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Abstract

In this short note, we prove a central limit theorem for a type of replica overlap of the
Brownian directed polymer in a Gaussian random environment, in the low temperature
regime and in all dimensions. The proof relies on a superconcentration result for the
KPZ equation driven by a spatially mollified noise, which is inspired by the recent
work of Chatterjee [14].
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1 Introduction

1.1 Main result

Let η(t, x) be a spacetime white noise on R+×Rd, and φ ∈ C∞c (Rd) be a non-negative,
compactly supported, smooth function. Define the generalized Gaussian process ξ by

ξ(t, x) =

∫
Rd

φ(x− y)η(t, y)dy. (1.1)

So ξ is white in time with the spatial covariance function

R(x) =

∫
Rd

φ(x+ y)φ(y)dy, x ∈ Rd. (1.2)

Let B be a standard Brownian motion that is independent of η, starting from the origin.
We assume that B and η are defined on a common probability space (Ω,F ,P), and let E
and E denote the expectations with respect to B and η respectively.

The Brownian directed polymer in the random environment ξ was introduced in [36].
We briefly describe it as follows. For each realization of the noise ξ, fixed β > 0 and
T > 0, define the point-to-line polymer measure P̂T on C[0, T ] as the Wiener measure
tilted by the Radon-Nikodym derivative

eβ
∫ T
0
ξ(s,Bs)ds− 1

2β
2R(0)T

ZT
,
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Gaussian fluctuations of polymer overlaps

where ZT is the partition function

ZT = E[eβ
∫ T
0
ξ(s,Bs)ds− 1

2β
2R(0)T ]. (1.3)

The expectation with respect to the polymer measure P̂T is denoted by ÊT . In other
words, for any bounded F : C[0, T ]→ R, we have

ÊT [F (B)] = Z−1T E[eβ
∫ T
0
ξ(s,Bs)ds− 1

2β
2R(0)TF (B)].

For any t ≥ 0, define the overlap of the polymer endpoint at time t as

Ê⊗2t [R(B1(t)−B2(t))] = Z−2t E⊗2[eβ
∫ t
0
[ξ(s,B1(s))+ξ(s,B2(s))]ds−β2R(0)tR(B1(t)−B2(t))],

where B1, B2 are two independent copies of Brownian motions, and Ê⊗2t is the expecta-
tion with respect to P̂⊗2t .

For each T ≥ 0, we define the replica overlap up to time T as

OT =

∫ T

0

Ê⊗2t [R(B1(t)−B2(t))]dt, (1.4)

and we will consider the so-called low temperature regime. It is well-known that as
T →∞,

1

T
logZT → −γ(β) (1.5)

almost surely, where γ(β) ≥ 0 is some constant, see [36, Proposition 2.6]. The low
temperature regime is defined as the set of those β such that γ(β) > 0, see [16, Definition
2.1, p. 27]. Note that the partition function defined in (1.3) is normalized so that EZT ≡ 1,
therefore the γ(β) obtained above actually equals to the difference between the quenched
and annealed free energy.

It is a popular topic in the study of directed polymers to consider different notions
of strong and weak disorder regimes. For our model and under the assumption of
0 ≤ R(·) ∈ L1(Rd), we expect that the low temperature regime is {β > 0} in d = 1, 2 and
{β > βc} in d ≥ 3 for some critical βc > 0. Actually, it follows from [30, Theorem 1.3]
that the low temperature regime in d = 1 is {β > 0}. In d = 2, it was shown in [29] for a
discrete model that the low temperature regime in d = 2 is also {β > 0}, so it is natural
to expect that the same holds in our continuous setting, see a similar discussion in [30,
Remark 1.5]. Since this is not the focus of this note, we do not attempt to follow the
proof of [29] in the discrete setting to establish this for our model. The phase transition
in d ≥ 3 is well-known, see e.g. the work of [31].

By a semimartingale decomposition, see (2.1) and (2.4) below, we have

EOT = −2β−2E logZT ≈ 2β−2γ(β)T, for T � 1.

In other words, the mean of the replica overlap grows linearly in T , in the low tempera-
ture regime. Now we can state the main result, which is on the random fluctuations of
OT around EOT :

Theorem 1.1. In the low temperature regime, we have

1√
T

(
OT −EOT

)
⇒ N(0, 8γ(β)β−4)

in distribution, as T →∞.
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Gaussian fluctuations of polymer overlaps

1.2 Motivation

The directed polymer in random environment is a popular subject in probability and
statistical physics, and a prototype model in the study of disordered physical systems.
Here we will not attempt to review the large body of literature and only refer the readers
to the monograph [16], the introduction of [8] and the references therein. Our interest
in the replica overlap defined in (1.4) are twofold.

(i) Quantities of the form (1.4) are closely related to the localization phenomenon,
which has been extensively studied, see [17, 18, 19, 20, 8, 9, 15, 7, 37] and the references
therein. In the low temperature regime, OT grows linearly with T , which can already be
taken as a sign of localization. It shows that, in a time averaged sense, Ê⊗2t [R(B1(t)−
B2(t))] is strictly positive, which implies that, since R(·) is fast-decaying, the endpoints
of the two independent samples from P̂t must be “close to each other”. We refer to [16,
Chapter 5, page 76-77] for an interpretation of OT as a “replica overlap”. Another form
of replica overlap may be defined as

OT =

∫ T

0

Ê⊗2T [R(B1(t)−B2(t))]dt, (1.6)

where the average is taken with respect to a fixed Gibbs measure and is arguably more
natural. It is well-known that OT and OT appear in different contexts, one through Itô
calculus and the other through Malliavin calculus, see [17] for a nice discussion. Under
certain assumptions, one can also show that EOT grows linearly with T , see e.g. [17,
Proposition 2.3] and [7, Equation (1.7)] and the references cited there. See also [9]
for some relevant result along the line of concentration of OT /T . To us, it seems very
natural to consider the next order fluctuations, beyond the linear growth. The present
note studies the fluctuations of OT , which turns out to be Gaussian. We are curious
whether the same holds for OT . We present some further discussions on the implications
of our result in Section 4.

(ii) The free energy of the directed polymer is given by logZT , the fluctuations of
which are expected to be sub-diffusive in all dimensions. It is related to the solution to
the KPZ equation, driven by ξ and started from a constant initial data, see (3.3) below.
In d = 1, the fluctuation exponent for logZT is expected to be 1/3, which was proved
for several models in the 1+1 KPZ universality class, see e.g. [34, 2, 6, 11] and the
reviews [21, 33]. In dimensions higher than one, the exponent is unknown, while the
variance is again expected to grow sublinearly, which is the so-called superconcentration
in [13]. We will show in Theorem 2.3 that the variance of logZT , hence also the solution
to the KPZ equation, behaves sublinearly, as T � 1. Previous results on the same type of
superconcentration can be found in the recent paper [14] and the references therein.
To us, a somewhat natural way of deriving and quantifying the superconcentration
phenomenon is to express logZT using a semimartingale decomposition: since Z itself is
a positive martingale, we have logZT = MT− 1

2 〈M〉T , whereM is a continuous martingale
and 〈M〉 is its quadratic variation. It turns out that the overlap OT is just β−2〈M〉T , see
(2.2) below. A simple argument invoking (1.5) and the martingale central limit theorem
directly shows that MT /

√
T is asymptotically Gaussian, in the low temperature regime.

Therefore, the central limit theorem for (〈M〉T − E〈M〉T )/
√
T is actually a necessary

condition for the superconcentration of logZT − E logZT , and one would expect that
a detailed understanding of the Gaussianity coming from (〈M〉T − E〈M〉T )/

√
T could

help with quantifying the superconcentration phenomenon. This has been our original
motivation to study the fluctuations of OT = β−2〈M〉T . It turns out that 〈M〉T can be
written as an additive functional of a Markov process {ρ(t, ·)}t≥0, which takes values in
the space of probability measures onRd. For each t ≥ 0, ρ(t, ·) is the endpoint distribution
of the polymer path under P̂t, an object that has been extensively studied. In [27], we
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considered the problem on a torus, and showed that {ρ(t, ·)}t≥0 has a unique invariant
measure and converges exponentially fast to it in an appropriate Fortet-Mourier metric.
Then by solving the Poisson equation corresponding to the generator of the process and
performing another martingale decomposition, we showed that (〈M〉T − E〈M〉T )/

√
T

satisfies a central limit theorem. Nevertheless, when it is on a torus, the variance of
logZT grows linearly: Var logZT ∼ T , so there is no complete cancellation between MT

and 1
2 [〈M〉T −E〈M〉T ]. Some further attempts have been made in [25] to increase the

size of the torus with time and to quantify the superconcentration phenomenon in d = 1,
leading to optimal exponents in certain regimes, without covering the case of the whole
space though. We are curious if one can study the aforementioned additive functional
directly, by establishing a certain mixing property of the process {ρ(t, ·)}t≥0. At this
point, it is worth mentioning the recent works of [8, 12, 5], where the probability space
is compactified to study the evolution of the process {ρ(t, ·)}t≥0.

As mentioned previously, the proof of Theorem 1.1 relies on proving the superconcen-
tration of logZT . Similar results have been obtained in [1, 26, 13] for different models.
Our approach follows [14], and a crucial input is an estimate on the spatial variations
of the solution to the KPZ equation, see Proposition 3.2 below. This is a version of
the “subroughness” defined in [14], and provides an (sub-optimal) upper bound on the
fluctuations of the spatial increments of the solution to the KPZ equation, see Remark 3.3.
By the local averaging trick of Benjamini-Kalai-Schramm [10], the superconcentration
follows from Talagrand’s L1 − L2 bound, see [35] and [13, Chapter 5].

The rest of the note is organized as follows. In Section 2, we prove the main result
assuming the superconcentration of logZT , which is shown in Section 3. Some further
discussions are carried out in Section 4.

2 Proof of the main result

The partition function ZT defined in (1.3) is a positive martingale, and the following
semi-martingale decomposition of logZT is well-known:

logZT = MT −
1

2
〈M〉T . (2.1)

Here

MT =

∫ T

0

Z−1t dZt = β

∫ T

0

∫
Rd

ρ(t, y)ξ(t, y)dydt,

〈M〉T =

∫ T

0

Z−2t d〈Z〉t = β2

∫ T

0

∫
R2d

ρ(t, y)ρ(t, y′)R(y − y′)dydy′dt.
(2.2)

The ρ(t, ·) here is the endpoint density of the directed polymer under P̂t, i.e.,

ρ(t, x) = Z−1t E[eβ
∫ t
0
ξ(s,Bs)ds− 1

2β
2R(0)tδ(Bt − x)]. (2.3)

From (1.4) and (2.2), we know that

〈M〉T = β2OT . (2.4)

The proof of Theorem 1.1 relies on the following lemmas.

Lemma 2.1. 1
TMT → 0 in the L2-sense, as T →∞.

Proof. We have EM2
T = E〈M〉T = −2E logZT , so by [36, Proposition 2.5], we have

1

T 2
EM2

T = − 2

T 2
E logZT → 0

which completes the proof.
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Lemma 2.2. In the low temperature regime, as ε→ 0, we have

(εMT/ε2)T≥0 ⇒ (σWT )T≥0

in C[0,∞) with σ =
√

2γ(β) > 0, where W is a standard Brownian motion.

Proof. Since (εMT/ε2)T≥0 is a family of continuous, square integrable martingales, it
suffices to consider the quadratic variation. We write it explicitly:

ε2〈M〉T/ε2 = ε2β2

∫ T/ε2

0

dt

∫
R2d

ρ(t, y)ρ(t, y′)R(y − y′)dydy′.

First, by combining (1.5) and Lemma 2.1, we have

1

T
〈M〉T =

−2

T
(logZT −MT )→ 2γ(β)

in probability. Thus, we have the convergence of finite dimensional distributions of the
process (ε2〈M〉T/ε2)T≥0 as ε → 0. It remains to show the tightness. For any t ≥ s, we
have

ε2[〈M〉t/ε2 − 〈M〉s/ε2 ] = ε2β2

∫ t/ε2

s/ε2
d`

∫
R2d

ρ(`, y)ρ(`, y′)R(y − y′)dydy′.

Since R(x) ≤ R(0), we have ε2[〈M〉t/ε2−〈M〉s/ε2 ] ≤ β2R(0)(t−s), which implies tightness,
see e.g. [28, Theorem VI.4.12, p. 358]. The proof is complete.

The following result plays a crucial role in establishing the Gaussian fluctuations of
the replica-overlap.

Theorem 2.3. There exists C > 0 such that

Var logZT ≤
CT

log T
for T ≥ 2.

The proof of Theorem 2.3 is presented in Section 3. We first use it to complete the
proof of the main result.

Proof of Theorem 1.1. Thanks to (2.4) and (2.1) we can write

1√
T

(
OT −EOT

)
=

1

β2
√
T

(
〈M〉T −E〈M〉T

)
=
−2

β2
√
T

(
logZT −E logZT

)
+

2

β2
√
T
MT = I1 + I2.

By Theorem 2.3, we have I1 → 0 as T →∞. Applying Lemma 2.2, we have

I2 ⇒ N(0, 4σ2β−4),

with σ2 = 2γ(β), which completes the proof.

3 Superconcentration of KPZ

Suppose that u solves the stochastic heat equation driven by ξ, starting from constant,

∂tu =
1

2
∆u+ βuξ, t > 0, x ∈ Rd,

u(0, x) ≡ 1,
(3.1)
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and define h(t, x) = log u(t, x), which solves the KPZ equation

∂th =
1

2
∆h+

1

2
|∇h|2 + βξ − 1

2
β2R(0), t > 0, x ∈ Rd,

h(0, x) ≡ 0.
(3.2)

Recall that ξ is smooth in the spatial variable. Thus, for each t > 0 and fixed realization
of the noise, u(t, ·) and h(t, ·) are actually smooth functions, and the solutions here are
understood as strong solutions. The product between u and ξ in (3.1) is in the Itô sense.
Since ξ is stationary and the initial data is constant, it is straightforward to check that,
for each t > 0, {u(t, x)}x∈Rd is a stationary random field. Using the Feynman-Kac formula
and the invariance of the law of ξ under the time reversal transformation and spatial
shifts, we conclude that, for each t > 0, x ∈ Rd,

u(t, x)
law
= Zt. (3.3)

Therefore, Theorem 2.3 is equivalent with

Varh(t, x) ≤ Ct

log t
(3.4)

for some C > 0 independent of t ≥ 2. The sublinear growth of the variance is called
superconcentration [13], so our goal is to show that the height function, evolving accord-
ing to the KPZ equation, superconcentrates. Our proof is inspired by the recent work of
Chatterjee [14], in which he made the crucial observation that the superconcentration is
equivalent with what he called the “subroughness”.

3.1 Talagrand’s L1 − L2 bound

The first tool we need is the concentration inequality by Talagrand. Recall that ξ is
constructed from the space-time white noise η through a spatial convolution (1.1), where
φ is a smooth kernel. Let D denote the Malliavin derivative with respect to η, and define
H = L2(R+ ×Rd) and use 〈·, ·〉 to denote its inner product. For smooth random variable
X, which is measurable with respect to (η(s, y))s≥0,y∈Rd , we write

DX = (Ds,yX)s≥0,y∈Rd ,

which is an H−valued random variable. For any p ≥ 1, we use ‖ · ‖p to represent the
norm of Lp(Ω).

We will show that the Malliavin derivative of the KPZ solution h(t, x) (or the free
energy logZt) is explicitly related to the polymer density, see (3.10) below. This is not
surprising: for the discrete polymer model with the underlying random environment
given by i.i.d. random variables on the lattice, the derivative of logZt with respect to
the random variable at a given lattice point is precisely the probability of the polymer
path passing through that point. The only reason we use the language of Malliavin
calculus here is because our random environment is constructed from the spacetime
white noise. The usage will be minimal though – besides the following proposition which
has a well-known discrete counterpart, see [13, Theorem 5.1], we only need the following
fact in the proof of Lemma 3.5 below: if X =

∫∞
0

∫
Rd f(s, y)η(s, y)dyds for some f ∈ H,

then Ds,yX = f(s, y). For a detailed introduction to Malliavin calculus, we refer to [32,
Chapter 1].

Proposition 3.1. Assume X is a smooth random variable measurable with respect to
(η(s, y))s≥0,y∈Rd , and As,y is a function such that

‖Ds,yX‖2 ≤ As,y for all s ≥ 0, y ∈ Rd.
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Then, we have

VarX ≤ C
∫ ∞
0

∫
Rd

A2
s,y

1 + log
As,y

‖Ds,yX‖1

dyds, (3.5)

where C > 0 is a universal constant.

Proof. First, we have the following variance representation (see e.g. [23, Equation
(4.6)])

VarX =

∫ ∞
0

e−tE[〈DX,PtDX〉]dt,

where Pt is the Ornstein-Uhlenbeck semigroup, associated with η. Then we write the
inner product explicitly and interchange the order of integration:

E〈DX,PtDX〉 =

∫ ∞
0

∫
Rd

E[Ds,yXPtDs,yX]dyds.

This leads to

VarX =

∫ ∞
0

∫
Rd

(∫ ∞
0

e−tE[Ds,yXPtDs,yX]dt

)
dyds.

For each y, s, we claim that∫ ∞
0

e−tE[Ds,yXPtDs,yX]dt ≤ C
A2
s,y

1 + log
As,y

‖Ds,yX‖1

, (3.6)

from which the conclusion of the proposition follows. The proof of (3.6) now follows
verbatim [13, Proof of Theorem 5.1].

3.2 Spatial increments of KPZ

The goal of this section is to show the following version of “subroughness”, which
provides an upper bound on the spatial variations of the height function h(t, ·). Similar
estimates have been derived in [24, Lemma 5.3].

Proposition 3.2. We have

E|h(t, x)− h(t, y)|2 ≤ β2R(0)|x− y|2 for all t > 0, x, y ∈ Rd.

Proof. By the mild formulation of the KPZ equation (3.2), we have

h(t, x)=
1

2

∫ t

0

∫
Rd

qt−s(x− y)|∇h(s, y)|2dyds+ β

∫ t

0

∫
Rd

qt−s(x−y)ξ(s, y)dyds− 1

2
β2R(0)t.

Here qt(x) = (2πt)−d/2e−|x|
2/(2t) is the standard heat kernel.

Taking the expectation on both sides, we obtain

Eh(t, x) =
1

2

∫ t

0

∫
Rd

qt−s(x− y)E[|∇h(s, y)|2]dyds− 1

2
β2R(0)t

Since h(s, ·) is stationary in the x variable (for each s ≥ 0), we denote f(s) = E[|∇h(s, y)|2],
then the above identity becomes

Eh(t, x) =
1

2

∫ t

0

f(s)ds− 1

2
β2R(0)t. (3.7)

On the other hand, recalling (2.1), we have

Eh(t, x) = E logZt = −1

2
E〈M〉t = −1

2
β2

∫ t

0

g(s)ds, (3.8)
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where

g(s) :=

∫
R2d

E[ρ(s, y)ρ(s, y′)]R(y − y′)dydy′,

which is a non-negative, continuous function, bounded by R(0). Combining (3.7) and
(3.8), we have

β2R(0)t− β2

∫ t

0

g(s)ds =

∫ t

0

f(s)ds, t ≥ 0,

which implies that f(t) = β2[R(0) − g(t)]. In particular, we have 0 ≤ f(t) ≤ β2R(0). By
the second moment bound on ∇h(t, ·), we have

E|h(t, x)− h(t, y)|2 ≤ β2R(0)|x− y|2.

The proof is complete.

Remark 3.3. The estimate derived in Proposition 3.2 is sub-optimal for |x− y| � 1. For
example, in d = 1, it is expected that E|h(t, x)−h(t, y)|2 ∼ |x−y| in the stationary regime:
when ξ is a 1 + 1 spacetime white noise, the invariant measure for h is a two-sided
Brownian motion which attains such a bound. For a colored noise which decorrelates
sufficiently rapidly, there is an interesting conjecture in [3, Conjecture 3] along the same
line. The above proof does not exploit the spatial mixing property of ∇h(t, ·), thereby
leads to a sub-optimal estimate.

3.3 The Benjamini-Kalai-Schramm trick

In this section, we adapt the standard Benjamini-Kalai-Schramm trick [10] to complete
the proof of Theorem 2.3. From now on, we abuse the notations and also let ‖φ‖∞, ‖φ‖1
represent the L∞(Rd) and L1(Rd) norm of φ.

Let BM = [−M,M ]d be the box centered at the origin with M to be chosen later
(eventually to be large). Define

hM (t) =
1

|BM |

∫
BM

h(t, x)dx,

with |BM | = (2M)d. To estimate Var logZt = Varh(t, 0), we write h(t, 0) = h(t, 0) −
hM (t) + hM (t), and use the estimate

Var logZt ≤ 2Var[h(t, 0)− hM (t)] + 2Var[hM (t)]. (3.9)

Then Theorem 2.3 is a direct consequence of the following two lemmas.

Lemma 3.4. We have

Var[h(t, 0)− hM (t)] ≤ R(0)β2dM2 for all t, M > 0.

Lemma 3.5. We have

Var[hM (t)] ≤ 2Cβ2‖φ‖∞‖φ‖1t

2 + log
(

2d‖φ‖∞‖φ‖−11

)
+ d logM

for all t > 0, M ≥ 1,

where C is the constant appearing in Proposition 3.1.

Proof of Theorem 2.3. It suffices to apply the above two lemmas in (3.9) and pickM = tα,
where α ∈ (0, 1/2) can be arbitrary.
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Proof of Lemma 3.4. First, because h(t, ·) is stationary in the x variable, we have E[h(t,

0)− hM (t)] = 0. Hence, by triangle inequality we have

Var[h(t, 0)− hM (t)] = ‖h(t, 0)− hM (t)‖22 ≤
(

1

|BM |

∫
BM

‖h(t, 0)− h(t, x)‖2dx
)2

.

Applying Proposition 3.2, we have

Var[h(t, 0)− hM (t)] ≤ R(0)β2

(
1

|BM |

∫
BM

|x|dx
)2

≤ R(0)β2dM2.

Proof of Lemma 3.5. Recall that, by the Feynman-Kac formula we get the following
representation for the solution of (3.1):

u(t, x) = E
[

exp

{
β

∫ t

0

ξ(t− `, x+B`)d`−
1

2
β2R(0)t

}]
.

We write the exponent in the above display explicitly:∫ t

0

ξ(t− `, x+B`)d` =

∫ t

0

∫
Rd

φ(x+Bt−` − y)η(`, y)dyd`.

Fix a realization of the Brownian motion B, we have

Ds,y
(∫ t

0

ξ(t− `, x+B`)d`

)
= φ(x+Bt−s − y), s ∈ [0, t], y ∈ Rd.

From here by a standard argument we get the formula for the Malliavin derivative of
h(t, x), with respect to η:

Ds,yh(t, x) =Ds,y log u(t, x) = u(t, x)−1Ds,yu(t, x)

=
βE[eβ

∫ t
0
ξ(t−`,x+B`)d`φ(x+Bt−s − y)]

E[eβ
∫ t
0
ξ(t−`,x+B`)d`]

.
(3.10)

From the above expression, it is clear that

0 ≤ Ds,yh(t, x) ≤ β‖φ‖∞, (3.11)

and for all t > 0, x ∈ Rd and s ∈ [0, t], we have∫
Rd

Ds,yh(t, x)dy = β‖φ‖1. (3.12)

To apply Proposition 3.1, we first estimate Ds,yhM (t) = |BM |−1
∫
BM
Ds,yh(t, x)dx. By

the stationarity of h(t, ·) in the spatial variable and (3.12), we have

‖Ds,yhM (t)‖1 =
1

|BM |

∫
BM

‖Ds,yh(t, x)‖1dx

=
1

|BM |

∫
BM

‖Ds,y−xh(t, 0)‖1dx ≤
1

|BM |
β‖φ‖L1(Rd).

(3.13)

For the L2(Ω) norm, we have

E|Ds,yhM (t)|2 ≤ 1

|BM |

∫
BM

E|Ds,yh(t, x)|2dx.
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By (3.11), we further derive

E|Ds,yhM (t)|2 ≤ β‖φ‖∞
|BM |

∫
BM

EDs,yh(t, x)dx. (3.14)

Let

As,y :=

{
β‖φ‖∞
|BM |

∫
BM

EDs,yh(t, x)dx

}1/2

By (3.14) we have ‖Ds,yhM (t)‖2 ≤ As,y.
Applying Proposition 3.1, we have

VarhM (t) ≤ C
∫ t

0

∫
Rd

A2
s,y

1 + log
As,y

‖Ds,yhM (t)‖1

dyds.

By (3.13), we have

As,y
‖Ds,yhM (t)‖1

=
As,y

1
|BM |

∫
BM
‖Ds,yh(t, x)‖1dx

=

{
β‖φ‖∞|BM |∫

BM
‖Ds,yh(t, x)‖1dx

}1/2

≥
√
‖φ‖∞‖φ‖−11 |BM |.

This, in turn implies

VarhM (t) ≤ C

1 + 1
2 log

(
‖φ‖∞‖φ‖−11 |BM |

) ∫ t

0

∫
Rd

A2
s,ydyds.

On the other hand, from the definition of As,y, we have∫ t

0

∫
Rd

A2
s,ydsdy =β‖φ‖∞|BM |−1

∫ t

0

∫
Rd

(∫
BM

‖Ds,yh(t, x)‖1dx
)
dyds

=β‖φ‖∞|BM |−1
∫ t

0

∫
Rd

(∫
BM

‖Ds,y−xh(t, 0)‖1dx
)
dyds = β2‖φ‖∞‖φ‖1t,

where in the last “=” we have used (3.12). The proof is complete.

4 Further discussion

The approach here should also apply to other polymer models, including the ones
in the discrete setting and the one with a 1 + 1 spacetime white noise. A challenging
problem is to study the other overlap OT defined in (1.6), and perhaps a more modest
question is actually to provide a different proof of Theorem 1.1, without using the
superconcentration of logZT . In particular, one would like to understand that, in the
following expression,

OT =

∫ T

0

R(ρ(t, ·))dt, with R(f) :=

∫
R2d

f(y)f(y′)R(y − y′)dydy′,

where the mixing comes from and how it leads to the Gaussian fluctuations of OT −EOT .
Recall that ρ was defined in (2.3) and is the endpoint distribution of the directed polymer
of length t. In a recent preprint [22], for the continuum directed polymer in the 1 + 1

spacetime white noise, the following result was derived: for each t > 0, the random
density ρ(t, ·) has a unique mode, denoted by xt, and after a shift by xt, the following
weak convergence on C(R) holds:

{ρ(t, xt + x)}x∈R ⇒
{

e−B(x)∫
R
e−B(x′)dx′

}
x∈R

, as t→∞. (4.1)
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Here B is a two-sided 3d-Bessel process with diffusion coefficient 1, see [22, Theorem
1.5] for more details. It is clear that R(ρ(t, ·)) = R(ρ(t, xt + ·)), so, in light of (4.1), one
may expect that R(ρ(t, ·)) converges in distribution as t→∞, and for large t, R(ρ(t, ·))
mostly depends on the recent history of the random environment. This type of evidence
of mixing is consistent with our result.

On the other hand, we expect that for any two initial distributions µj , j = 1, 2 of
densities ρj(0, ·), the respective processes ρj(t, ·) satisfy

E

∫
Rd

|ρ1(t, x)− ρ2(t, x)|dx→ 0, as t→∞.

This is closely related to [4, Theorem 4.4] which deals with a stationary version of the
polymer measure in 1 + 1 dimension. To study the mixing property of {ρ(t, ·)}t≥0, or
more precisely, the randomly shifted one such as {ρ(t, xt + ·)}t≥0 in (4.1), or the overlap
process {R(ρ(t, ·))}t≥0 which factors out the spatial shift, is an important question, the
answer to which we believe is closely related to the localization behaviors of the polymer
paths.
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