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Abstract

In this work, we consider a modification of the usual Branching Random Walk (BRW),
where we give certain independent and identically distributed (i.i.d.) displacements
to all the particles at the n-th generation, which may be different from the driving
increment distribution. This model was first introduced by Bandyopadhyay and
Ghosh [2] and they termed it as Last Progeny Modified Branching Random Walk
(LPM-BRW). Under very minimal assumptions, we derive the large deviation principle
(LDP) for the right-most position of a particle in generation n. As a byproduct, we
also complete the LDP for the classical model, which complements the earlier work by
Gantert and Höfelsauer [7].
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1 Introduction

1.1 Background and motivation

A branching random walk on the real line is a discrete-time stochastic process, which
can be described as follows:

Let X and N be two random variables taking values in R and N, respectively. At the
0-th generation, we start with an initial particle at the origin. At time n = 1, the particle
dies and gives birth to a random number of offspring, distributed according to N . The
offspring are then displaced from their parent’s position by i.i.d. copies of X. For n ≥ 2,
the particles at generation (n− 1) behave independently and identically of the particles
up to generation (n− 1).

If we denote the number of particles in generation n by Nn, then from the definition,
it follows that {Nn}n≥0 is a Galton-Watson branching process with progeny distribution
given by N . So the backbone of the process is a branching process tree with weighted
edges. Here the weights represent the displacements of the particles relative to their
respective parent. We write |v| = n if an individual v is in the n-th generation, and its
position S(v) is defined as the sum of the edge-weights of the unique path connecting
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v to the root. We shall call the process {S(v) : |v| = n}n≥0 a Branching Random Walk
(BRW).

In this article, we consider a modified version of the BRW. The modification occurs
only at the last generation, where we add i.i.d. displacements of a specific form. There
are two parameters of this model. One is a positively supported measure, µ, and the
other is a positive real number, θ, which should be viewed as a scaling parameter for the
extra shift we give to each particle at the n-th generation. The modification is as follows.
At a generation n ≥ 1, we give additional displacement to each of the particles at the
generation n, which are of the form 1

θ log(Yv/Ev), where {Yv}|v|=n are i.i.d. µ, {Ev}|v|=n
are i.i.d. Exponential (1), and these two sequences are independent of each other and
also of the BRW. This model was first introduced by Bandyopadhyay and Ghosh [2] and
they refer to this new process as a Last Progeny Modified Branching Random Walk
(LPM-BRW). We denote by Rn and R∗n ≡ R∗n(θ, µ) the right-most positions of the n-th
generation particles of the BRW and the LPM-BRW, respectively, i.e.,

Rn := max
|v|=n

S(v), R∗n(θ, µ) := max
|v|=n

{
S(v) +

1

θ
log(Yv/Ev)

}
. (1.1)

The main motivation to study this model is that, due to the specific form of the
additional shift at the last generation, there is a nice coupling of R∗n with a linear statistic
associated with BRW, which for µ = δ1 becomes the well-known Biggins’ martingale (see
Bandyopadhyay and Ghosh [2]). On the other hand, as θ increases, R∗n becomes closer
and closer to Rn. This novel connection is in fact the reason why the model intrigued us.

Throughout this paper, we assume the followings:

(A1) The random variable X is non-degenerate, i.e., P(X = t) < 1 for any t ∈ R,
and its moment-generating function is finite everywhere, i.e., for all λ ∈ R,

m(λ) := E
[
eλX

]
<∞.

(A2) The underlying branching process is non-trivial, and the extinction probability
is zero, i.e., P(N = 1) < 1, and P(N = 0) = 0. Also, N has finite (1 + p)-th
moment for some p > 0.

(A3) For all k ∈ Z, ∫ ∞
0

xk dµ(x) <∞.

We denote φ(λ) := logm(λ), and ν(λ) := φ(λ) + logE[N ]. Note that ν is strictly convex
and infinitely differentiable under assumptions (A1) and (A2) (see Proposition A.2 of
Bandyopadhyay and Ghosh [2]). We define

θ0 := inf
{
θ > 0 :

ν(θ)

θ
= ν′(θ)

}
.

Since ν(θ) is strictly convex, the above set is at most singleton. If it is a singleton, then
θ0 is the unique point in (0,∞) such that a tangent from the origin to the graph of ν(θ)

touches the graph at θ = θ0. And if it is empty, then by definition θ0 takes value∞, and
there is no tangent from the origin to the graph of ν(θ) on the right half-plane.

Under fairly general assumptions on the distribution of X and N , Hammersley [8],
Kingman [9], and Biggins [3] showed that

Rn
n
→ ν(θ0)

θ0
, a.s., as n→∞. (1.2)
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Similar convergence result for LPM-BRW was proved by Bandyopadhyay and Ghosh [2].
They showed that for any θ > 0, almost surely

R∗n(θ, µ)

n
→ c(θ) :=


ν(θ)
θ , if θ < θ0 ≤ ∞;

ν(θ0)
θ0

, if θ0 ≤ θ <∞.
(1.3)

Therefore, we have

lim
n→∞

P
(R∗n(θ, µ)

n
> x

)
= 0 for x > c(θ); and

lim
n→∞

P
(R∗n(θ, µ)

n
< x

)
= 0 for x < c(θ).

This paper investigates the exponential decay rates of these probabilities, which is in
essence a large deviation (LDP) problem.

1.2 Main results

Let {Xn}n≥1 be i.i.d. copies of X. We define Sn :=
∑n
i=1Xi. It follows from Cramér’s

theorem (see Dembo and Zeitouni [5]) that the laws of {Sn/n}n≥1 satisfy the large
deviation principle with the rate function

I(x) := sup
λ∈R
{λx− φ(λ)} for x ∈ R.

From Theorem 1 of Rockafellar [10], we know that I(x) is strictly convex and dif-
ferentiable on the interior of its effective domain DI := {x ∈ R : I(x) < ∞} with
I ′(x) = (φ′)−1(x). This implies I ′ (E[X]) = 0 and limx ↓ inf DI I

′(x) = −∞. Therefore,
whenever ρ := − logP(N = 1) is finite, there exists a unique point aρθ ∈ (inf DI ,E[X])

such that a tangent from the point (c(θ), 0) to the graph of I(x) + ρ touches the graph at
x = aρθ, i.e., aρθ satisfies

I (aρθ) + ρ

aρθ − c(θ)
= I ′ (aρθ) .

We denote d(θ) := max {c(θ), φ′(θ)}. Then we have

Theorem 1.1. The laws of {R∗n(θ, µ)/n}n≥1 satisfy the large deviation principle with the
rate function

Ψθ(x) :=



θx− φ(θ)− logE[N ], if x > d(θ); (i)

I(x)− logE[N ], if c(θ) < x ≤ d(θ); (ii)

0, if x = c(θ); (iii)

I ′
(
aρθ
)

(x− c(θ)) , if aρθ ≤ x < c(θ) and ρ <∞; (iv)

I(x) + ρ, if x < aρθ and ρ <∞; (v)

∞, if x < c(θ) and ρ =∞. (vi)

While proving our main result, we also observe that we can complete the LDP for
{Rn/n}n≥1, which was proved by Gantert and Höfelsauer [7] but only partially.

Theorem 1.2. The laws of {Rn/n}n≥1 satisfy the large deviation principle with the rate
function

Φ(x) :=



I(x)− logE[N ], if x > c(θ0); (i)

0, if x = c(θ0); (ii)

I ′
(
aρθ0
)

(x− c(θ0)) , if aρθ0 ≤ x < c(θ0) and ρ <∞; (iii)

I(x) + ρ, if x < aρθ0 and ρ <∞; (iv)

∞, if x < c(θ0) and ρ =∞. (v)
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Remark 1.3. The parts (i), (ii), (iii), and (iv) of Theorem 1.2 were proved by Gantert
and Höfelsauer [7], but part (v) was unsolved in their paper. As the anonymous referee
pointed out, this part was recently proved by Chen and He [4]. But at the time of writing
this article, the author did not know this and therefore has given an alternative proof.
Also, parts (iii) and (iv) of Theorem 1.2 calculated by Gantert and Höfelsauer [7] have
been simplified here. Notice here that the rate function in Theorem 1.2 is similar to that
of the Branching Brownian Motion (BBM) calculated by Derrida and Shi [6]. As a result,
we also see similarities in the figures in Section 2 and those in Derrida and Shi [6].

1.3 Outline

The article is organized as follows. In Section 2, we illustrate our main results with a
few examples. We give the proofs of our main results in Section 3. Finally, in Section 4,
we compare the rate function for {R∗n/n}n≥1 with that of {Rn/n}n≥1.

2 Examples

As an illustration, in this section we consider two specific examples. Our first example
is when N takes value 2 with probability 1, X ∼ N(0, 1), θ = 3, and µ = δ1. Then, as
displayed in Figure 1, the large deviation rate function for the laws of {R∗n(3, δ1)/n}n≥1
is

f1(x) =


3x− 9

2 − log 2, if x ≥ 3;

x2

2 − log 2, if
√

2 log 2 ≤ x ≤ 3;

∞, if x <
√

2 log 2.

On the other hand, if N takes the value 1 with probability 1/2 and 3 with probability 1/2,

Figure 1: Graph of f1 Figure 2: Graph of f2

and X, θ, and µ are as in the previous example, then, as demonstrated in Figure 2, the
large deviation rate function for the laws of {R∗n(3, δ1)/n}n≥1 is

f2(x) =



3x− 9
2 − log 2, if x ≥ 3;

x2

2 − log 2, if
√

2 log 2 ≤ x ≤ 3;(
2−
√

2
)√

log 2
(√

2 log 2− x
)
, if −

(
2−
√

2
)√

log 2 ≤ x ≤
√

2 log 2;

x2

2 + log 2, if x ≤ −
(
2−
√

2
)√

log 2.

3 Proofs of the main results

3.1 Proof of Theorem 1.1

The general strategy to prove this theorem is to give an upper bound and a lower
bound on the rate function. In most parts of the proof we will see that one bound is
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straightforward and for the other bound we decompose our LPM-BRW at an intermediate
generation. In fact, the strategy for proving (iv) and (v) is similar to that used in
Gantert and Höfelsauer [7]. To explain the decomposition more formally, for v such that
|v| = m ≤ n, we define

R
∗(v)
n−m := max

|u|=n,v<u

{
S(u) +

1

θ
log(Yu/Eu)

}
− S(v). (3.1)

Here v < u means u is a descendant of v. Note that {R∗(v)n−m}|v|=m are i.i.d. copies of
R∗n−m and are independent of the BRW up to generation m. Now, (1.1) implies that

R∗n = max
|v|=m

{
max

|u|=n,v<u

{
S(u) +

1

θ
log(Yu/Eu)

}}
= max
|v|=m

{
S(v) +R

∗(v)
n−m

}
≥ S(ṽm) + max

|v|=m
R
∗(v)
n−m, (3.2)

where ṽm := arg max|v|=mR
∗(v)
n−m. Since {S(v)}|v|=m are identically distributed and are

independent of {R∗(v)n−m}|v|=m, we have

S(ṽm)
d

== Sm. (3.3)

To prove Theorem 1.1, we also need the following lemma, which provides LDP for
each of the branches of the LPM-BRW.

Lemma 3.1. Let Y ∼ µ and E ∼ Exponential (1) be independent of each other and
also independent of the random variables {Xn}n≥1. Then, for any θ > 0, the laws of{

Sn
n + 1

nθ log(Y/E)
}
n≥1 satisfy the large deviation principle with the rate function

Iθ(x) :=

{
I(x), if x ≤ φ′(θ);
θx− φ(θ), if x ≥ φ′(θ).

Proof. For each θ > 0 and λ ∈ R, we define

Υθ(λ) : = lim
n→∞

1

n
logE

[
eλSn+

λ
θ log(Y/E)

]
= lim
n→∞

1

n
log
(
enφ(λ) · E

[
Y λ/θ

]
· E
[
E−λ/θ

])
=

{
φ(λ), if λ < θ;
∞, if λ ≥ θ.

Its Fenchel-Legendre transform is

Υ∗θ(x) := sup
λ∈R
{λx−Υθ(λ)} = sup

λ<θ
{λx− φ(λ)} = Iθ(x).

Since 0 belongs to the interior of the set {λ ∈ R : Υθ(λ) <∞}, it follows from the Gärtner-
Ellis theorem (see Dembo and Zeitouni [5]) that for any closed set F ,

lim sup
n→∞

1

n
logP

(Sn
n

+
1

nθ
log(Y/E) ∈ F

)
≤ − inf

x∈F
Iθ(x), (3.4)

and for any open set G,

lim inf
n→∞

1

n
logP

(Sn
n

+
1

nθ
log(Y/E) ∈ G

)
≥ − inf

x∈G, x<φ′(θ)
Iθ(x). (3.5)

Note that since Y is a positive random variable, there exists α > 0 such that P(Y > α) > 0.
Now, for any x ≥ φ′(θ), we have

P
(Sn
n

+
1

nθ
log(Y/E) > x

)
≥ P

(
Sn > nφ′(θ)

)
· P(Y > α) · P

(
E < αe−nθ(x−φ

′(θ))).
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Therefore using Cramér’s theorem, we get

lim inf
n→∞

1

n
logP

(Sn
n

+
1

nθ
log(Y/E) > x

)
≥ −I (φ′(θ))− θ (x− φ′(θ)) = −Iθ(x). (3.6)

Combining (3.5) and (3.6), we obtain that for any open set G,

lim inf
n→∞

1

n
logP

(Sn
n

+
1

nθ
log(Y/E) ∈ G

)
≥ − inf

x∈G
Iθ(x).

This, together with (3.4), completes the proof.

Now we have all the machinery to prove Theorem 1.1.

3.1.1 Proof of (vi)

Proof. Take any x < c(θ) and ε ∈ (0, c(θ)− x). Using inequality (3.2), we have

P(R∗n < nx) ≤ P
(
S(ṽb

√
nc) + max

|v|=b
√
nc
R
∗(v)
n−b
√
nc < nx

)
≤ P

(
max
|v|=b

√
nc
R
∗(v)
n−b
√
nc < n(x+ ε)

)
+ P

(
S(ṽb

√
nc) < −nε

)
≤ E

[
P
(
R∗n−b

√
nc < n(x+ ε)

)Nb√nc]
+ P

(
Sb
√
nc < −nε

)
. (3.7)

Here bxc denotes the greatest integer less than or equal to x, and Nk represents the
total number of particles at generation k. Note that Nk is at least 2k since P(N = 1) = 0.
Now since x+ ε < c(θ), which is the almost sure limit of R∗

n−b
√
nc/n, we have

lim sup
n→∞

1

n
logE

[
P
(
R∗n−b

√
nc < n(x+ ε)

)Nb√nc]
≤ lim

n→∞

2b
√
nc

n
logP

(
R∗n−b

√
nc < n(x+ ε)

)
= −∞. (3.8)

Let {tn}n≥1 be a non-negative real sequence increasing to∞ such that φ(−tn) ≤ log n.
Such a sequence exists since φ(λ) <∞ for all λ ≤ 0. Then using Markov’s inequality we
obtain

lim sup
n→∞

1

n
logP

(
Sb
√
nc < −nε

)
≤ lim
n→∞

1

n
log
(
e−ntnε · E

[
e−tnSb

√
nc
])

= lim
n→∞

−tnε+
b
√
ncφ(−tn)

n
= −∞. (3.9)

Therefore, by combining (3.7), (3.8), and (3.9), we get that for ρ =∞ and all x < c(θ),

lim
n→∞

− 1

n
logP(R∗n < nx) =∞. (3.10)

3.1.2 Proof of (iv) & (v)

Proof. (Lower bound). Take any x < c(θ) and t ∈ (0, 1]. Observe that for |v| = dtne and
ε > 0,

P(R∗n < nx) ≥ P
(
S(v) +R

∗(v)
b(1−t)nc < nx,Ndtne = 1

)
≥ P

(
Ndtne = 1

)
· P
(
R∗b(1−t)nc < n(1− t)(c(θ) + ε)

)
· P
(
Sdtne < nx− n(1− t)(c(θ) + ε)

)
. (3.11)
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Here dxe denotes the smallest integer greater than or equal to x. Also, note that Ndtne,

S(v) and R∗(v)b(1−t)nc are independent of each other, which implied the last inequality. For
the first term on the right-hand side, we have

lim
n→∞

1

n
logP

(
Ndtne = 1

)
= lim
n→∞

1

n
logP(N = 1)dtne = −ρt. (3.12)

For t = 1, the second term equals P(Y < E) > 0, and for t ∈ (0, 1), c(θ) is the almost sure
limit of R∗b(1−t)nc/ (n(1− t)). Therefore for all t ∈ (0, 1], we have

lim
n→∞

1

n
logP

(
R∗b(1−t)nc < n(1− t)(c(θ) + ε)

)
= 0. (3.13)

Finally, for the last term, using Cramér’s theorem, we get

lim
n→∞

1

n
logP

(
Sdtne < nx− n(1− t)(c(θ) + ε)

)
= −tI

(
x− (1− t)(c(θ) + ε)

t

)
, (3.14)

whenever

0 < t ≤ f(x) := min
{

1,
c(θ)− x

c(θ)− E[X]

}
.

So, by combining (3.11), (3.12), (3.13), and (3.14), and allowing ε ↓ 0, we obtain

lim inf
n→∞

1

n
logP(R∗n < nx) ≥ − inf

0<t≤f(x)

{
ρt+ tI

(x− (1− t)c(θ)
t

)}
.

Since I
((
x− (1− t)c(θ)

)
/t
)

is non-decreasing for t ≥
(
c(θ)− x

)
/
(
c(θ)− E[X]

)
, the above

inequality implies

lim inf
n→∞

1

n
logP(R∗n < nx) ≥ − inf

0<t≤1

{
ρt+ tI

(x− (1− t)c(θ)
t

)}
. (3.15)

(Upper bound). Now, we fix any k ∈ N and define ni = bnif(x)/kc for all i =

0, 1, 2, . . . , k. Since Nn0 = N0 = 1, for any n ≥ 2, we have

P(R∗n < nx) =

k−2∑
i=0

P(Nni < n2, Nni+1 ≥ n2) · P(R∗n < nx|Nni < n2, Nni+1 ≥ n2)

+ P(Nnk−1
< n2) · P(R∗n < nx|Nnk−1

< n2). (3.16)

Using Theorem 2.5 of Gantert and Höfelsauer [7], we get that for 1 ≤ i ≤ k − 1,

lim
n→∞

1

n
logP(Nni < n2) = − if(x)ρ

k
. (3.17)

On the other hand, using inequality (3.2), we have for all ε > 0 and 0 ≤ i ≤ k − 2,

P
(
R∗n < nx|Nni < n2, Nni+1

≥ n2
)

≤ P
(
S(ṽni+1) < nx− (n− ni+1)(c(θ)− ε)

∣∣Nni < n2, Nni+1 ≥ n2
)

+ P
(

max
|v|=ni+1

R
∗(v)
n−ni+1

< (n− ni+1)(c(θ)− ε)
∣∣∣Nni < n2, Nni+1 ≥ n2

)
≤ P

(
Sni+1

< nx− (n− ni+1)(c(θ)− ε)
)

+ P
(
R∗n−ni+1

< (n− ni+1)(c(θ)− ε)
)n2

. (3.18)

Notice that S(ṽni+1) is independent of Nni and Nni+1 , and by (3.3), it has the same
distribution as Sni+1 , which implied the last inequality. Now, we know that c(θ) is the
almost sure limit of R∗n−ni+1

/(n− ni+1). Therefore for any i = 0, 1, 2, . . . , k − 2,

lim
n→∞

1

n
logP

(
R∗n−ni+1

< (n− ni+1)(c(θ)− ε)
)n2

= −∞.
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Thus, from (3.18), we get that for any i = 0, 1, 2, . . . , k − 2 and ε > 0 small enough,

lim sup
n→∞

1

n
logP

(
R∗n < nx

∣∣Nni < n2, Nni+1 ≥ n2
)

≤ lim
n→∞

1

n
logP

(
Sni+1 < nx− (n− ni+1)(c(θ)− ε)

)
=− (i+ 1)f(x)

k
· I
(
x−

(
1− (i+1)f(x)

k

)
(c(θ)− ε)

(i+1)f(x)
k

)
. (3.19)

For the last term of (3.16), if f(x) = (c(θ)− x) / (c(θ)− E[X]), we trivially have

lim sup
n→∞

1

n
logP

(
R∗n < nx

∣∣Nnk−1
< n2

)
≤ 0 = −f(x) · I

(
E[X]

)
.

and if f(x) = 1, we have x ≤ E[X]. In that case, from Lemma 3.1, we have

lim sup
n→∞

1

n
logP

(
R∗n < nx

∣∣Nnk−1
< n2

)
≤ lim sup

n→∞

1

n
logP

(
Sn +

1

θ
log(Y/E) < nx

)
= −I(x).

Combining the above two inequalities, we get

lim sup
n→∞

1

n
logP

(
R∗n < nx

∣∣Nnk−1
< n2

)
≤ −f(x) · I

(x− (1− f(x))c(θ)

f(x)

)
. (3.20)

Threfore, by combining (3.16), (3.17), (3.19), and (3.20), and then allowing ε ↓ 0 and
k →∞, we obtain

lim sup
n→∞

1

n
logP(R∗n < nx) ≤ − inf

0<t≤1

{
ρt+ tI

(x− (1− t)c(θ)
t

)}
. (3.21)

This, together with (3.15), implies that for any x < c(θ) and ρ <∞,

lim
n→∞

− 1

n
logP(R∗n < nx) = inf

0<t≤1

{
ρt+ tI

(x− (1− t)c(θ)
t

)}
= inf
y≤x

{
(ρ+ I(y))

c(θ)− x
c(θ)− y

}
= (c(θ)− x)

(
inf
y≤x

{ρ+ I(y)

c(θ)− y

})
=

{
I ′ (aρθ) (x− c(θ)) , if aρθ ≤ x < c(θ);
I(x) + ρ, if x < aρθ.

(3.22)

3.1.3 Proof of (iii)

Proof. This part follows from (1.3).

3.1.4 Proof of (ii)

Proof. Note that c(θ) < d(θ) means d(θ) = φ′(θ) = ν′(θ). Therefore, c(θ) < d(θ) occurs iff
θ0 <∞ and θ > θ0. So this part is only relevant for this range of θ.
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(Upper bound). Take any x ∈ (c(θ), d(θ)] and observe that

P(R∗n > nx) = E
[
P(R∗n > nx|Nn)

]
≤ E

[
Nn · P

(
Sn +

1

θ
log(Y/E) > nx

)]
=
(
E[N ]

)n · P(Sn +
1

θ
log(Y/E) > nx

)
.

Since φ′(θ) ≥ x > c(θ) > E[X], using Lemma 3.1, we get

lim sup
n→∞

1

n
logP(R∗n > nx) ≤ logE[N ]− I(x). (3.23)

(Lower bound). For any α ∈ (0, 1), using inequality (3.2), we obtain

P(R∗n > nx) ≥ P
(
S(ṽbαnc) + max

|v|=bαnc
R
∗(v)
d(1−α)ne > nx

)
≥ P

(
S(ṽbαnc) > bαncx

)
· P
(

max
|v|=bαnc

R
∗(v)
d(1−α)ne > d(1− α)nex

)
≥ P

(
Sbαnc > bαncx

)
· P
(
Nbαnc >

1

2
· E[N ]bαnc

)
· P
(

max
|v|=bαnc

R
∗(v)
d(1−α)ne > d(1− α)nex

∣∣∣Nbαnc > 1

2
· E[N ]bαnc

)
≥ P

(
Sbαnc > bαncx

)
· P
(
Nbαnc >

1

2
· E[N ]bαnc

)
·
(

1−
(

1− P
(
R∗d(1−α)ne > d(1− α)nex

)) 1
2 ·E[N ]bαnc)

.

For any a ∈ [0, 1] and t ≥ 2, we know that 1− (1− a)t ≥ at(1− at). Therefore, for all large
enough n, we get

P(R∗n > nx) ≥ P
(
Sbαnc > bαncx

)
· P
(
Nbαnc >

1

2
· E[N ]bαnc

)
· 1

2
· E[N ]bαnc · P

(
R∗d(1−α)ne > d(1− α)nex

)
·
(

1− 1

2
· E[N ]bαnc · P

(
R∗d(1−α)ne > d(1− α)nex

))
. (3.24)

Note that since c(θ) = ν(θ0)/θ0, we have

I(x) = sup
λ∈R
{λx− φ(λ)} ≥ θ0x− φ(θ0) = θ0 (x− c(θ)) + logE[N ].

Now, for all x ∈ (c(θ), d(θ)], we choose αx such that

0 < αx <
θ0 (x− c(θ))

θ0 (x− c(θ)) + logE[N ]
,

which ensures (1− αx)I(x) > logE[N ]. Together with (3.23), this implies

lim
n→∞

E[N ]bαxnc · P
(
R∗d(1−αx)ne > d(1− αx)nex

)
= 0.

Therefore, for α = αx, the last term on the right-hand side of (3.24) tends to 1, as n
tends to∞. Also, assumption (A2) implies that (see Athreya and Ney [1])

lim
n→∞

P
(
Nbαxnc >

1

2
· E[N ]bαxnc

)
> 0.

ECP 27 (2022), paper 6.
Page 9/13

https://www.imstat.org/ecp

https://doi.org/10.1214/22-ECP446
https://imstat.org/journals-and-publications/electronic-communications-in-probability/


Last progeny modified BRW

Thus inequality (3.24) indicates

lim inf
n→∞

1

n
logP(R∗n > nx) ≥ lim

n→∞

1

n
logP

(
Sbαxnc > bαxncx

)
+ lim
n→∞

1

n
logE[N ]bαxnc

+ lim inf
n→∞

1

n
logP

(
R∗d(1−αx)ne > d(1− αx)nex

)
.

Together with Cramér’s theorem, this implies

lim inf
n→∞

1

n
logP(R∗n > nx) ≥ αx

(
logE[N ]− I(x)

)
+ (1− αx) lim inf

n→∞

1

n
logP(R∗n > nx).

(3.25)

Since I(x) is finite for x ∈ (c(θ), d(θ)] = (φ′(θ0), φ′(θ)], using Lemma 3.1, we have

lim inf
n→∞

1

n
logP(R∗n > nx) ≥ lim

n→∞

1

n
logP

(
Sn +

1

θ
log(Y/E) > nx

)
= −I(x) > −∞.

So, from (3.25), we get

lim inf
n→∞

1

n
logP(R∗n > nx) ≥ logE[N ]− I(x). (3.26)

Combining (3.23) and (3.26), we obtain that for all x ∈ (c(θ), d(θ)],

lim
n→∞

− 1

n
logP (R∗n > nx) = I(x)− logE[N ]. (3.27)

3.1.5 Proof of (i)

Proof. (Upper bound). Using Markov’s inequality, we obtain that for any x ∈ R and
any λ < θ,

P(R∗n > nx) ≤ e−nλx · E
[
eλR

∗
n
]
≤ e−nλx · E

[ ∑
|v|=n

eλS(v)Y λ/θv E−λ/θv

]
= e−nλx · E[N ]n · enφ(λ) · E

[
Y λ/θ

]
· Γ
(

1− λ

θ

)
.

Since this inequality holds for all λ < θ, we have

lim sup
n→∞

1

n
logP(R∗n > nx) ≤ lim

λ↑θ
−λx+ φ(λ) + logE[N ] = −θx+ φ(θ) + logE[N ]. (3.28)

(Lower bound). For every positively supported probability η, we define

Aηn(θ) :=
∑
|v|=n

eθS(v)Zv,

where {Zv}|v|=n are i.i.d. η and are independent of the BRW. Bandyopadhyay and
Ghosh [2] showed that

θR∗n(θ, η)
d

== logAηn(θ)− logE, (3.29)

where E ∼ Exponential (1) and is independent of {Zv}|v|=n and also of the BRW. There-
fore we get that for any x > d(θ) and any ε > 0,

P
(R∗n(θ, µ)

n
> x

)
= P

( logAµn(θ)

nθ
− logE

nθ
> x

)
≥ P

( logAµn(θ)

nθ
> d(θ)− 2ε

)
· P
(
− logE

nθ
> x− d(θ) + 2ε

)
. (3.30)
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Now, take any θ1 ≥ θ and denote µ1 as the distribution of Y θ1/θ. Then we have(
Aµn(θ)

)1/θ
=
( ∑
|v|=n

eθS(v)Yv

)1/θ
≥
( ∑
|v|=n

eθ1S(v)Y θ1/θv

)1/θ1
=
(
Aµ1
n (θ1)

)1/θ1
. (3.31)

From (3.29), we also have

P
(R∗n(θ1, µ1)

n
> d(θ)− ε

)
= P

( logAµ1
n (θ1)

nθ1
− logE

nθ1
> d(θ)− ε

)
≤ P

( logAµ1
n (θ1)

nθ1
> d(θ)− 2ε

)
+ P

(
− logE

nθ1
> ε
)
. (3.32)

Therefore, by combining (3.30), (3.31), and (3.32), we obtain

P
(R∗n(θ, µ)

n
> x

)
≥
(
P
(R∗n(θ1, µ1)

n
> d(θ)− ε

)
− P

(
− logE

nθ1
> ε
))

· P
(
− logE

nθ
> x− d(θ) + 2ε

)
. (3.33)

Observe that for any t > 0,

lim
n→∞

1

n
logP(− logE > nt) = lim

n→∞

1

n
log
(
1− e−e

−nt)
= −t. (3.34)

Now, for θ < θ0 or θ = θ0 <∞, we take θ1 = θ. In that case, d(θ) = c(θ), which implies

lim
n→∞

1

n
logP

(R∗n(θ1, µ1)

n
> d(θ)− ε

)
= 0.

As a result, in view of (3.33) and (3.34), we get that for θ < θ0 or θ = θ0 <∞,

lim inf
n→∞

1

n
logP

(R∗n(θ, µ)

n
> x

)
≥ −θ (x− d(θ) + 2ε) . (3.35)

For θ0 < θ <∞, we know that c(θ) < d(θ). So choosing ε < d(θ)− c(θ), by part (ii) of the
theorem, we have

lim
n→∞

1

n
logP

(R∗n(θ1, µ1)

n
> d(θ)− ε

)
= −Ψθ1 (d(θ)− ε) = −Ψθ (d(θ)− ε) .

Now, we choose θ1 large enough such that θ1ε > Ψθ (d(θ)− ε), which ensures

lim
n→∞

1

n
log
(
P
(R∗n(θ1, µ1)

n
> d(θ)− ε

)
− P

(
− logE

nθ1
> ε
))

= −Ψθ (d(θ)− ε) .

Together with (3.33) and (3.34), this implies that for θ0 < θ <∞,

lim inf
n→∞

1

n
logP

(R∗n(θ, µ)

n
> x

)
≥ −Ψθ (d(θ)− ε)− θ (x− d(θ) + 2ε) . (3.36)

Since ε > 0 can be chosen arbitrarily small and Ψθ is continuous in [c(θ),∞), by combin-
ing (3.35) and (3.36), we get that for any θ > 0,

lim inf
n→∞

1

n
logP

(R∗n(θ, µ)

n
> x

)
≥ −Ψθ (d(θ))− θ (x− d(θ)) = −Ψθ (x) . (3.37)

Thus, by combining (3.28) and (3.37), we finally obtain that for any x > d(θ),

lim
n→∞

− 1

n
logP (R∗n > nx) = θx− φ(θ)− logE[N ]. (3.38)
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3.2 Proof of Theorem 1.2

For (iii) and (iv), the expression in Gantert and Höfelsauer [7] can be simplified as
we did in equation (3.22). The proof of (v) is essentially the proof of the part (vi) of
Theorem 1.1 verbatim. Note that the assumption E[N1+p] <∞ in (A2) was only required
for the almost sure convergence of R∗n/n and therefore is not required to prove part (v)
of Theorem 1.2. But we do need E[N logN ] < ∞ for the remaining parts, as shown in
Gantert and Höfelsauer [7].

4 Comparision with branching random walk

We observe that for θ0 ≤ θ <∞, the lower large deviations for the laws of {Rn/n}n≥1
and {R∗n(θ, µ)/n}n≥1 coincide. It should be noted that there is an error in deriving the
lower large deviations for the laws of {Rn/n}n≥1 in the work of Gantert and Höfel-
sauer [7]. The first term on the right-hand side of inequality 5.9 in their paper is
exp

(
− nρmin {1− x/x∗, 1}+ o(n)

)
. They assumed that

ρmin
{

1− x

x∗
, 1
}
≥ inf

0<t≤1

{
ρt+ tI

(x− (1− t)x∗

t

)}
,

which does not hold for negatively large enough x. The proof of (iv) and (v) of Theorem 1.1
is essentially a corrected version of their techniques.

For θ0 < θ < ∞, the upper large deviation for the laws of {R∗n(θ, µ)/n}n≥1 agrees
with that of {Rn/n}n≥1 up to φ′(θ).
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