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Abstract

Let {ηi(t), t ∈ [0, 1]}ki=1 be independent copies of η = {η(t), t ∈ [0, 1]}, a mean zero
continuous Gaussian process. Let

Yk := Yk(t) =

k∑
i=1

η2i (t), t ∈ [0, 1].

This paper shows how exact local (at 0) and uniform moduli of continuity (on [0,1]) of
Yk can be obtained from the exact local and uniform moduli of continuity of η.
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1 Introduction

Let η = {η(t); t ∈ [0, 1]} be a mean zero continuous Gaussian process with covariance
U = {U(s, t), s, t ∈ [0, 1]}, with U(0, 0) > 0. Let {ηi; i = 1, . . . , k} be independent copies of
η and set,

Yk(t) =

k∑
i=1

η2
i (t), t ∈ [0, 1]. (1.1)

The stochastic process Yk = {Yk(t), t ∈ [0, 1]} is referred to as a chi–square process of
order k with kernel U .

Chi-square processes appear naturally as limiting processes in various statistical
models. See e.g. [9, 3, 2, 1, 7] and the references therein. Nevertheless our interest in
them is primarily that they are simple examples of permanental processes that are easier
to analyze and therefore provide a template for more general results about permanental
processes.

Let {K(s, t), s, t ∈ T} be a kernel, that need not be symmetric, with the property
that for all tn = (t1, . . . , tn) in Tn, the matrix K(tn) = {K(ti, tj), i, j ∈ [1, n]} determines
an n-dimensional random variable random variable (Xα(t1), . . . , Xα(tn)) with Laplace
transform,

E
(
e−

∑n
i=1 siXα(ti)

)
=

1

|I +K(tn)S(sn)|α
, (1.2)
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Moduli of continuity of chi–square processes

where S(sn) is a diagonal matrix with positive entries sn = (s1, . . . , sn), and α > 0.
It follows from the Kolmogorov Extension Theorem that {K(s, t), s, t ∈ T} determines
a stochastic process which we denote by Xα = {Xα(t), t ∈ T} and refer to as an α-
permanental process.

Clearly Yk is a permanental process when K(tn) = {E(Yti , Ytj ), i, j ∈ [1, n]} and
α = k/2. The results obtained in this paper are used in our more general study of laws
of the iterated logarithm for k/2 permanental processes [6].

In this paper we show that when the Gaussian process η has a local or uniform
modulus of continuity the related k/2 chi-square process has a closely related local or
uniform modulus of continuity.

Theorem 1.1. Let φ(t) be a non-negative function function on [0, δ] for some δ > 0. If

lim sup
t→0

η(t)− η(0)

φ(t)
= 1 a.s., (1.3)

then for all integers k ≥ 1,

lim sup
t→0

Yk(t)− Yk(0)

φ(t)
= 2Y

1/2
k (0) a.s. (1.4)

When k = 1 this is particularly simple. Since η is symmetric it follows from (1.3) that,

lim inf
t→0

η(t)− η(0)

φ(t)
= −1 a.s. (1.5)

Therefore, writing Y1(t)− Y1(0) = (η(t)− η(0))(η(t) + η(0)) and using the continuity of η,
we see that

lim sup
t→0

Y1(t)− Y1(0)

φ(t)
= 2 (η(0) ∨ −η(0)) a.s., (1.6)

which is (1.4).
A result similar to Theorem 1.1 for the limiting behavior of chi–square sequences at

infinity is given in [5, Lemma 6.5].
Set

σ2(u, v) = E(η(u)− η(v))2 and σ̃2(x) = sup
|u−v|≤x

σ2(u, v). (1.7)

Theorem 1.2. Assume that inft∈[0,1] U(t, t) > 0 and,

lim
x→0

σ̃2(x) log 1/x = 0. (1.8)

Let ϕ(t) be a non-negative function function on [0, 1]. Then if

lim
h→0

sup
|u−v|≤h
u,v∈∆

η(u)− η(v)

ϕ(|u− v|)
= 1 a.s., (1.9)

for all intervals ∆ ⊂ [0, 1], it follows that for all intervals ∆ ⊂ [0, 1] and all integers k ≥ 1,

lim
h→0

sup
|u−v|≤h
u,v∈∆

Yk(u)− Yk(v)

ϕ(|u− v|)
= 2 sup

u∈∆
Y

1/2
k (u), a.s. (1.10)

Necessary and sufficient conditions for the existence of functions φ and ϕ that satisfy
(1.3) and (1.9), and what they are, are given in [4, Theorem 7.1.4]. However, they
are very abstract. When σ2(u, v) satisfies mild regularity conditions, φ and ϕ are nice
functions. An extensive treatment of Gaussian processes satisfying (1.3) and (1.9) is
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Moduli of continuity of chi–square processes

given in [4, Chapter 7]. It should be clear that not all Gaussian processes satisfy (1.3)
and (1.9). For example, if a Gaussian process is continuously differentiable

lim sup
t→0

η(t)− η(0)

t
= η′(0), (1.11)

and

lim
h→0

sup
|u−v|≤h
u,v∈∆

η(u)− η(v)

u− v
= sup
u∈∆

η′(u). (1.12)

When η is a continuous Gaussian process with stationary increments, σ2(u, v) in (1.7)
can be written as σ2(u− v, 0). In this case if σ̃2(x) is asymptotic to an increasing function
at 0, then (1.9) implies (1.8). We discuss this further in Remark 2.3.

It is remarkable that the moduli functions φ and ϕ do not depend on k. This indicates
that the extremes of the the increments of η take place on a very sparse set of points.

2 Proofs

Proof of Theorem 1.1. Let ηi(t), i = 1, . . . , k, be independent copies of η(t). We write,

η2
i (t)− η2

i (0) = (ηi(t)− ηi(0))(ηi(t) + ηi(0)) (2.1)

= (ηi(t)− ηi(0))(2ηi(0) + (ηi(t)− ηi(0)))

= 2(ηi(t)− ηi(0))ηi(0) + (ηi(t)− ηi(0))2.

By (1.3)

lim sup
t→0

∑k
i=1(ηi(t)− ηi(0))2

φ(t)
(2.2)

≤
k∑
i=1

lim sup
t→0

|ηi(t)− ηi(0)|
φ(t)

lim
t→0
|ηi(t)− ηi(0)| = 0.

Consequently, using (1.1) we see that,

lim sup
t→0

Yk(t)− Yk(0)

φ(t)
= lim sup

t→0

2
∑k
i=1(ηi(t)− ηi(0))ηi(0)

φ(t)
. (2.3)

Write,

(ηi(t)− ηi(0))ηi(0) (2.4)

=

(
ηi(t)−

U(0, t)

U(0, 0)
ηi(0)

)
ηi(0)−

(
U(0, 0)− U(0, t)

U(0, 0)

)
η2
i (0).

We show below that

lim sup
t→0

|U(0, 0)− U(0, t)|
U(0, 0)φ(t)

= 0. (2.5)

Consequently,

lim sup
t→0

Yk(t)− Yk(0)

φ(t)
= lim sup

t→0

2
∑k
i=1

(
ηi(t)− U(0,t)

U(0,0)ηi(0)
)
ηi(0)

φ(t)
. (2.6)

The inovation in this proof is to recognize that

k∑
i=1

(
ηi(t)−

U(0, t)

U(0, 0)
ηi(0)

)
ηi(0) (2.7)
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is actually a one dimensional real valued Gaussian process. Let {ξi(t), t ∈ [0, 1]}, i =

1, . . . , k, be independent copies of a mean zero Gaussian process {ξ(t), t ∈ [0, 1]}, and set
~ξ(t) = (ξ1(t), . . . , ξk(t)). Let ~v ∈ Rk with ‖~v‖2 = 1. Computing the covariances we see
that,

{(~v · ~ξ(t)), t ∈ [0, 1]} law= {ξ(t), t ∈ [0, 1]}. (2.8)

(This relationship is used by P. Revesz in [8, Theorem 18.1] to obtain LILs for Brownian
motion in Rk.)

Therefore, since (ηi(t)− (U(0, t)/U(0, 0))ηi(0)) and ηi(0) are independent for i =

1, . . . , k, we see that, {(
~η(t)− U(0, t)

U(0, 0)
~η(0)

)
· ~η(0)

‖~η(0)‖2
, t ∈ [0, 1]

}
(2.9)

law
=
{(

η(t)− U(0, t)

U(0, 0)
η(0)

)
, t ∈ [0, 1]

}
,

where ~η(t) = (η1(t), . . . , ηk(t)) and

‖~η(t)‖2 =

(
k∑
i=1

η2
i (t)

)1/2

= Y
1/2
k (t). (2.10)

Consequently, (2.6) implies that

lim sup
t→0

Yk(t)− Yk(0)

φ(t)‖~η(0)‖2
law
= lim sup

t→0

2
(
η(t)− U(0,t)

U(0,0)η(0)
)

φ(t)
. (2.11)

Using (2.4) again and (2.5) we see that this implies that,

lim sup
t→0

Yk(t)− Yk(0)

φ(t)‖~η(0)‖2
law
= lim sup

t→0

2(η(t)− η(0))

φ(t)
= 2, (2.12)

where the last equality uses (1.3). Using (2.10) we obtain (1.4).
To obtain (2.5) we first note that it follows from (1.3) that,

φ(t) = (E(η(t)− η(0))2)1/2h(t), (2.13)

for some function h such that limt↓0 h(t) =∞. To see this, suppose that it is false. Then
there exists a sequence {tk}, with limk→∞ tk = 0, such that supk h(tk) ≤M . Therefore, if
(1.3) holds, we would have,

sup
k

η(tk)− η(0)

(E(η(tk)− η(0))2)1/2
≤M a.s. (2.14)

This is not possible because {η(tk)− η(0)/(E(η(tk)− η(0))2)1/2} is a sequence of standard
normal random variables.

Since,

U(0, 0)− U(0, t) = E ((η(t)− η(0)) η(0)) ≤ E
(

(η(t)− η(0))
2
)1/2

U1/2(0, 0), (2.15)

we have,
U(0, 0)− U(0, t)

φ(t)
≤ U1/2(0, 0)

h(t)
. (2.16)

Using the fact that limt↓0 h(t) =∞ we get (2.5).
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Proof of Theorem 1.2. Note that (1.9) implies that {η(t), t ∈ [0, 1]} and therefore {η2(t), t ∈
[0, 1]} are uniformly continuous on [0, 1], which in turn implies that for all k ≥ 1,
{Yk(t); t ∈ [0, 1]} is uniformly continuous on [0, 1].

To show,

lim
h→0

sup
|u−v|≤h
u,v∈∆

Yk(u)− Yk(v)

ϕ(|u− v|)
≥ 2 sup

t∈∆
Y

1/2
k (t), a.s. (2.17)

it suffices to show that for any d ∈ ∆,

lim
h→0

sup
|u−v|≤h
u,v∈∆

Yk(u)− Yk(v)

ϕ(|u− v|)
≥ 2Y

1/2
k (d), a.s. (2.18)

This is because, (2.18) holding almost surely implies that for any countable dense set
∆′ ⊂ ∆,

lim
h→0

sup
|u−v|≤h
u,v∈∆

Yk(u)− Yk(v)

ϕ(|u− v|)
≥ 2 sup

d∈∆′
Y

1/2
k (d), a.s. (2.19)

which implies (2.17).
Let u, v, d ∈ ∆. We write,

η2
i (u)− η2

i (v) = (ηi(u)− ηi(v))(ηi(u) + ηi(v)) (2.20)

= (ηi(u)− ηi(v))(2ηi(d) + (ηi(u)− ηi(d)) + (ηi(v)− ηi(d))).

Using the line above we see that we can write Yk(u)− Yk(v) as a sum of three terms,
two of which contain the product of two differences of ηi. We show below that these two
terms, in the limit, are negligible with respect to the uniform modulus of Yk(u)− Yk(v).
To this end, using (2.10), we note that

lim
h→0

sup
|u−v|≤h
u,v∈∆

Yk(u)− Yk(v)

ϕ(|u− v|)Y 1/2
k (d)

(2.21)

≥ lim
h→0

sup
|u−v|≤h
u,v∈∆

2
∑k
i=1(ηi(u)− ηi(v))ηi(d)

‖~η(d)‖2 ϕ(|u− v|)

− lim
h→0

sup
|u−v|≤h
u,v∈∆

2
∑k
i=1(ηi(u)− ηi(v))(ηi(u)− ηi(d))

‖~η(d)‖2ϕ(|u− v|)
.

It follows from (1.9) that,

lim
h→0

sup
|u−v|≤h
u,v∈∆

∑k
i=1(ηi(u)− ηi(v))(ηi(u)− ηi(d))

ϕ(|u− v|)
(2.22)

≤ lim
h→0

sup
|u−v|≤h
u,v∈∆

∑k
i=1 |ηi(u)− ηi(v)| supu∈∆ |ηi(u)− ηi(d)|

ϕ(|u− v|)

≤
k∑
i=1

sup
u∈∆
|ηi(u)− ηi(d)| := ∆∗.

So that,

lim
h→0

sup
|u−v|≤h
u,v∈∆

Yk(u)− Yk(v)

ϕ(|u− v|)Y 1/2
k (d)

(2.23)

≥ lim
h→0

sup
|u−v|≤h
u,v∈∆

2
∑k
i=1(ηi(u)− ηi(v))ηi(d)

‖~η(d)‖2 ϕ(|u− v|)
− 2∆∗

‖~η(d)‖2
.
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We now use our critical relationshp (2.8) to replace the sum in (2.23) by the difference
of a real valued Gaussian process. To do this we write

ηi(u)− ηi(v) = V (v, d)ηi(u)− V (u, d)ηi(v) +Gi(u, v), (2.24)

where, V (u, v) = U(u, v)/U(d, d), and

Gi(u, v) = (1− V (v, d))ηi(u)− (1− V (u, d))ηi(v). (2.25)

In this notation, ∑k
i=1(ηi(u)− ηi(v))ηi(d)

‖~η(d)‖2 ϕ(|u− v|)
−
∑k
i=1Gi(u, v)ηi(d)

‖~η(d)‖2 ϕ(|u− v|)

=

∑k
i=1 (V (v, d)ηi(u)− V (u, d)ηi(v)) ηi(d)

‖~η(d)‖2 ϕ(|u− v|)
. (2.26)

Note that for all u, v ∈ [0, 1],

E ((V (v, d)ηi(u)− V (u, d)ηi(v))ηi(d)) = 0.

This shows that ηi(d) is independent of {V (v, d)ηi(u)−V (u, d)ηi(v);u, v ∈ [0, 1]}. Therefore
by (2.8),

{ k∑
i=1

(V (v, d)ηi(u)− V (u, d)ηi(v))
ηi(d)

‖~η(d)‖2
; u, v ∈ [0, 1]

}
(2.27)

law
=
{
V (v, d)η(u)− V (u, d)η(v); u, v ∈ [0, 1]

}
.

It follows that,

lim
h→0

sup
|u−v|≤h
u,v∈∆

∑k
i=1(ηi(u)− ηi(v))ηi(d)

‖~η(d)‖2 ϕ(|u− v|)
(2.28)

+ lim
h→0

sup
|u−v|≤h
u,v∈∆

∑k
i=1 |Gi(u, v)||ηi(d)|
‖~η(d)‖2 ϕ(|u− v|)

law
≥ lim

h→0
sup
|u−v|≤h
u,v∈∆

V (v, d)η(u)− V (u, d)η(v)

ϕ(|u− v|)
.

Using (2.24) we write,

lim
h→0

sup
|u−v|≤h
u,v∈∆

V (v, d)η(u)− V (u, d)η(v)

ϕ(|u− v|)
(2.29)

≥ lim
h→0

sup
|u−v|≤h
u,v∈∆

(η(u)− η(v))

ϕ(|u− v|)
− lim
h→0

sup
|u−v|≤h
u,v∈∆

|G(u, v)|
ϕ(|u− v|)

= 1− lim
h→0

sup
|u−v|≤h
u,v∈∆

|G(u, v)|
ϕ(|u− v|)

,

where
G(u, v) = (1− V (v, d))η(u)− (1− V (u, d))η(v) (2.30)

and we use (1.9) for the last line in (2.29).
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It follows from (2.28) and (2.29) that,

lim
h→0

sup
|u−v|≤h
u,v∈∆

∑k
i=1(ηi(u)− ηi(v))ηi(d)

‖~η(d)‖2 ϕ(|u− v|)
law
≥ 1−H, (2.31)

where,

H = lim
h→0

sup
|u−v|≤h
u,v∈∆

∑k
i=1 |Gi(u, v)||ηi(d)|
‖~η(d)‖2 ϕ(|u− v|)

+ lim
h→0

sup
|u−v|≤h
u,v∈∆

|G(u, v)|
ϕ(|u− v|)

.

We now show that H = o(∆) almost surely. Using the Schwartz inequality followed
by the triangle inequality we note that,∑k

i=1 |Gi(u, v)||ηi(d)|
‖~η(d)‖2 ϕ(|u− v|)

≤
∑k
i=1 |Gi(u, v)|
ϕ(|u− v|)

.

Therefore,

H ≤
k∑
i=0

lim
h→0

sup
|u−v|≤h
u,v∈∆

|Gi(u, v)|
ϕ(|u− v|)

, a.s., (2.32)

where for notational convenience we have set G0 = G.
Using the notation in (1.7), it follows from (1.9) that we can write,

ϕ(h) = σ̃(h)g(h), where necessarily, lim
h→0

g(h) =∞. (2.33)

This is shown by a minor modification of the argument used to prove (2.13). Note that
for any sequence hk → 0 we can find sequences {uk}, {vk} in ∆, with |uk − vk| ≤ hk such
that σ̃(hk) ≤ 2σ(uk, vk). Now, suppose that lim suph→0 g(h) = M . Then by (1.9) we would
have,

sup
k→∞

η(uk)− η(vk)

σ(uk, vk)
≤ 4M a.s.

This is not possible because each term (η(uk) − η(vk))/σ(uk, vk) is a standard normal
random variable.

We show in Lemma 2.1 below that,

|G(u, v)| ≤ σ(d, v)

U1/2(d, d)
|η(u)− η(v)|+ σ(u, v)

U1/2(d, d)
|η(v)|. (2.34)

Using this and then (1.9) and (2.33) we have,

lim
h→0

sup
|u−v|≤h
u,v∈∆

|G(u, v)|
ϕ(|u− v|)

≤ lim
h→0

sup
|u−v|≤h
u,v∈∆

|η(u)− η(v)|σ(d, v)

U1/2(d, d)ϕ(|u− v|)
(2.35)

+ lim
h→0

sup
|u−v|≤h
u,v∈∆

σ(u, v)

U1/2(d, d)ϕ(|u− v|)
η(v)

≤ sup
d,v∈∆

σ(d, v)

U1/2(d, d)
+ lim
h→0

1

g(h)
sup
v∈∆

|η (v) |
U1/2(d, d)

=
σ̃(|∆|)

U1/2(d, d)
,

where σ̃(|∆|) is defined in (1.7). This shows that

H ≤ (k + 1)
σ̃(|∆|)

U1/2(d, d)
. (2.36)

We now use (2.23), (2.31) and (2.35) to see that,
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lim
h→0

sup
|u−v|≤h
u,v∈∆

Yk(u)− Yk(v)

ϕ(|u− v|)
(2.37)

≥ 2Y
1/2
k (d)

(
1− (k + 1)

σ̃(|∆|)
U1/2(d, d)

)
− 2∆∗, a.s.,

where d ∈ ∆ and ∆∗ is defined in (2.22).
Suppose that |∆| = 1/n. We show in Lemma 2.2 below that,

P
(

∆∗ ≥ k((1 + 2C)σ̃2(1/n) log n)1/2
)
≤ 2k

nC
. (2.38)

Now let ∆(d, n) ⊆ ∆, be an interval of size 1/n that contains d. It follows from (2.37) and
(2.38) applied to ∆(d, n) and ∆∗(d, n) that,

lim
h→0

sup
|u−v|≤h
u,v∈∆

Yk(u)− Yk(v)

ϕ(|u− v|)
(2.39)

≥ lim
h→0

sup
|u−v|≤h

u,v∈∆(d,n)

Yk(u)− Yk(v)

ϕ(|u− v|)

≥ 2Y
1/2
k (d)

(
1− (k + 1)

σ̃(1/n)

U1/2(d, d)

)
− 2k((1 + 2C)σ̃2(1/n) log n)1/2,

except, possibly, on a set of measure 2k/nC . Taking n→∞, and using (1.8), gives (2.18)
and consequently (2.17), which is the lower bound in (1.10).

We now obtain the upper bound in (1.10). Let U = inft∈[0,1] U(t, t) and note that U > 0.
Set ∆m,n = ∆ ∩ [m−1

n , m+1
n ]. Analogous to (2.39) we have,

lim
h→0

sup
|u−v|≤h
u,v∈∆m,n

Yk(u)− Yk(v)

ϕ(|u− v|)
(2.40)

≤ 2Y
1/2
k (m/n)

(
1 + (k + 1)

σ̃(2/n)

U1/2

)
+ k((1 + 2C)σ̃2(2/n) log n)1/2,

except, possibly, on a set of measure 2k/nC . The proof of (2.40) proceeds in essentially
the same way as the proof of (2.39). In the proof of the lower bound in (2.39) we subtract
several terms. In proving the upper bound in (2.40) we add these terms. It then follows
that,

lim
h→0

sup
|u−v|≤h
u,v∈∆

Yk(u)− Yk(v)

ϕ(|u− v|)
(2.41)

≤ 2 sup
m=1,...,n−1

Y
1/2
k (m/n)

(
1 + (k + 1)

σ̃(2/n)

U1/2

)
+ k((1 + 2C)σ̃2(2/n) log n)1/2

≤ 2 sup
v∈∆

Y
1/2
k (v)

(
1 + (k + 1)

σ̃(2/n)

U1/2

)
+ k((1 + 2C)σ̃2(2/n) log n)1/2,

except possibly on a set of measure 2k/nC−1. Taking the limit as n→∞ gives the upper
bound in (1.10).

Lemma 2.1.

|G(u, v)| ≤ σ(d, v)

U1/2(d, d)
|η(u)− η(v)|+ σ(u, v)

U1/2(d, d)
|η(v)|. (2.42)
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Proof. We write,

G(u, v) = (1− V (v, d))(η(u)− η(v)) + (V (u, d)− V (v, d))η(v).

Note that,

|(V (u, d)− V (v, d))| =
| (E(η(u)− η(v))η(d)) |

U(d, d)

≤
(
E(η(u)− η(v))2Eη2(d)

)1/2
U(d, d)

≤ σ(u, v)

U1/2(d, d)
,

and,

(1− V (v, d)) =
(E(η(d)− η(v))η(d))

U(d, d)

≤
(
E(η(d)− η(v))2Eη2(d)

)1/2
U(d, d)

≤ σ(d, v)

U1/2(d, d)
.

Lemma 2.2.
P
(

∆∗ ≥ k((1 + 2C)σ̃2(|∆|) log 1/|∆|)1/2
)
≤ 2k|∆|C ; (2.43)

(see (2.22)).

Proof. Let a be the median of supu∈∆(η1(u) − η1(d)). It follows from [4, Lemma 5.4.3]
that,

P

(
sup
u∈∆
|η1(u)− η1(d)| ≥ a + σ̃(|∆|)t

)
≤ 2e−t

2/2. (2.44)

Since by [4, (7.113)],
a = o(σ̃2(|∆|) log 1/|∆|)1/2, (2.45)

we see that

P

(
sup
u∈∆
|η1(u)− η1(d)| ≥ ((1 + 2C)σ̃2(|∆|) log 1/|∆|)1/2

)
≤ 2|∆|C , (2.46)

and since ∆∗ =
∑k
i=1 supu∈∆ |ηi(u)− ηi(d)|, see (2.22), this gives (2.43).

Remark 2.3. When η has stationary increments, σ2(u, v) in (1.7) can be written as
σ2(u− v). For x ∈ [0, δ] define,

σ2(x) = µ
(
s : σ2(x) ≤ x

)
,

where µ is Lebesgue measure. Clearly, σ2(x) is an increasing function. It is called the
increasing rearrangement of σ2(x). (See [4, Section 6,4] for more details.) We show in
[4, (6.138)] that when η is continuous a.s.,

lim
x→0

σ2(x) log(1/x) = 0.

This shows that if σ̃2(x) is asymptotic to an increasing function at 0, then (1.9), which
implies that η is continuous a.s., implies (1.8).
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