ELECTRONIC COMMUNICATIONS in PROBABILITY

Erratum: The remainder in the renewal theorem^{*}

Ron Doney[†]

Abstract

We point out an error in "The remainder in the renewal theorem", and show that the result is essentially correct in two important special cases.

Keywords: asymtotic stability; random walks; regular variation; renewal theorem. **MSC2020 subject classifications:** 60G50; 60K05. Submitted to ECP on November 5, 2021, final version accepted on February 12, 2022.

The main result in [1] claims that in a renewal process $S = (S_n, n \ge 0)$ whose step distribution F has finite mean m and whose tail \overline{F} is regularly varying with index $-\alpha$ with $\alpha \in (1, 2)$, the renewal function U has the following asymptotic behaviour:

$$W(x) := U(x) - m^{-1} \int_0^x (1 + \overline{\Phi}(y)) dy \sim \frac{|c_{\alpha}| x \overline{\Phi}(x)^2}{m |2\beta - 1|} \text{ as } x \to \infty.$$
(0.1)

Here

$$\beta = \alpha - 1, c_{\alpha} = \frac{(1 - 2\beta)\Gamma(1 - \beta)^2}{\Gamma(2 - 2\beta)}.$$

and

$$\overline{\Phi}(x) = \int_{x}^{\infty} \phi(y) dy, \text{ with } \phi(y) = \frac{\overline{F}(y)}{m}, \ y \ge 0.$$
(0.2)

Since $\overline{\Phi} \in RV(-\beta)$ the RHS of (0.1) $\in RV(1-2\beta)$, so this is a substantial improvement on the previously known result that $W(x) = o(\int_0^x \overline{\Phi}(y) dy)$, particularly for the case $\beta > 1/2$.

If F is non-lattice, it is natural for ϕ to be involved, since it is the stationary density for the overshoot process of S, which fact is used in [1] to derive the following relation. First write ϕ_2 for the convolution $\phi * \phi$ and define real-valued functions g and \overline{G} on $[0, \infty)$ by

$$\begin{array}{lll} g(y) &=& 2\phi(y) - \phi_2(y), \\ \overline{G}(y) &=& \int_y^\infty g(z) dz, \text{ so that } \overline{G}(0) = 1. \end{array}$$

Then the relation

$$W(x) = \int_{[0,x)} \overline{G}(x-y)U(dy), \qquad (0.3)$$

^{*}Corrected article: https://doi.org/10.1214/20-ECP287.

 $^{^{\}dagger}\textsc{University}$ of Manchester, United Kingdom. E-mail: ron.doney@manchester.ac.uk

which is (2.4) in [1], is key to the results therein. (Note that our W is denoted by $m^{-1}V$ in [1].) The second crucial fact is that although \overline{G} is the difference of two functions which are both in $RV(-\beta)$, it is in $RV(-2\beta)$, and actually

$$\lim_{x \to \infty} \frac{\overline{G}(x)}{\overline{\Phi}(x)^2} = c_{\alpha} = \frac{(1 - 2\beta)\Gamma(1 - \beta)^2}{\Gamma(2 - 2\beta)}.$$
(0.4)

Unfortunately there are mistakes in the proof of (0.1) for the case $\alpha \in (3/2, 2)$. Specifically on P5, L9 of [1], it is claimed that having fixed $x_0 > 0$ such that $g^*(x) := -g(x) > 0$ for $x > x_0$, then given $\varepsilon > 0$ we can find $x_1 > x_0$ with

$$\int_{x_1}^x \overline{G^*}(x-y)dU(y) \le \frac{1+\varepsilon}{m} \int_{x_1}^x \overline{G^*}(x-y)dy,$$
(0.5)

where $\overline{G^*}(z) := -\overline{G}(z)$. But on $[0, x_0]$ we have no control over the sign of $\overline{G^*}$, so this statement cannot be justified. It is also unclear how Lemma 2.1 can be applied, since the condition $\int_0^\infty Q(y)dy = \infty$ fails for $\alpha > 3/2$. A final error is that it is implicitly assumed in [1] that in the lattice case ϕ is a stationary density, but of course this is wrong: actually $\{\phi(n), n \in \mathbb{Z}\}$ is a stationary mass function.

Nevertheless the claimed result (0.1) is essentially correct in the two most important situations. In the lattice case the last mentioned error necessitates a slight change in the definition of W, (see (1.1) below and compare the LHS of (0.1)), but then we are able to give a simple argument to show that (0.1) holds with this new definition. In the absolutely continuous case, under a minor technical assumption we show that (0.1) follows, after some manipulation and use of (0.3), from a stronger result for the density of U which is established in [2].

1 Lattice case

In this section we assume that F is carried by Z and has period 1, and we specify that the renewal function U and its modification W are given for $x \ge 0$ by

$$U(x) = \sum_{r=0}^{[x]} u(r), \ W(x) = U(x) - m^{-1} (\sum_{s=0}^{[x]} (1 + \overline{\Phi}(s)),$$
(1.1)

where $u(r) = \sum_{0}^{\infty} P(S_n = r)$. We start from the observation that the distribution with mass function

$$\phi(n) = \frac{P(X > n)}{m} = \frac{\overline{F}(n)}{m}, \ n = 0, 1, 2, \cdots$$

is stationary for the overshoot process. $\overline{\Phi}$ is the tail function of this discrete distribution, so

$$\overline{\Phi}(x) = \overline{\Phi}(n) = \sum_{m=n+1} \phi(m) \text{ for } n \le x < n+1, \ n = 0, 1, 2, \cdots.$$

With this definition it is clear that W is piece-wise constant, and it follows that (0.1) will hold in general if it holds as $x \to \infty$ through the integers, and we will now establish this.

Again the functions g and \overline{G} are defined by $g(n) = 2\phi(n) - \phi_2(n)$, $n = 0, 1, 2, \cdots$ where $\phi_2(n)$ is the discrete convolution $\sum_{0}^{n} \phi(r)\phi(n-r)$ and for $x \ge 0$

$$\overline{G}(x) = \sum_{m=[x]+1} g(m) = \overline{G}([x]).$$
(1.2)

ECP 27 (2022), paper 17.

https://www.imstat.org/ecp

Erratum: The remainder in the renewal theorem

The stationarity of ϕ gives $\sum_0^n U(r)\phi(n-r)=m^{-1}(n+1),$ and then

$$\sum_{0}^{n} U(r)\phi_{2}(n-r) = \sum_{r=0}^{n} U(r) \sum_{s=0}^{n-r} \phi(s)\phi(n-r-s)$$

=
$$\sum_{s=0}^{n} \phi(s) \sum_{r=0}^{n-s} \phi(n-r-s)U(r)$$

=
$$m^{-1} \sum_{s=0}^{n} \phi(s)(n+1-s) = m^{-1}(n+1-\sum_{s=0}^{n} \overline{\Phi}(s)).$$

So

$$\sum_{0}^{n} U(r)g(n-r) = m^{-1}(n+1+\sum_{s=0}^{n} \overline{\Phi}(s)),$$

then

$$W(n) = U(n) - \sum_{0}^{n} U(r)g(n-r),$$

and summation by parts gives

$$W(n) = \sum_{0}^{n} u(r)\overline{G}(n-r).$$
(1.3)

This is the discrete analogue of (0.3). Next we see that the proof in [1] of (0.4) is also valid in this lattice case, with minor changes. Finally when $\beta > 1/2$ the condition $\int_0^\infty \overline{G}(y) dy = 0$ also holds, but because of (1.2) it is equivalent to

$$\sum_{m=0}^{\infty} \overline{G}(m) = 0.$$
(1.4)

It is straightforward to see that the results in Theorem 1.1 of [1] when $\beta \leq 1/2$ hold in this lattice case with x restricted to the integers, and we now show that the same is true when $\beta > 1/2$. Recalling that $c_{\alpha} < 0$ in this case, so that $\overline{G^*}(n) = -\overline{G}(n)$ is positive for all large n, we assume we know that

$$\left|\sum_{0}^{n} (u_n - u_{n-r})\overline{G}(r)\right| = o(n\overline{G^*}(n)) \text{ as } n \to \infty.$$
(1.5)

Then (1.3) and (1.4) give

$$W(n) = u_n \sum_{0}^{n} \overline{G}(r) + o(n\overline{G^*}(n))$$

= $\frac{1}{m} \sum_{n+1}^{\infty} \overline{G^*}(r) + o(n\overline{G^*}(n)) \sim \frac{|c_{\alpha}|n\overline{\Phi}(n)^2}{m(2\beta - 1)},$

which is the required result. Next suppose that with $\Delta_n := u_n - u_{n-1}$ we have $n\Delta_n \to 0$ as $n \to \infty$. For any fixed $\delta \in (0, 1)$ we can bound the LHS of (1.5) by $S_1 + S_2 + S_3$, where

$$S_{1} = \max_{n(1-\delta) \le m \le n} |u_{n} - u_{n-m}| \sum_{n(1-\delta)}^{n} |\overline{G^{*}}(m)| \le c \sum_{n(1-\delta)}^{n} \overline{G^{*}}(m),$$

$$S_{2} = \max_{n\delta \le m \le n(1-\delta)} |u_{n} - u_{n-m}| \sum_{n\delta}^{n(1-\delta)} |\overline{G^{*}}(m)| = o(1) \sum_{n\delta}^{n(1-\delta)} \overline{G^{*}}(m),$$

$$S_{3} = |\sum_{0}^{n\delta} \overline{G^{*}}(m) \sum_{n-m+1}^{n} \Delta_{r}| = o(1) \sum_{0}^{n\delta} |\overline{G^{*}}(m)| \frac{m}{n} = o(n\overline{G^{*}}(n)).$$

ECP 27 (2022), paper 17.

https://www.imstat.org/ecp

Then (1.5) follows by letting $n \to \infty$ and then $\delta \to 0$. The fact that $n\Delta_n \to 0$ can be seen by an application of the Riemann-Lebesgue Lemma: we have the inversion formula

$$\Delta_n = \sum_{0}^{\infty} P(S_m = n) - P(S_m = n - 1) = \sum_{0}^{\infty} \frac{1}{2\pi} \int_{-\pi}^{\pi} \hat{p}(t)^m e^{-itn} (1 - e^{it}) dt = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{(1 - e^{it})e^{-itn} dt}{1 - \hat{p}(t)}.$$
 (1.6)

Integrating by parts and noting that since everything is periodic with period 2π the contribution from the end points cancel, gives

$$2\pi\Delta_n = \frac{1}{n} \int_{-\pi}^{\pi} e^{-itn} f_1(t) dt$$
, with (1.7)

$$f_1(t) = \frac{i(e^{it} - 1)\hat{p}'(t) - e^{it}(1 - \hat{p}(t))}{(1 - \hat{p}(t))^2}.$$
(1.8)

Known results (see e.g. [3]) give the asymptotic behaviour of $\hat{p}(t)$ and $\hat{p}'(t)$ as $|t| \to 0$ and from them we see that $|f_1|$ is regularly varying as $|t| \to 0$ with index a - 2 > -1. We deduce that f_1 is integrable over $[-\pi, \pi]$ and the result follows.

Remark 1.1. Alternatively, we could appeal to a stronger result on the asymptotic behaviour of Δ_n in [4], but the proof there uses Banach Algebra techniques.

1.1 The absolutely continuous case

Assuming that F has a density f and the characteristic function $\hat{p}(t) = E(e^{itX})$ is such that $|\hat{p}(t)|^b$ is integrable for some $b \ge 1$, Isozaki [2] has used an inversion theorem to find an asymptotic estimate of the density u of the renewal measure. This estimate, which is actually valid in the random walk case whenever $E|X|^{\gamma} < \infty$ for some $\gamma \in (3/2, 2)$, when specialised to the renewal case becomes

$$u(x) = \sum_{1}^{N} f_j(x) + \frac{1}{m} (1 + \overline{\Phi}(x) + \overline{G}(x)) + \varepsilon(x), \text{ where } \varepsilon(x) = o(x^{-\gamma}) \text{ as } x \to \infty.$$
 (1.9)

Here N is the smallest integer $\geq b + 1$, f_j is the density of S_j , and it is necessary to check, by integration by parts, that the function denoted by r_1 in [2] agrees with our $m^{-1}\overline{G}$. Integrating (1.9) and noting that $\int_0^x f_j(y)dy = 1 + o(x^{1-\gamma})$ for $1 \leq j \leq N$ gives

$$U(x) = \frac{1}{m} \left(x + \int_0^x \overline{\Phi}(y) dy + \int_0^x \overline{G}(y) dy\right) + C + o(x^{1-\gamma}), \text{ where } C = N + \int_0^\infty \varepsilon(y) dy.$$
(1.10)

By the same argument as used in [1] the existence of the γ -th moment implies that $\int_0^\infty \overline{G}(y)dy = 0$, so we can replace $\int_0^x \overline{G}(y)dy$ by $\int_x^\infty \overline{G^*}(y)dy$, and we also know, from our relation (0.3) and the key renewal theorem, that

$$W(x) \to \frac{1}{m} \int_0^\infty \overline{G}(y) dy = 0,$$

which means that C = 0. Then the estimate (1.10) reduces to

$$W(x) = \frac{1}{m} \int_x^\infty \overline{G^*}(y) dy + o(x^{1-\gamma}), \qquad (1.11)$$

and this is valid whenever the γ -th moment exists, for some $\gamma \in (3/2, 2)$. In particular under our assumption of asymptotic stability with index $\alpha \in (3/2, 2)$, we can choose any $\gamma = \alpha - \delta$ with δ sufficiently small that $1 - \gamma = \delta - \beta < 1 - 2\beta$ and $\gamma > 3/2$. Then (0.1) follows, since we know the first term dominates the RHS of (1.11) and we can read off its asymptotic behaviour from (0.4).

Erratum: The remainder in the renewal theorem

References

- Ron Doney. The remainder in the renewal theorem. Electron. Commun. Probab. 25 (2020), no. 5,1-8. MR4066298
- [2] Yasuko Isozaki. Fractional order error estimates for the renewal density. J. Math.Soc. Japan 68 (2016) no. 1, 31-49. MR3454551
- [3] Pitman, E. J. G. On the behaviour of the characteristic function of a probability distribution in the neighbourhood of the origin. J. Aust. Math. Soc. A **8** (1968), 422-443. MR0231423
- [4] Rogozin, B. A. An estimate of the remainder term in limit theorems of renewal theory. Theory Probab. Appl. XVIII (1973) no. 4, 662-677. MR0334339

Electronic Journal of Probability Electronic Communications in Probability

Advantages of publishing in EJP-ECP

- Very high standards
- Free for authors, free for readers
- Quick publication (no backlog)
- Secure publication (LOCKSS¹)
- Easy interface (EJMS²)

Economical model of EJP-ECP

- Non profit, sponsored by IMS^3 , BS^4 , ProjectEuclid⁵
- Purely electronic

Help keep the journal free and vigorous

- Donate to the IMS open access fund⁶ (click here to donate!)
- Submit your best articles to EJP-ECP
- Choose EJP-ECP over for-profit journals

¹LOCKSS: Lots of Copies Keep Stuff Safe http://www.lockss.org/

²EJMS: Electronic Journal Management System http://www.vtex.lt/en/ejms.html

³IMS: Institute of Mathematical Statistics http://www.imstat.org/

⁴BS: Bernoulli Society http://www.bernoulli-society.org/

⁵Project Euclid: https://projecteuclid.org/

 $^{^{6}\}mathrm{IMS}$ Open Access Fund: http://www.imstat.org/publications/open.htm