := {Vx}x∈bZd := {(Vx,i, Ux,i)i≥1}x∈bZd (2.1)

be a family of iid homogeneous Poisson point processes on [0, 1]× [0,∞) with intensity λ.
Then, we define the point process

Xs := Ψ(V, Y ) :=
⋃

x∈bZd

Ψx(Vx;Y ), (2.2)

where the configuration of Xs inside Q(x; b,M) is given as

Ψx(Vx;Y ) :=
{
Mx+ Γ−1(Φ−1

x (Vx,i;Y )) : Ux,i ≤ Ux(Y )
}
. (2.3)

That is, Xs ∩Q(x; b,M) consists of all shifted and transformed points Γ−1(Φ−1
x (Vx,i;Y ))

with mark Ux,i at most Ux(Y ). Here, Φ−1
x (v) := infy≥0{Φx(y) ≥ v} denotes the inverse

distribution function.
One observes that, conditionally on Y , Xs ∩ Q(x; b,M) is a Poisson point process

with intensity λUxQx, and hence Xs is a Cox process with intensity λE . Moreover,
conditionally on Y , the processes Xs ∩Q(x; b,M) are independent for different x ∈ bZd.
Remark 2.1 (Stationarity). By construction, the Cox process Xs defined above is invari-
ant under translations of the lattice MZd. In certain examples (see Section 2.2) it may
also be invariant under translations of Rd.

Remark 2.2 (Full-dimensional environments). Encoding the Cox point process via the
bimeasurable bijection Γ is a bit cumbersome from a technical perspective but it allows
us to cover both non-singular and singular environments simultaneously. In the former
case, it may be more natural to rely on simpler alternative constructions. For instance, for
environments that are uniformly distributed on a random closed subset of full dimension
(as in the example in Section 2.2.3 below), one could define Ex(Y ) to be the intersection
of this random set with Q(x; b,M), and then let Xs ∩Q(x; b,M) be given by Xx ∩ Ex(Y ),
where Xx is a homogeneous Poisson point process in Q(x; b,M) with intensity λ > 0.

2.2 Examples

We next present examples motivated by wireless communications networks; in these
examples Xs encodes the location of devices placed on a street system embedded in R2.

2.2.1 Delaunay network

In our first example, devices are placed uniformly on the edges of a Delaunay triangu-
lation formed from an underlying independent Poisson point process. More precisely,
let P be a homogeneous Poisson point process on R2 with intensity λDel > 0, and let
Del(P) denote the Delaunay triangulation with vertices given by P. Then, for an intensity
parameter λ > 0, we consider a Cox point process Xs with intensity λE := λLeb(Del(P)),
where Leb(Del(P)) denotes the 1D-Lebesgue measure on Del(P).

It is easy to see that E ∈ F, and so one can construct Xs using the general framework
introduced above. More precisely, fix M ≥ 1 and b ≤ 1/(2

√
2M) such that b−1 is an

integer, and for z ∈ Z2 define Yz := [0,Mb]2 ∩ (P −Mbz), so that Y := {Yz}z∈Z2 is an iid
family of Poisson point processes and P =

⋃
z∈Z2(Yz +Mbz). Then, Qx(·;Y ) and Ux(Y )

are respectively defined as the uniform distribution on Del(P) ∩Q(x; b,M) and the total
length of Del(P) ∩Q(x; b,M). Further, Xs may be defined as in (2.2).

While this is a natural model for a wireless network, it has two major drawbacks:
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(a) The network has infinite range of dependence.

(b) Since we view the streets as having width 0, the environment is singular, and there
is no deterministic upper bound for the total intensity of Xs in a finite sampling
window.

This motivates us to introduce the following variants of the Delaunay network.

2.2.2 Delaunay network superimposed with sparse grid

To obtain a network with finite-range dependence, we superimpose the underlying
Poisson point process with a sparse grid. More precisely, defining a large parameter
L ≥ 1, and setting M = M ′L for a positive integer M ′, we let P and Y be as before,
but replace Del(P) in the definition of Q and U with DelL(P) := Del(P ∪ LZ2). With this
change, we then construct Xs in an identical manner.

Since every triangle in the Delaunay tessellation DelL(P) has diameter at most cL for
a suitable c ≥ 1, by choosing M ′ sufficiently large we ensure that the construction of the
environment is 1-dependent (on the scale M = M ′L), i.e., setting I+(z) := z + {−1, 0, 1}2
we have for all z ∈ Z2 and x ∈ Ib(z) that Qx({Yz′}z′∈Z2) = Qx({Y ′z′}z′∈Z2) if Yz′′ = Y ′z′′
for every z′′ ∈ I+(z).

2.2.3 Delaunay network of edges with positive width

To obtain a model with bounded intensity, one option is to consider the streets as having
a non-zero ‘thickness’ w0 > 0. Precisely, let P, Y and L be as before, and define the
random closed set Delw0

L (P) :=
{
x ∈ R2 : dist(x,DelL(P)) ≤ w0

}
. Now, replace Del(P) in

the definition of Q and U with Delw0

L (P). Then, the intensity of Xs is bounded by λ.

2.2.4 Delaunay network of edges with capped density

A second option to obtain a model with bounded intensity, but which retains the singular
street structure, is to enforce a cap on the total intensity in any cube Q(x; b,M). More
precisely, let P, Y and L be as before, and let ρ > 0 be a parameter. Then, define Qx to be
the uniform distribution on DelL(P)∩Q(x; b,M), and define Ux := ρ∧|DelL(P)∩Q(x; b,M)|,
i.e., we first measure the edge length of DelL(P) in Q(x; b,M) and then manually cap the
resulting length at ρ > 0. By construction, the total intensity of Xs in the cube Q(x; b,M)

is bounded by λρ.

Remark 2.3. The Delaunay network in Section 2.2.1 is stationary with respect to trans-
lations in R2 and hence also the associated measures Qx(·;Y ) and Ux(Y ) are translation
covariant. However, after introducing the sparse grid LZ2, the model is only stationary
with respect to shifts in LZ2. One option to enforce the R2-stationarity could be to
replace LZ2 with L(V +Z2), where V is uniformly distributed on [0, 1]2. It could also be
interesting to work with a finite-range model that is intrinsically R2-stationary.

Let us also mention that the Delaunay networks mentioned in this section can be also
defined in higher dimensions, giving rise to networks of hyperplanes.

3 Main result

In this section, we state our main result (Theorem 3.3) on the sharpness of the phase
transition for Cox percolation models, i.e., the continuum percolation model built from a
Cox point process Xs.

First, let us be precise about the definition of the Cox percolation model. There are
two equivalent ways to proceed: we can view the model as the subset of Rd formed by
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the union of balls of radius 1/2 centred at the points Xs; equivalently, we can consider
the random geometric graph whose vertex set is Xs and whose edge-set contains all
pairs of points in Xs at mutual distance less than 1. For concreteness we will work with
the former definition. We say that the model percolates if it has an infinite connected
component.

3.1 Conditions on the environment

In order to state our result, we introduce a set of conditions on the environment.
We assume that Xs is defined as in Section 2 for an intensity parameter λ > 0 and

an environment E = E(Y ) ∈ F. This implies in particular that E (and correspondingly
Xs) is invariant under translations by MZd. Moreover, we assume the dependence of E
on Y is finite-range, and that E has uniformly bounded local intensity. Precisely, define
Ib(z) := bZd ∩ (z + [0, 1)d) and recall that I+(z) = z + {−1, 0, 1}d, we assume

(i) 1-dependence, i.e., for all z ∈ Zd and x ∈ Ib(z) we have that Ex({Yz′}z′∈Zd) =

Ex({Y ′z′}z′∈Zd) if Yz′′ = Y ′z′′ for every z′′ ∈ I+(z), and

(ii) uniformly bounded local intensity, i.e., there exists a ρ > 0 such that Ux ≤ ρ for
every x ∈ bZd.

We note that the models considered in [6, 4, 18] allow for a finite-range decomposition.
Hence, instead of imposing 1-dependence, it was enough there to require a sufficiently
fast decay of dependence. However, the lack of the FKG inequality in our setting prevents
us from being able to compare pivotality at different scales, which is used in [6, 4, 18] to
handle such models.

Next, we impose some natural connectivity conditions on the environment E . Observe
that, if the 1/2-neighborhood of the support of E does not percolate, then, there is also no
chance of percolation in the Cox model. To make this precise, we say that a site x ∈ bZd
is non-empty if Ux(Y ) > 0. Analogously, we say that z ∈ Zd is non-empty if x is non-empty
for some x ∈ Ib(z); this defines a finitely dependent site percolation model on Zd. We
recall from [12, Theorem 0.0] that there exists q0(d) ∈ (0, 1) such that any 6-dependent
site percolation model on Zd with marginal probability at least q0(d) percolates, where
the 6-dependence is chosen for convenience of the proofs. Hence we assume in the
following

(iii) coverage, i.e., it holds that P
(
o ∈ Zd is non-empty

)
> q0(d).

Finally, we also need a more delicate connectivity condition that is described by the
notion of essential connectedness [2]. To make this precise, two sites x, x′ ∈ bZd are
adjacent if they are at d∞-distance b. For η > 0, we say that x ∈ bZd is η-supported
if Ux ≥ η. Introduce the enlarged cubes I+

b (z) := bZd ∩ (z + [−1, 2)d) and I++
b (z) :=

bZd ∩ (z + [−2, 3)d). Then we assume

(iv) essential connectedness, i.e., that there exists η > 0 such that with probability
1, for all z ∈ Zd, any non-empty x, x′ ∈ I+

b (z) are connected by a chain of adjacent
η-supported sites in I++

b (z).

Remark 3.1 (Examples). All the above conditions are satisfied for the Delaunay-based
examples in Section 2.2.3 and 2.2.4 by choosing M of the form M = M ′L, for M ′

sufficiently large. On the other hand, Conditions (i), (ii) and (iv) fail for the example in
Section 2.2.1, and Condition (ii) fails for the example in Section 2.2.2.

3.2 Statement of the main result

Write Pλ for the law of Xs with parameter λ. For A,B ⊂ Rd we write {A! B in Xs}
for the event that A and B are connected in the corresponding Cox percolation model,
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i.e., there exists a path between A and B in the set
⋃
x∈Xs{x+B(1/2)}, where B(r) is the

Euclidean ball of radius r. Then, defining ΛM = [−M,M ]d, we let λc := inf{λ > 0: θ(λ) >

0} be the critical intensity for percolation, where for ∂Λn := Λn−M \ Λn−2M we let

θ(λ) := Pλ
(
Λ3M !∞ in Xs

)
:= lim

n→∞
Pλ
(
Λ3M ! ∂Λn in Xs

)
denote the probability of the percolation event.

Note that in classical continuum percolation, θ(λ) is defined as Pλ(0 !∞ in Xs). In
the M -discretized setting the addition of a point at the origin is no longer natural, and
hence we rely on a definition of θ(λ) that is better adapted to the M -discretized model.

As a preliminary step, we verify that Cox percolation exhibits a non-trivial phase
transition:

Proposition 3.2 (Non-triviality). It holds that 0 < λc <∞.

Let us mention that Proposition 3.2 can be established for more general models under
significantly weaker assumptions on the environment, see [9].

The main result of the paper states that this phase transition is sharp, i.e., there is
exponential decay of connectivity in the subcritical phase, and the percolation probability
grows at least linearly in the supercritical phase.

Theorem 3.3 (Sharpness). The phase transition for Cox percolation is sharp:

(i) lim supn↑∞ n−1 logPλ
(
Λ3M ! ∂Λn in Xs

)
< 0 holds for every λ < λc, and

(ii) lim infλ↓λc
θ(λ)/(λ− λc) > 0.

This generalizes a known result for the standard continuum percolation model [14,
15, 19], i.e., the homogeneous case in which Xs is a Poisson point process.

3.3 Possible extensions

3.3.1 The Delaunay network

As mentioned, the Delaunay network model in Section 2.2.1 does not satisfy the finite-
range and uniform boundedness conditions, and so our result does not apply. It would
be interesting to weaken these conditions so as to cover this model, but it would require
new ideas. Indeed, while in [4, 18] a sprinkling trick is used to deal with models with
fast decay of dependence, the lack of the FKG inequality does not allow to adapt these
arguments in the present setting. Moreover, it is not clear how to define a finite-range
approximation such that the essential connectedness remains valid.

3.3.2 Random connectivity radii

A natural generalization of the Cox percolation model would be to equip each point in Xs

with a ball whose radius is drawn independently from a certain radius distribution, rather
than a ball of radius 1/2. If the radius distribution is bounded, the proof of Theorem 3.3
works unchanged, but it does not if the distribution is unbounded. In the homogeneous
case where Xs is a Poisson point process, an extension to unbounded radii was achieved
in [6], and it would be interesting to generalize this to Cox percolation.

3.3.3 Varying connectivity radius

For applications it may also be important to vary the radius of the connectivity instead of
the intensity parameter (i.e., we fix λ but connect all points in Xs within distance µ, for
varying µ > 0). Unlike in the homogeneous case, these are not equivalent up to global
rescaling. The proof from Theorem 3.3 breaks down in this case because of a lack of a
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Russo formula expressing the derivative of percolation probabilities as integrals over
pivotal intensities (see (5.3)). However it may be possible to define an alternate notion
of pivotal intensity wrt increasing the connectivity radius, and compare this to other
relevant notations of influence.

4 Non-triviality: Proof of Proposition 3.2

To establish the non-triviality of the percolation phase transition, we build on classical
techniques to deal with finite-range dependent percolation processes, most notably the
stochastic domination criterion [12, Theorem 0.0]. Nevertheless, to make the manuscript
more self-contained, we include some details.

Proof of Proposition 3.2, λc > 0. Recall the family {Vx}x∈bZd of iid Poisson point pro-
cesses on [0, 1] × [0,∞) with intensity λ from (2.1). Recall also the uniformly bounded
intensity condition, which implies that we can and will restrict each process Vx to
[0, 1]× [0, ρ] without change to the Cox point process Xs.

Call a site z ∈ Zd bad if Vx 6= ∅ for some x ∈ Ib(z), and observe that the probability
that a site is bad tends to 0 as λ → 0. Moreover, Cox percolation of Xs implies the
percolation of the Bernoulli site percolation process of bad sites in Zd. Then the claim
follows since Bernoulli site percolation has a subcritical regime [8, Theorem 1.10].

Proof of Proposition 3.2, λc <∞. Call a site x ∈ bZd populated if Xs ∩ Q(x; b,M) 6= ∅.
Moreover, say that z ∈ Zd is good if (i) some x ∈ Ib(z) is populated and (ii) any populated
x, x′ ∈ I+

b (z) are connected by a chain of adjacent populated sites in I++
b (z). Since

2
√
dbM ≤ 1, the percolation of good sites on Zd implies Cox percolation of Xs. Moreover,

the good sites are 6-dependent, and the coverage and essential-connectedness conditions
imply that the marginal probability exceeds q0(d) as λ → ∞. Hence, an application of
[12, Theorem 0.0] shows that for sufficiently large λ > 0, the good sites percolate.

5 Sharpness: Proof of Theorem 3.3

To prove the sharpness of the phase transition, our general strategy is to proceed in
the vein of [5, 6] and rely on Russo’s formula and the OSSS technique to derive a key
differential inequality (see Proposition 5.1). The particular challenges of Cox percolation
are that (i) the model depends on an underlying environment, and that (ii) the FKG
inequality does not necessarily hold.

5.1 The differential inequality

To reflect that the model inherently depends on the scale M , we define

θn(λ) := P
(
Λ3M ! ∂ΛMn in Xs

)
,

setting θi := 1 for i ≤ 4 to avoid ambiguities. We will deduce the sharpness of the phase
transition as a consequence of the following differential inequality, see [6, Lemma 1.7].

Proposition 5.1 (Differential inequality). Let λ′ > λc. Then, there exists cDiff > 0 such
that for every n ≥ 1 and λ′ > λ > λc,

d

dλ
θn(λ) ≥ cDiff

n∑
s≤n θs(λ)

θn(λ)(1− θn(λ)).

Proof of Theorem 3.3. Once Proposition 5.1 is established, we argue as in [5] to show
that there exists λ1 ∈ [λc, λ

′] such that lim supn↑∞ n−1 log(θn(λ)) < 0 for every λ < λ1,
and lim infλ↓λ1

θ(λ)/(λ− λ1) > 0. Therefore, λc = λ1.
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It remains to deduce Proposition 5.1. The key idea is to apply the OSSS inequality
from [17] to the indicator of the event {Λ3M ! ∂ΛMn in Xs}. The fact that the Cox point
process Xs has a ‘factor of iid’ representation is crucial in implementing this strategy.

Recall the family {Vx}x∈bZd of iid Poisson point processes from (2.1), and define
the collection X = {Xz}z∈Zd with Xz := {Vx}x∈Ib(z). Then, we observe that θn(λ)

may be considered as the expectation of a function fn(X,Y ) of the discrete iid field
Z := {Zz}z∈Zd :=

{
(Xz, Yz)

}
z∈Zd . Applying the OSSS inequality to an algorithm T

determining fn gives that

θn(λ)(1− θn(λ)) = Var(fn(Z)) ≤ 1

2

∑
z∈Zd

δz(T )Infz(fn), (5.1)

where

(i) δz(T ) := P(T reveals Zz) is the probability that the algorithm T reveals the value
of Zz, and

(ii) Infz(fn) := P
(
fn(Z) 6= fn(Z ′(z)

)
denotes the (resampling) influence of Zz, where

Z ′(z) is formed from Z by replacing Zz with an independent copy.

By the Efron–Stein inequality, which in our case becomes a union bound for two events,

Infz(fn) ≤ InfXz (fn) + InfYz (fn),

where InfXz (fn) :=P
(
fn(X,Y ) 6= fn(X ′(z), Y )

)
and InfYz (fn) :=P

(
fn(X,Y ) 6= fn(X,Y ′(z))

)
denote the analogous (resampling) influences of Xz and Yz respectively. Hence,

θn(λ)(1− θn(λ)) ≤ 1

2

∑
z∈Zd

δz(T )
(
InfXz (fn) + InfYz (fn)

)
. (5.2)

Our task is to relate the right-hand side of (5.2) to the derivative of θn(λ). For this we
rely on Lemmas 5.2–5.4 below, whose proofs will be given at the end of the section.

Recall that the uniformly bounded intensity condition implies that we may restrict
each Poisson point process Vx in (2.1) to [0, 1] × [0, ρ] without change to the Cox point
process Xs. Then, since the event {Λ3M ! ∂ΛMn in Xs} is increasing, the infinitesimal
Russo–Margulis formula (see e.g., [11, Theorem 19.1]) gives

d

dλ
θn(λ) = λ

∑
x∈bZd

∫
[0,1]×[0,ρ]

Pivx(r, u)d(r, u), (5.3)

with

Pivx(r, u) := P
(
fn(Vx,r,u, Y ) 6= fn(X,Y )

)
,

where Vx,r,u is the collection {V ′x′}x′ determined by V ′x′ = Vx′ if x′ 6= x and V ′x = Vx ∪
{(r, u)}. In words, Pivx(r, u) is the probability that the event {Λ3M ! ∂ΛMn in Xs} does
not occur, but does occur after adding (r, u) to Vx. Very loosely speaking, formula (5.3)
can be thought of as a way to interchange E and the derivative.

Our first lemma states that one can control the integrated infinitesimal pivotal
probabilities in (5.3) in terms of the corresponding discrete influences InfXz :

Lemma 5.2 (Pivotality and influence). Let λ′ > 0. Then, there exists cPiv = cPiv(λ′) > 0

such that for every n ≥ 1, λ ≤ λ′ and z ∈ Zd,

InfXz ≤ cPivλ
∑

x∈Ib(z)

∫
[0,1]×[0,ρ]

Pivx(r, u)d(r, u).
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Our second lemma states that we can bound InfYz in terms of InfXz′ for z′ ∈ I++(z) :=

z + {0,±1,±2}d.
Lemma 5.3 (Poisson- and environment influences). There exists cInf > 1 such that for
every n ≥ 1, λ > 0 and z ∈ Zd,

InfYz ≤ cInf

∑
z′∈I++(z)

InfXz′ .

Our final lemma bounds the revealment probabilities of a suitable randomized explo-
ration algorithm:

Lemma 5.4 (Revealment probabilities). For every n ≥ 16 there exists a randomized
exploration algorithm T determining fn such that for every λ > 0 and z ∈ Zd,

δz(T ) ≤ 8

n

∑
s≤n

θs(λ).

Let us use Lemmas 5.2–5.4 to conclude the proof of Proposition 5.1:

Proof of Proposition 5.1. First, Lemmas 5.3 and 5.4 show that

n∑
s≤n θs(λ)

∑
z∈Λn∩Zd

δz(T )(InfXz +InfYz ) ≤ 8
∑

z∈Λn∩Zd

(InfXz +InfYz ) ≤ 8(5d+1)cInf

∑
z∈Λn+2∩Zd

InfXz .

Hence, invoking Lemma 5.2 together with the Russo–Margulis formula (5.3) concludes
the proof.

5.2 Proof of the auxiliary lemmas

First, we establish Lemma 5.3, i.e., the domination of InfYz by a multiple of InfXz , for
which we adapt a coarse-graining strategy from [4, 18].

Proof of Lemma 5.3. We present a detailed proof in the case where 3 ≤ |z|∞ ≤ n − 3,
noting that the arguments in the remaining cases are very similar. Let Y ′(z) = {Y ′w}w∈Zd

be the z-resampling of Y = {Yw}w∈Zd , i.e., the component of {Yw}w∈Zd with index z
is replaced by an independent copy. Note that, by the assumption of 1-dependence,
the resampling does not modify the environment E(Y ) outside I+(z). We introduce
a ‘coarse grained’ version of the event

{
fn(X,Y ) 6= fn(X,Y ′(z))

}
, which depends on

X only through the configuration of Vx for x 6∈ I++
b (z). First, we let Ecoarse,− denote

the event that Λ3M 6! ∂ΛMn holds if Vx ∩
(
[0, 1] × [0, ρ]

)
= ∅ for all x ∈ I++

b (z). In
particular, Ecoarse,− occurs under the event

{
fn(X,Y ) 6= fn(X,Y ′(z))

}
. Next, we let

Ecoarse,+ denote the event that if Vx ∩
(
[0, 1] × [0, η]

)
6= ∅ for every x ∈ I++

b (z), then
Λ3M ! ∂ΛMn. Now, setting Q′ := (Mz + [−M, 2M)d), we note that, under the event{
fn(X,Y ) 6= fn(X,Y ′(z))

}
, there are particles Xi, Xj ∈ Xs \Q′ such that (i) Xi connects

to Λ3M outside Q′, and (ii) Xj connects to ∂ΛMn outside Q′. Hence, we conclude from
the essential-connectedness condition that also the event Ecoarse,+ occurs under the event{
fn(X,Y ) 6= fn(X,Y ′(z))

}
.

Defining Ecoarse := Ecoarse,− ∩ Ecoarse,+, we have shown that InfYz ≤ P(Ecoarse), and so
it suffices to show that P(Ecoarse) ≤ cInf

∑
z′∈I++(z) Inf

X
z′ . To that end, we let Efine,− :=

{Vx ∩ ([0, 1]× [0, ρ]) = ∅ for all x ∈ I++
b (z)}. Similarly, we let Efine,+ denote the event that

Vx ∩ ([0, 1]× [0, η]) 6= ∅ for every x ∈ I++
b (z). Finally, we write X∗ for the Poisson point

process obtained by resampling {Vx}x∈I++
b (z). Then, by the independence property of
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Poisson point processes,

P
(
fn(X,Y ) 6= fn(X∗, Y )

)
≥ P

(
({Vx}x 6∈I++

b (z), Y ) ∈ Ecoarse, {Vx}x∈I++
b (z) ∈ Efine,−, {V ∗x }x∈I++

b (z) ∈ Efine,+

)
= P

(
({Vx}x 6∈I++

b (z), Y ) ∈ Ecoarse

)
P
(
{Vx}x∈I++

b (z) ∈ Efine,−
)
P
(
{V ∗x }x∈I++

b (z) ∈ Efine,+

)
,

where the second and third factor in this product are bounded away from 0. Finally,
by the Efron–Stein inequality, we see that P

(
fn(X,Y ) 6= fn(X∗, Y )

)
≤
∑
z′∈I++(z) Inf

X
z′ ,

thereby concluding the proof.

Next, we prove Lemma 5.2 through a short computation using tail estimates for
Poisson random variables:

Proof of Lemma 5.2. We condition on Y and note that by the superposition theorem ([11,
Theorem 3.3]) we may think of the collection Xz = {Vx}x∈Ib(z) as a homogeneous Poisson
point process on [0, 1]× [0, ρ]× Ib(z) with intensity λ. Hence, Xz = {Pi}i≤N where N is a
Poisson random variable with parameter λ∗ := λρb−d and the {Pi}i≥1 are iid uniform on
[0, 1]× [0, ρ]× Ib(z). Moreover, writing X ′ := {Xz′}z′ 6=z, we let

K := sup
{
k ≥ 0: Λ3M 6! ∂ΛMn in Ψ(({Pi}i≤k ∪X ′))

}
denote the maximum number of Poisson points that can be added to Ib(z) such that the
percolation event does not happen. Note that K may also take the values −∞ or∞. The
introduction of the quantity K has the advantage that the pivotal probabilities can be
concisely represented via P(K = N) = bdρ−1

∑
x∈Ib(z)

∫
[0,1]×[0,ρ]

Pivx(r, u)d(r, u). Indeed,

expressing the uniform distribution of Pi on [0, 1]× [0, ρ]× Ib(z) in integral form,

P(K = N) = bdρ−1
∑

x∈Ib(z)

∫
[0,1]×[0,ρ]

P
(
fn(Vx,r,u, Y ) 6= fn(X,Y )

)
d(r, u)

= bdρ−1
∑

x∈Ib(z)

∫
[0,1]×[0,ρ]

Pivx(r, u)d(r, u).

Similarly, we can bound the influences through InfXz ≤ 2P(N > K ≥ 0). Using the tail
probabilities of a Poisson random variable and that K and N are independent shows that
for every k ≥ 0,

P(N > k)

λ∗P(N = k)
=
∑
`≥k+1

k!

`!
λ`−k−1
∗ .

Noting that the right-hand side is bounded by exp(λ∗) concludes the proof.

Remark 5.5. Another approach to proving Lemma 5.2 which may be less sensitive to the
Poisson assumption would be to first discretize space and then to invoke the Efron–Stein
inequality to aggregate the coordinates.

To finish, we prove Lemma 5.4, i.e., we describe the randomized algorithm leading
to the asserted bound on the revealment probabilities. In essence, the proof can be
adapted from previous results in the literature, e.g., [6, Lemma 3.3]. Nevertheless, to
make the presentation self-contained, we provide a brief overview.

Proof of Lemma 5.4. For every 6 ≤ m ≤ n−3 we construct an algorithm Tm determining
{Λ3M ! ∂ΛMn} as follows. During the algorithm, a site z ∈ Zd is called active if it is
revealed but the neighborhood I++(z) is not yet entirely revealed.
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(i) First, reveal Zz for all z with
∣∣|z|∞−m∣∣ ≤ 3. This determines the point configuration

for all z with
∣∣|z|∞ −m∣∣ ≤ 2. Let S denote the union of all connected components

intersecting ∂ΛMm.

(ii) Pick an active z with S ∩ Q(x; b,M) 6= ∅ for some x ∈ Q(z, b), reveal I++(z), and
grow the components from S with the particles from Xs ∩Q(x′; b,M) for x′ ∈ I+

b (z).

(iii) Continue this exploration until there is no more active z with S∩(Mz+[0,M)d) 6= ∅,
or a connection from Λ3M to ∂ΛMn is found.

Next, we note that the revealment probabilities δz(T
m) are bounded above by the

percolation probabilities in the sense that

P(Tm reveals z) ≤ P
(
(Mz + Λ3M ) ! ∂ΛMm

)
≤ θ|m−|z|∞|.

Thus, picking m ∈ {6, . . . , n− 3} at random shows the asserted δz(T ) ≤ 2
n−8

∑
m≤n θm ≤

4
n

∑
m≤n θm.
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