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Abstract

Reinforced processes are known to provide a stochastic representation for the quasi-
stationary distribution of a given killed Markov process – describing the killed Markov
process at fixed time instants. In this paper we shall adapt the construction to
provide a pathwise description. We also obtain a stochastic approximation for the
quasi-limiting distributions of reducible killed Markov processes as a corollary.
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1 Introduction

We consider in discrete time a killed Markov process (Xt)0≤t<τ∂ on the state space
χ ∪ ∂, evolving in χ until the killing time τ∂ = inf{t > 0 : Xt ∈ ∂}, after which time it
remains in the cemetery state (we assume without loss of generality that ∂ is a one-point
set). Note that whilst we specify that time is discrete, the results of this paper may be
applied in continuous time by discretising time.

In general, one is interested in the law of the killed Markov process (with initial
condition X0 ∼ µ ∈ P(χ)) conditioned on survival,

Lµ(Xt|τ∂ > t),

and the long-time limits of this law,

Lµ(Xt|τ∂ > t)(·)→ π(·) as t→∞.

A general criterion for the existence and uniqueness of these limits is given by [6,
Assumption (A)]. In general, these limits correspond to quasi-stationary distributions
(QSDs) π, which satisfy

Lπ(Xt|τ∂ > t)(·) = π(·) for all 0 ≤ t <∞.

Aldous, Flannery and Palacios [1] introduced a method for simulating QSDs based on
reinforced processes. The reinforced process, (Yt)0≤t<∞, is obtained by running a copy
of Xt until it is killed,

(Yt)0≤t<τ∂ = (Xt)0≤t<τ∂ . (1.1)
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Approximation of the paths of killed Markov processes

At this killing time, Yt jumps to a point sampled independently from the empirical
measure of the history,

Yτ∂ ∼
1

τ∂

τ∂−1∑
s=0

δYs(·). (1.2)

This is then repeated inductively, so that at the nth killing time τn∂ , Yt jumps to a point
sampled independently from the empirical measure of the history of Yt up to that killing
time,

Yτn∂ ∼
1

τn∂

τn∂ −1∑
s=0

δYs(·)ds, (1.3)

and continues evolving like a copy of Xt as before. In [1] they established that these
provide an approximation method for the QSDs of irreducible killed Markov chains when
the state space is finite and time is discrete, proving that

1

t

t−1∑
s=0

δYs(·)ds
a.s.→ π(·) as t→∞. (1.4)

This was made quantitative for a more general version of this algorithm by Benaim and
Cloez [3], and has since been extended to a quite general setting in [7] and [2]. These
results do not, however, apply to reducible killed Markov processes. We shall obtain in
Corollary 2.4 a stochastic approximation for the quasi-limiting distributions of reducible
killed Markov processes for given initial condition as a corollary of our main result,
Theorem 2.3.

Note, however, that QSDs only describe killed Markov processes at fixed time instants.
One may also be interested in obtaining pathwise information, so we may seek to
approximate

Lµ((Xs)0≤s≤t|τ∂ > t)(·)

for finite t. In this note, we shall demonstrate how the construction of reinforced
processes may be adapted to provide such a pathwise approximation. Since our result
(Theorem 2.3) is restricted to discrete time, for continuous time processes we obtain (for
any m <∞) an approximation for

Lµ((X0, X t
m
, X 2t

m
, . . . , Xt)|τ∂ > t).

One may also consider the Q-process, which provides a pathwise description of
(Xt)0≤t<τ∂ conditioned never to be killed, a definition of which is given in [6, Theorem
3.1].

A second method for approximating QSDs is given by the Fleming-Viot process, a
particle system introduced by Burdzy, Holyst and March in [5]. They considered the case
whereby the killed Markov process is Brownian motion in an open, bounded domain,
killed instantaneously upon contact with the boundary. They established in [5] that this
particle system provides an approximation method for both the distribution of this killed
Brownian motion conditioned on survival at fixed instants of time, and the corresponding
QSD. This was later extended to a general setting by Villemonais [9]. In [4], Bieniek and
Burdzy established that the Fleming-Viot process also provides for the distribution of the
path of a killed Markov process conditioned to survive over a fixed time interval. Since
then, the present author established in [8, Corollary 5.1] that the Fleming-Viot process
also provides a representation for the Q-process when the killed Markov process is a
normally reflected diffusion in a compact domain, killed at position-dependent Poisson
rate (this result may be extended to a more general setting, subject to overcoming an
additional difficulty if the state space is non-compact).
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Approximation of the paths of killed Markov processes

Thus, whilst both reinforced processes and the Fleming-Viot process are known to
provide an approximation method for the QSDs of killed Markov processes – thereby
describing killed Markov processes at fixed time instants – prior to the present paper only
the Fleming-Viot process was known to provide a pathwise description. In the present
paper, we shall show how the construction of reinforced processes may be adapted to
provide such a pathwise description.

Whereas reinforced processes are constructed by sampling a spatial location from the
history, we adapt this construction by sampling both the spatial and temporal location (or,
with some probability, sampling a killed Markov process started from some fixed initial
distribution at time 0 instead). We refer to the resultant constructions as reinforced path
processes. A more precise definition is given by the following.

Throughout this paper we abuse notation by writing [a, b] for [a, b]∩N, for all a, b ∈ N.
For paths f and g on the time intervals I and J respectively such that f = g on I ∩ J , we
define

f ⊕ g : I ∪ J 3 t 7→

{
f(t), t ∈ I
g(t), t ∈ J

. (1.5)

Definition 1.1 (Reinforced Path Process). We fix a time horizon 0 < T ≤ ∞, a renewal
probability 0 < p < 1 and initial condition µ ∈ P(χ). The reinforced path process (un)∞n=1

is defined by inductively sampling triples un = (tnb , f
n, tnd ), whereby tnb is the nth birth

time, tnd is the nth killing time, and fn is the nth path from time 0 to time tnd . Whilst un is
considered to be “alive” only between times tnb and tnd , its path fn is defined prior to time
tnb – it includes an “ancestral path”. The first triple u1 = (t1b , f

1, t1d) is defined by taking a
copy (Xt)0≤t<τ∂ of the killed Markov process with initial condition X0 ∼ µ, and defining
u1 = (t1b , f

1, t1d) to be (0, (Xt∧(τ∂−1))0≤t≤T , τ∂ ∧ (T + 1)).
Given u1, . . . , un we inductively define un+1 = (tn+1

b , fn+1, tn+1
d ) as follows. With

probability p, we take another independent copy (Xt)0≤t<τ∂ of the killed Markov pro-
cess with initial condition X0 ∼ µ, and define un+1 = (tn+1

b , fn+1, tn+1
d ) to be (0,

(Xt∧(τ∂−1))0≤t≤T , τ∂ ∧ (T + 1)), in which case we say that we “renew”. Otherwise, with
probability 1− p, we choose m ∈ [1, n] independently with probability

tmd − tmb∑
1≤`≤n(t`d − t`b)

.

Given our choice of m, we then choose t′ ∈ [tmb , t
m
d − 1] independently at random. Given

the choice of m and t′, we independently take (Xt)0≤t<τ∂ to be a copy of the killed
Markov process with initial condition X0 = fm(t′), and set

un+1 = (tn+1
b , fn+1, tn+1

d ) := (t′, fm|[0,t′] ⊕ (X(t−t′)∧(τ∂−1))t′≤t≤T , (t
′ + τ∂) ∧ (T + 1)).

Clearly, one may formulate the same construction in continuous time, but in this
paper we shall only consider discrete time. We depict the reinforced path process
corresponding to Brownian motion killed at the boundary of a bounded interval in
Figure 1.

Structure of the paper

We will provide a statement of Theorem 2.3 in Section 2, which establishes that
reinforced path processes provide an approximation for Lµ((Xs)0≤s≤t|τ∂ > t)(·), thus
giving a pathwise description of killed Markov processes conditioned on survival. We
will then use this in Corollary 2.4 to provide an approximation for the quasi-limiting
distributions of reducible killed Markov processes.

We provide a proof of Theorem 2.3 in Section 3.
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Figure 1: The killed Markov process here is Brownian motion in (−1, 1), killed instanta-
neously at {−1, 1}. The third and fourth iteration are shown above, with the first, second,
third and fourth paths in green, blue, red and black respectively. We may see that in the
second and third iteration we sample from the history, whilst with the fourth we begin
a new particle from time 0 - we renew. While each path is considered to be alive only
between the time it is born (the sampled time) and the time it is killed at the boundary, it
also carries with it information of its ancestral path from time 0 to the time it is born.
Thus the three paths corresponding to time 2 after 4 iterations are shown below (the first
path is not alive at time 2), with the path while they are alive in blue and the ancestral
path before they are born in green.

2 Statement of results

For any topological space T , we writeM(T ) and P(T ) for the set of Borel measures
(respectively Borel probability measures) on T , equipped with the topology of weak
convergence of measures.

We assume that (χ, d) is a metric space. We define K : χ→M(χ) to be a submarko-
vian transition kernel, which defines the discrete-time killed Markov process (Xt)0≤t<τ∂ .
We fix an initial condition µ ∈ P(χ), (possibly infinite) time horizon T ∈ N ∪ {∞} and re-
newal probability 0 < p ≤ 1. We take a reinforced path process (un)∞n=1 = ((tnb , f

n, tnd ))∞n=1

– that is a solution to Definition 1.1 – corresponding to these choices.
We write χ̄ for the completion of χ. We define Cb(χ), C0(χ̄) and C0(χ) to be the space

of bounded, continuous functions on χ (respectively continuous functions on χ̄ which
vanish on ∂χ := χ̄ \ χ, and the restriction to χ of elements of C0(χ̄)), all equipped with
the uniform norm.

We impose the following assumption.

Assumption 2.1. The completion χ̄ is compact. Moreover we assume that (χ 3 x 7→
Kf(x) := K(x, f)) ∈ C0(χ) for all f ∈ Cb(χ). Furthermore if T < ∞ we assume that
Pµ(τ∂ > T ) > 0, whilst if T =∞ we assume that Pµ(τ∂ > t) > 0 for all t <∞.

Thus K defines a contraction operator

K : χ 3 x 7→ Kf(x) := K(x, f) ∈ C0(χ) ⊆ Cb(χ)

with spectral radius r(K). If T =∞ then we impose the following additional assumption.

Assumption 2.2. The operator K : Cb(χ)→ Cb(χ) is compact, and Px(τ∂ =∞) = 0 for
all x ∈ χ.

Note that if χ̄ weren’t compact, we would need to impose a Lyapunov condition (see
Page 9), which in this context would be complicated and likely hard to verify. Moreover
it wouldn’t be typical for K to be compact, so Assumption 2.2 would have to be replaced.
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Approximation of the paths of killed Markov processes

Theorem 2.3. There exists a unique solution, Z, to

z = p

T∑
s=0

Pµ(τ∂ > s)
[
1− 1− p

z

]−(s+1)

, z ∈ [1,∞). (2.1)

We define the coefficients (γt)0≤t≤T (or (γt)0≤t<∞ if T =∞) to be

γt := pPµ(τ∂ > t)
[
1− 1− p

Z

]−(t+1)

, (2.2)

whereby Z is the unique solution to (2.1). Then for any t ∈ [0, T ] (or t ∈ N if T =∞) we
have

1

N

N∑
n=1

1(tnb ≤ t < tnd )δfn
[0,t]

(·) M(F ([0,t];χ))→ γtLµ((Xs)0≤s≤t|τ∂ > t)(·) a.s. as N →∞.

(2.3)

Note that if we have a continuous-time killed Markov process (Xt)0≤t<τ∂ , Theorem 2.3
can be applied to obtain, for any m ∈ N>0 and t ∈ R>0, a stochastic approximation for

Lµ((X0, X t
m
, X 2t

m
, . . . , Xt)|τ∂ > t).

Choosing p

We ask how p should be chosen, firstly considering the case whereby T < ∞. We
assume that the killed Markov process satisfies the consequence of [10, Theorem 2.1].
Thus we assume that there exists a right eigenfunction φ, positive and bounded on χ,
such that

r(K)−tPµ(τ∂ > t)→ µ(φ) exponentially quickly, uniformly over all µ ∈ P(χ). (2.4)

Note that if γT is small, then by considering the mass on both sides of (2.3) we see
that for large n a small proportion of the uns will be alive at time T , leading to a large
variance. If, on the other hand, γt is small for some t < T , then all fns at time T will
share a small number of ancestral paths at time t, leading to a large variance. Thus
it is reasonable that we should seek to maximise min0≤t≤T γt. Therefore by (2.4) it is
reasonable to choose p such that

1− 1− p
Z

= r(K). (2.5)

Straightforward algebra shows that this is achieved by

p = [1+(1−r(K))

T∑
s=0

Pµ(τ∂ > s)r(K)−(s+1)]−1 =
r(K)

(1− r(K))µ(φ)T
+OT→∞

( 1

T 2

)
. (2.6)

We now turn to the T =∞ case. We seek to maximise mint≤H γt, for some large time
horizon H < ∞. We have that Ex[τ∂ ] is uniformly bounded by (2.4), giving a uniform
bound on Z by considering the mass on both sides of (2.3). Thus mint≤H γt = OH→∞( 1

H ).
We try

1− 1− p
Z

= r(K)e
A
H , for some A > 0, (2.7)

since (2.5) would give Z = ∞. We solve for p(H), obtaining mint≤H γt ≥ cAe−A

µ(φ)H(1−r(K))

for some constant c > 0, the optimal scaling in H. Thus we choose A = 1, corresponding
to

p(H) =
r(K)

(1− r(K))µ(φ)H
+OH→∞

( 1

H2

)
. (2.8)
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Approximation of the paths of killed Markov processes

Approximation of the QLDs of reducible killed Markov processes

If a killed Markov process is reducible, even if the state space is finite, it is an open
problem to determine which QSDs (if any at all) will be obtained from the reinforced
processes (Yt)0≤t<∞ described in the introduction, by taking the limit (1.4). We suppose
that for some µ, π ∈ P(χ) we have

Lµ(Xt|τ∂ > t)→ π(·) as t→∞.

We also impose Assumptions 2.1 and 2.2. The following corollary, which came from
a discussion of the author with Michel Benaïm, allows us to obtain the quasi-limiting
distribution π(·). We construct for 0 < p ≤ 1 a reinforced process with renewal (Y pt )0≤t<∞
as follows. We firstly take a copy of the killed Markov process (Xt)0≤t<τ∂ with initial
condition X0 ∼ µ, and define (Y pt )0≤t<τ∂ as in (1.1). At this killing time, with probability
p we “renew”, sampling

Y pτ∂ ∼ µ(·). (2.9)

Otherwise, with probability 1− p, we sample from the empirical measure of the history,

Y pτ∂ ∼
1

τ∂

τ∂−1∑
t=0

δY pt (·), (2.10)

as in (1.2). The process Y pt then continues evolving like a copy of (Xt)0≤t<τ∂ up to its
next killing time. This is then repeated inductively, so that at each killing time we sample
from µ with probability p, otherwise sampling from the empirical measure of the history
as in (1.3). We are then able to obtain the quasi-limiting distribution π(·) from (Y pt )0≤t<∞,
for small 0 < p� 1.

Corollary 2.4. For given 0 < p ≤ 1 we let Zp be the unique solution to (2.1) for T =∞
and (γpt )0≤t<∞ be the coefficients thereby defined in (2.2). Then we have

1

t

t−1∑
s=0

δY ps (·) a.s.→ πp(·) as t→∞, (2.11)

whereby

πp(·) :=

∞∑
t=0

γpt
Zp
Lµ(Xt|τ∂ > t)(·)→ π(·) as p→ 0. (2.12)

3 Proof of Theorem 2.3

We recall that χ̄ is the completion of χ, which by assumption is compact. We extend
K to χ̄ by setting K(x, ·) = 0 for x ∈ ∂χ = χ̄ \ χ, labelling this extended submarkovian
kernel as K by abuse of notation. For (discrete and finite) time intervals [t1, t2] ⊆ N, we
write F ([t1, t2]; χ̄) for the set of functions [t1, t2]→ χ̄, which we equip with the uniform
metric

dF ;[t1,t2](f, g) := sup
t∈[t1,t2]

d(f(t), g(t)).

We defer for later the proof of the following proposition.

Proposition 3.1. There exists a unique solution, Z, to (2.1).

We will establish convergence by formulating the reinforced path process as an urn
process, and applying [7, Theorem 1]. We use the terminology given in [7, Section 1.1]
throughout.

To identify the limit as being of the desired form, the following observation shall
be crucial. We fix 0 ≤ t1 ≤ t2. Take (Yu)0≤u≤t1 and (Zu)t1≤u≤t2 such that (Yu)0≤u≤t1 ∼
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Lµ((Xu)0≤u≤t1 |τ∂ > t1) and, conditionally on (Yu)0≤u≤t1 , (Zu)t1≤u≤t2∼LYt1 ((Xu−t1)t1≤u≤t2).
Then we have

Y ⊕ Z ∼ Lµ((Xu)0≤u≤t2 |τ∂ > t1). (3.1)

The urn process formulation

We must distinguish between the T <∞ and T =∞ cases. If T =∞ we fix arbitrary
T̄ ∈ N and define ∗ to be a point distinguished from N. We define

Et := {t} × F ([0, t]; χ̄) for all t ∈ N, E∗ := {∗} × χ̄.

We then define

E := ∪t∈[0,T ]Et if T <∞, E := ∪t∈[0,T ]Et ∪ E∗ if T =∞,

which we equip with the metric dE defined by

dE((t, f), (s, g)) :=


1, t 6= s

1 ∧ dF ;[0,t](f, g), t = s ≤ T
1 ∧ d(f, g), t = s = ∗

,

under which E is a compact metric space. We recall that (un)∞n=1 = ((tnb , f
n, tnd ))∞n=1 is

our reinforced path process. We define

mN (·) :=

N∑
n=1

vn(·) ∈M(E) whereby

vn(·) :=


∑tnd−1
t=tnb

1(t ≤ T )δ(t,fn|[0,t] )
(·), T <∞∑tnd−1

t=tnb

(
1(t ≤ T̄ )δ(t,fn|[0,t] )

(·) + 1(t > T̄ )δ(∗,fn(t))(·)
)
, T =∞

.

If T <∞, we define Γ = T + 1. If T =∞, on the other hand, then ({x ∈ χ : Kt1(x) =

1})∞t=1 is a descending sequence of compact sets, whose intersection must be empty by
Assumption 2.2. Therefore ||Kt||op = supx∈χK

t1(x) < 1 for some t <∞ large enough, so
that the spectral radius of K, r(K), is less than 1. Thus

lim sup
t→∞

(sup
x∈χ

Px(τ∂ > t))
1
t = lim sup

t→∞
(||Kt||op)

1
t = r(K) < 1, (3.2)

so that supx∈χEx[τ∂ ] < ∞. Therefore we may define Γ := 1 + supx∈χEx[τ∂ ] in the case
that T =∞.

We observe that (mN )N≥1 is a measure-valued Polya process with:

• Initial composition

m1 :=

{∑τ∂−1
t=0 δ(t,(Xµs )0≤s≤t)∑τ∂−1
t=0

(
δ(t,(Xµs )0≤s≤t)1(t ≤ T̄ ) + δ(∗,Xµt )1(t > T̄ )

) ,

whereby (Xµ
t )0≤t<τ∂ is an independent copy of the killed Markov process with

submarkovian transition kernel K and initial condition Xµ
0 ∼ µ.

• Independent and identically distributed random replacement kernels

E 3 (t, f) 7→ R(n)((t, f); .) ∈M(E), 1 ≤ n <∞,

defined as follows. We take for each n, independently of each other and everything
else, a Bernoulli random variable B ∼ Ber(p), a copy (Xµ

t )0≤t<τ∂ of the killed

ECP 27 (2022), paper 35.
Page 7/13

https://www.imstat.org/ecp

https://doi.org/10.1214/22-ECP475
https://imstat.org/journals-and-publications/electronic-communications-in-probability/


Approximation of the paths of killed Markov processes

Markov process with submarkovian transition kernel K and initial condition X0 ∼ µ,
and a family of copies {(Xx

t )0≤t<τ∂ : x ∈ χ} of the same killed Markov process with
initial conditions Xx

0 = x. Note that this last definition makes sense since there
exists a probability space (Ω,P) and a measurable function F : (χ̄ t ∂)×Ω→ χ̄ t ∂
such that for all x ∈ χ̄ t ∂,

Xx : Ω 3 ω 7→ F (x, ω)

is a random variable with distribution Xx ∼ K(x, ·).
When T <∞ we define the random kernel

R(n)((t, f); ·) :=

{∑τ∂−1
s=0 1(s ≤ T )δ(s,(Xµu )0≤u≤s)(·), B = 1∑τ∂−1
s=0 1(t+ s ≤ T )δ

(t+s,f⊕(X
f(t)
u−t)t≤u≤t+s)

(·), B = 0
.

We adopt the convention that ∗+ s := ∗ > T̄ for s ∈ N and f(∗) := f for (∗, f) ∈ E∗.
When T =∞ we define the random kernel R(n) as

R(n)((t, f); ·) :=


∑τ∂−1
s=0

[
1(s ≤ T̄ )δ(s,(Xµu )0≤u≤s)(·) + 1(s > T̄ )δ(∗,Xs)

]
, B = 1∑τ∂−1

s=0

[
1(t+ s ≤ T̄ )δ

(t+s,f⊕(X
f(t)
u−t)t≤u≤t+s)

(·)

+1(t+ s > T̄ )δ
(∗,Xf(t)s )

]
, B = 0

.

These random kernels R(n) have common expectation given by the (deterministic)
kernel R : E →M(E), which in the T <∞ case is given by

R((t, f); ·) := E[R(n)((t, f); ·)] = p

T∑
s=0

Lµ((s, (Xu)0≤u≤s)|τ∂ > s)(·)Pµ(τ∂ > s)

+ (1− p)
T−t∑
s=0

Lf(t)((t+ s, f ⊕ (Xu−t)t≤u≤t+s)|τ∂ > s)(·)Pf(t)(τ∂ > s).

In the T =∞ case the kernel R : E →M(E) is given by

R((t, f); ·) := E[R(n)((t, f); ·)] = p

∞∑
s=0

[
1(s > T̄ )Lµ((∗, Xs)|τ∂ > s)(·)Pµ(τ∂ > s)

+ 1(s ≤ T̄ )Lµ((s, (Xu)0≤u≤s)|τ∂ > s)(·)Pµ(τ∂ > s)
]

+ (1− p)
∞∑
s=0

[
1(t+ s > T̄ )Lf(t)((∗, Xs)|τ∂ > s)(·)Pf(t)(τ∂ > s)

+ 1(t+ s ≤ T̄ )Lf(t)((t+ s, f ⊕ (Xu−t)t≤u≤t+s)|τ∂ > s)(·)Pf(t)(τ∂ > s)
]
.

• Non-negative weight kernel

P : E 3 (t, f) 7→ 1

Γ
δ(t,f)(·) ∈M(E). (3.3)

We therefore define the (random) kernels Q(n) and (deterministic) kernel Q as

Q(n)((t, f), ·) :=

∫
E

P (z; ·)R(n)((t, f); dz) =
1

Γ
R(n)((t, f); ·), Q((t, f), ·) :=

1

Γ
R((t, f); ·).

(3.4)
We claim that mN satisfies Assumptions [7, T>0, (A1)-(A4)]. It is immediate from

the definition of R(n)((t, f), ·) that Assumption [7, T>0] is satisfied. We observe, by
considering only the component of the kernel R corresponding to “renewals”, that

0 < c1 :=
pEµ[τ∂ ∧ T ]

Γ
≤ Q((t, f), E) ≤ 1 for all (t, f) ∈ E.
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Approximation of the paths of killed Markov processes

Assumption [7, (A1)] is therefore satisfied with this c1.
Since χ̄ is compact, E is compact, so that Assumptions [7, (A2), (i) and (ii)] are

satisfied with V ≡ 1, θ = c1
2 and K = 1. Note that if χ̄ were not compact, E would not

be compact, so that rather than being trivial, the existence of the Lyapunov function V
would need to be an additional theorem assumption. For Assumption [7, (A2), (iii)], we
take r = p̃ sufficiently large (p̃ being the p of [7, (A2), (iii)]). By considering the mass of
R(1)((t, f), ·) = ΓQ(1)((t, f), ·), we observe that it suffices to prove that Lx(τ∂ ∧ (T + 1))

has uniformly (over all x ∈ χ) bounded rth moment. If T <∞ this is trivial, whereas if
T =∞ this is implied by (3.2).

Assumption 2.1 implies that χ̄ 3 x 7→ K(x, ·) ∈M(χ̄) is continuous, so we see that

F ([0, t]; χ̄) 3 f 7→ Lf(t)(f ⊕ (Xu−t)t≤u≤s|τ∂ > s)Pf(t)(τ∂ > s) ∈M(F ([0, s]; χ̄))

is continuous for all t ≤ s. This then implies Assumption [7, (A4)], by summing over s ≥ t.
We must therefore verify [7, Assumption (A3)], that is we must establish the following

proposition.

Proposition 3.2. The E-valued continuous-time killed Markov process (Y ct )t<τY c∂
with

submarkovian infinitesimal generator Q− Id converges uniformly to quasi-equilibrium.

We defer for later the proof of Proposition 3.2.

Identifying the limit

Thus (Y ct )t<τY c∂
admits a unique QSD, η. Since we have verified Assumption [7, (A3)],

we may invoke [7, Theorem 1], giving that

mN

N
(·) M(E)→ ηR(·) almost surely. (3.5)

Since QSDs of (Yt)t<τY∂ correspond to solutions of

α(·) =
αQ(·)
αQ(E)

=
αR(·)
αR(E)

, α ∈ P(E), (3.6)

η is the unique solution to (3.6).
We assume for the time being that T <∞ and write

η̃(·) :=

T∑
t=0

γt
Z
Lµ((t, (Xs)0≤s≤t)|τ∂ > t) ∈ P(E). (3.7)

We use (3.1) and straightforward algebra to calculate

η̃R(·) = p

T∑
s=0

Pµ(τ∂ > s)Lµ((s, (Xu)0≤u≤s)|τ∂ > s) + (1− p)
T∑
s=0

T∑
t=0

1(s ≥ t)γt
Z∫

F ([0,t])

Lf(t)((s, f ⊕ (Xu−t)t≤u≤s)|τ∂ > s)(·)Pf(t)(τ∂ > s)dLµ((Xu)0≤u≤t|τ∂ > t)(df)

(3.1)
= p

T∑
s=0

Pµ(τ∂ > s)Lµ((s, (Xu)0≤u≤s)|τ∂ > s)

+ (1− p)
T∑
s=0

T∑
t=0

1(s ≥ t)γt
Z
Pµ(τ∂ > s|τ∂ > t)Lµ((s, (Xu)0≤u≤s)|τ∂ > s)(·)

=

T∑
s=0

pPµ(τ∂ > s)
[
1 +

1− p
Z

s∑
t=0

(
1− 1− p

Z

)−(t+1)]
Lµ((s, (Xu)0≤u≤s)|τ∂ > s)(·)

=

T∑
s=0

pPµ(τ∂ > s)
[
1− 1− p

Z

]−(s+1)

Lµ((s, (Xu)0≤u≤s)|τ∂ > s)(·) = Zη̃(·)
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Therefore η̃(·) is the solution to (3.6), hence η = η̃. Therefore

ηR(·) = Zη̃(·) =

T∑
t=0

γtLµ((t, (Xu)0≤u≤t)|τ∂ > t).

Combining this with (3.5) we have

1

N

N∑
n=1

1(tnb ≤ t < tnd )δfn
[0,t]

(·) M(F ([0,t];χ̄))→ γtLµ((Xs)0≤s≤t|τ∂ > t)(·) a.s. as N →∞.

(3.8)
Note that convergence inM(F ([0, t]; χ̄)) of measures supported on F ([0, t];χ) to a mea-
sure supported on F ([0, t];χ) implies convergence inM(F ([0, t];χ)) (this is easy to prove
using the Portmanteau theorem). Since both sides of (3.8) are supported on F ([0, t];χ),
we have (2.3) in the T <∞ case. In the T =∞ case we consider

η̃(·) :=

T̄∑
t=0

γt
Z
Lµ((t, (Xu)0≤u≤t|τ∂ > t)(·) +

∞∑
t=T̄+1

γt
Z
Lµ(Xt|τ∂ > t)(·),

and repeat the above calculation to obtain (2.3) for all t ≤ T̄ . Since T̄ ∈ N was arbitrary,
we have (2.3) for all t ∈ N.

We have left only to prove Propositions 3.1 and 3.2. We begin with Proposition 3.2.

Proof of Proposition 3.2

We seek to check that (Y ct )t<τY c∂
satisfies [6, (A1) and (A2)], which implies Propo-

sition 3.2 by [6, Theorem 2.1]. The former is immediate. We have left to check [6,
(A2)].

We claim that it is sufficient to show that the E-valued discrete-time killed Markov
process (Yn)n<τY∂ with submarkovian kernel Q satisfies [6, (A1) and (A2)]. To see this,
note that Q would then have a bounded non-negative right-eigenfunction as given by
[6, Proposition 2.3], which must then be a bounded non-negative right-eigenfunction for
Q− Id. Furthermore, since (Y ct )t<τY c∂

satisfies [6, (A1)], this may then be combined with
the existence of the bounded, non-negative right eigenfunction to see that (Y ct )t<τY c∂
satisfies [6, (A2)].

Thus it is sufficient to check that (Yn)n<τY∂ satisfies [6, (A1) and (A2)]. It is trivial that
it satisfies [6, (A1)] with

ν(·) :=
1

Eµ[τ∂ ∧ (T + 1)]

T∑
s=0

Lµ((s, (Xu)0≤u≤s)|τ∂ > s)(·)Pµ(τ∂ > s),

in the language of [6, (A1)]. It is left to check [6, (A2)], for this same ν(·). We separate
the T <∞ and T =∞ cases.

The T <∞ case

We note that we can write Q = Q0 +Q1 +Q2 whereby

δ(t,f)Q0(·) := cν(·), c :=
pEµ[τ∂ ∧ (T + 1)]

Γ
,

Q1 :=
1− p

Γ
Id, δ(t,f)Q2(·) is supported on {(t′, f ′) ∈ E : t′ ≥ t+ 1}.
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We write

δ(t,f)Q
n1 = δ(t,f)[(Q1 +Q2)n +

n−1∑
m=0

(Q1 +Q2)mQ0Q
n−m−1]1

= δ(t,f)(Q1 +Q2)n1 + c

n−1∑
m=0

[δ(t,f)(Q1 +Q2)m1][νQn−m−11].

We observe that Q1 and Q2 commute, and that QT+1
2 = 0. Thus

(Q1 +Q2)m1 =

T+1∑
k=0

(
m

k

)(1− p
Γ

)m−k
Qk21 ≤ C(mT+1 + 1)

(1− p
Γ

)m
for some C <∞. We now observe for 0 ≤ m ≤ n− 1 that

νQn1 ≥ ν(Q0 +Q1)m+1Qn−m−11 ≥
(
c+

1− p
Γ

)m+1

νQn−m−11.

Therefore combining the above we have

δ(t,f)Q
n1 ≤ C(nT+1 + 1)

(1− p
Γ

)n
+
[
c

n−1∑
m=0

C(mT+1 + 1)
(1− p

Γ

)m(
c+

1− p
Γ

)−(m+1)]
νQn1

≤ C ′
n∑

m=0

[
(mT+1 + 1)

(1− p
Γ

)m(
c+

1− p
Γ

)−(m+1)]
νQn1,

for some C ′ <∞. Therefore there exists a constant M , independent of (t, f) and n, such
that δ(t,f)Q

n1 ≤MνQn1 for all (t, f) ∈ E and n ≥ 1, which implies that (Yt)t<τY∂ satisfies
[6, (A2)].

The T =∞ case

Since the spectral radius of K is less than 1, (3.2), the following operator is well-defined,

G :=

∞∑
n=0

Kn : Cb(χ)→ Cb(χ).

We observe that if (Yn)n<τY∂ = ((tn, fn))n<τY∂ , then (Zn)n<τZ∂ := (fn(tn))n<τY∂ is a killed
Markov chain on χ̄ with submarkovian kernel

S(x, ·) :=
p

Γ
G(µ, ·) +

1− p
Γ

G(x, ·).

Since K is compact, S(x, ·)− 1−p
Γ δx(·) defines a positive compact operator on Cb(χ) with

positive spectral radius. Thus by the Krein-Rutman theorem, there exists a non-negative
right eigenfunction φ ∈ Cb(χ), which must then be a right eigenfunction for S. Since
(Zn)n<τY∂ also satisfies [6, (A1)], being minorised by p

ΓG(µ, ·), it must then satisfy [6,
(A2)]: there exists C <∞ such that

Px(τZ∂ > n) ≤ CP G(µ,·)
G(µ,1)

(τZ∂ > n) (3.9)

for all n ≥ 0 and x ∈ χ. Since (t̃, f̃) ∼ ν implies that f̃(t̃) ∼ G(µ,·)
G(µ,1) , (3.9) then implies that

P(t,f)(τ
Y
∂ > n) ≤ CPν(τY∂ > n).
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Proof of Proposition 3.1

We consider for T <∞ the function

fT : [1,∞) 3 z 7→ z −
T∑
s=0

Pµ(τ∂ > s)p
[
1− 1− p

z

]−(s+1)

∈ R. (3.10)

Solutions to fT (z) = 0, z ∈ [1,∞) correspond to solutions to (2.1). We calculate for
T <∞,

fT (1) ≤ 1− Pµ(τ∂ > 0) = 0, f ′T (z) ≥ 1 for all z ∈ [1,∞) and lim
z→∞

fT (z) =∞,

so that there exists a unique solution to (2.1).
We now consider the T = ∞ case. We let r := r(K) be the spectral radius of K,

defining 1
r := +∞ in the case that r(K) = 0. We claim that

lim inf
t→∞

ktPµ(τ∂ > t) > 0 for
1

r
≤ k <∞, lim

t→∞
ktPµ(τ∂ > t) = 0 for k <

1

r
. (3.11)

We have this for k 6= 1
r by (3.2). If r = 0 then the k = 1

r case is vacuous. Otherwise, the
Krein-Rutman theorem implies the existence of a positive right eigenfunction φ ∈ C0(χ),
with eigenvalue r := r(K). This implies that

r−tPµ(τ∂ > t) = r−tµKt1 ≥ r−tµKtφ

||φ||∞
=

µ(φ)

||φ||∞
> 0 for all t ≥ 0,

implying the k = 1
r case. Thus

∑∞
s=0Pµ(τ∂ > s)p[1− 1−p

z ]−(s+1) is finite for

z ∈ (z0,∞) ∩ [1,∞) whereby z0 :=
1− p
1− r

<∞,

so that we may define f∞ on (z0,∞) ∩ [1,∞) similarly to (3.10). Moreover (3.11) gives
that f∞ is continuous and strictly increasing. It also gives that f∞(z)→ −∞ as z ↓ z0 if
z0 ≥ 1. If z0 < 1 (which is the case if r = 0) we observe that f∞(1) ≤ 0 as with T < ∞.
Therefore we have the existence of a unique solution to (2.1) as with T <∞.

This concludes the proof of Theorem 2.3.

References

[1] David Aldous, Barry Flannery and J. L. Palacios: Two applications of urn processes: the
fringe analysis of search trees and the simulation of quasi-stationary distributions of Markov
chains. Probability in the Engineering and Informational Sciences 2(3), (1988), 293–307.
MR2635047

[2] Michel Benaïm, Nicolas Champagnat and Denis Villemonais: Stochastic approximation of
quasi-stationary distributions for diffusion processes in a bounded domain. to appear in
Annales de l’Institut Henri Poincaré (2019). MR4260481

[3] Michel Benaïm and Bertrand Cloez: A stochastic approximation approach to quasi-
stationary distributions on finite spaces. Electronic Communications in Probability 20, (2015).
MR3352332

[4] Mariusz Bieniek and Krzysztof Burdzy: The distribution of the spine of a Fleming-Viot
type process. Stochastic Processes and their Applications 128(11), (2018), 3751–3777.
MR3860009

[5] Krzysztof Burdzy, Robert Holyst and Peter March: A Fleming-Viot particle representation of
the Dirichlet Laplacian. Communications in Mathematical Physics 214(3), (2000), 679–703.
MR1800866

ECP 27 (2022), paper 35.
Page 12/13

https://www.imstat.org/ecp

https://mathscinet.ams.org/mathscinet-getitem?mr=2635047
https://mathscinet.ams.org/mathscinet-getitem?mr=4260481
https://mathscinet.ams.org/mathscinet-getitem?mr=3352332
https://mathscinet.ams.org/mathscinet-getitem?mr=3860009
https://mathscinet.ams.org/mathscinet-getitem?mr=1800866
https://doi.org/10.1214/22-ECP475
https://imstat.org/journals-and-publications/electronic-communications-in-probability/


Approximation of the paths of killed Markov processes

[6] Nicolas Champagnat and Denis Villemonais: Exponential convergence to quasi-stationary
distribution and Q-process. Probability Theory and Related Fields 164, (2015), 243–283.
MR3449390

[7] Cécile Mailler and Denis Villemonais: Stochastic approximation on non-compact measure
spaces and application to measure-valued Pólya processes. Annals of Applied Probability
30(5), (2020), 2393–2438. MR4149532

[8] Oliver Tough: Scaling limit of the Fleming-Viot multi-colour process. preprint,
arXiv:2110.05049, (2021). MR4285313

[9] Denis Villemonais: General approximation method for the distribution of Markov pro-
cesses conditioned not to be killed. ESAIM: Probability and Statistics 18, (2014), 441–467.
MR3333998

[10] Nicolas Champagnat and Denis Villemonais: Uniform convergence to the Q-process. Elec-
tronic Communications in Probability 22(33), (2017), 1–7. MR3663104

Acknowledgments. The author would like to thank Michel Benaïm for useful discus-
sions on the convergence (or lack thereof) of reinforced processes, leading in particular
to Corollary 2.4. The author also thanks the anonymous referee, whose feedback has
improved this paper.

ECP 27 (2022), paper 35.
Page 13/13

https://www.imstat.org/ecp

https://mathscinet.ams.org/mathscinet-getitem?mr=3449390
https://mathscinet.ams.org/mathscinet-getitem?mr=4149532
https://arXiv.org/abs/2110.05049
https://mathscinet.ams.org/mathscinet-getitem?mr=4285313
https://mathscinet.ams.org/mathscinet-getitem?mr=3333998
https://mathscinet.ams.org/mathscinet-getitem?mr=3663104
https://doi.org/10.1214/22-ECP475
https://imstat.org/journals-and-publications/electronic-communications-in-probability/


Electronic Journal of Probability
Electronic Communications in Probability

Advantages of publishing in EJP-ECP

• Very high standards

• Free for authors, free for readers

• Quick publication (no backlog)

• Secure publication (LOCKSS1)

• Easy interface (EJMS2)

Economical model of EJP-ECP

• Non profit, sponsored by IMS3, BS4 , ProjectEuclid5

• Purely electronic

Help keep the journal free and vigorous

• Donate to the IMS open access fund6 (click here to donate!)

• Submit your best articles to EJP-ECP

• Choose EJP-ECP over for-profit journals

1LOCKSS: Lots of Copies Keep Stuff Safe http://www.lockss.org/
2EJMS: Electronic Journal Management System http://www.vtex.lt/en/ejms.html
3IMS: Institute of Mathematical Statistics http://www.imstat.org/
4BS: Bernoulli Society http://www.bernoulli-society.org/
5Project Euclid: https://projecteuclid.org/
6IMS Open Access Fund: http://www.imstat.org/publications/open.htm

http://en.wikipedia.org/wiki/LOCKSS
http://www.vtex.lt/en/ejms.html
http://en.wikipedia.org/wiki/Institute_of_Mathematical_Statistics
http://en.wikipedia.org/wiki/Bernoulli_Society
https://projecteuclid.org/
https://secure.imstat.org/secure/orders/donations.asp
http://www.lockss.org/
http://www.vtex.lt/en/ejms.html
http://www.imstat.org/
http://www.bernoulli-society.org/
https://projecteuclid.org/
http://www.imstat.org/publications/open.htm

	Introduction
	Statement of results
	Proof of Theorem 2.3
	References

