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Abstract

We study the spectrum of the kinetic Brownian motion in the space of d× d Hermitian
matrices, d ≥ 2. We show that the eigenvalues stay distinct for all times, and that
the process Λ of eigenvalues is a kinetic diffusion (i.e. the pair (Λ, Λ̇) of Λ and its
derivative is Markovian) if and only if d = 2. In the large scale and large time limit,
we show that Λ converges to the usual (Markovian) Dyson Brownian motion under
suitable normalisation, regardless of the dimension.
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1 Introduction

In the space Hd of d × d complex Hermitian matrices, there is a natural Brownian
process W , whose covariance is given by the Hilbert–Schmidt norm. It turns out, as was
first observed by Dyson in 1962 [6], that the spectrum of W is Markovian: the law of the
spectrum of s 7→ Wt+s depends on Wt only through its spectrum. In this paper, we show
that for a natural smoothing of the Brownian motion, the so-called kinetic Brownian
motion, the situation can be different.

Here, a kinetic motion with values in Hd is a process of regularity C1, such that the
couple (H, Ḣ) of the position and associated velocity is Markovian. Kinetic Brownian
motion is the kinetic motion whose velocity Ḣ is a standard Brownian motion on the unit
sphere. We say that it is a smoothing of Brownian motion because in the large scale limit,
H looks like a Brownian motion; namely, the law of the process t 7→ 1

LHL2t converges to
that of W as L → ∞, up to a factor 4/d2(d2 − 1). In other words, 1

LHL2t is very similar to
a Brownian motion, with the important difference that it is actually C1. For a proof of
this convergence, see [9, Theorem 1.1] or [2, Proposition 2.5]. See references below for
more on kinetic Brownian motion.

Define Λt as the vector of eigenvalues of Ht, the order being irrelevant provided
it depends continuously on time. Then a classical application of the inverse function
theorem shows that Λ has to be C1 whenever the eigenvalues of Ht are distinct; in
particular, Λ cannot be Markovian, otherwise it would be deterministic. The next natural
hope would be for the process (Λ, Λ̇) to be Markovian. The main objective of this paper
is to prove it is the case if and only if d = 2.
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Kinetic Dyson Brownian motion

Theorem 1.1. Let (H, Ḣ) be a kinetic Brownian motion on the space Hd of d× d Hermi-
tian matrices (d ≥ 2), and 0 ≤ τ ≤ ∞ the first time H has multiple eigenvalues. Let Λ be
the process of eigenvalues of H, seen as a continuous process with values in Rd.

Then τ = ∞ whenever H0 has distinct eigenvalues. Moreover, (Λt, Λ̇t)0≤t<τ is well-
defined, and is Markovian if and only if d = 2.

In the case d = 2, the stochastic differential equations describing the eigenvalues of
H are given in Lemma 2.5, Section 2.4. In the general case, we introduce in Section 2.3
a subdiffusion (Λ, A) of (H, Ḣ). Since this process is Markovian in any dimension (see
Lemma 2.3 for defining equations), one may want to consider it as a suitable approach
to kinetic Dyson Brownian motion, rather than the more restrictive (Λ, Λ̇).

As discussed above, it is known that the process t 7→ 1
LHL2t converges in law to a

Brownian motion. From this known fact, we will deduce that Λ converges to a standard
Dyson Brownian motion, in the following sense.

Proposition 1.2. Let (H, Ḣ) be a kinetic Brownian motion on the space Hd of d × d

complex Hermitian matrices (d ≥ 2) such that H0 has distinct eigenvalues almost surely.
Let Λ be the process of eigenvalues of H in non-decreasing order, seen as a continuous
process from an interval of R+ to Rd. Let D be the process of eigenvalues of a standard
Brownian motion in Hd starting at zero, with the same conventions.

Then we have the following convergence in law as L goes to infinity:

(t 7→ ΛL2t)0≤t≤1
L−→ 4

d2(d2 − 1)
·D.

We give a sketch of proof of Theorem 1.1 in Sections 2.1 to 2.4, using various lemmas
proved in Part 3. Proposition 1.2 is proved in Section 2.5.

Kinetic Brownian motion was first introduced by Li in [8], where Theorem 4.3 proves
a stronger convergence theorem to Brownian motion than stated above. A self-contained
proof by the same author appeared later in [9]. This result was generalised by Angst,
Bailleul and Tardif [2] and the author [11]. Kinetic Brownian motion has been given
different names in the literature, for instance velocity spherical Brownian motion by
Baudoin and Tardif [4] or circular Langevin diffusion by Franchi [7] in the context of
heat kernels. See also [1] for considerations in an infinite dimensional setting.

2 Definitions and proof outline

Let Hd be the space of d × d complex Hermitian matrices. We assume d ≥ 2, and
endow it with the Hilbert–Schmidt inner product:

‖H‖2H := tr(H2) = tr(H∗H) =
∑
ij

|Hij |2,

where H∗ is the conjugate transpose of H, (Hij)ij are the coefficients of H, and 〈·, ·〉 is
the Hermitian product on Cd, with the convention that it is linear in its second argument.
It is isometric to the standard Euclidean matrix space Rd×d, via (mij) 7→ (hij),

hij =


mij for i = j,
mij+imji√

2
for i < j,

mji−imij√
2

for j < i.

A Brownian motion W in Hd associated to this Euclidean structure can be described as
a matrix H = (hij) with coefficients as above, where the mij ’s are independent (real
standard) Brownian motions.
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Kinetic Dyson Brownian motion

Let Ḣ be a standard Brownian motion on the unit sphere S(Hd) of Hd, and H its
integral. For instance, one may define (H, Ḣ) as the solution of the stochastic differential
equation

dHt = Ḣtdt, (2.1)

dḢt = ◦ dWt − Ḣt〈Ḣt, ◦ dWt〉H︸ ︷︷ ︸
projection of ◦dWt on Ḣ⊥

t

= dWt − Ḣt tr(Ḣ
∗
t dWt)−

d2 − 1

2
Ḣtdt, (2.2)

where ◦dW (resp. dW ) denotes the Stratonovich (resp. Itô) integral. It is defined for all
times, since Ḣ is the solution of a SDE with smooth coefficients on a compact manifold,
and H is the integral of a process that is uniformly bounded. Let 0 ≤ τ ≤ ∞ be the first
time H has multiple eigenvalues, with τ = ∞ if its eigenvalues stay distinct for all times.

In the following, we will work with diagonal matrices; we write H∆
d for the corre-

sponding space, and π∆ : Hd → H∆
d for the orthogonal projection. In simple terms, π∆

replaces every off-diagonal entry by a zero.
The remainder of this section is a complete proof outline of Theorem 1.1, using a few

lemmas proved in the next section.

2.1 Explosion time

By “τ = ∞ whenever H0 has distinct eigenvalues”, we mean that the event of having
both τ < ∞ and H0 without repeated eigenvalues has measure zero. It is known, see
references in Section 3.1, that the subset of Hd consisting of matrices with multiple
eigenvalues is contained in a finite collection of submanifolds of codimension 3. Then it
is enough to prove the following result, of independent interest.

Proposition 2.1 (proved in Section 3.2). Let M be a complete Riemannian manifold,
and N ⊂ M a submanifold of codimension at least 2. Let (H, Ḣ) be a kinetic Brownian
motion in M , defined for all times t ≥ 0. Then H never crosses N for any t > 0.

2.2 Diagonalisation

Because Ht is Hermitian, there exists for all t a unitary matrix Ut such that U∗
t HtUt

is diagonal. Abstract geometric arguments show that it is possible to show that for
a fixed realisation of H, we can find a U with regularity C1, at least as long as the
eigenvalues stay distinct. However, we would like U to be described by an explicit
stochastic differential equation. Let us look for a candidate.

Given a C1 process U with unitary values, we call

u̇t := U−1
t U̇t = U∗

t U̇t

its derivative, seen in the Lie algebra of Ud(C). Hence, u̇t is skew-Hermitian: u̇∗
t = −u̇t.

If we define the C1 process

Λ : t 7→ U∗
t HtUt, (2.3)

then Ht will be diagonal in the frame Ut if and only if Λt ∈ H∆. It means that we are
looking for a U such that the derivative Λ̇t stays in H∆. We have

Λ̇t =
(
U̇∗
t HtUt + U∗

t HtU̇t

)
+ U∗

t ḢtUt = (u̇∗
tΛt + Λtu̇t) + U∗

t ḢtUt.

Assuming Λ is indeed diagonal, and since u̇t is skew-Hermitian, the coefficients of the
first term are

(u̇∗
tΛt + Λtu̇t)ij = (u̇∗

t )ij(Λt)jj + (Λt)ii(u̇t)ij =
(
(Λt)ii − (Λt)jj

)
(u̇t)ij . (2.4)
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Kinetic Dyson Brownian motion

In other words, for Λ to stay diagonal, we have no choice for the off-diagonal coefficients
of the velocity u̇t: setting

A : t 7→ U∗
t ḢtUt, (2.5)

they have to be

− (U∗
t ḢtUt)ij

(U∗
t HtUt)ii − (U∗

t HtUt)jj
= − (At)ij

(Λt)ii − (Λt)jj
.

It turns out that this choice works, as we will see.

For the sake of conciseness, define u̇(Λ, A) as

(
u̇(Λ, A)

)
ij
:=

− Aij

Λii − Λjj
for i 6= j,

0 else
(2.6)

whenever Λ has distinct diagonal entries. As long as Λ stays diagonal with distinct
eigenvalues, u(Λ, A) stays well-defined.

Lemma 2.2 (proved in Section 3.3). Let (Ht, Ḣt)t≥0 be a kinetic Brownian motion on Hd,
and 0 ≤ τ ≤ ∞ the first time H has multiple eigenvalues. Let U0 be a (random) unitary
matrix such that U∗

0H0U0 is diagonal, and define Ut as the solution of

dUt = Utu̇tdt, u̇t = u̇
(
U∗
t HtUt, U

∗
t ḢtUt

)
, (2.7)

where u̇(Λ, A) is defined in equation (2.6).
Then Ut is defined for all 0 ≤ t < τ , and U∗

t HtUt is diagonal for all such t.

In particular, it means that Λ is the process of eigenvalues of H, so the potential
kinetic Dyson Brownian motion is (Λ, Λ̇). If one wishes, we can take U0 so that the
diagonal entries of U∗

0H0U0 are in a given order, for instance non-decreasing. Then,
using the fact that the eigenvalues of Ht stay distinct for all t > 0 (see Section 2.1), we
see that the diagonal entries U∗

t HtUt stay in the same order. In the following, we will
not need nor assume that U0 satisfies this property.

2.3 The Markovian process (Λ, A)

From (H, Ḣ), we construct U , Λ and A using equations (2.7), (2.3) and (2.5). By
Lemma 2.2, Λ is in fact diagonal. We also notice that A takes values in the sphere S(Hd),
since Ḣ does, and conjugation by a fixed unitary matrix is an isometry.

Then we see that the triple (Ut,Λt, At) satisfies the system of equations

dUt = Utu̇tdt

dΛt = (u̇∗
tΛt + Λtu̇t)dt+Atdt

dAt = (u̇∗
tAt +Atu̇t)dt+ U∗

t dḢtUt

for 0 ≤ t < τ , where u̇t = u̇(Λt, At). These u̇(A,Λ) and u̇t are still the same, defined
respectively in equations (2.6) and (2.7); we are merely emphasising the fact that u̇t

depends on (H, Ḣ) only through (Λ, A). Note that the above is really a stochastic
differential equation describing (U,Λ, A) with a driving noise Ḣ, rather than an abstract
functional of the couple (H, Ḣ).

We are interested in the dynamics of (Λ, Λ̇). In fact, this pair is nothing but the
projection (Λ, π∆(A)); indeed, this is a direct consequence of the fact that in the driving
equation for dΛt, the first term is zero on the diagonal as seen in (2.4). As explained in
the following lemma, it turns out that (Λ, A) is Markovian.
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Lemma 2.3 (proved in Section 3.3). Let (H, Ḣ) be a kinetic Brownian motion in Hd,
0 ≤ τ ≤ ∞ the first time H has multiple eigenvalues, and define U , Λ and A as in
equations (2.7), (2.3) and (2.5). Then, up to enlarging the underlying probability space,
there exists a standard Brownian motion B with values in Hd such that

dΛt = π∆(At)dt

dAt =
(
u̇∗
tAt +Atu̇t

)
dt+ dBt −At tr

(
A∗

tdBt

)
− d2 − 1

2
Atdt

for all 0 ≤ t < τ , where u̇t = ut(Λt, At) as defined in equation (2.6). In particular, the
process (Λ, A) is Markovian.

Here, we could replace u̇t everywhere by its actual expression, which makes it clear
that (Λ, A) satisfies a self-contained stochastic differential equation.

Since (Λ, A) is Markovian in all dimensions whereas (as we will show later) (Λ, Λ̇) is
not, we made the remark in the introduction that one might view the former as a natural
definition of kinetic Dyson Brownian motion. Instead of containing only the information
about the derivative of the eigenvalues of Λ as Λ̇ might do, A is the matrix Ḣ as seen
in a referential that makes H diagonal; in particular, it contains some hints about the
motion of the eigenspaces in relation to each other. As we will see below, at least some
of this additional information is needed to describe the motion of Λ entirely when d ≥ 3.

2.4 A criterion for a Markovian kinetic Dyson Brownian motion

It is worth noticing that the equation for A describes a Brownian motion with drift
on a sphere; compare for instance the definition of Ḣt in (2.2), describing a Brownian
motion without drift. In fact, if it were not for the first term (u̇∗A+Au̇)dt, A would be
precisely a standard Brownian motion on the unit sphere of Hd.

But it is known, and not too difficult to see, that the projection of a spherical Brownian
motion X is Markovian. Indeed, once one fixes a subset of coordinates (X0, . . . , Xk)

of norm r, then the remaining coordinates (Xk+1, . . . , Xn) can always be reduced to(√
1− r2, 0, . . . , 0

)
, up to a rotation fixing the first coordinates; see Section 3.4 for details

and references. In particular, if we continue to ignore this drift term, it would be clear
at this point that (Λ, Λ̇) = (Λ, π∆(A)) is Markovian. So any obstruction for (Λ, Λ̇) to
be Markovian must come from the additional term (u̇∗A + Au̇). The following lemma
describes the situation with a precise criterion.

Lemma 2.4 (proved in Section 3.5). Define Φ = Φ(d) : H∆
d × S(Hd) → H∆

d by

Φ(Λ, A) := π∆(u̇∗A+Au̇),

where π∆ is the projection on H∆
d and u̇ = u̇(Λ, A) as defined in (2.6).

Let (H, Ḣ) be a kinetic Brownian motion in Hd, and define Λ the continuous process
of its eigenvalues. Then (Λ, Λ̇) is Markovian if and only if Φ factors through the projection
map (Λ, A) 7→ (Λ, π∆(A)).

There is a concise expression for the coefficients of Φ(Λ, A). It is of course zero out
of the diagonal, and we have

Φ(Λ, A)ii =
∑
j 6=i

(
− Aji

Λjj − Λii
·Aji −Aij ·

Aji

Λjj − Λii

)
= 2

∑
j 6=i

|Aij |2

Λii − Λjj
. (2.8)

In dimension 2, since |A| = 1, we get directly

Φ(Λ, A)11 = −Φ(Λ, A)22 =
|A12|2 + |A21|2

Λ11 − Λ22
=

1− |A11|2 − |A22|2

Λ11 − Λ22
.
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This depends only on Λ and the on-diagonal coefficients of A, so (Λ, Λ̇) is indeed Marko-
vian. In dimension d ≥ 3, it is not obvious that one could use a similar trick, and in fact
we can show that it is not possible and that the process is not Markovian.

In Sections 3.6 and 3.7 we carry out the computations in dimension d = 2 and d ≥ 3

respectively, and we conclude as follows.

Lemma 2.5 (proved in Sections 3.6 and 3.7). • If d = 2, the eigenvalues λ, µ of H
make up a kinetic diffusion, and satisfy the equations

dλt = λ̇tdt, dλ̇t = +
1− λ̇2

t − µ̇2
t

λt − µt
dt+ dMλ

t − d2 − 1

2
λ̇tdt,

dµt = µ̇tdt, dµ̇t = −1− λ̇2
t − µ̇2

t

λt − µt
dt+ dMµ

t − d2 − 1

2
µ̇tdt,

where Mλ and Mµ are martingales with brackets

d〈Mλ,Mλ〉t =
(
1− λ̇2

t

)
dt, d〈Mµ,Mµ〉t =

(
1− µ̇2

t

)
dt,

d〈Mλ,Mµ〉t = −λ̇tµ̇tdt.

• If d ≥ 3, Φ(d) does not factor, and the process (Λ, Λ̇) is not Markovian.

2.5 Homogenisation

As stated in the introduction, if we write HL for the normalised process t 7→ 1
LHL2t,

then (HL
t )0≤t≤1 converges in law to a standard Brownian motion, up to a constant scaling

factor 4/d2(d2 − 1); see [9, Theorem 1.1] or [2, Proposition 2.5]. In this section we prove
Proposition 1.2, namely that the process Λ, although not Markovian, is somehow almost
Markovian in large scales, in the sense that a similar limit converges to a (Markovian)
Dyson Brownian motion. We assume for simplicity that we chose U0 so that the diagonal
entries of Λ0 are in non-decreasing order.

Define the map Λ : Hd → H∆
d sending a matrix H to the matrix Λ whose diagonal

entries are the eigenvalues of H with multiplicities according to a chosen order (e.g. non-
decreasing); it should lead to no confusion of notation, since we then have Λt = Λ(Ht).
It is continuous, which means that Λt can be described as a continuous function of Ht up
to time τ . Such operations preserve convergence in law, so given a standard Brownian
motion W in Hd, we have the following convergence in law:

(HL
t )0≤t≤1

L−→ 4

d2(d2 − 1)
·W, (ΛL

t )0≤t≤1
L−→ 4

d2(d2 − 1)
· Λ(W ).

Since Λ(W ) is the spectrum of a Brownian motion in Hd in the form of a diagonal matrix,
it is nothing but a Dyson Brownian motion. As stated above, Λ = Λ(H) looks very much
like a Dyson Brownian motion at large scales. Recall that Dyson Brownian motion is
Markovian, so the hidden information preventing Λ to be Markovian (the off-diagonal
coefficients of A, but also the derivative Λ̇) vanishes in the limit.

It might be interesting to see if one could prove the convergence of ΛL towards the
rescaled Λ(W ) using only the dynamics of (Λ, A) as given in Lemma 2.3. Although the
author does not pretend it is impossible, it seems that the non-linearity in the vector
field Φ(Λ, A) makes it more difficult to approach than the convergence of HL, using for
instance the methods of [2].

3 Proof of the Lemmas

3.1 Matrices with multiple eigenvalues

We claimed earlier that the set of Hermitian matrices with multiple eigenvalues is
covered by finitely many submanifolds of codimension at least 3. We sketch a proof of
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this result; the approach is carried out in [3] with a detailed discussion of the underlying
combinatorial structure. See also [5] and references therein. Let d1 + · · ·+ dk = d be a
partition of d into k positive integers. Consider the space N of all Hermitian matrices H
with eigenvalues λ1 ≤ · · · ≤ λd such that the first d1 eigenvalues are equal but less than
the next, the following d2 are equal but less than the (d1 + d2 + 1)st, etc.

There is a one-to-one correspondence between such matrices and a choice of k (or-
thogonal) eigenspaces and associated (real) eigenvalues. There are k degrees of freedom
for the choice of the eigenvalues. Using for instance the Gram–Schmidt algorithm, the
choice of the eigenspaces is equivalent to the data of a flag E1 ⊂ · · · ⊂ Ek = Cd of
subspaces of respective dimensions i1 ≤ · · · ≤ ik with i` = d1 + · · · + d`. The space of
these flags is known to be a manifold of complex dimension

d1(d− i1) + d2(d− i2) + · · ·+ dk−1(d− ik−1) =
1

2

(
d2 −

∑
`

d2`

)
.

All in all, the set of matrices satisfying this constraint is a manifold of real dimension

d2 − (d21 − 1)− · · · − (d2k − 1)

(the restriction to a space of dimension d` could have been any matrix of Hd`
, but is

instead scalar), so it has codimension at least 3 when a given d` is not one. Considering
all partitions of d except the trivial 1 + · · · + 1, we see that matrices with multiple
eigenvalues belong to a finite collection of manifolds of codimension at least 3.

3.2 Proof of Proposition 2.1

Let us turn to the proof of Proposition 2.1. Let (M, g) be a complete Riemannian
manifold of dimension n, and N ⊂ M a submanifold of codimension at least 2. We
suppose N is an embedded manifold without boundary, although it will be clear that the
proof may be adapted to the more general case of immersed manifolds with boundary.
Given a kinetic Brownian motion (H, Ḣ) on M , we want to show that the event of H ever
hitting N after t = 0 has probability zero.

We call embedded (closed) disc of dimension k a subset D of M for which there exists
an open set U ⊃ D and a diffeomorphism φ : U → B0(1) to the unit ball of Rn such that
φ(D) is the intersection (Rk × {0}n−k) ∩B0(1/2). Then, because N is second countable,
it can be covered by countably many embedded discs of codimension 2, say N ⊂

⋃
i≥0 Di.

It means that

P(Ht ∈ N for some t > 0) ≤
∑
j,i≥0

E
[
P(Ht ∈ Di for some t ∈ [2−j , 2j ])

∣∣(H0, Ḣ0)
]
.

We are left to show that for a given compact interval [a, b] ⊂ (0,∞), starting point (H0, Ḣ0)

and embedded disc D of codimension 2, we have

P (Ht ∈ D for some t ∈ [a, b]) = 0.

Fix some δ > 0, and write Dδ for the set of points at distance at most δ from D. Since
the position process of the kinetic Brownian motion has velocity one, if we have Ht ∈ D

for a given t > 0, then there must exist t′ ∈ 2δN such that Ht′ ∈ Dδ. It means that

P (Ht ∈ D for some t ∈ I) ≤
db/2δe∑

`=ba/2δc

P(H2δ` ∈ Dδ). (3.1)

We will prove that

lim sup
δ→0

sup
a/2≤t≤2b

P(Ht ∈ Dδ)

δ2
< ∞,
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which will show that the sum in (3.1) is bounded by a constant multiple of δ, so the left
hand side is zero upon taking the limit δ → 0.

Let φ : U → B0(1) be a map compatible with D, in the sense described above. It
induces a diffeomorphism T 1φ from T 1U to T 1B0(1) ' B0(1) × Sn−1, sending (h, ḣ) to
(φ(h),dφh(ḣ)/|dφh(ḣ)|). Since D is compact, there is some small ε > 0 such that Dε ⊂ U .
The fact that (H, Ḣ) is a hypoelliptic diffusion means that the density of (Ht, Ḣt) is
smooth for any given t > 0, and moreover depends smoothly on t. In particular, there
exists a smooth function p depending on t > 0 and (x, ẋ) ∈ T 1B0(1) such that

P
(
Ht ∈ (T 1φ)−1(A)

)
=

∫
A

pt(x, ẋ)dxdẋ,

where the integral is considered with respect to Lebesgue measure. Since p is smooth
and Dε is compact, there exists a constant ‖p‖ > 0 such that we have pt(x, ẋ) ≤ ‖p‖ for
all t ∈ [a/2, 2b], x ∈ φ(Dε), ẋ ∈ Sn−1. It means that for any such t and 0 < δ ≤ ε,

P(Ht ∈ Dδ) ≤ ‖p‖ ·Vol(φ(Dδ)) ·Vol(Sn−1).

Let φ∗g be the metric on B0(1) induced by the identification with U , seen as a n × n

matrix. Using smoothness and compactness again, here exists a constant C > 0 such
that φ∗g is bounded above by C id in Dε. In particular, given 0 < δ ≤ ε and a point y in
Dδ, there exists (by compactness) a point x in D and a smooth curve γ of length at most
δ with endpoints x and y. The points of γ belong to Dε, so the Euclidean length of φ ◦ γ
is at most C times the length of γ, which means that φ(y) is included in φ(D) +B0(Cδ).
All in all,

φ(Dδ) ⊂ φ(D) +B0(Cδ) ⊂
(
B0(1) ∩Rn−2

)
×
(
B0(Cδ) ∩R2

)
for all δ small enough, and the Euclidean volume of φ(Dδ) is bounded by δ2 up to a
constant factor, which concludes.

Note that Proposition 2.1 is obviously optimal in terms of dimension. If a given kinetic
motion (H, Ḣ) were to avoid codimension 1 manifolds, then it wouldn’t be able to reach
the boundary of small balls around its initial point, so it would have to be stationary:
Ht = H0, Ḣt = 0.

3.3 Proof of Lemmas 2.2 and 2.3

Suppose (H, Ḣ) is defined as in (2.1) and (2.2), driven by a standard Brownian motion
W with values in Hd. We want to show that the processes U , Λ and A are well-defined
as long as H has distinct eigenvalues, that they take values in the spaces Ud(C), H∆

d and
S(Hd) respectively, and that (Λ, A) satisfies the equations stated in Lemma 2.3.

In the first steps, we can actually work with a fixed realisation of (H, Ḣ). There is
nothing to prove if H0 has repeated eigenvalues, so we assume it is not the case. Writing

u̇t = u̇(U∗
t HtUt, U

∗
t ḢtUt)

and since dUt = Utu̇tdt by definition, we can use the usual Picard-Lindelöf theorem to
see that U is uniquely well-defined for a maximal time interval [0, T ). Note that u̇(Λ, A)

is skew-Hermitian whenever it is well-defined, even if Λ is not diagonal, which means
that U is in Ud(C) until T . This directly implies that A takes values in the sphere S(Hd).

If U∗
t HtUt, up to time T , stays uniformly away from the closed set of matrices

with repeated diagonal entries, then u̇t is bounded for t ∈ [0, T ), which means that Ut

converges to a limit as t → T . Since U∗
THTUT has distinct diagonal entries, we can then

apply Picard-Lindelöf again at T and get a solution defined on a larger interval [0, T + ε),
which is a contradiction. Therefore, T must be at least as large as the stopping time when
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at least two diagonal coefficients of U∗
t HtUt become equal, or more precisely arbitrarily

close. It implies that Λ and A are well-defined up to this time as well. Moreover, if we
show that Λ is diagonal up to T , then in fact the diagonal entries of Λt = U∗

t HtUt are
precisely the eigenvalues of Ht, and the collapse of the diagonal entries of the former
corresponds to that of the eigenvalues of the latter, i.e. T = τ .

Using the representation of (H, Ḣ) involving W , we must have, up to T ,

dUt = Utu̇tdt,

dΛt =
(
u̇∗
tΛt + Λtu̇t

)
dt+Atdt,

dAt =
(
u̇∗
tAt +Atu̇t

)
dt+ U∗

t

(
dWt − Ḣt tr(Ḣ

∗
t dWt)−

d2 − 1

2
Ḣtdt

)
Ut

=
(
u̇∗
tAt +Atu̇t

)
dt+ U∗

t dWtUt −At tr(A
∗
tU

∗
t dWtUt)−

d2 − 1

2
Atdt.

Since U is unitary, the integral

B : t 7→
∫ t

0

U∗
s dWsUs

defines a standard Brownian motion in Hd, and A satisfies the equation described in
Lemma 2.3. Moreover, if Λ stays diagonal, then in fact

dΛt = π∆
(
dΛt

)
= π∆

(
u̇tΛt + Λtu̇t

)
dt+ π∆(At)dt = π∆(At)dt

according to equation (2.4), so Λ satisfies the equation given in Lemma 2.3. So the last
thing we need to prove is that Λ stays diagonal for all t < T .

This last fact is essentially a consequence of uniqueness for strong solutions of
stochastic differential equations. Indeed, we can define (ΛB , AB) as the solution of

dΛB
t =

(
(u̇B

t )
∗ΛB

t + ΛB
t u̇

B
t

)
dt+AB

t dt,

dAB
t =

(
(u̇B

t )
∗AB

t +AB
t u̇

B
t

)
dt+ dBt −AB

t tr((AB
t )

∗dBt)−
d2 − 1

2
AB

t dt

for u̇B = u̇(ΛB , AB) and initial condition (ΛB , AB)0 = (Λ, A)0, seen as a process with
values in the open set of H∆

d ×Hd where the first component has distinct eigenvalues.
It is defined on a (random) maximal interval [0, TB). The pairs (Λ, A) and (ΛB , AB) are
solution to the same stochastic differential equation for all times before T and TB, so they
are equal and Λ is actually diagonal over [0, T ∧ TB). However, over the event {TB < T},
the limit (ΛB , AB)TB is well-defined in the large space where (Λ, A) takes values, namely
it is (Λ, A)TB where ΛTB ∈ Hd with distinct diagonal entries and ATB ∈ Hd. Since H∆

d is
closed, then in fact (ΛB , AB) admits a limit in the small space as t approaches TB. But
this event has measure zero according to the classical explosion criterion for equations
with smooth coefficients, so the event {TB < T} has measure zero and T ∧ TB = T ,
hence Λ is diagonal for all times t < T .

As discussed above, this concludes the proof of Lemmas 2.2 and 2.3.

3.4 Projections of spherical Brownian motions

Let X be a standard Brownian motion on the sphere S(Rn), and X [k] its projection
(X1, . . . , Xk). The case we have in mind is n = d2 and k = d. One way to define such an
X is to fix a standard Brownian motion B with values in Rn and set X the solution of

dXt = ◦ dBt −XtX
∗
t ◦ dBt = dBt −XtX

∗
t dBt −

n− 1

2
Xtdt.

We want to show that X [k] is Markovian.
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One can use abstract invariance arguments to see that this is the case, see for
instance the arXiv version of this paper. However, it is not much more difficult to exhibit
an explicit stochastic differential equation for the dynamics; namely, let us sketch an
argument to show that the decomposition X = (rθ,

√
1− r2φ), for r ∈ R, θ ∈ S(Rk) and

φ ∈ S(Rn−k), is solution to

d(r2)t = 2
√

(1− r2t )r
2
t dB

r
t + (k − nr2t )dt

dθt =
1√
r2t

(dBθ
t − θtθ

∗
t dB

θ
t )−

1

r2t

k − 1

2
θtdt

dφt =
1√

1− r2t
(dBφ

t − φtφ
∗
tdB

φ
t )−

1

1− r2t

n− k − 1

2
φtdt

for (Br, Bθ, Bφ) a standard Brownian motion on Rn+1. Note that θ and φ are time
changes of spherical Brownian motions. A (different) complete proof, as well as pathwise
uniqueness, is described by Mijatović, Mramor and Uribe in [10].

Set Πi:j : Rn → Rj−i+1 the projection on the ith to jth coordinates. A direct
application of the Itô formula shows that the processes r2, θ and φ have drift term as
described, and respective Brownian increments

dMr = 2
√

(1− r2t )r
2
t

(√
1− r2t θ∗tΠ

1:k − rtφ
∗
tΠ

k+1:n
)
dBt,

dMθ =
1√
r2t

(
Π1:k − θtθ

∗
tΠ

1:k
)
dBt, dMφ =

1√
1− r2t

(
Πk+1:n − φtφ

∗
tΠ

k+1:n
)
dBt.

Since the brackets of the martingales coincide with those in the equation driven by
(Br, Bθ, Bφ), the result follows up to enlarging the space by the martingale representa-
tion theorem.

3.5 Proof of Lemma 2.4

We want to show that (Λ, Λ̇) is Markovian if and only if the vector field Φ depends on
A only through its diagonal π∆(A). The indirect implication is clear: if Φ(Λ, A) rewrites
as Φ(Λ, π∆(A)), then

dΛt = π∆(At)dt

dπ∆(A)t = Φ
(
Λt, π

∆(A)t
)
dt+ b∆

(
π∆(At)

)
dt+ σ∆

(
π∆(At)

)
dBt,

where
dX∆

t = b∆(X∆
t )dt+ σ∆(X∆

t )dBt

is the equation describing the projection X∆ = π∆(X) on H∆
d of a spherical Brownian

motion X in S(Hd), as discussed in the previous section. Then (Λ, Λ̇) = (Λ, π∆(A)) is the
solution of a self-contained SDE, so it is Markovian.

Conversely, suppose that (Λ, Λ̇) is Markovian. Let L∆ be its generator, L that of (Λ, A).
For f : H∆

d ×H∆
d → R regular enough, we should have

L
(
f ◦ (id, π∆)

)
(Λ0, A0) =

d

dt |t=0
EΛ0,A0

[f(Λt, π(At))] = (L∆f)
(
Λ0, π

∆(A0)
)
.

For instance, one can see that this holds for f smooth with compact support.
Let X∆ = π∆(X), as above, be the projection of a spherical Brownian motion on

S(Hd), and set I its integral (i.e. dIt = X∆
t dt). According to the previous section, (I,X∆)

is Markovian. In particular, (I,X) and (I,X∆) both admit generators L̃ and L̃∆, and
they are linked by the same relation

L̃
(
f ◦ (id, π∆)

)
(I0, X0) = (L̃∆f)

(
I0, π

∆(X0)
)
,
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for instance when f : H∆
d ×H∆

d → R is smooth with compact support.
As mentioned above, the only difference between L and L̃ is the additional vector

field Φ acting on the second component:

(L− L̃)g(Λ0, A0) = DA g(Λ0, A0)(Φ(Λ0, A0)) =: (Φ · ∇A g)(Λ0, A0),

where DA g is the differential of g : H∆
d ×Hd → R with respect to its second variable. In

particular, (
Φ · ∇A(f ◦ (id, π∆))

)
(Λ0, A0) = (L∆f − L̃∆f)

(
Λ0, π

∆(A0)
)
.

The right hand side depends on A0 only through π∆(A0), so the left hand side must be a
function of (Λ, π∆(A)). Since we can deduce a given vector field Ψ with values in H∆

d by
the action of the operator Ψ · ∇A on functions of the form f ◦ (id, π∆) (choose for instance
a collection of f smooth with compact support such that f(Λ, Λ̇) = Λ̇ii on a small open
set), Φ actually factors through (Λ, A) 7→ (Λ, π∆(A)) as expected.

3.6 The case d = 2

We have seen at the end of Section 2.4 that in dimension d = 2, the process (Λ, Λ̇) is
Markovian, using the fact that

Φ(Λ, A)11 = −Φ(Λ, A)22 =
|A12|2 + |A21|2

Λ11 − Λ22
=

1− |A11|2 − |A22|2

Λ11 − Λ22
.

In fact, we can use this expression and the equation satisfied by (Λ, A), given in
Lemma 2.3, to get the equation for the evolution. Write λ and µ for the eigenvalues Λ11

and Λ22 of H. For B a standard Brownian motion on H2, define the martingales

Mλ : t 7→ (B11)t −
∫ t

0

λ̇s tr(A
∗
sdBs) and Mµ : t 7→ (B22)t −

∫ t

0

µ̇s tr(A
∗
sdBs).

Then

dλt = λ̇tdt, dλ̇t = +
1− λ̇2

t − µ̇2
t

λt − µt
dt+ dMλ

t − d2 − 1

2
λ̇tdt,

dµt = µ̇tdt, dµ̇t = −1− λ̇2
t − µ̇2

t

λt − µt
dt+ dMµ

t − d2 − 1

2
µ̇tdt.

Writing A<
12 and A=

12 for the real and imaginary parts of A12, and similarly for B12,

dMλ
t = (1− λ̇2

t )d(B11)t − λ̇t(A12)td(B12)t − λ̇t(A21)td(B21)t − λ̇tµ̇td(B22)t

= (1− λ̇2
t )d(B11)t − 2λ̇t(A

<
12)td(B

<
12)t − 2λ̇t(A

=
12)td(B

=
12)t − λ̇tµ̇td(B22)t,

dMµ
t = −λ̇tµ̇td(B11)t − 2µ̇t(A

<
12)td(B

<
12)t − 2µ̇t(A

=
12)td(B

=
12)t + (1− µ̇2

t )d(B22)t.

Since
∑

ij |Aij |2 = 1, we deduce 2|A<
12|2 + 2|A=

12|2 = 1− λ̇2 − µ̇2, and we find the bracket

of Mλ:

d〈Mλ,Mλ〉t = (1− λ̇2
t )

2dt+ λ̇2
t (1− λ̇2

t − µ̇2
t )dt+ λ̇2

t µ̇
2
tdt = (1− λ̇2

t )dt.

Similarly the bracket of Mµ grows as (1− µ̇2
t )dt. The covariance term is given by

d〈Mλ,Mµ〉t = −λ̇tµ̇t(1− λ̇2
t )dt+ λ̇tµ̇t(1− λ̇2

t − µ̇2
t )dt− λ̇tµ̇t(1− µ̇2

t )dt = −λ̇tµ̇tdt,

as stated in Lemma 2.5.
Note that it corresponds to the diffusion term for the projection of a spherical

Brownian motion, as described in [10]. Indeed, as explained in the proof outline, the
only difference between A and a spherical Brownian motion is a drift term. Alternatively,
one can also study the trace and determinant of H, and deduce the process satisfied by
the eigenvalues, since they are the roots of the polynomial X2 − tr(H)X + det(H).
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3.7 The case d ≥ 3

We show that in this case, the vector field Φ(Λ, A) depends on the off-diagonal
elements of A. As stated in Lemma 2.4, this will show that (Λ, Λ̇) cannot be Markovian.
We will use the expression given in equation (2.8).

In dimension 3, it is a direct computation to see that for any Λ with distinct eigenval-
ues, the following two choices for A give different Φ(Λ, A)11, although they are equal on
the diagonal:

A =

0 1 0

1 0 0

0 0 0

 , Ã =

0 0 0

0 0 1

0 1 0

 .

In fact, one gets Φ(Λ, A)11 = 2/(Λ11−Λ22), whereas Φ(Λ, Ã)11 = 2/(Λ11−Λ33). In higher
dimension, chose A and Ã to be zero except on the top left 3× 3 minor, which is given by
the above expressions. Similar constructions show that this can also be achieved for Ã
arbitrarily close to any given (non-diagonal) A, so the issue is not local.
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