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Abstract

The results in this paper provide new information on asymptotic properties of clas-
sical models: the neutral Kingman coalescent under a general finite-alleles, parent-
dependent mutation mechanism, and its generalisation, the ancestral selection graph.
Several relevant quantities related to these fundamental models are not explicitly
known when mutations are parent dependent. Examples include the probability that a
sample taken from a population has a certain type configuration, and the transition
probabilities of their block counting jump chains. In this paper, asymptotic results
are derived for these quantities, as the sample size goes to infinity. It is shown that
the sampling probabilities decay polynomially in the sample size with multiplying
constant depending on the stationary density of the Wright-Fisher diffusion and that
the transition probabilities converge to the limit of frequencies of types in the sample.
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1 Introduction

Given a sample of genetic material from some individuals in a neutral population, the
Kingman coalescent [15] models the genealogy of the individuals. Under the finite-alleles
model of mutation, when mutations are parent independent (PIM), i.e. the genetic type
of the mutated offspring does not depend on the type of its parent, the coalescent can
be easily simulated backwards in time, i.e. starting from the individuals in the sample
and going back to their most recent common ancestor, since its backward transition
probabilities are explicitly known. Furthermore, the likelihood function, also referred to
as sampling probability, is explicitly known as well as several other quantities. However,
when mutations are parent dependent, the model becomes more complex and several of
the expressions, that are explicit in the PIM case, become implicit.

The same dichotomy occurs when, in addition to mutation, selection is considered
and the Kingman coalescent is replaced by its well-known generalisation: the ancestral
selection graph (ASG) [18, 19]. The ASG represents the history of a sample not only
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Asymptotic behaviour of sampling and transition probabilities in coalescent models

through mutation and coalescence events, but also through branching events. A branch-
ing of a lineage, into a true and a virtual lineage, corresponds to a selection event: two
individuals are chosen as potential parents, the most viable of them becomes the true
parent.

Coalescent models, i.e. the Kingman coalescent and its numerous generalisations,
have been extensively used for inference on genetic data sets, in combination with Monte
Carlo methods used to approximate implicit likelihood functions in the non-PIM case,
see e.g. [24] for an overview. The asymptotic behaviour of coalescent models in relation
to samples of large size has recently gained attention due to the large size of modern
study samples. While the size of samples continues to increase, due to advancements in
DNA sequencing technology, inference methods based on coalescent models struggle
to provide reliable results, since the coalescent does not scale well in terms of sample
size [14]. Moreover, as discussed in [1], there is a distortion of some of the properties of
the coalescent, which is a suitable approximation of certain models, e.g. Wright-Fisher
model, provided the sample size is sufficiently smaller than the effective population size.
In some cases this leads to inaccurate conclusions, e.g. concerning prediction of rare
variants. Therefore, studying large-sample-size properties of coalescent models is not
only an interesting theoretical problem, but also provides tools for addressing the above
mentioned shortcomings, which are directly related to practical applications. More
precisely, because of the large size of modern samples, inference methods based on
coalescent models are widely used, even when the underlying assumption of sample size
being sufficiently smaller than the effective sample size is violated, as discussed in [1].
Thus a theoretical large-sample-size efficiency analysis of algorithms based on coalescent
models, such as the ones in [22, 23, 7, 2, 12, 13, 3, 16, 17], would be useful. The study
of large-sample-size asymptotic properties of the coalescent, to which this paper and
[11] aim to contribute, are relevant for such analysis. Furthermore, large-sample-size
asymptotic results provide tools for the analysis of differences between the coalescent
approximation and the original model. In fact, a direct theoretical comparison of the
properties of these models is challenging, in [1] a numerical comparison is provided,
whereas comparing the corresponding simpler limiting objects may provide interesting
insights.

This paper provides an analysis of the asymptotic behaviour of the sampling probabil-
ities under the ASG, and of the transition probabilities of its block counting jump chain.
Note that the Kingman coalescent can be seen as a special case of ASG by setting the
selection parameters equal to zero. A finite-alleles model for mutation is assumed, with
d possible types.

A sample is represented by a vector n ∈ Nd \ {0}, where ni represents the number
of individuals in the sample carrying allele i, i = 1, . . . , d. The likelihood function, or
sampling probability, p(n), corresponds to the probability that a sample taken from
a population at equilibrium has a configuration of types given by the vector n. A
recursion formula is known for p, see [18] for the ASG, [6] and the references therein
for the particular case of the Kingman coalescent. However, an explicit formula is
unknown in the general case of parent dependent mutations. When the sample size,
‖n‖1 = n1 + · · · + nd, is large, it is computationally too expensive to compute p using
the recursion formula. In this paper a large sample of the form ny(n), with n ∈ N \ {0}
and y(n) ∈ 1

nN
d \ {0}, is considered and the asymptotic behaviour of the sampling

probabilities p(ny(n)) is studied, as n tends to infinity and y(n) tends to some y ∈ Rd>0. In
particular, it is proved that the sampling probabilities decay polynomially, that is,

p(ny(n)) ∼ p̃
(

y

‖y‖1

)
‖y‖1−d1 n1−d, as n→∞, y(n) → y, (1.1)
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where ∼ denotes asymptotic equality in the sense that an ∼ bn if limn→∞ an/bn = 1,
‖y‖1 = |y1|+ · · ·+ |yd|, and p̃ is the stationary density of the Wright-Fisher diffusion that
is dual to the ASG, see Section 2 for more details on p̃.

The intuition for the polynomial decay comes from the neutral scenario, when muta-
tions are parent independent, in fact, in this case the sampling probabilities are explicitly
known, see e.g. [6], and it is straightforward to show that their asymptotic decay is
polynomial of degree d− 1, see Subsection 3.1 for an explicit calculation. In particular,
the degree of the polynomial does not depend on the mutation parameters, although the
multiplicative constant does, which hints that the same behaviour applies in general,
even when mutations are parent dependent. To address the general case the following
strategy is adopted. The classical representation formula of the sampling probabilities
as expectations with respect to the stationary distribution of the Wright-Fisher diffusion,
which is recalled in Section 2, is used in Subsection 3.2 to interpret the sampling proba-
bilities as expectations with respect to a sequence of Dirichlet distributions. A local limit
theorem for the sequence of Dirichlet distributions is derived in the Appendix. Finally, in
Section 4 the general result is proved.

Establishing the asymptotic decay of p(ny(n)), enables the study of the asymptotic
behaviour of the transition probabilities of the block counting jump chain of the ‘typed’
ancestral selection graph, to which Section 5 is dedicated. The adjective ‘typed’ is used to
put emphasis on the fact that, in this paper, the lineages of the ASG are always associated
to a type, as in e.g. [8, 10], whereas often, e.g. in [18], the ASG is first constructed
backwards in time with no regard for types, which are superimposed afterwards on the
graph. This two-steps construction does not allow to construct the genealogy of a sample
with given types, which is of interest when performing inference based on a sample. The
block counting process of the ‘typed’ ASG is the process that counts how many lineages
of each type are present as time evolves from when the sample is taken until the most
recent common ancestor is reached. In this paper the jump chain of this block counting
process is considered, and the asymptotic behaviour of its transition probabilities is
studied in Section 5, where the chain is properly scaled.

2 Framework

In Section 1, p(n) is defined as the probability of sampling n from a population at
equilibrium, when the underlying model is the ASG. In this section, the ASG, its block
counting jump chain and the related Wright-Fisher diffusion are introduced; furthermore,
the properties that are relevant for the results in this paper are recalled.

To set the notation and recall the definition of the model, let θ be the mutation
rate, P = (Pij)

d
i,j=1 be the mutation probability matrix and γi, i = 1, . . . , d, be negative

selection parameters. Note that the selection parameters can also be chosen to be equal
to zero, in that case the ASG becomes the classical Kingman coalescent.

The ASG describes the evolution of lineages over time. When m lineages, i.e. edges,
are present, either one of them is lost by coalescence with another, at rate

(
m
2

)
, or one is

added, by branching of an existing lineage, at rate mγ
2 , where γ = max{γi − γj : i, j =

1, . . . , d}. Furthermore, one of the m lineages undergoes a mutation event at rate m θ
2 .

The evolution continues, for an almost surely finite time, until only one lineage is left,
representing the most common ancestor of the initial m lineages. To assign types to
each lineage, a type is assigned to the ancestor and accordingly to all the descending
lineages by following the graph structure, which includes mutation points, and using the
mutation matrix, P , and the selection parameters, γ1, . . . , γd, to determine the type of a
lineage after mutation and selection (branching) events. For a complete and rigorous
definition of the ASG, see [18, 19].
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In this paper it is enough to consider only the jump chain of the block counting
process of the ASG, instead of the entire graph structure, and it is crucial to assign
types to lineages while the ‘typed’ chain evolves backwards in time, as opposed to the
a-posteriori type assignment described above. This enables the construction of the
genealogy of a ‘typed’ sample, at the cost of an implicit backward transition distribution.
The block counting process of the ‘typed’ ASG is described in detail in [8]. Its jump chain,
H = {H(l)}l∈N ∈ Nd \ {0}, which is the focus of Section 5, is the time homogeneous
Markov chain with the following transition probabilities [8], for n ∈ Nd \ {0},

P (H(l + 1) = n− v | H(l) = n) = p(n− v | n) =

=



nj(nj−1)∑d
r=1 nr|γr|+‖n‖1(‖n‖1−1+θ)

1
π[j|n−ej ] , if v = ej , j=1 . . . d,

θPijnj∑d
r=1 nr|γr|+‖n‖1(‖n‖1−1+θ)

π[i|n−ej ]
π[j|n−ej ] , if v = ej − ei, i, j=1 . . . d,

‖n‖1|γj |∑d
r=1 nr|γr|+‖n‖1(‖n‖1−1+θ)

π[j|n], if v = −ej , j=1 . . . d,

0, otherwise,

(2.1)

where ej is the jth d-dimensional unit vector and π[j|n] is the probability of sampling an
individual of type j after sampling ‖n‖1 individuals with types given by n. Note that a
step +ej , resp. −ej , corresponds to the coalescence, resp. branching, of a lineage of
type j, and ej − ei corresponds to the mutation of a lineage from type i to type j. The
probability π can be written equivalently in terms of the sampling probabilities, p, as

π[i|n] =
ni + 1

‖n‖1 + 1

p(n + ei)

p(n)
. (2.2)

Similarly to the sampling probabilities, the probability π is unknown explicitly, unless
mutations are parent independent.

The transition probabilities, which are the focus of Section 5, are related to the
recursion formula for p(n) mentioned in the introduction. In some cases, as in this
paper, instead of using the recursion formula, it is convenient to work with a well-known
representation for p(n) in terms of the Wright-Fisher diffusion, which is described in the
following.

While the ASG models the ancestral history of a sample taken from the population,
the allele frequencies are modelled by the Wright-Fisher diffusion X = {X(t)}t≥0 ⊂ S =

{x ∈ [0, 1]d :
∑d
i=1 xi = 1} that is the solution to the following stochastic differential

equation,

dX(t) = µ(X(t))dt+ σ(X(t))1/2dW(t), t ≥ 0, (2.3)

where W = {W(t)}t≥0 is a d-dimensional Wiener process, the diffusion matrix is σij(x) =

xi(δij−xj), i, j = 1, . . . , d, and the drift is µi(x) = θ
∑d
j=1 xjPji−θxi+xi

(
γi −

∑d
j=1 γjxj

)
,

i = 1, . . . , d, see e.g. [9]. When the mutation probability matrix P is irreducible, the
stationary distribution of the Wright-Fisher diffusion X is unique and has a smooth
density, p̃, with respect to the Lebesgue measure, to which Remark 2.1 is dedicated. In
this paper we assume that P is irreducible.

The sampling probability, p(n), can be expressed as the expectation of a multinomial
draw from the stationary distribution of the Wright-Fisher diffusion. Let X̃ be distributed
according to the stationary distribution of the Wright-Fisher diffusion, then

p(n) =

(
‖n‖1

n

)
E

[
d∏
i=1

X̃ni
i

]
. (2.4)
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This formula is a consequence of the duality relationship between the ASG and the
diffusion, in fact, when such relationship is proved, it is also shown that the right hand
side of (2.4) solves the recursion formula that defines the sampling probability, see for
example [18, 10]. Furthermore, since the sample is exchangeable, the formula can also
be explained by de Finetti’s representation theorem.

Remark 2.1 (Stationary density of Wright-Fisher diffusion). Equation (2.4) only holds if
the Wright-Fisher diffusion admits a stationary distribution. The existence of a unique
stationary distribution is related to the structure of the mutation mechanism, more
precisely, to the existence of an invariant measure for the mutation probability matrix
P . When mutations are parent independent, Pij = Qj > 0, i, j = 1, . . . , d, the stationary
distribution, not only exists, but also has an explicitly known density: in the neutral
case a Dirichlet density with parameters θQ = (θQ1, . . . , θQd), see e.g. [25, 6, 8], and
when selection is included, a weighted Dirichlet density, see e.g. [8, 10]. Unfortunately,
the PIM case is the only case where the stationary distribution is explicitly known.
Furthermore, the Wright-Fisher diffusion X has a degenerate elliptic generator, since
the diffusion matrix has zero entries when one of the components of X is equal to zero.
Thus the classical theory for the study of stationarity and for the study of solutions to the
Fokker-Planck equation does not apply and an ad-hoc analysis, which is provided in [21],
is needed. In [21, Thm 3.1] it is shown that the stationary distribution of X exists uniquely,
assuming that P is irreducible, which implies the invariant measure of P exists uniquely.
Furthermore, in [21, Thm 3.2] it is also shown that, under the same assumption, the
stationary distribution is absolutely continuous with respect to the Lebesgue measure
and its probability density function, p̃, defined on ∆ = {x ∈ [0, 1]d−1 :

∑d−1
i=1 xi ≤ 1}, is

smooth on ∆o = {x ∈ (0, 1)d−1 :
∑d−1
i=1 xi < 1}.

In the light of the previous remark, in this paper it is assumed that P is irreducible,
in fact, the existence of a smooth stationary density, even of an unknown form, proves
to be sufficient for studying the asymptotic behaviour of the sampling probabilities
through (2.4).

3 Sampling probabilities

The aim of this section is to provide a representation of the sampling probabilities
that is convenient for the study of their asymptotic behaviour. This is a key step, in fact,
once the representation is identified, the outline of the proof of the asymptotic result
becomes intuitively clear.

3.1 Parent independent mutations under neutrality

Before focusing on the general case, the PIM case without selection is analysed
in order to provide better insight. Assume Pij = Qj , γj = 0, i, j = 1, . . . , d and let
Q = (Q1, . . . , Qd). As explained in Remark 2.1, in this case the stationary density
is Dirichlet with parameters θQ, thus, computing the expectation in (2.4), yields the
following explicit expression for the sampling probabilities

p(n) =

(
‖n‖1

n

)
B(n + θQ)

B(θQ)
=

1

B(θQ)

Γ(‖n‖1 + 1)

Γ(‖n‖1 + θ)

d∏
i=1

Γ(ni + θQi)

Γ(ni + 1)
,

where B is the multidimensional Beta function and Γ is the Gamma function, the expres-
sion above can be found in e.g. [6]. Applying Stirling’s formula to the Gamma functions
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yields, as y(n) → y,

p(ny(n)) ∼ 1

B(θQ)

(∥∥ny(n)
∥∥

1
+ 1
)‖ny(n)‖

1
+ 1

2 e−(‖ny(n)‖
1
+1)(∥∥ny(n)

∥∥
1

+ θ
)‖ny(n)‖

1
+θ− 1

2 e−(‖ny(n)‖
1
+θ)

·
d∏
i=1

(
ny

(n)
i + θQi

)ny(n)
i +θQi− 1

2

e
−
(
ny

(n)
i +θQi

)
(
ny

(n)
i + 1

)ny(n)
i + 1

2

e
−
(
ny

(n)
i +1

)

∼ 1

B(θQ)

(
1 +

1− θ∥∥ny(n)
∥∥

1
+ θ

)‖ny(n)‖
1
+ 1

2 (∥∥∥ny(n)
∥∥∥

1
+ θ
)1−θ

eθ−1

·
d∏
i=1

(
1 +

θQi − 1

ny
(n)
i + θQi

)ny(n)
i + 1

2 (
ny

(n)
i + θQi

)θQi−1

e1−θQi

∼ n1−d ‖y‖1−d1

1

B(θQ)

d∏
i=1

(
yi
‖y‖1

)θQi−1

Note that the sampling probabilities decay polynomially with degree d − 1. While the
multiplicative constant depends on the mutation parameters, the degree, d − 1, does
not. For this reason one may expect the same degree of decay when mutations are
parent dependent, which is indeed correct, and not affected by selection, as shown in
Section 4. Note also that the limiting behaviour in the last display corresponds to what
was anticipated in (1.1), since the stationary density in this case is a Dirichlet density.

3.2 Interpreting the sampling probabilities

Despite the ease of the intuition, the proof of an asymptotic result for p(ny(n)) in
the general case is more involved, because of the lack of an explicit form for the
stationary density of the Wight-Fisher diffusion. To study the asymptotic behaviour of
the normalised probabilities nd−1p(ny(n)), it is tempting to interchange the limit and
integration in (2.4) and consider∫

∆

lim
n→∞

nd−1

(
‖ny(n)‖1
ny(n)

) d∏
i=1

x
ny

(n)
i

i p̃(x)dx,

The difficulty with this approach is to justify interchanging the limit and integration.
Moreover, as n → ∞, y(n) → y, one can show, using Stirling’s approximation, that the
integrand approaches a Dirac delta function at y. Consequently, the limit is not well
defined and care must be taken to rigorously prove the asymptotic behaviour. To this
end, an alternative representation of the sampling probabilities is preferred, as outlined
below.

Denote the expectation in (2.4) by k(n), i.e., for n ∈ Nd \ {0},

k(n) = E

[
d∏
i=1

X̃ni
i

]
=

∫
∆

d∏
i=1

xni
i p̃(x)dx, (3.1)

so that, by (2.4), for y(n) ∈ 1
nN

d \ {0},

p(ny(n)) =

(∥∥ny(n)
∥∥

1

ny(n)

)
k(ny(n)). (3.2)

The function k admits an interpretation as an expectation with respect to a Dirichlet
distribution, provided it is divided by the appropriate normalising constant, i.e. B(ny(n) +
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1), where 1 is the vector of ones in Rd. By identifying fD(n)(x) := B(ny(n) +1)−1
∏d
i=1 x

ni
i

as the probability density function of a Dirichlet random vector, D(n), with concentration
parameters equal to ny(n) + 1, (3.1) is equivalent to the following expression

k(ny(n))

B(ny(n) + 1)
=

∫
∆

fD(n)(x)p̃(x)dx = E
[
p̃(D(n))

]
. (3.3)

A clarification about notation and state spaces is needed. The space S is used as
a state space for the Wright-Fisher diffusion, X, and the Dirichlet distributed random
vectors, D(n), while their densities are integrated over ∆. When the density functions,
which are defined on ∆, are evaluated at a point in S, it is implicitly understood that the
first d− 1 components of the vectors are used, the last component being a function of the
first d− 1 components. And vice versa, for a vector in x ∈ ∆, xd stands for 1−

∑d−1
i=1 xi.

Interpreting the function k as in (3.3), turns out to be an effective tool for analysing
the asymptotic behaviour of the sampling probabilities. In fact, it can be proved that

the expectation in (3.3) converges to the constant p̃
(

y
‖y‖1

)
(see Theorem 4.2 for details),

while the remaining factors,
(n‖y(n)‖

1

ny(n)

)
B(ny(n) + 1), give rise to the polynomial decay of

p(ny(n)) (see Theorem 4.3 for details).

4 Asymptotic behaviour of the sampling probabilities

The study of the asymptotic behaviour of the Dirichlet random vectors D(n) appearing
in (3.3) is reported in the Appendix and is summarized in the following proposition.

Proposition 4.1. Let D(n) ∼ Dirich(α(n)), α(n) ∈ Rd≥0 such that limn→∞
α(n)

n = α ∈ Rd>0.
Then the following central limit theorem holds

√
n

(
D(n) − α

‖α‖1

)
d−−−−→

n→∞
Nd (0,Σ(α)) ,

with

Σij(α) =
αi

‖α‖31
(δij ‖α‖1 − αj), i, j = 1, . . . , d.

Furthermore, a local limit theorem for the corresponding probability density functions,
φn and φ, holds

lim
n→∞

sup
u∈Rd−1

|φn(u)− φ(u)| = 0.

In order to prove an asymptotic result for the sampling probabilities, the asymptotic
behaviour of the expectations (3.3) is studied in the next theorem, using Proposition 4.1,
the main difficulty being that the stationary density is unknown and possibly unbounded
near the boundary.

Theorem 4.2. Let k be defined as in (3.1). Let p̃ be the stationary density of the Wright-
Fisher diffusion (2.3), assuming the mutation probability matrix, P , is irreducible. Let
y(n) ∈ 1

nN
d \ {0} such that y(n) → y ∈ Rd>0, as n→∞. Then

lim
n→∞

k
(
ny(n)

)
B
(
ny(n) + 1

) = p̃

(
y

‖y‖1

)
.

Proof. As explained in Remark 2.1, by [21], the stationary density p̃ is smooth on ∆o,
and thus bounded on any compact set contained in ∆o. It could, however, explode on
the boundary. In order to deal with this problem, the domain is divided in two parts.
For ε > 0, define ∆ε = {x ∈ ∆o : xi ≥ ε, i = 1, . . . , d}. Since y

‖y‖1
∈ ∆o, it follows that
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y
‖y‖1
∈ ∆ε, for all 0 < ε ≤ εy, with εy = 1

‖y‖1
mini=1,...,d yi. Fixing 0 < ε ≤ εy, rewrite (3.3)

as

k
(
ny(n)

)
B
(
ny(n) + 1

) =

∫
∆

fD(n)(x)p̃(x)dx

=

∫
∆ε

fD(n)(x)p̃(x)dx +

∫
∆\∆ε

fD(n)(x)p̃(x)dx. (4.1)

To show convergence for the first term in the RHS of (4.1), a change of variables yields∫
∆ε

fD(n)(x)p̃(x)dx =

∫
I√

n

(
∆ε− y(n)

‖y(n)‖
1

)(u)φn(u)p̃

(
1√
n
u +

y(n)∥∥y(n)
∥∥

1

)
du,

where φn and φ are the density functions defined in Proposition 4.1 with α(n) = ny(n) +1.
By Proposition 4.1 and continuity of p̃ on ∆o, the integrand above converges pointwise

to φ(u)p̃
(

y
‖y‖1

)
. Furthermore, since p̃ is bounded in ∆ε by some cε, the sequence

is dominated by the sequence φn(u)cε, the integral of which is equal to cε, for all n.
Therefore, by the general dominated convergence theorem [20],∫

∆ε

fD(n)(x)p̃(x)dx −−−−→
n→∞

∫
Rd−1

φ(u)p̃

(
y

‖y‖1

)
du = p̃

(
y

‖y‖1

)
.

It remains to show that the second term in the RHS of (4.1) converges to zero. First note
that, if x ∈ ∆ \∆ε, then xj < ε for some j, and, since xi ≤ 1, i = 1, . . . , d,

d∏
i=1

x
ny

(n)
i

i < εny
(n)
j ≤ εny

(n)
min ,

where y(n)
j ≥ y(n)

min = mini=1,...,d y
(n)
i . Using the inequality above, the fact that the integral

of p̃ is bounded by 1, and Stirling’s formula yield∫
∆\∆ε

fD(n)(x)p̃(x)dx ≤ εny
(n)
min

B
(
y(n) + 1

) ∫
∆\∆ε

p̃(x)dx

≤
εny

(n)
min Γ

(
n ‖y‖(n)

1 + d
)

∏d
i=1 Γ

(
ny

(n)
i + 1

)
∼ (2π)−

d−1
2 εny

(n)
min

(
n
∥∥y(n)

∥∥
1

+ d
)n‖y(n)‖

1
+d− 1

2

∏d
i=1

(
ny

(n)
i + 1

)ny(n)
i + 1

2

∼

[
εymin

d∏
i=1

(
‖y‖1
yi

)yi]n
n

d−1
2

(
‖y‖1
2π

) d−1
2

(
d∏
i=1

‖y‖1
yi

) 1
2

,

where ymin = mini=1,...,d yi > 0. The expression in the last display converges to zero by

choosing ε <
∏d
i=1

(
yi
‖y‖1

) yi
ymin , and thus the second integral in (4.1) converges to zero, as

n→∞, completing the proof.

By applying Theorem 4.2, it is straightforward to show that the asymptotic decay of
the sampling probabilities is indeed polynomial as expected.
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Theorem 4.3. Let p be the sampling probability (2.4) of the block counting process
of the ancestral selection graph. Let p̃ be the stationary density of the Wright-Fisher
diffusion (2.3), assuming the mutation probability matrix P is irreducible. Let y(n) ∈
1
nN

d \ {0}, such that y(n) → y ∈ Rd>0, as n→∞. Then

lim
n→∞

nd−1 p(ny(n)) = ‖y‖1−d1 p̃

(
y

‖y‖1

)
.

Proof. Since p(ny(n)) =
(n‖y(n)‖

1

ny(n)

)
k(ny(n)), rewrite

nd−1p(ny(n)) = nd−1

(
n
∥∥y(n)

∥∥
1

ny(n)

)
B
(
ny(n) + 1

) k
(
ny(n)

)
B
(
ny(n) + 1

) .
Then, note that

nd−1

(
n
∥∥y(n)

∥∥
1

ny(n)

)
B
(
ny(n) + 1

)
= nd−1

Γ
(
n
∥∥y(n)

∥∥
1

+ 1
)

Γ
(
n
∥∥y(n)

∥∥
1

+ d
) → ‖y‖1−d1 ,

as n→∞, whereas, by Theorem 4.2,
k(ny(n))

B(ny(n)+1)
converges to p̃

(
y
‖y‖1

)
. This completes

the proof.

5 Asymptotic behaviour of the transition probabilities

The goal of this section is to study the asymptotic behaviour of p(ny(n) − v | ny(n)),
the transition probabilities (2.1) of the block counting jump chain H of the ASG, as
n→∞, y(n) → y. By letting H(n), n ∈ N, be independent copies of H, and Y(n) = 1

nH
(n) ⊂

1
nN

d \ {0}, the asymptotic behaviour of the transition probabilities can be interpreted as

the limit of the transition probabilities of Y(n), ρ(n)(v | y(n)) = p(ny(n) − v | ny(n)).
As for the sampling probabilities, when mutations are parent dependent, an explicit

expression for the backward transition probabilities is not available, in fact expres-
sion (2.1) is written in terms of the unknown probability π.

In the PIM neutral case, Pij = Qj , γj = 0, i, j = 1, . . . , d, the sampling probabilities
can be explicitly written as π[i|n] = ni+θQi

‖n‖1+θ , see e.g. [22]. In this case thus π[i|ny(n)]

converges to yi
‖y‖1

. It turns out that in the general case the limit of the probabilities π

is the same. To prove this, π is written in terms of the function k, defined in (3.1), by
using (2.2) and (3.2),

π[i|n] =
k(n + ei)

k(n)
.

The results of the previous section, combined with the expression above, make it straight-
forward to study the asymptotic behaviour of π[i|ny(n)], and, consequently, of the transi-
tion probabilities.

Proposition 5.1. Let π be defined as in (2.2). Assume the mutation probability matrix
P is irreducible. Let y(n) ∈ 1

nN
d \ {0}, such that y(n) → y ∈ Rd>0, as n → ∞. Then, for

i = 1, . . . , d,

lim
n→∞

π[i|ny(n)] =
yi
‖y‖1

.

Proof. Rewrite

π[i|ny(n)] =
k(ny(n) + ei)

B(ny(n) + ei + 1)

B(ny(n) + 1)

k(ny(n))

B(ny(n) + ei + 1)

B(ny(n) + 1)
.
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By Theorem 4.2, k(ny(n)+ei)
B(ny(n)+ei+1)

and k(ny(n))
B(ny(n)+1)

both converge to p̃
(

y
‖y‖1

)
, as n → ∞.

Calculating,

B(ny(n) + ei + 1)

B(ny(n) + 1)
=

Γ(ny
(n)
i + 2)

Γ(ny
(n)
i + 1)

Γ(n
∥∥y(n)

∥∥
1

+ d)

Γ(n
∥∥y(n)

∥∥
1

+ 1 + d)
=

ny
(n)
i + 1

n
∥∥y(n)

∥∥
1

+ d
,

and letting n→∞ concludes the proof.

Finally, knowing the asymptotic behaviour of π directly solves the problem of analysing
the asymptotic behaviour of the transition probabilities.

Corollary 5.2. Let ρ(n)(v | y(n)) = p(ny(n) − v | y(n)) be the transition probabilities
defined in (2.1). Under the assumptions of Proposition 5.1, for i, j = 1, . . . , d,

lim
n→∞

ρ(n)(ej | y(n)) =
yj
‖y‖1

;

lim
n→∞

nρ(n)(ej − ei | y(n)) =
θPijyi

‖y‖21
;

lim
n→∞

nρ(n)(−ej | y(n)) =
|γj |yj
‖y‖21

.

Proof. By Proposition 5.1, π[i|ny(n) − ej ]→ yi
‖y‖1

, π[j|ny(n)]→ yj
‖y‖1

, for all i, j = 1, . . . , d.
Using these limits, together with basic limit calculations, in (2.1), gives the result.

Appendix: central and local limit theorems for a sequence of
Dirichlet random vectors

This section is devoted to the study of the asymptotic behaviour of the sequence of
Dirichlet distributed random vectors presented in Proposition 4.1. While this section
can be considered as a standard, yet not obvious, exercise in probability theory, it is
essential to derive central and local limit theorems for the specific sequence of random
vectors in this paper.

Let D(n) = (D
(n)
1 , . . . , D

(n)
d ) ∈ S be a Dirichlet distributed random vector with concen-

tration parameters α(n) ∈ Rd>0 such that

lim
n→∞

α(n)

n
= α ∈ Rd>0. (5.1)

A central limit theorem for the sequence D(n) is obtained using the well-known, see
e.g. [5], relationship between Dirichlet and Gamma distributions,

D(n) d
=

G(n)∥∥G(n)
∥∥

1

, (5.2)

where G(n) = (G
(n)
1 , . . . , G

(n)
d ) is a vector of independent Gamma random variables with

shape parameters α(n)
i , i = 1, . . . , d and rate parameter β ∈ R>0. Note that β is irrelevant

in the transformation from G(n) to D(n). Furthermore, since the Gamma distribution is
infinitely divisible, it is possible to write each of the Gamma random variables as a sum
of independent Gamma random variables, and thus for each variable G(n)

i the following
central limit theorem holds

√
nβ√
α

(n)
i

(
1

n
G

(n)
i − α

(n)
i

nβ

)
d−−−−→

n→∞
N (0, 1) , i = 1, . . . , d.
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Consequently, by (5.1) and independence of the components of the random vectors G(n),
the following central limit theorem for G(n) holds

√
n

(
1

n
G(n) − α

β

)
d−−−−→

n→∞
Nd
(
0,

1

β2
diag(α)

)
,

where diag(α) is the diagonal matrix with α on the diagonal. Since D(n) can be written
as a function of G(n), as in (5.2), applying the multivariate delta method yields

√
n

(
D(n) − α

‖α‖1

)
d−−−−→

n→∞
Nd (0,Σ(α)) ,

with

Σ(α) = J

(
α

β

)
1

β2
diag(α)J

(
α

β

)T
,

where J is the Jacobian matrix associated to the transformation in (5.2). Calculating the
Jacobian and multiplying the matrices, which is omitted, yields

Σij(α) =
αi

‖α‖31
(δij ‖α‖1 − αj), i, j = 1, . . . , d.

As expected, the covariance matrix above does not depend on the auxiliary rate parame-
ter β.

Note that, if ‖α‖1 = 1, then Σ(α) = σ(α), where σ is the diffusion matrix in (2.3).
Consequently, the Wright-Fisher diffusion matrix can be interpreted as the covariance
matrix of the Gaussian limit of a sequence of Dirichlet random vectors.

The Gaussian limiting vector, being the limit of a sequence of Dirichlet random
vectors, has a degenerate distribution, as its last component can be expressed in terms
of the first d − 1 components. Therefore, in order to work with density functions and
obtain a local limit result, the state space is restricted to Rd−1 by excluding the last
component of each vector in the remaining part of this section.

Let φ, be the pdf of the d− 1 dimensional centred Gaussian vector with covariance
matrix Σd−1(α), the restriction of Σ(α) to the first d− 1 components. Let

fD(n)(x) =
1

B(α(n))

d∏
i=1

x
α

(n)
i −1
i , x ∈ ∆,

be the pdf of (the first d− 1 components) of D(n), where xd stands for 1−
∑d−1
i=1 xi. Then

the pdf of
√
n

(
D(n) − α(n)

‖α(n)‖
1

)
is given by

φn(u) = n−
1
2 (d−1)fD(n)

(
1√
n
u +

α(n)∥∥α(n)
∥∥

1

)
, for u ∈ −

√
n

(
∆− α(n)∥∥α(n)

∥∥
1

)
,

and equal to 0 otherwise. In general, convergence in distribution does not imply conver-
gence of probability density functions, however, under the conditions of the converse to
Scheffe’s theorem, see [4], it does. More precisely, if the sequence φn is bounded and
uniformly equicontinuous, then φn → φ, as n→∞, uniformly on Rd−1. In the remaining
part of this section, the conditions for the convergence of densities are verified, again, it
is fundamental that the parameters of the Dirichlet vectors grow to infinity linearly, as
assumed in (5.1).

ECP 27 (2022), paper 32.
Page 11/13

https://www.imstat.org/ecp

https://doi.org/10.1214/22-ECP472
https://imstat.org/journals-and-publications/electronic-communications-in-probability/


Asymptotic behaviour of sampling and transition probabilities in coalescent models

In order to show boundedness of φn, first notice that, for a fixed n, the maximum of

φn is reached at
√
n

(
α(n)−1
‖α(n)‖

1
−d
− α(n)

‖α(n)‖
1

)
, and thus

||φn||∞ = sup
u∈Rd−1

φn(u) = n−
d−1
2

1

B(α(n))

d∏
i=1

(
α

(n)
i − 1∥∥α(n)
∥∥

1
− d

)α(n)
i −1

.

Using Stirling’s formula for the Beta function,

||φn||∞ ∼

(
(2π)d−1

d∏
i=1

α
(n)
i∥∥α(n)
∥∥

1

)− 1
2
(∥∥α(n)

∥∥
1

n

) 1
2 (d−1)

.

From the expression above, it is clear that if
∥∥α(n)

∥∥
1

grows faster than linearly, the
sequence is not bounded and if it grows slower it converges to zero. By assumption (5.1),∥∥α(n)

∥∥
1

grows linearly and therefore ||φn||∞ converges to

(
(2π)d−1

d∏
i=1

αi
‖α‖1

1

‖α‖d−1
1

)− 1
2

, (5.3)

as n→∞, and thus the sequence of density functions φn is bounded.
Following the same type of argument as for the sequence of density functions, it is

straightforward to show that also each sequence of their first order partial derivatives is
bounded. Furthermore, the density functions φn are smooth on a compact set. Therefore,
the sequence of densities is uniformly Lipschitz continuous, which verifies the uniform
equicontinuity condition, proving the local limit result as stated in Proposition 4.1.

This section is concluded with the following observation.

Remark 5.3. The argument in this section provides a straightforward derivation of
an expression for the determinant of the diffusion matrix σd−1(x) of the Wright-Fisher
diffusion in (2.3), as explained in the following. We have proven that ||φn − φ||∞ → 0, as

n → ∞, which implies ||φn||∞ → ||φ||∞. Note that ||φ||∞ =
[
(2π)d−1 det(Σd−1(α))

]−1/2
.

Furthermore, we have proven that ||φn||∞ converges to (5.3). Therefore, it must be that
||φ||∞ is equal to (5.3), which implies

det(Σd−1(α)) =

d∏
i=1

αi
‖α‖1

1

‖α‖d−1
1

.

Therefore, the determinant of the diffusion matrix of the Wright-Fisher diffusion, for
x ∈ S, is

det(σd−1(x)) =

d∏
i=1

xi.
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