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Abstract

It has been discovered that the Kadomtsev-Petviashvili (KP) equation governs the
distribution of the fluctuation of many random growth models. In particular, the
Tracy-Widom distributions appear as special self-similar solutions of the KP equation.
We prove that the anti-derivative of the Baik-Rains distribution, which governs the
fluctuation of the models in the KPZ universality class starting with stationary initial
data, satisfies the KP equation. The result is first derived formally by taking a limit
of the generating function of the KPZ equation, which satisfies the KP equation.
Then we prove it directly using the explicit Painlevé II formulation of the Baik-Rains
distribution.
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1 Introduction

The fluctuations for the KPZ universality class depend on the initial data. Let h(x, t)

be the solution of the Kardar-Parisi-Zhang equation,

∂th(x, t) =
1

2
(∂xh(x, t))2 +

1

2
∂2xh(x, t) + ξ(x, t). (1.1)

Here ξ(x, t) is space-time Gaussian white noise,

E(ξ(x, t)ξ(y, s)) = δ(x− y)δ(t− s). (1.2)

The equation is ill-posed because the quadratic non-linear term does not make sense for
a realization of a solution. A typical solution h(x, t) looks like a Brownian motion in x

variable. One way to make sense of the equation is through the Hopf-Cole transformation.
The Hopf-Cole solution of the KPZ equation is defined to be: h(t, x) = − log z(t, x), where
z(t, x) is the solution of the stochastic heat equation with multiplicative white noise,

∂tz(t, x) =
1

2
∂2xz(t, x) + z(t, x)ξ(t, x). (1.3)

This is well-posed interpreted as an Itô integral equation.
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The Baik-Rains distribution and the KP equation

It has been independently proved recently in both [QS20] and [Vir20] that the KPZ
equation converges to the KPZ fixed point. Thus all the universal fluctuation behaviors
can be observed on large space and time scales under the KPZ scaling as ε→ 0,

hε(t, x) = ε1/2h(ε−3/2t, ε−1x). (1.4)

The fluctuations depend on the initial condition [MQR20]. If the initial condition is
z(0, x) = δ0, which corresponds to h(0, x) = −∞ if x 6= 0 and h(0, x) = 0 if x = 0, i.e. the
KPZ equation starting from the narrow wedge initial condition, we observe that when
t→∞,

− 21/3t−1/3(h(t, 21/3t2/3x)− 2−1/3t1/3x2 − t

24
− log

√
2πt)→ A2(x). (1.5)

If the initial condition is z(0, x) = 1, we observe

− 21/3t−1/3(h(t, 21/3t2/3x)− t

24
)→ A1(x). (1.6)

If the initial condition is z(0, x) = eB(x), where B(x) is a two-sided Brownian motion with
B(0) = 0, we observe

− 21/3t−1/3(h(t, 21/3t2/3x)− t

24
)→ Astat(x). (1.7)

Here A1(x),A2(x),Astat(x) are stochastic processes whose finite dimensional distribu-
tions are given by Fredholm determinants [PS01] [Joh03] [IS04]. These are the conjec-
tured processes which govern the long-time fluctuations of models which belong to the
KPZ universality class. A1(x) is a stationary process, whose one-point distribution is the
Tracy-Widom GOE distribution. The one point marginal of A2(x) is given by the Tracy-
Widom GUE distribution. The one point marginal of Astat(x) is given by the Baik-Rains
distribution.

In the paper [QR20], it was stated that the GUE and GOE Tracy-Widom distributions
are seen to arise as special similarity solutions of the scalar Kadomtsev-Petviashvili (KP)
equation,

∂tφ+ φ∂rφ+
1

12
∂3rφ+

1

4
∂−1r ∂2xφ = 0. (1.8)

In this paper, we explain how the Baik-Rains distribution can be seen as a similarity
solution of the KP equation. We first explain how the GUE and GOE distributions arise
as similarity solutions of the KP equation, then give the definition of the Baik-Rains
distribution and then state our main results.

Example 1.1. Tracy-Widom GUE distribution [QR20]: We consider a self-similar
solution of (1.8) in the following form,

φ(t, x, r) = t−2/3ψ(t−1/3r + t−4/3x2). (1.9)

This turns (1.8) to

ψ′′′ + 12ψψ′ − 4rψ′ − 2ψ = 0. (1.10)

If we look for solutions of the form ψ = −q2, then the above equation becomes the
Painlevé II equation,

q′′ = rq + 2q3. (1.11)

In this way, we recover the GUE distribution, since FGUE(r) = exp{−
∫ −∞
r

du(u− r)q2(u)}.
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The Baik-Rains distribution and the KP equation

Example 1.2. Tracy-Widom GOE distribution[QR20]: We consider a self-similar so-
lution of (1.8) in the following form,

φ(t, r) = (t/4)−2/3ψ((t/4)−1/3r). (1.12)

This turns (1.8) to
ψ′′′ + 12ψ′ψ − rψ′ − 2ψ = 0. (1.13)

If we look for solutions of the form ψ = 1
2 (q′ − q2), we get the Painlevé II equation again,

thus we recover the GOE distribution,

FGOE(r) = exp{−1

2

∫ ∞
r

q(u)du}FGUE(r)1/2. (1.14)

Now let us look at the definition of the Baik-Rains distribution. Here we present two
definitions which turn out to be equivalent. One definition appears in [BCFV15], as the
large time fluctuation of the stationary KPZ equation; the other definition will be the
main tool to prove our results.

Definition 1.3. [FS06] For w, s ∈ R, we define the following functions,

Φ̂w,s(x) =

∫
R−

dzewzKAi,s(z, x)ews,

Ψ̂w,s(y) =

∫
R−

dzewzAi(y + z + s),

ρs(x, y) = (I − P0KAi,sP0)−1(x, y),

(1.15)

where P0(x) = Ix≥0 is the projection operator, Ai(x) is the Airy function, and KAi,s is the
shifted Airy kernel,

KAi,s(x, y) =

∫ ∞
0

dλAi(x+ λ+ s)Ai(y + λ+ s). (1.16)

The Tracy-Widom GUE distribution can be written as

FGUE(s) = det(I − P0KAi,sP0) (1.17)

Then we define the function g(s, w) which appears as a component in the Baik-Rains
distribution,

g(s, w) = e−
1
3w

3

[

∫
R2
−

dxdyew(x+y)Ai(x+ y + s) +

∫
R2

+

dxdyΦ̂w,s(x)ρs(x, y)Ψ̂w,s(y)]. (1.18)

Finally, the Baik-Rains distribution is defined to be

Fτ (r) =
∂

∂r
(g(r + τ2, τ)FGUE(r + τ2)). (1.19)

The function g(s, w) can also be derived by solving the PNG model using the Riemann-
Hilbert technique. We also present this equivalent definition here [BR00]. Let u(x) be
the solution of the Painlevé II equation,

uxx = 2u3 + xu, (1.20)

with the boundary condition,

u(x) ∼ −Ai(x) as x→ +∞. (1.21)
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The Baik-Rains distribution and the KP equation

v(x) is defined to be

v(x) =

∫ x

∞
(u(s))2ds. (1.22)

Then the Tracy-Widom distributions can be defined in terms of u and v. Set

F (x) = exp(
1

2

∫ ∞
x

v(x)ds) = exp(−1

2

∫ ∞
x

(s− x)(u(s))2ds),

E(x) = exp(
1

2

∫ ∞
x

u(s)ds).

(1.23)

Then we can define the GUE and GOE distributions as

FGUE(x) = F (x)2 = exp(

∫ ∞
x

(s− x)(u(s))2ds),

FGOE(x) = F (x)E(x).

(1.24)

Then define Fτ (r) = H(r + τ2; τ/2,−τ/2), where

H(x;w,−w) = {y′(x,w)− y(x,w)v(x))}FGUE(x) = ∂x(y(x,w)FGUE(x)), (1.25)

where

y(x,w) = (2u2 + x− 4w2)a(x;w)a(x;−w)− (u′ + 2wu)b(x;w)a(x;−w)

−(u′ − 2wu)a(x;w)b(x;−w).
(1.26)

Here functions a(x;w) and b(x;w) arise in the Painlevé II Riemann-Hilbert problem.
In this paper, we do not need the exact definition of a(x;w), b(x;w), thus we skip the
formulation of the Riemann-Hilbert problem here. What we need are the following
identities [BR00],

∂xa(x,w) = u(x)b(x,w),

∂xb(x,w) = u(x)a(x,w)− 2wb(x,w),

∂wa(x,w) = 2u(x)2a(x,w)− (4wu(x) + 2u′(x))b(x,w),

∂wb(x,w) = (−4wu(x) + 2u′(x))a(x,w) + (8w2 − 2x− 2u(x)2)b(x,w),

a(x,w) = −b(x,−w)e
8
3w

3−2wx,

b(x,w) = −a(x,−w)e
8
3w

3−2wx.

(1.27)

Remark 1.4. It is proven in the appendix A of [FS06] that y(s+w′ 2, w′/2) = g(s+w2, w)

when w′ = 2w, which establishes the equivalence of the two definitions presented above.

The main result we discovered about Fτ (r) is the following,

Theorem 1.5. Recall that Fτ (r) is defined to be the partial derivative of y(r + τ2, τ/2)

FGUE(r + τ2) in r. If we consider certain scaling form of this anti-derivative of Fτ (r),

(∂−1r Ft−2/3x)(t−1/3r) = FGUE(t−1/3r + t−4/3x2)y(t−1/3r + t−4/3x2, t−2/3x/2), (1.28)

its logarithmic derivative φbr(x, t, r) = ∂2r log(∂−1r Ft−2/3x)(t−1/3r) satisfies the KP equa-
tion,

∂tφbr + φbr∂rφbr +
1

12
∂3rφbr +

1

4
∂−1r ∂2xφbr = 0. (1.29)

Remark 1.6. We know (1.28) and ∂2r logFGUE(t−1/3r + t−4/3x2) both satisfy the KP equa-
tion. If we define φgue = ∂2r logFGUE, ψ(x, t, r) = ∂2r log y(t−1/3r + t−4/3x2, t−2/3x/2), then
Theorem 1.5 is equivalent to ψ(x, t, r) satisfying the following equation,

∂tψ + ψ∂rψ +
1

12
∂3rψ +

1

4
∂−1r ∂2xψ + φgue∂rψ + ψ∂rφgue = 0. (1.30)

In this paper, we will prove that ψ satisfies (1.30), which implies Theorem 1.5.
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The Baik-Rains distribution and the KP equation

We first explain where the result comes from in Section 2. The Baik-Rains distribution
governs the fluctuation of the stationary KPZ equation in the large time limit. The
generating function of the KPZ equation starting with two sided Brownian motion with
drifts satisfies the KP equation. One way of seeing this is by checking the cumulants
[Dou20], which is formally derived using Bethe ansatz method; another way is by
checking its determinantal formula [QR20]. Then we conjecture that the same equation
should still be satisfied when the drift goes to zero and time goes to infinity, which
gives Theorem 1.5. This is only formal since we assume that if a sequence of functions
satisfy an equation, its limit also satisfies the same equation. In section 3, we will prove
Theorem 1.5 by directly differentiating y(t−1/3r+ t−4/3x2, t−2/3x/2). Using the identities
in (1.27), we find that equation (1.30) holds.

2 Motivation for the result

A key fact we will use is the following theorem,

Theorem 2.1. [QR20] Suppose a function can be written in the Fredholm determinant
form, i.e. F (x, t, r) = det(I −K)L2[0,∞), and the integral kernel K(u, v, x, t, r) satisfies
the following relations,

∂rK = (∂u + ∂v)K,

∂tK = −1

3
(∂3u + ∂3v)K,

∂xK = (∂2u − ∂2v)K.

(2.1)

Suppose in addition that det(I −K) > 0 for all finite t, x, r, and K is real analytic in t, x
and r, and that the trace norm ‖K‖1 < 1 for r in some open real interval. Then in that
interval, φ(x, t, r) = ∂2r logF (x, t, r) satisfies the scalar KP equation,

∂tφ+ φ∂rφ+
1

12
∂3rφ+

1

4
∂−1r ∂2xφ = 0. (2.2)

Remark 2.2. The fact that equations (2.1) lead to the KP equation was discovered
several times in [ZS74] [Pop89], but its appearance in the context of random fluctuation
interfaces was discovered in [QR20].

It is checked in [QR20] [Dou20] that if h(x, t) is the solution of the KPZ equation
with half-Brownian initial data or narrow wedge initial data, the generating function
G(t, x, r) = E[exp{−eh(t,x)+ t

12−r}] can be written in the Fredholm determinant form,
having a kernel satisfying equations (2.1). It is also checked in [Dou20] that if h(x, t) is
the solution of the KPZ equation with the drifted Brownian motion initial condition, its
generating function also satisfies the KP equation, by studying the moments of eh(x,t).
Here we check it using a different method, which agrees with the results in [Dou20]. We
begin with the following theorem.

Theorem 2.3. [BCFV15] Let zb,β(t, x) denote the solution to the stochastic heat equation
with initial data z(0, x) = exp(Bb,β(x)), where Bb,β(x) is a two-sided Brownian motion
with drift β to the left of 0 and drift b to the right of 0, with β > b, that is, Bb,β =

1x≤0(Bl(x) + βx) + 1x>0(Br(x) + bx), where Bl : (−∞, 0] → R is a Brownian motion
without drift pinned at Bl(0) = 0 and Br : [0,∞) → R is an independent Brownian
motion pinned at Br(0) = 0. Then for S > 0,

E[2(Se
x2

2t +
t
24 zb,β(t, x))

β−b
2 K−(β−b)(2

√
Se

x2

2t +
t
24 zb,β(t, x))] = Γ(β−b) det(I−Kb+ x

t ,β+
x
t
)L2(R+)

(2.3)
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The Baik-Rains distribution and the KP equation

where Kν(z) is the modified Bessel function of order ν and the kernel on the right-hand
side is given by

Kb,β(u, v) =
1

(2πi)2

∫
dw

∫
dz

σπSσ(z−w)

sin(σπ(z − w))

ez
3/3−zv

ew3/3−wu
Γ(β − σz)
Γ(σz − b)

Γ(σw − b)
Γ(β − σw)

, (2.4)

where
σ = (2/t)1/3. (2.5)

The integration contour for w is from − 1
4σ − i∞ to − 1

4σ + i∞ and crosses the real axis
between b and β. The other contour for z goes from 1

4σ − i∞ to 1
4σ + i∞, it also crosses

the real axis between b and β and it does not intersect the contour for w.

In order to get the formula for stationary initial data, we need to take the limit as
β → b and set b = 0. To do so, we need to rewrite the kernel Kb,β. Two contours in
the integral kernel of Kb,β intersect the real axis between the pole at b/σ and β/σ, so
when β → b, two contours will collide. We move the contour of w cross the pole at b/σ
and move the contour of z cross the pole at β/σ. Using the residue theorem, we have
[BCFV15],

Kb,β(u, v) = K̄b,β(u, v) + qb,β(u)rβ(v)
1

σΓ(β − b)
+ r−b(u)q−β,−b(v)

1

σΓ(β − b)

+
σπSβ−b

sin(π(β − b))
r−b(u)rβ(v)

1

σ2Γ(β − b)2
,

(2.6)

where

K̄b,β(u, v) =
1

(2πi)2

∫
− 1

4σ+iR

dw

∫
1
4σ+iR

dz
σπSσ(z−w)

sin(σπ(z − w))

ez
3/3−zv

ew3/3−wu
Γ(β − σz)
Γ(σz − b)

Γ(σw − b)
Γ(β − σw)

,

qb,β(u) =
1

2πi

∫
− 1

4σ+iR

dw
σπSβ−σw

sin(π(β − σw))
e−w

3/3+wu Γ(σw − b)
Γ(β − σw)

,

rb(u) = eb
3/(3σ3)−bu/σ.

(2.7)

Notice that the only difference between Kb,β and K̄b,β is that they have different
contours. We can write

Kb,β(u, v) = K̄b,β(u, v) +

3∑
i=1

fi(u)gi(v), (2.8)

with suitable fi, gi. Then for the Fredholm determinant, we have the following formula,

det(I −Kb,β) = det(I − K̄b,β) det[δi,j − 〈(I − K̄b,β)−1fi, gj〉]3i,j=1. (2.9)

Both kernels Kb,β(x, y) and K̄b,β(x, y) depend on S. For S = eτ
2+σr, where τ is related to

x, b, t as x = bt+ 2τ
σ2 and when b = 0, we observe that both Kb+ x

t ,β+
x
t
(u, v), K̄b+ x

t ,β+
x
t
(u, v)

satisfy equations (2.1). The reason that we make this specific choice of S and τ will be
clear from the later context; this is the scaling that gives the Baik-Rains distribution.
We will do some transformations on the integral kernel so that equations (2.1) become
obvious while the determinant of the operator remains unchanged. When S = eτ

2+σr,

Kb+ x
t ,β+

x
t
(u, v)

=
1

(2πi)2

∫
dw

∫
dz
σπe−(z−w)(τ2+σr)

sin(σπ(z − w))

ez
3/3−zv

ew3/3−wu
Γ(β + x

t − σz)
Γ(σz − b− x

t )

Γ(σw − b− x
t )

Γ(β + x
t − σw)

. (2.10)
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The Baik-Rains distribution and the KP equation

Now let z → σz − x
t , w → σw − x

t , then

Kb+ x
t ,β+

x
t
(u, v)

=
1

(2πi)2

∫
dw

∫
dz
πe−(z−w)(τ2+σr)/σ

sin(π(z − w))

et(z
3+3z2x/t+3zx2/t2)/6− 1

σ (z+
x
t )v

et(w
3+3w2x/t+3wx2/t2)/6− 1

σ (w+ x
t )u

Γ(β − z)
Γ(z − b)

Γ(w − b)
Γ(β − w)

.

(2.11)

Let u→ 1
σu, v →

1
σv and conjugate the kernel by eux/t (which is equivalent to multiplying

the kernel by e(u−v)x/t). It becomes

Kb+ x
t ,β+

x
t
(u, v)

=
1

(2πi)2

∫
dw

∫
dz
πe−(z−w)(b2t/2+bx)

sin(π(z − w))

e(tz
3+3z2x)/6−z(v+r)

e(tw3+3w2x)/6−w(u+r)

Γ(β − z)
Γ(z − b)

Γ(w − b)
Γ(β − w)

. (2.12)

When b = 0, the only term contains x, t, r, u, v is e(tz
3+3z2x)/6−z(v+r)

e(tw3+3w2x)/6−w(u+r)
, which clearly satisfies

equations (2.1). When b 6= 0, it will have extra terms when differentiating t, x coming
from e−(z−w)(b2t/2+bx), which fail to satisfy equations (2.1). The reason we can directly
take derivatives under the integral sign and the kernel being analytic in t, x, r come from
the following lemma,

Lemma 2.4. [BCFV15]Let f(z, ζ) be a complex function in two variables and suppose
that

1. f is defined on (z, ζ) ∈ A× C where A is an open set and C is a contour,
2. For each z ∈ A, define the contour γz = {z + reit : 0 ≤ t ≤ 2π} with a sufficiently

small r such that also the disc around z with radius r lies in A. Suppose that for
each z ∈ A, ∫

C

∫
γz

|f(u, ζ)||du||dζ| <∞, (2.13)

3. For each ζ ∈ C, z → f(z, ζ) is analytic in A,
4. For each z ∈ A, ζ → f(z, ζ) is continuous on C.

Then

F (z) =

∫
C

f(z, ζ)dζ (2.14)

is analytic in A with F ′(z) =
∫
C

∂
∂z f(z, ζ)dζ.

It can be easily seen from the form of the kernel that conditions (1), (3), (4) are
satisfied. Since ez

3/3 decays along Cz as e−c|Im(z)|2 , ew
3/3 decays along Cw as e−c|Im(w)|2 ,

using the gamma ratio formula, as |z| → ∞, we have [BCFV15]∣∣∣∣Γ(β − σz)
Γ(σz − b)

∣∣∣∣ ' |z|β+b−2σRe(z). (2.15)

Similarly we have the same bound for large w. Thus if we integrate β on some fi-
nite contour, we have the same polynomial bounds. Thus the whole integrand decays
exponentially on the contour, so condition (2) is satisfied.

Here K̄b,β also satisfies equations (2.1) if S = eτ
2+σr, because the only difference

between K̄b,β and Kb,β is that they have different contours, for which Lemma 2.4
still applies. We denote φb,β = ∂2r log det(I − Kb,β), φ̄b,β = ∂2r log det(I − K̄b,β) and α =

∂2r log det[δi,j −〈(I− K̄b,β)−1fi, gj〉]3i,j=1, we have φb,β = φ̄b,β +α and both φb,β , φ̄b,β satisfy
the KP equation,

∂tφ̄b,β + φ̄b,β∂rφ̄b,β +
1

12
∂3r φ̄b,β +

1

4
∂−1r ∂2xφ̄b,β = 0,

∂t(φ̄b,β + α) + (φ̄b,β + α)∂r(φ̄b,β + α) +
1

12
∂3r (φ̄b,β + α) +

1

4
∂−1r ∂2x(φ̄b,β + α) = 0.

(2.16)
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The Baik-Rains distribution and the KP equation

Combining these two equations, we obtain an equation for α involving φ̄b,β ,

∂tα+ α∂rα+
1

12
∂3rα+

1

4
∂−1r ∂2xα+ α∂rφ̄b,β + φ̄b,β∂rα = 0. (2.17)

This is a similar equation to (1.30), except that φ̄b,β is not ∂2r logFGUE. Now we want to
see how equation (2.9) leads us to the Baik-Rains distribution.

In the limit of β → b, we have the following results,

Theorem 2.5. [BCFV15] Let b+ x
t ∈ (− 1

4 ,
1
4 ) be fixed. For the kernel Kb,β , we have

lim
β→b

1

β − b
det(I −Kb+ x

t ,β+
x
t
) =

1

σ
Ξ(S, b+

x

t
, σ), (2.18)

where

Ξ(S, b, σ) = −det(I − K̄b)[
b2

σ2
+ σ(2γE + lnS)

+ 〈(I − K̄b)
−1(K̄br−b + qb), rb〉+ 〈(I − K̄b)

−1(r−b + qb), q−b〉].
(2.19)

Here γE is the Euler-Mascheroni constant, and for b+ x
t ∈ (− 1

4 ,
1
4 ), K̄b = K̄b,b, qb = qb,b.

Looking at the function Ξ(S, b, σ) and equation (2.9), we can see that

det(I − K̄b+ x
t ,β+

x
t
)→ det(I − K̄b+ x

t
),

1

β − b
det[δi,j − 〈(I − K̄b+ x

t ,β+
x
t
)−1fi, gj〉]3i,j=1 → [

(b+ x
t )2

σ2
+ σ(2γE + lnS)

+
1

σ
〈(I − K̄b+ x

t
)−1(K̄b+ x

t
r−(b+ x

t )
+ qb+ x

t
), rb+ x

t
〉

+ 〈(I − K̄b+ x
t
)−1(r−(b+ x

t )
+ qb+ x

t
), q−(b+ x

t )
〉].

(2.20)

We define the log derivative of the objects after limits as follows,

φ(x, t, r) = ∂2r log det(I − K̄b+ x
t
),

ψ(x, t, r) = ∂2r log[
(b+ x

t )2

σ2
+ σ(2γE + lnS)

+ 〈(I − K̄b+ x
t
)−1(K̄b+ x

t
r−(b+ x

t )
+ qb+ x

t
), rb+ x

t
〉+ 〈(I − K̄b+ x

t
)−1(r−(b+ x

t )
+ qb+ x

t
), q−(b+ x

t )
〉].

(2.21)

We take limit β → b in equation (2.16), then φb,β(x, t, r)→ φ(x, t, r), α(x, t, r)→ ψ(x, t, r).
In a purely formal way, we assume all the partial derivatives converge to the derivatives
of the limit, thus we obtain that φ(x, t, r), ψ(x, t, r) also satisfy equations (2.16).

In the large time limit, we have the following results [BCFV15],

lim
t→∞

Ξ(e−
τ2+σr
σ , τσ, σ) = g(σr + τ2, τ)FGUE(σr + τ2). (2.22)

Remark 2.6. The reader might confuse why it is not the exact result in [BCFV15]. It is
because the function g in [BCFV15], which is cited from [BFP10], is not the same g in
[FS06]. Their equivalence is claimed in [BFP10], Remark 1.3.

Here the relation of τ to x, t is

x = −bt+
2τ

σ2
, σ = (

2

t
)1/3. (2.23)

Under this scaling, we have the following result.
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Theorem 2.7. [BCFV15] Let b ∈ (− 1
4 ,

1
4 ) be fixed and consider any τ ∈ R. Define

σ = (2/t)1/3 and consider the scaling x = −bt+ 2τ
σ2 . Then, for any r ∈ R,

lim
t→∞

P(
hb(t, x) + t

24 (1 + 12b2)− 21/3bτt2/3

(t/2)1/3
≤ r) = Fτ (r). (2.24)

When b = 0, we have σ2x = 2τ . We can see that as t → ∞, x must go to infinity in
the speed x ∼ t2/3 so that τ can be a meaningful number. For this reason, we write the
variable in the scaling form hε(t, x) = ε1/2h(ε−1x, ε−3/2t). To obtain the corresponding

formula, we plug ε−1x → x, ε−3/2t → t, ε−1/2r → r into Ξ(e−
τ2+σr
σ , τσ, σ), which we

denoted as Ξε. Then taking t→∞ in (2.22) is equivalent to taking ε→ 0. We have

lim
ε→0

Ξε(e
− τ

2+r
σ , τσ, σ) =

g((21/3t−1/3r + 2−2/3t−4/3x2, 2−1/3t−2/3x)FGUE(21/3t−1/3r + 2−2/3t−4/3x2).
(2.25)

Now we also write the two components of Ξ in the scaling form. Let φε(x, t, r) =

φ(ε−1x, , ε−
3
2 t, ε−1/2r), ψε(x, t, r) = ψ(ε−1x, , ε−

3
2 t, ε−1/2r), where φ, ψ are defined in (2.21).

Then equations (2.16) re-scale as follows,

ε5/2∂tφ
ε + ε5/2φε∂rφ

ε +
1

12
ε5/2∂3rφ

ε + ε5/2
1

4
∂−1r ∂2xφ

ε = 0,

ε5/2∂tψ
ε + ε5/2ψε∂rψ

ε + ε5/2
1

12
∂3rψ

ε + ε5/2
1

4
∂−1r ∂2xψ

ε + ε5/2ψε∂rφ
ε + ε5/2φε∂rψ

ε = 0.

(2.26)

Thus φε, ψε also satisfy equation (2.16). In the limit as ε→ 0, we have

φε(x, t, r)→ ∂2r logFGUE(21/3t7−1/3r + 2−2/3t−4/3x2),

ψε(x, t, r)→ ∂2r log g(21/3t−1/3r + 2−2/3t−4/3x2, 2−1/3t−2/3x).
(2.27)

By formally assuming all the derivatives also converging to the derivatives of the limit,
we obtain that ∂2r logFGUE, ∂

2
r log g satisfy equations (2.16). Since the fact that ∂2r logFGUE

satisfies the KP equation is a known result, what is left to prove is ∂2r log g satisfies (2.17).

3 Proof by direct verification

In this section, we are going to prove that ∂2r log g satisfies (2.17) by directly differen-
tiating the function. First we want to change the function g to its equivalent function
y. Recall from Remark 1.4, y(s+ w′ 2, w′/2) = g(s+ w2, w) when w′ = 2w. In (2.25), we
can see that w = 2−1/3t−2/3x, s = 21/3t−1/3r, which means the correct scaling for y is
y(21/3t−1/3r + 24/3t−4/3x2, 22/3t−2/3x). Then we do another constant scaling on t: 2t→ t.
Now we will show that B = ∂2r log y(t−1/3r + t−4/3x2, 12 t

−2/3x) satisfies (2.17). We use
y′ to denote ∂1y which is the partial derivative of y with respect to the first variable,
to simplify the notation. The φ in (2.17) is the log derivative of the GUE distribution:
φ(t, x, r) = ∂2r logFGUE(t−1/3r + t−4/3x2) = −t−2/3u2(t−1/3r + t−4/3x2), u is defined in
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(1.21). We compute all the terms appearing in (2.17),

∂rB = t−3/3(y
′′′

y −
3y′y′′

y2 + 2y′ 3

y3 ),

B∂rB = t−5/3(y
′′′y′′

y2 − 3y′y′′ 2

y3 + 5y′ 3y′′

y4 − y′′′y′ 2

y3 − 2y′ 5

y5 ),

φ∂rB = t−5/3(−u2)(y
′′′

y −
3y′y′′

y2 + 2y′ 3

y3 ),

B∂rφ = t−5/3(−2uu′)(y
′′

y −
y′ 2

y2 ),

∂2rB = t−4/3(y
(4)

y −
3y′′y′′

y2 − 4y′y′′′

y2 + 12y′ 2y′′

y3 − 6y′ 4

y4 ),

∂3rB = t−5/3(y
(5)

y −
10y′′y′′′

y2 − 5y′y(4)

y2 + 20y′ 2y′′′

y3 + 30y′y′′ 2

y3 − 60y′ 3y′′

y4 + 24y′ 5

y5 ),

∂tB = − 2
3 t
−5/3(y

′′

y − (y
′

y )2)− t−2/3(y
′′′

y −
3y′y′′

y2 + 2y′ 3

y3 )( 1
3 t
−4/3r + 4

3 t
−7/3x2)

− t−2/3(∂2y
′′

y − y′′∂2y
y2 − 2y′∂2y

′

y2 + 2y′ 2∂2y
y3 ) 1

3 t
−5/3x,

∂−1r ∂2xB = 2t−5/3(y
′′

y −
y′ 2

y2 ) + 4x2t−9/3(y
′′′

y −
3y′y′′

y2 + 2y′ 3

y3 ) + 1
4 t
−5/3∂22(y

′

y )

+2xt−7/3(∂2y
′′

y − y′′∂2y
y2 − 2y′∂2y

′

y2 + 2y′ 2∂2y
y3 ).

(3.1)

Now plug in every term into equation (1.30). It becomes

∂tB +B∂rB + 1
12∂

3
rB + 1

4∂
−1
r ∂2xB + φ∂rB +B∂rφ

= t−5/3( 1
12 (y

(5)

y −
5y′y(4)

y2 + 2y′′y′′′

y2 − 6y′y′′ 2

y3 + 8y′ 2y′′′

y3 )− 1
6 (y

′′

y −
y′ 2

y2 )

+ 1
16 (

∂2
2y
′

y −
2∂2y

′∂2y
y2 − y′∂2

2y
y2 + 2y′(∂2y)

2

y3 ) + 1
3w(∂2y

′′

y − y′′∂2y
y2 − 2y′∂2y

′

y2 + 2y′ 2∂2y
y3 )

− 1
3x(y

′′′

y −
3y′y′′

y2 + 2y
′ 3

y3 )− u2(y
′′′

y −
3y′y′′

y2 + 2y
′ 3

y3 )− 2uu′(y
′′

y −
y′ 2

y2 )).

(3.2)

Multiplied by y3t5/3, the right-hand side becomes

1
12 (y(5)y2 − 5y′y(4)y + 2y′′y′′′y − 6y′y′′ 2 + 8y′ 2y′′′)− 1

6 (y′′y2 − y′ 2y)

+ 1
16 (∂22y

′y2 − 2∂2y
′∂2yy − y′∂22yy + 2y′(∂2y)2) + 1

3w(∂2y
′′y2 − y′′∂2yy − 2y′∂2y

′y+2y′ 2∂2y)

− 1
3x(y′′′y2 − 3y′y′′y + 2y′ 3)− u2(y′′′y2 − 3y′y′′y + 2y′ 3)− 2uu′(y′′y2 − y′ 2y).

(3.3)

Here w = t−1/3r + t−4/3x2, u comes from the FGUE part. Now we expand the derivatives
of y in terms of a, b, u, w. Recall that functions a(x;w), b(x;w) arise in the Riemann-
Hilbert problem for the Painlevé II equation. In the following expressions, if we omit the
variables, then it means that is the variable in the definition, i.e. a stands for a(x,w), b
stands for b(x,w). We use a(−w), b(−w) to represent a(x,−w), b(x,−w),

y = (2u2 + x− 4w2)aa(−w)− (u′ + 2wu)ba(−w)− (u′ − 2wu)ab(−w),

y′ = aa(−w),

y′′ = uba(x,−w) + uab(−w),

y′′′ = (u′ − 2wu)ba(−w) + 4u2aa(−w) + (u′ + 2wu)ab(−w),

y(4) = 12uu′aa(−w) + (4u3 + u′′ + 4wu′ + 4w2u)ab(−w)

+ (u′′ + 4u3 − 4wu′ + 4w2u)ba(−w),

y(5) = (12u′ 2 + 16uu′′ + 16u4 + 16w2u2)aa(−w),

+ (24u2u′ + u′′′ + 6wu′′ + 12w2u′ + 8wu3 + 8w3u)ab(−w)

+ (24u2u′ + u′′′ − 6wu′′ − 8wu3 + 12w2u′ − 8w3u)ba(−w),

∂2y = −8waa(−w) + 2uab(−w) + (−2u)ba(−w),

∂22y = (−8− 16uu′)aa(−w) + (16w2u− 16wu′ + 8u3 + 4ux)ab(−w)

+ (16w2u+ 16wu′ + 8u3 + 4ux)ba(−w).

(3.4)
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It is not a complete list. We are also required to compute ∂2y′, ∂22y
′, ∂2y

′′. Thanks to the
identities (1.27) derived in [BR00], the derivatives of a(x,w), b(x,w) behave similarly to
sin, cos, in the sense that the derivatives of a(x,w), b(x,w) are certain combinations of
a(x,w), b(x,w) themselves. All the partials of y are in the form of c1aa(−w) + c2ab(−w) +

c3ba(−w), where c1, c2, c3 are coefficients consisting of u,w and derivatives of u (there
is no bb(−w) term because bb(−w) = aa(−w) by (1.27)). Finally, if we plug in all the
partials into equation (3.3), all the terms are canceled and we get 0. The way it
cancels is the following: each term in (3.3) is of “degree 3” in y, in the sense that
every term is a product of 3 derivatives of y. Since every type of the derivative is
in the form of c1aa(−w) + c2ab(−w) + c3ba(−w), their multiplication is of the form
c′1a

3a3(−w) + c′2a
3a2(−w)b(−w) + c′3a

3a(−w)b2(−w) + c′4a
3b3(−w) + c′5b

3a3(−w). Notice
that many other types can be transformed to one of these by bb(−w) = aa(−w). It turns
out that all c′1, · · · , c′5 are 0, using

uxx = 2u3 + xu. (3.5)

From (3.4), we can see that there exist derivatives of u with order 2 and higher. Whenever
we encounter this, we use identity (3.5) to reduce the order of derivatives, so that in
the coefficients of the final formula, the only variables left are u, u′, w, x. Here are two
examples of the coefficients for a3a3(−w) and a3a2(−w)b(−w),

c′1 = 1
3 (−4w2 + x+ 2u2)(2− 32w4u2 + 8w2xu2 + 16w2u4 + 2uu′

− 16w3uu′ + 4wxuu′ + 8wu3u′ − 12w2u′ 2 + 3xu′ 2 + 6u2u′ 2)

+ 1
3 (4w2 + x+ 2u2)(−2 + 32w4u2 − 8w2xu2 − 16w2u4 − 2uu′

+ 16w3uu′ − 4wxuu′ − 8wu3u′ + 12w2u′ 2 − 3xu′ 2 − 6u2u′ 2)

= 0,

c′2 = 5
12u(4w2 + x+ 6u2)(4w2 − x− 2u3)

− 5
12u(4w2 + x+ 6u2)(4w2 − x− 2u2)

= 0.

(3.6)

The rest, c′3, · · · , c′5, vanish in a similar, purely algebraic manner. So, by directly plugging
in all the derivatives of the function y, we checked that ∂2r log y(t−1/3r+ t−4/3x2, 12 t

−2/3x)

satisfied (1.30), which implies that that ∂2r log(y(t−1/3r + t−4/3x2, 12 t
−2/3x)FGUE(t−1/3r +

t−4/3x2)) satisfies the KP equation.
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