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This paper develops a foundation of methodology and theory for non-
parametric regression with Lie group-valued predictors contaminated by
measurement errors. Our methodology and theory are based on harmonic
analysis on Lie groups, which is largely unknown in statistics. We establish
a novel deconvolution regression estimator, and study its rate of convergence
and asymptotic distribution. We also provide asymptotic confidence intervals
based on the asymptotic distribution of the estimator and on the empirical
likelihood technique. Several theoretical properties are also studied for a de-
convolution density estimator, which is necessary to construct our regression
estimator. The case of unknown measurement error distribution is also cov-
ered. We present practical details on implementation as well as the results of
simulation studies for several Lie groups. A real data example is also pro-
vided.

1. Introduction. Regression analysis is an important topic in statistics, which offers use-
ful information on underlying relationships between variables of interest. However, when
some variables are not precisely observed due to measurement errors, direct application of
existing methods designed for error-free variables results in incorrect inference. To give an
introductory account of the problem, let us consider a simple case where both the covari-
ate (predictor) X and the response Y are real-valued. To estimate the regression function
m(x) = E(Y |X = x) at a point x, one may apply “local smoothing” to Yi around each point x.
For example, the Nadaraya–Watson estimator of m is to take a weighted average of Yi cor-
responding to Xi that fall in a neighborhood of each point x. This makes sense since Yi

corresponding to Xi near x have “correct” information about m(x). Now, suppose that Xi

are not available but Zi = Xi + Ui are, where Ui are unobserved measurement errors. In
this case, the naive approach, simply taking a weighted average of Yi corresponding to Zi

that fall in a neighborhood of the point x, should fail since Xi corresponding to such Zi

may locate far away from x, and thus the corresponding Yi may not have correct informa-
tion about m at x. To overcome the issue with measurement errors, appropriate correction
methods have been proposed for the case where all variables are Euclidean. To list only a
few, [72] introduced a deconvolution kernel density estimator, and [22] and [23] studied its
rate of convergence and asymptotic distribution, respectively. Based on the deconvolution
kernel, [24] and [16], respectively, investigated the rate of convergence and the construction
of bootstrap confidence bands for a Nadaraya–Watson-type regression estimator, and [15]
studied the asymptotic distribution of a local polynomial-type regression estimator. For an
introduction to such errors-in-Euclidean-variables problems, we refer to [57] and [14], for
example.

Analyzing non-Euclidean data is becoming an important task in modern statistics due to
rapidly emerging non-Euclidean data in various fields. For a recent trend on non-Euclidean
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data analysis, we refer to [56] and the references therein. In particular, functional data analy-
sis has been widely studied in recent years ([53, 70, 78]). However, much fewer works exist
for the case where a functional predictor in functional regression is contaminated by a gen-
uinely functional measurement error ([5, 7, 39]). More recently, [54] considered a regression
problem with a real-valued response and a functional predictor that takes values in a finite-
dimensional submanifold of L2(D) for some compact set D ⊂ R. In the latter paper, it is
assumed that one observes noisy values of the functional predictor at random time points
contaminated by real-valued noises. From the noisy observations, they constructed the esti-
mated values of the functional predictor whose errors correspond to the measurement errors
Ui in the aforementioned errors-in-variables problem. The estimation errors in their work are
vanishing as the sample size increases to infinity, so that one does not need a deconvolution
method to correct for the discrepancy between the true and observed values of the predictor.
To the best of our knowledge, regression analysis with genuinely manifold-valued measure-
ment errors has not been studied.

Manifold-valued data are also often subject to measurement errors as Euclidean and func-
tional data are. For example, wind directions at particular times are difficult to measure ex-
actly due to the fast speed of wind. Also, periodic time variables such as the time of a daily
event and the date of an yearly event are prone to contain measurement errors unless one
observes them all time. Those are examples of circular data. Another area where contami-
nated manifold-valued data arise is astronomy. For example, exact positioning of sunspots
on the sun or measuring the oriented directions of astronomical objects to the earth is very
hard since they move very fast from far away. Those are examples of spherical data. For the
same reason, the orbits of comets or asteroids, which can be transformed to SO(3)-valued
data ([68]), can also contain measurement errors, where SO(p) is the space of p × p orthog-
onal matrices having unit determinant. In addition, the reachable orientations of robot arms
taking values in SO(3) are subject to measurement errors as noted in [55]. Another class of
examples is hyperspherical data originated from Euclidean data sources. This is particularly
the case when observed Euclidean vectors are normalized to have unit Euclidean norm to
ensure that data analysis is affected only by the relative magnitudes of vector elements rather
than their absolute magnitudes. If the original Euclidean data contain measurement errors,
then the resulting hyperspherical data also contain measurement errors.

In general, analyzing manifold-valued data is challenging since there is no vector space
structure on most manifolds, unlike Banach/Hilbert spaces where functional data take values
in. For error-free manifold-valued data, many papers exist for density estimation (e.g., [4,
29, 32, 34, 64]) and regression analysis (e.g., [2, 6, 8, 10, 19, 30, 35, 40, 42, 49, 65, 80]).
Among them, [6] considered the case where response and predictor are spherical variables
and the response is symmetrically distributed around the product of an unknown orthogonal
matrix and the predictor. Much fewer works exist, however, for manifold-valued variables that
are contaminated by manifold-valued measurement errors, and they are restricted to density
estimation. For example, [33, 48] and [46] studied deconvolution density estimation on the
unit sphere S2 = {x ∈ R

3 : ‖x‖ = 1}. A few others include [47] for special orthogonal groups,
[50] for compact and connected Lie groups, [38] for the Poincaré upper half-plane and [55]
for the 6-dimensional Euclidean motion group. All of these works on deconvolution density
estimation studied only the rates of convergence of the estimators.

In this paper, we consider a regression setting where the response variable is real-valued
and the predictor takes values in a compact and connected Lie group. In particular, we con-
sider for the first time the case where the Lie group-valued predictor is contaminated by a
Lie group-valued measurement error. We build up a theoretical foundation for such a new
regression setup. Contrary to the aforementioned works on density estimation, the theory for
nonparametric regression includes the analysis of the conditional distribution of the observed
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values of the contaminated predictor and response variable given unobservable true values of
the predictor. Furthermore, in addition to the rate of convergence, we derive the asymptotic
distribution for a novel deconvolution regression estimator and construct asymptotic confi-
dence intervals. We develop two types of confidence intervals, one via the asymptotic distri-
bution of the estimator and the other by empirical likelihood. We also provide several new
properties of a deconvolution density estimator such as the uniform consistency, asymptotic
distribution and asymptotic confidence intervals, which have not been considered before. In
addition, we present full practical details of implementation and numerical studies, which
have received less attention in the literature despite their importance. We emphasize that de-
riving such results are highly nontrivial and nonstandard, since they heavily rely on harmonic
analysis on Lie groups and use various facts and tools that have not been known for non-
Euclidean cases. Indeed, the derivation of the results is quite different from the ways in the
Euclidean case.

Compact and connected Lie groups are important classes of non-Euclidean spaces having
both manifold and algebraic group structures. Examples are toruses including the unit circle
as a special case, special orthogonal groups, special unitary groups, unitary groups, compact
symplectic groups, metaplectic groups and their product spaces. Hence, our setting covers
various data types such as torus-valued data, which include circular data as a special case,
special-orthogonal-matrix-valued data, some hyperspherical data and so on.

This paper is organized as follows. In Section 2, our regression setting and the proposed
regression estimator are presented, after some terminologies are introduced, which are unfa-
miliar in statistics. The rates of convergence of the regression estimator (and also of the sim-
ilarly defined density estimator) are provided in Section 3 and the asymptotic distributions of
both estimators are given in Section 4. Construction of asymptotic confidence intervals for
densities and regression functions is discussed in Section 5. Section 6 is devoted to the case
where the measurement error distribution is unknown. In Section 7, the results of several sim-
ulation studies are discussed and an application to a real data set is presented. Full practical
details on the implementation of our methods are collected in the Appendix for certain Lie
groups. The Supplementary Material [41] contains the definitions of additional terminologies
and all technical proofs.

2. Methodology.

2.1. Preliminaries. We start with giving the definitions of some unfamiliar notions in
statistics required to introduce our methodology. We refer to standard books on harmonic
analysis on Lie groups (e.g., [1, 25, 26, 66, 69]) for a comprehensive understanding of the
notions. A set G equipped with an operation ◦ is called a group if (i) there exists an (identity)
element e ∈ G such that e ◦ g = g ◦ e = g for all g ∈ G; (ii) for each g ∈ G, there exists an
(inverse) element g−1 ∈ G such that g ◦g−1 = g−1 ◦g = e; (iii) g1 ◦ (g2 ◦g3) = (g1 ◦g2)◦g3
for all g1, g2, g3 ∈ G. A group G equipped with a group operation ◦ is called a Lie group
if it is a finite-dimensional smooth manifold such that the map f : G × G → G defined by
f (g1, g2) = g1 ◦ g−1

2 is smooth (C∞). The definition of smooth manifold is given in the
Supplementary Material S.1.

For a separable complex Hilbert space H, we let Inv(H) denote the space of all bounded
linear invertible operators from H to itself, and 〈·, ·〉H denote an inner product of H. For a
Lie group G and a separable complex Hilbert space H, a homomorphism σ : G → Inv(H)

is called a strongly continuous unitary representation of G if (i) for each h ∈ H the map
g 
→ σ(g)(h) is continuous and (ii) for each g ∈ G the map σ(g) : H → H is a unitary
operator, that is, 〈h1, h2〉H = 〈σ(g)(h1), σ (g)(h2)〉H for all h1, h2 ∈ H. Such H is called the
representation space of σ and is denoted by Hσ . Also, dim(Hσ ) is called the dimension of σ .
Hereafter, we call strongly continuous unitary representation simply representation.
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For a representation σ : G → Inv(Hσ ), a closed linear subspace Wσ of Hσ is called in-
variant for σ if σ(g)(Wσ ) ⊂ Wσ for all g ∈ G. A representation σ : G → Inv(Hσ ) is called
irreducible if Hσ �= {0σ } and the only invariant subspaces for σ are Hσ and {0σ }, where 0σ

is the zero vector of Hσ . It is known that (i) if G is compact, then every irreducible rep-
resentation of G is of finite-dimension, and (ii) if G is Abelian, that is, g1 ◦ g2 = g2 ◦ g1
for all g1, g2 ∈ G, then every irreducible representation of G is of one dimension. Two irre-
ducible representations σ : G → Inv(Hσ ) and τ : G → Inv(Hτ ) are said equivalent, denoted
by σ ∼ τ , if Hσ and Hτ are isomorphic and there exists a bounded linear unitary operator
T : Hσ →Hτ satisfying T (σ(g)(h)) = τ(g)(T (h)) for all g ∈G and h ∈ Hσ . The relation ∼
between irreducible representations of G is an equivalence relation. We take a representative
for each equivalence class [σ ] = {τ : τ is an irreducible representation of G such that τ ∼ σ }
and write the space of all representatives by Ĝ. It is known that Ĝ is countable if G is com-
pact.

EXAMPLE 1. We illustrate Ĝ and Hσ for several Lie groups G to give their tangible
pictures in relation to the abstract notions for the representation of Lie groups. These would
help be a better understanding of our proposed methodology in general, especially of the
discussion on the exemplified Lie groups later in this paper. Some further ingredients needed
in the practical implementation of the methodology for those Lie groups are discussed in the
Appendix. Below, D ≥ 1 is a given integer and dim(G) is the manifold dimension of G.

(i) Euclidean spaces. For G = R
D with ◦ being the usual addition operation +, we

get dim(G) = D, Ĝ = {σt : t ∈ R
D}, Hσt ≡ C and dim(Hσt ) ≡ 1, where σt (g)(h) = h ·

exp(−√−1 · 〈t, g〉RD) for g ∈ R
D and h ∈ C. We refer to Chapter 2.1 in [1] for details.

(ii) Toruses. Let TD = {g = (g1, . . . , gD) ∈ C
D : |gd | = 1 for all d = 1, . . . ,D}. For G =

T
D with ◦ being the usual componentwise multiplication in C

D , we have dim(G) = D, Ĝ=
{σl : l = (l1, . . . , lD) ∈ Z

D}, Hσl
≡C and dim(Hσl

) ≡ 1, where σl(g)(h) = h ·∏D
d=1(gd)ld for

h ∈ C. We refer to Chapter 2.1 in [1] for details. In fact, dealing with T
D allows us to cover∏D

d=1 S
1, where S

1 = {x ∈ R
2 : ‖x‖ = 1} is the unit circle; see Remark A.1 in the Appendix

for details.
(iii) Special unitary group of degree 2. Consider G= SU(2) with ◦ being the usual matrix

multiplication, where

SU(2) :=
{
g =

(
g11 g12

−g12 g11

)
: g11, g12 ∈ C, |g11|2 + |g12|2 = 1

}

with ā standing for the conjugate of a complex number a ∈ C. In this case, dim(G) = 3,
Ĝ = {σl : l ∈ {0} ∪ N} and dim(Hσl

) = l + 1. For concrete forms of σl and Hσl
, we refer to

Chapter 7.5 in [25]. In fact, dealing with SU(2) allows us to cover the 3-dimensional unit
hypersphere S

3 = {x ∈ R
4 : ‖x‖ = 1}; see Remark A.1 in the Appendix for details.

(iv) Rotation group. Let O(3) be the space of all 3×3 real orthogonal matrices and define
SO(3) = {g ∈ O(3) : det(g) = 1}. For G = SO(3) with ◦ being the usual matrix multiplica-
tion, we obtain dim(G) = 3, Ĝ= {σl : l ∈ {0}∪N} and dim(Hσl

) = 2l+1. For concrete forms
of σl and Hσl

, we refer to Chapter 7.6 in [25].
(v) Product of compact and connected Lie groups. Let G1 and G2 be compact and con-

nected Lie groups equipped with respective group operations ◦1 and ◦2. Then the product
space G = G1 × G2 equipped with the group operation ◦, defined by (g1, g2) ◦ (g∗

1 , g∗
2) =

(g1 ◦1 g∗
1 , g2 ◦2 g∗

2) for g1, g
∗
1 ∈ G1 and g2, g

∗
2 ∈ G2, forms a compact and connected Lie

group. In this case, dim(G) = dim(G1) + dim(G2), Ĝ = {σ1 ⊗ σ2 : σ1 ∈ Ĝ1, σ2 ∈ Ĝ2} and
dσ1⊗σ2 = dσ1 · dσ2 , where σ1 ⊗ σ2 :G → Inv(Hσ1 ⊗Hσ2) is defined by σ1 ⊗ σ2(g1, g2)(h1 ⊗
h2) = σ1(g1)(h1)⊗σ2(g2)(h2), and Hσ1 ⊗Hσ2 = {h1 ⊗h2 : h1 ∈Hσ1, h2 ∈ Hσ2} is the tensor
product of Hσ1 and Hσ2 . We refer to Theorem 3.9 in [69] for more details.
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A Borel measure μ on a Lie group G is called a left Haar measure if μ(g ◦ A) = μ(A) for
all g ∈ G and Borel sets A ⊂ G, where g ◦ A = {g ◦ a : a ∈ A}. In the case where G = R

D ,
the corresponding Lebesgue measure is a left Haar measure. It is known that, if G is compact,
then there exists a unique left Haar measure μ on G such that μ(G) = 1, which is called the
normalized Haar measure on G.

2.2. Model and estimation. Let (�,F,P ) be a probability space and G be a compact
and connected Lie group equipped with a group operation ◦. Examples of such G include
T

D , special orthogonal groups, special unitary groups, unitary groups, compact symplectic
groups, metaplectic groups and their product groups. It excludes the Euclidean spaces, how-
ever, since the latter spaces are not compact. We study the estimation of the nonparametric
regression model

Y = m(X) + ε,(1)

where Y : � →R is a response variable with finite second moment, X : � →G is a predictor,
ε : � → R is an error term satisfying E(ε|X) = 0 and m : G → R is the regression function
to estimate. We consider the case where X is contaminated by an unobservable measurement
error U : � →G satisfying U ⊥ (X,Y ), so that we only observe Z := U ◦X. Here, ⊥ stands
for statistical independence. Let (Y1,Z1), . . . , (Yn,Zn) be n i.i.d copies of (Y,Z) that we
actually observe.

To describe our methodology of estimating the regression map m, we let fX and fU be
the respective square integrable densities of X and U with respect to the normalized Haar
measure μ on G. Then one can easily check that the density fZ of Z with respect to μ exists
and is given by the following convolution formula:

fZ(z) = (fU ∗ fX)(z) :=
∫
G

fU(u)fX

(
u−1 ◦ z

)
dμ(u),

where u−1 is the inverse element of u ∈ G. For a given σ ∈ Ĝ and its dimension dσ ∈ N,
let {eσ

i : 1 ≤ i ≤ dσ } be an orthonormal basis of the representation space Hσ of σ . Also, for
each g ∈ G, let σM(g) denote the dσ × dσ complex matrix whose (i, j)th element equals
σM

ij (g) := 〈σ(g)(eσ
j ), eσ

i 〉Hσ
= 〈eσ

i , σ (g)(eσ
j )〉Hσ

. We call σM(g) the matrix form of σ(g)

with respect to {eσ
i : 1 ≤ i ≤ dσ }. Then, for V being any of X, U and Z, the Fourier transform

φV (σM) of fV at σM is given by the following matrix-valued integral:

(2) φV (σM) := ∫
G

σM(g−1)fV (g) dμ(g) = E
(
σM(V −1)),

where “E” denotes expectation. Also, the following convolution identity holds (e.g., (5.1.7)
in [26]):

φZ(σM)= φX(σM)φU (σM), σ ∈ Ĝ,(3)

where the right-hand side is to be understood as the matrix multiplication.

REMARK 1. The definition of Fourier transform at (2) actually applies to a general
Lie group. In the case of R

D for some D ≥ 1, the Fourier transforms corresponding to
different orthonormal bases of C are identical and the common transform coincides with
the usual Euclidean Fourier transform. In the latter case, dσt ≡ 1 so that σM

t is given by
σM

t (g−1) = σM
t (−g) = exp(

√−1 · 〈t, g〉RD) ∈ T
1; see Example 1(i). Also, μ equals the

Lebesgue measure on R
D .
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Now, let L2((G,μ),C) be the space of complex-valued functions f : G → C such that∫
G

f (g)f (g) dμ(g) < ∞, endowed with the inner product 〈f1, f2〉2 = ∫
G

f1(g)f2(g) dμ(g).
The following lemma is a part of the so-called Peter–Weyl theorem (e.g., Theorem 5.12 in
[26]).

LEMMA 1. The collection {d1/2
σ σM

ij (·) : σ ∈ Ĝ,1 ≤ i, j ≤ dσ } forms an orthonormal

basis of L2((G,μ),C).

According to Lemma 1, fX admits the following Fourier series expansion:

fX(·) = ∑
σ∈Ĝ

dσ

dσ∑
i,j=1

〈
fX(·), σM

ij (·)〉2σM
ij (·) = ∑

σ∈Ĝ
dσ Tr

(
φX(σM)σM(·)),(4)

where the equalities hold in L2((G,μ),C) sense and Tr(A) for a square matrix A denotes
the trace of A. In the next section, we give sufficient conditions under which (4) holds in
pointwise sense. In the Euclidean measurement error case where the predictor takes values in
R

D for some D ≥ 1, it is usually assumed that the density of a measurement error is known
and its Fourier transform is nonzero. In our non-Euclidean case, we also assume that fU is
known and φU(σM) is invertible for all σ ∈ Ĝ. This kind of assumptions is typical in the
literature of non-Euclidean deconvolution density estimation (e.g., [33, 38, 46–48, 50, 55]).
We discuss the case of unknown fU in Section 6. From (3) and (4), we get the following
Fourier series expansion:

fX(·) = ∑
σ∈Ĝ

dσ Tr
(
φZ(σM)φU (σM)−1

σM(·)).(5)

We first introduce an estimator of the density fX , which is needed to propose our estima-
tor of the regression function m. For this, we use the representation (5). Since φZ(σM) =
E(σM(Z−1)) by definition, we estimate it by the empirical mean n−1∑n

i=1 σM(Z−1
i ), where

Z−1 is the random element whose evaluation at ω ∈ � is the inverse element of Z(ω) in G.
We plug the empirical mean in the place of φZ(σM) in (5), which gives an estimator of
fX . The estimator, however, is subject to a large variability since for each Zi it involves the
infinite sum

∑
σ∈Ĝ dσ Tr(σM(Z−1

i )φU (σM)−1σM(·)), and the value of ‖φU(σM)−1‖op :=
sup{‖φU(σM)−1v‖Cdσ : v ∈ C

dσ ,‖v‖Cdσ = 1} is unbounded as σ varies in Ĝ. For example,
for the general Laplace and Gaussian distributions on G to be introduced in Section 3.1,
we have ‖φU(σM)−1‖op = C(1 + s · f (σ)) and ‖φU(σM)−1‖op = C exp(s · f (σ)), respec-
tively, for some constants C, s > 0 and an unbounded nonnegative function f on Ĝ. This
is analogous to the phenomenon in the Euclidean case that the reciprocal of a Euclidean
Fourier transform tends to infinity in the tails. To avoid the difficulty, we take a finite sum
over σ ∈ Ĝ with a truncation point determined by the Casimir spectrum of G and a smooth-
ing parameter Tn > 0 such that limn→∞ Tn = ∞. The Casimir spectrum is an unbounded set
{kσ : σ ∈ Ĝ} with kσ ≥ 0 such that −kσ for each σ is the eigenvalue of the Laplace–Beltrami
operator � (twice differential operator acting on twice continuously differentiable functions
mapping G to C), corresponding to σM

ij (·) as eigenfunctions, that is, �(σM
ij ) = −kσ · σM

ij

for all 1 ≤ i, j ≤ dσ . We refer to the Supplementary Material S.1 for the formal definition of
Casimir spectrum.

We cut off the infinite sum
∑

σ∈Ĝ dσ Tr(σM(Z−1
i )φU(σM)−1σM(·)) at σ where the

Casimir spectrum kσ exceeds Tn. In this way, we obtain a finite sum since the set {σ ∈ Ĝ :
kσ < Tn} is finite for each n. The Casimir spectrum also has the property

∑
σ∈Ĝ:kσ <Tn

d2
σ �
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T
dim(G)/2
n (e.g., Corollary in [58]), which is useful in controlling the strength of the variability

of the resulting finite sum by adjusting Tn. The truncation gives a density estimator

f̃X(x) = n−1
n∑

i=1

KTn(x,Zi),

KTn(x, z) = ∑
σ∈Ĝ:kσ <Tn

dσ Tr
(
σM(z−1)φU (σM)−1

σM(x)
)
, x, z ∈ G.

(6)

The above KTn(·, ·) plays the role of the Euclidean “deconvolution kernel” used in [72] and
[24], which studied the cases of Euclidean measurement errors. Indeed, the L2 error rates of
f̃X were studied by [50] for G-valued measurement errors. In this paper, we consider instead

f̂X(x) = n−1
n∑

i=1

Re
(
KTn(x,Zi)

)
,(7)

where Re(a) stands for the real part of a complex number a ∈ C. Taking the real part of
KTn(x,Zi) for each x and Zi as in (7) is natural since the target fX is real-valued. It actually
gives an estimator with a smaller error since |Re(a) − b| ≤ |a − b| for all a ∈ C and b ∈ R.
Including the imaginary part gives f̃X and an estimator of m whose asymptotic distributions
are supported on C, which would mystify the construction of the asymptotic confidence in-
tervals on R for the targets fX(x) and m(x). The asymptotic distribution of f̃X can be found
in Proposition S.1 in the Supplementary Material S.20. The following new proposition gives
that f̂X integrates to one, which is a desired property for density estimators.

PROPOSITION 1.
∫
G

KTn(x, z) dμ(x) = 1 for any z ∈ G, so that
∫
G

Re(KTn(x,

z)) dμ(x) = 1 for any z ∈ G and
∫
G

f̂X(x) dμ(x) = 1.

Noting that Re(KTn(·, ·)) plays the role of the Euclidean deconvolution kernel, we define
the following novel deconvolution regression estimator m̂:

m̂(x) = 1

f̂X(x)
· n−1

n∑
i=1

Re
(
KTn(x,Zi)

)
Yi, x ∈ G.(8)

The evaluation of KTn(x,Zi) in the estimators at (7) and (8) needs the knowledge of kσ , σM

and φU . In Example A.1 in the Appendix, we present the specific forms of these quantities
for several popular examples of G.

REMARK 2. The estimators f̂X and m̂ are independent of the choice of an orthonor-
mal basis of Hσ . Let {eσ

i : 1 ≤ i ≤ dσ } and {vσ
i : 1 ≤ i ≤ dσ } be two different orthonor-

mal bases of Hσ , and σM,e(g) and σM,v(g) denote the respective matrix forms of σ(g). In
Proposition S.2 in the Supplementary Material S.20, we show that σM,v(g) = AσM,e(g)A∗
for all g ∈ G, where A is a dσ × dσ unitary matrix that depends only on the orthonormal
bases {eσ

i : 1 ≤ i ≤ dσ } and {vσ
i : 1 ≤ i ≤ dσ }, and A∗ is the conjugate transpose of A. Since

Tr(A1A2) = Tr(A2A1) holds for all complex square matrices A1 and A2, we may see that the
deconvolution kernels KTn(·, ·) at (6) resulting from {eσ

i : 1 ≤ i ≤ dσ } and {vσ
i : 1 ≤ i ≤ dσ }

are identical.

REMARK 3. Note that the estimator in (8) looks like a Nadaraya–Watson-type estimator
popularized for Euclidean data, but it is expressed so for the reader to connect the estimator
for Lie group data to the Euclidean counterpart. The theory for the estimator in (8) and its
practical implementation are far different from those for Euclidean Nadaraya–Watson-type
estimators.
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An important functionality that Re(KTn(·, ·)) needs to possess is to remove the effect of U

that might be of a nonnegligible magnitude if

(9) K0
Tn

(x, v) = ∑
σ∈Ĝ:kσ <Tn

dσ Tr
(
σM(v−1)σM(x)

)
, x, v ∈ G

is used, instead of KTn(·, ·), with the noisy Zi . In view of (4) and the fact E(σM(X−1)) =
φX(σM), one may use K0

Tn
(·, ·) to estimate fX in case the true predictor values Xi

are observed. For example, one may estimate fX(x) by n−1∑n
i=1 K0

Tn
(x,Xi) or by

n−1∑n
i=1 Re(K0

Tn
(x,Xi)), where the former has been studied by [34] for the error-free case.

The following new proposition gives a relationship between KTn(·, ·) and K0
Tn

(·, ·).

PROPOSITION 2. E(σM(Z−1)|X) = σM(X−1)φU(σM), so that E(Re(KTn(x,Z))|X) =
Re(K0

Tn
(x,X)) for any x ∈ G.

The conclusion asserted in the above proposition, termed as “unbiased scoring,” implies
that E(σM(Z−1)Y )φU(σM)−1 = φm·fX(σM), where φm·fX(σM) is the Fourier transform of
m · fX at σM given by

∫
G

σM(g−1)m(g)fX(g) dμ(g). Indeed, it holds that

E
(
σM(Z−1)Y )φU (σM)−1 = E

(
E
(
σM(Z−1)Y |X))φU (σM)−1

= E
(
σM(X−1)E(σM(U−1)|X)m(X)

)
φU (σM)−1

= E
(
σM(X−1)m(X)

)
= φm·fX

(
σM),

where the second and third equalities follow from U ⊥ (X,Y ). The above result is useful in
various places of our asymptotic analysis. In particular, the unbiased scoring property gives
that

E
(
f̂X(x)|X1, . . . ,Xn

)= n−1
n∑

i=1

Re
(
K0

Tn
(x,Xi)

)
,

E
(
m̂(x)f̂X(x)|X1, . . . ,Xn

)= n−1
n∑

i=1

Re
(
K0

Tn
(x,Xi)

)
m(Xi).

The above identities basically tell that the “cut-off spectral kernel” KTn defined at (6) decon-
volutes efficiently the influence of measurement errors. They indicate that the biases of f̂X

and m̂X based on the contaminated observations Zi are the same as the respective biases of
the corresponding estimators based on the unobservable original Xi .

REMARK 4. The density estimator f̃X defined at (6) can be also constructed by plug-
ging

∫
G

σM(g−1)f̂ 0
Z(g) dμ(g) in the place of the Fourier transform φZ(σM) in (5), where

f̂ 0
Z(g) = n−1∑n

i=1 K0
Tn

(g,Zi) is the estimator of fZ(g) introduced by [34] for the case of
no measurement error. In this construction, the infinite sum

∑
σ∈Ĝ at (5) is automatically re-

duced to the finite sum
∑

σ∈Ĝ:kσ <Tn
given in the expression of f̃X(x) due to Lemma 1. One

may think of using a kernel density estimator of fZ such as

f̄Z(g) := (nh)−1
n∑

i=1

(
θZi

(g)
)−1

K
(
d(g,Zi)/h

)

introduced by [64] instead of f̂ 0
Z(g), where K is a baseline kernel function, h is the band-

width, θZi
is the volume density function at Zi and d is the geodesic distance. The resulting
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density and regression estimators based on the use of f̄Z may contain the infinite sum
∑

σ∈Ĝ
since the associated kernel weighting scheme for the estimators does not reduce automat-
ically the infinite sum to a finite sum. Hence, the latter estimators are subject to a large
variability. One can take an arbitrary finite sum, but this would introduce another tuning pa-
rameter in addition to the bandwidth h. Moreover, the estimators based on f̄Z do not possess
an unbiased scoring property that removes the influence of measurement errors in the bias
parts.

3. Error rate analysis. In this section, we discuss the rates of convergence of our esti-
mators defined at (7) and (8).

3.1. Smoothness of measurement error distribution. In the Euclidean case, two smooth-
ness classes are usually considered for the distributions of measurement errors. They are
ordinary-smoothness and supersmoothness scenarios; see, for example, [22]. A Euclidean
example of ordinary-smoothness scenario is the Laplace distribution and the one with super-
smoothness is the Gaussian distribution. We consider the extended notions of smoothness
for the current non-Euclidean setting introduced by [50]. For a complex matrix A, define
‖A‖op = sup{‖Av‖Cdσ : v ∈C

dσ ,‖v‖Cdσ = 1}.
(S1) Ordinary-smoothness class of order β ≥ 0: There exist constants c1, c2 > 0 such that,

for all σ ∈ Ĝ with kσ > 0, (i) ‖φU(σM)−1‖op ≤ c1k
β
σ and (ii) ‖φU(σM)‖op ≤ c2k

−β
σ .

(S2) Supersmoothness class of order β > 0: There exist constants c1, c2, γ > 0 and
α ∈ R such that, for all σ ∈ Ĝ with kσ > 0, (i) ‖φU(σM)−1‖op ≤ c1k

α
σ exp(γ · k

β
σ ) and (ii)

‖φU(σM)‖op ≤ c2k
−α
σ exp(−γ · kβ

σ ).
(S3) Log-supersmoothness class of order β > 0: There exist constants c1, c2, γ > 0

and α, ξ1, ξ2 ∈ R such that, for all σ ∈ Ĝ with kσ > 0, (i) ‖φU(σM)−1‖op ≤ c1k
α
σ exp(γ ·

k
β
σ (log kσ − ξ1)) and (ii) ‖φU(σM)‖op ≤ c2k

−α
σ exp(−γ · kβ

σ (log kσ − ξ2)).

For the rates of convergence, we only need the condition (i) in the respective scenarios
(Sj) for j ∈ {1,2,3}. For the asymptotic distributions to be presented in Section 4.1, how-
ever, we need both conditions (i) and (ii) in (Sj). Below, we provide some examples of
measurement error distributions belonging to the above scenarios. As a trivial case, con-
sider the case of no measurement error where P(U = e) = 1 and P(U = u) = 0 for all
u �= e. Here and throughout this paper, e denotes the identity element of G. We also let
Idσ denote the dσ × dσ identity matrix. In the trivial case, φU(σM) = σM(e−1) = Idσ ,
so that its satisfies (S1) with β = 0. Another example of ordinary-smoothness is the
general Laplace distribution on G whose Fourier transform is of the form φU(σM) =
c(1 + s · kσ )−1Idσ , where c ∈ C is a nonzero constant and s > 0 is a real parame-
ter. Thus, it satisfies (S1) with β = 1. An important example of supersmoothness is the
general Gaussian distribution on G whose Fourier transform is of the form φU(σM) =
c exp(−s · kσ )Idσ for a nonzero complex constant c ∈ C and a real parameter s > 0.
The distribution satisfies (S2) with β = 1, γ = s and α = 0. More specific examples
are given in Examples A.2–A.4 in the Appendix for the Lie groups discussed in Exam-
ple 1.

3.2. Rates of convergence. We start with giving the uniform consistency of the density
estimator f̂X . This is new and has not been studied even for the complex-valued version of
f̂X . We note that [50] obtained only the L2 rates of convergence for the complex-valued
f̃X defined at (6). The uniform consistency of f̂X is required for the main results on our
regression estimator m̂. It is also important in its own right. For each smoothness scenario,
we consider Tn growing to infinity as n → ∞ at a speed as specified below:
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(T1) Ordinary-smoothness: n−1/2T
β+dim(G)/2
n = o(1).

(T2) Supersmoothness: n−1/2T
α+dim(G)/2
n exp(γ · T β

n ) = o(1).
(T3) Log-supersmoothness: n−1/2T

α+dim(G)/2
n exp(γ · T β

n (logTn − ξ1)) = o(1).

PROPOSITION 3. Assume that the series in (4) converges uniformly to fX . Then, under
either of the conditions (S1)-(i)+(T1), (S2)-(i)+(T2) and (S3)-(i)+(T3), it holds that

sup
x∈G

∣∣f̂X(x) − fX(x)
∣∣= op(1).

A sufficient condition on fX under which the assumption of Proposition 3 holds is that fX

is 2 × �dim(G)/4�-times continuously differentiable on G, where �a� = min{b ∈ N : b > a};
see, for example, Theorem 3.3.1 in [1]. For some G, it requires much weaker conditions than
this. In the case where G = T

1, for example, the uniform convergence of the series in (4)
holds if fX is Hölder continuous with a positive exponent. In the case where G = SU(2),
the uniform convergence is implied by the Lipschitz continuity of fX . We refer to [60] for
details.

The error rate of our regression estimator m̂ at (8) depends on the level of smoothness of
fX as well as that of m. Let C�(G) denote the space of �-times continuously differentiable
real-valued functions on G.

(A1) For some r > dim(G)/4 with r ∈ N, (i) fX ∈ C2r (G) and (ii) m ∈ C2r (G).
(A2) fX is bounded away from zero on G.

The reason we assume the same level of smoothness for fX and m in (A1) is that the
asymptotic analysis of n−1∑n

i=1 Re(KTn(x,Zi))Yi in m̂ requires expressing the Fourier se-
ries of m · fX in terms of �r(m · fX), where �r is the r-times composition of the Laplace–
Beltrami operator �; see the proof of Theorem 1 in the Supplementary Material S.6 for more
details. Recall that the operator � acts on twice continuously differentiable functions map-
ping G to C. The condition (A2) is a regularity condition whose version for the Euclidean
case is commonly assumed in nonparametric statistics.

We are ready to state our first theorem, which gives the rate of convergence of m̂ for each
smoothness class.

THEOREM 1. Assume that the conditions (A1) and (A2) hold. Then the following results
are valid:

(a) Under (S1)(i) and (T1), it holds that∫
G

∣∣m̂(x) − m(x)
∣∣2 dμ(x) = Op

(
T −2r

n + n−1T 2β+dim(G)/2
n

)
.

(b) Under (S2)(i) and (T2), it holds that∫
G

∣∣m̂(x) − m(x)
∣∣2 dμ(x) = Op

(
T −2r

n + n−1T 2α+dim(G)/2
n exp

(
2γ · T β

n

))
.

(c) Under (S3)(i) and (T3), it holds that∫
G

∣∣m̂(x) − m(x)
∣∣2 dμ(x) = Op

(
T −2r

n + n−1T 2α+dim(G)/2
n exp

(
2γ · T β

n (logTn − ξ1)
))

.

REMARK 5. We may show that
∫
G

|f̂X(x)−fX(x)|2 dμ(x) achieves the same rates given
in Theorem 1 under (A1)(i). Proposition 3 and Theorem 1 also hold for the complex-valued
versions of f̂X and m̂, respectively, under the same respective conditions.
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We note that, for each smoothness class, the term of magnitude T −2r
n in the L2 error in

Theorem 1 comes from the (conditional) bias of m̂ and the other one is originated from a
stochastic part contributing to the variance; see the proof of Theorem 1 in the Supplementary
Material S.6. We may optimize the L2 error rate for each smoothness class in Theorem 1 by
taking a suitable speed of Tn → ∞. We consider the following speeds:

(T1′) Ordinary-smoothness: Tn � n2/(4r+4β+dim(G)).
(T2′) Supersmoothness: Tn = K · (logn)1/β for 0 < K < (2γ )−1/β .
(T3′) Log-supersmoothness: Tn = K · (logn/ log logn)1/β for 0 < K < (2γ /β)−1/β .

The speed of Tn in the ordinary-smoothness case actually balances the two terms of the
magnitudes, T −2r

n and n−1T
2β+dim(G)/2
n , so that it optimizes the L2 error rate. In the cases of

supersmoothness and log-supersmoothness, however, there exists no such thing that makes
the corresponding two terms be of the same magnitude. This is because Tn also appears in
the exponents of exp(2γ · T

β
n ) and exp(2γ · T

β
n (logTn − ξ1)), respectively. The choices of

Tn given in (T2′) and (T3′) have specific constant factors K with constraints. The upper
bounds of K are actually the thresholds, beyond which n−1T

2α+dim(G)/2
n exp(2γ · T

β
n ) and

n−1T
2α+dim(G)/2
n exp(2γ · T

β
n (logTn − ξ1)), respectively, diverge to infinity, while they are

dominated by T −2r
n for K smaller than the thresholds. Thus, the choices of Tn are optimal in

the sense that they minimize the L2 error rates in the respective scenarios. We note that, in
the Euclidean case, similar constraints are enforced on the constant factors of the bandwidths
that take the role of Tn here; see, for example, Theorem 1 and Remark 1 in [24].

COROLLARY 1. Assume that the conditions (A1) and (A2) hold. Then the following
results are valid:

(a) Under (S1)(i) and (T1′), it holds that∫
G

∣∣m̂(x) − m(x)
∣∣2 dμ(x) = Op

(
n−4r/(4r+4β+dim(G))).

(b) Under (S2)(i) and (T2′), it holds that∫
G

∣∣m̂(x) − m(x)
∣∣2 dμ(x) = Op

(
(logn)−2r/β).

(c) Under (S3)(i) and (T3′), it holds that∫
G

∣∣m̂(x) − m(x)
∣∣2 dμ(x) = Op

(
(logn/ log logn)−2r/β).

We note that similar rates were obtained by [24] for the Euclidean measurement error case
under the Euclidean ordinary-smoothness and supersmoothness scenarios.

4. Asymptotic distributions.

4.1. Asymptotic distributions for certain Lie groups. In this section, we discuss the
asymptotic distributions of our density and regression estimators. For non-Euclidean errors-
in-variables problems, there has been no study on asymptotic distributions, even for density
estimation, to the best of our knowledge. We provide the asymptotic distributions for the
following Lie groups:

(G1) G= T
D for some D ≥ 1.

(G2) G is either SU(2) or SO(3), and φU(σM
l ) = sl · Idσl

for some 0 �= sl ∈ R and for all
l ∈ {0} ∪N.
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We note that all compact and connected Abelian Lie groups are algebraically and topolog-
ically isomorphic to T

D for some D ≥ 1, that is, there exists a group isomorphism between
any two compact and connected Abelian Lie groups of same dimension, which is also a
homeomorphism (e.g., Chapter 4.4.2 in [66]). Since all properties of a Lie group are deter-
mined by its algebraic and topological structure, dealing with the case (G1) essentially covers
all Abelian cases. As for the case (G2), the assumption φU(σM

l ) = sl · Idσl
is not too re-

strictive since it covers important distributions such as the families of Laplace and Gaussian
distributions that we introduced in Section 3.1, as well as the case of no measurement er-
ror. Laplace (Gaussian) distributions on G = SU(2) and G = SO(3), respectively, are called
the hyperspherical Laplace (Gaussian) distributions and the rotational Laplace (Gaussian)
distributions, and they are respectively given in Examples A.3 and A.4. We now state the
asymptotic distribution of f̂X .

THEOREM 2. Assume that either (G1) or (G2) holds and that the series in (4) converges
pointwise to fX . Under either of the conditions (S1)+(T1′), (S2)+(T2′) and (S3)+(T3′), it
holds that, for all x ∈ G,

√
n · f̂X(x) − E(Re(KTn(x,Z)))√

Var(Re(KTn(x,Z)))

d−→ N(0,1).

In the above theorem, we only assume the pointwise convergence for the series in (4),
which is weaker than the uniform convergence assumed in Proposition 3. In the case where
G = T

D , the Fourier series of any L2 function converges almost everywhere to the function,
according to Proposition 3.1.16 in [31]. In the case where G = SU(2), a weak sufficient
condition on the pointwise convergence of Fourier series is given by Theorem 3.15 in [60].

We now give the asymptotic distribution of m̂ for the ordinary-smooth scenario. For this,
we make a condition on the conditional moments of Y and ε.

(A3) E(|Y |2+δ|X = ·) is bounded on G for some δ > 0 and E(ε2|X = ·) is bounded away
from zero on G.

The first condition in (A3) is an immediate extension of the standard regularity condition
in nonparametric regression with Euclidean predictors. The second one in (A3) excludes
the trivial case ε = 0, which is of little practical importance since it is rare in real world
data. In the latter case, the asymptotic distribution of T r

n (m̂(x) − m(x)) degenerates to zero
for Tn = np with p < 1/(2β + 2r + dim(G)), where β and r are the constants in (S1) and
(A1), respectively. To state the theorem below, we recall that � denotes the Laplace–Beltrami
operator associated with G, and �r the r-times composition of �. We note that, if a function
f : G → C is 2r-times continuously differentiable on G, then the function �r(f ) : G → C

is well defined and is continuous on G.

THEOREM 3. Assume that either (G1) or (G2) holds, that the Fourier series of �r(fX)

and of �r(m · fX) converge absolutely on G and that the conditions (S1), (A1), (A2), (A3)
and (T1′) hold. Then it holds that, for all x ∈ G,

√
n · m̂(x) − m(x) − E(Re(KTn(x,Z))(Y − m(x)))/fX(x)√

Var(Re(KTn(x,Z))(Y − m(x)))/fX(x)

d−→ N(0,1).

Theorem 3 does not cover the supersmooth and log-supersmooth scenarios due to a tech-
nical reason. In fact, the proof of Theorem 3 involves proving

√
n · E(Re(KTn(x,Z))(Y − m(x))) · (f̂X(x) − fX(x))√

E((Re(KTn(x,Z)))2)
= op(1),(10)
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which does not hold in the supersmooth and log-supersmooth scenarios. A more detailed
account is given in Remark S.1 after the proof of Theorem 3 in the Supplementary Material
S.8.

For the absolute convergence of the Fourier series in Theorem 3, we note that, if a function
f : G → C is 2 × �dim(G)/4�-times continuously differentiable, then its Fourier series is
absolutely convergent (Theorem 3.1.3 in [1]). In certain cases, however, much weaker condi-
tions suffice. For example, the Fourier series of a function on T

1 is absolutely convergent if
the function is Hölder continuous with exponent greater than 1/2; see [45]. Sufficient condi-
tions for general toruses can be found in Theorem 3 of [76], for example. For SU(2), some
weak conditions are given in [60].

4.2. Extension to general Lie groups. In this section, we extend the asymptotic distri-
bution results in Section 4.1 to general G under some high-level conditions. To state the
conditions, for any two positive sequences an and bn, we let an � bn (resp., an � bn) mean
that there exists a constant c > 0 such that, for all n, an ≥ c · bn (resp., an ≤ c · bn). The
constants α and γ below in the conditions are those appearing in the smoothness scenarios
(S2) and (S3).

(B1) Ordinary-smoothness: There exists some constant 0 ≤ q ≤ dim(G)/2 such that, for
each x ∈ G, E((Re(KTn(x,Z)))2) � T

2β+q
n .

(B2) Supersmoothness: There exists some constant 0 ≤ q ≤ dim(G)/2 such that, for each
x ∈ G and η ∈ (0,1), E((Re(KTn(x,Z)))2) � T

2α+q
n exp(2γ (η · Tn)

β).
(B3) Log-supersmoothness: There exist some constants 0 ≤ q ≤ dim(G)/2 and ζ ∈

R such that, for each x ∈ G and η ∈ (0,1), E((Re(KTn(x,Z)))2) � T
2α+q
n exp(2γ (η ·

Tn)
β(logTn − ζ )).

We note that the lower bounds to E(Re(KTn(x,Z))2) in (B1)–(B3) are motivated by the
upper bounds, which are of the magnitude

T 2β+dim(G)/2
n , T 2α+dim(G)/2

n exp
(
2γ · T β

n

)
or T 2α+dim(G)/2

n exp
(
2γ · T β

n (logTn − ξ1)
)
,

depending on the smoothness scenarios. Note that q = dim(G)/2 is maximal in view of the
upper bounds. In fact, the cases (G1) and (G2) satisfy (B1)–(B3) with q = dim(G)/2 as
demonstrated in Lemma S.4 in the Supplementary Material S.2. We also consider general
diverging speeds of Tn instead of the specific ones in (T1′)–(T3′) according to (B1)–(B3).
We note that the following ranges cover the optimal speeds in (T1′)–(T3′):

(T1′′) Tn � np for some 0 < p < 1/(dim(G) − q), where q is the constant in (B1).
(T2′′) Tn � (logn)1/β for β in (S2).
(T3′′) Tn � (logn/ log logn)1/β for β in (S3).

We now state the asymptotic distribution of f̂X for general G and Tn.

THEOREM 4. Assume that the series in (4) converges pointwise to fX . Under either of
the conditions (S1)-(i)+(T1′′)+(B1), (S2)-(i)+(T2′′)+(B2) and (S3)-(i)+(T3′′)+(B3), the
asymptotic distribution given in Theorem 2 remains valid for all x ∈G.

To state the version of the above theorem for m̂ in the ordinary-smoothness scenario, we
consider a new range of diverging Tn based on the constants β in (S1) and r in (A1).

(T1′′′) Tn � np for some 1/(2β + 4r + dim(G)/2) < p < 1/(2β + dim(G)).

The above range of p is valid since r in (A1) is larger than dim(G)/4. The upper bound
1/(2β + dim(G)) is required for Tn to satisfy (T1). We also note that the range in (T1′′′)
covers the optimal speed in (T1′).
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THEOREM 5. Assume that the Fourier series of �r(fX) and of �r(m · fX) converge
absolutely on G and that the conditions (S1)(i), (A1), (A2), (A3), (B1) with q = dim(G)/2
and (T1′′′) hold. Then the asymptotic distribution given in Theorem 3 remains valid for all
x ∈ G.

We may prove that the conclusion of Theorem 5 remains to hold for any 0 ≤ q ≤ dim(G)/2
with more complex versions of (A1) and (T1′′′), although we state it with q = dim(G)/2
for simplicity. The verification of the high-level conditions (B1)–(B3) is a challenging task
since finding the exact size of E((Re(KTn(x,Z)))2) turns out to be difficult with the ex-
isting Taylor expansions on manifolds (e.g., [36, 52]). An easy but rough lower bound
to E((Re(KTn(x,Z)))2) is [E(Re(KTn(x,Z)))]2, but we only know that this lower bound
is bounded away from zero. Below, we introduce one way of verifying (B1)–(B3) with
q = dim(G)/2, which gives the sharpest lower bounds. One can verify (B1)–(B3) similarly
with q = 0 by arguing as in the case of q = dim(G)/2 using Proposition S.3 in the Supple-
mentary Material S.20.

We first investigate E(|KTn(x,Z)|2) instead of E((Re(KTn(x,Z)))2) and show that it at-
tains the lower bounds given in (B1)–(B3) with q = dim(G)/2. For this, we introduce a
condition. To state the condition, we let ‖ · ‖HS denote the Hilbert–Schmidt norm on complex
matrices. For a square complex matrix A, it is defined by ‖A‖HS = (Tr(AA∗))1/2, where A∗
denotes the conjugate transpose of A.

(B4) There exists a constant c > 0 such that, for all σ ∈ Ĝ, c · d
1/2
σ ‖φU(σM)−1‖op ≤

‖φU(σM)−1‖HS.

We note that ‖φU(σM)−1‖op ≤ ‖φU(σM)−1‖HS always holds. Thus, if sup
σ∈Ĝ dσ < ∞,

then the condition (B4) is satisfied with c = (sup
σ∈Ĝ dσ )−1/2. We refer to Theorem 1 in [59]

for an equivalent condition to sup
σ∈Ĝ dσ < ∞. This implies that (B4) is satisfied with c = 1

for any distribution of U on Abelian G, since dσ ≡ 1 for Abelian G. Also, since ‖Idσ ‖op = 1

and ‖Idσ ‖HS = d
1/2
σ , (B4) with c = 1 is satisfied for the families of Laplace and Gaussian

distributions introduced in Section 3.1 as well as the case of no measurement error. We note
that the cases (G1) and (G2) also satisfy (B4) with c = 1.

LEMMA 2. Assume that the conditions (A2) and (B4) hold. Then, for each j ∈ {1,2,3},
under (Sj)(ii), E(|KTn(x,Z)|2) attains the lower bound given in (Bj) with q = dim(G)/2.

Now, we present a version of Lemma 2 for E((Re(KTn(x,Z)))2). We note that the latter is
not direct from Lemma 2 since E(|KTn(x,Z)|2) ≥ E((Re(KTn(x,Z)))2). Hence, we consider
the case where ∫

G

∣∣KTn(x, z)
∣∣2 dμ(z) �

∫
G

Re
(
KTn(x, z)

)2
dμ(z).(11)

Since
∫
G

|KTn(x, z)|2 dμ(z) attains the same lower bounds as those to E(|KTn(x,Z)|2)
as demonstrated in the proof of Lemma 2, (11) with (A2) gives E(|KTn(x,Z)|2) �
E((Re(KTn(x,Z)))2), so that (B1)–(B3) follow with q = dim(G)/2 from Lemma 2.

LEMMA 3. Assume that the conditions (A2) and (B4) hold and that (11) holds. Then, for
each j ∈ {1,2,3}, under (Sj)(ii), (Bj) holds with q = dim(G)/2.

The approximation (11) holds for the cases (G1) and (G2) as demonstrated in Lemma S.4
in the Supplementary Material S.2. We conjecture that it holds for general G and fU although
we could not prove it due to the computational complexity. We leave it as an open problem.
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5. Asymptotic confidence intervals. In this section, we provide two types of asymptotic
confidence intervals for both fX(x) and m(x). One type is based on the asymptotic normal
distributions as given by Theorems 2 and 3 in Section 4.1, and the other based on empirical
likelihoods.

5.1. Confidence intervals based on normal approximation. Typically, the first step in de-
riving a confidence interval based on a normal approximation is to find the leading terms,
with exact constant factors, of the bias and variance of the estimator under study. How-
ever, this does not seem to be feasible for f̂X and m̂ in our non-Euclidean setting, be-
cause the existing Taylor expansions on manifolds, such as those in [36] and [52], are
not helpful. We estimate the biases and variances directly without quantifying their lead-
ing terms. The bias parts are E(Re(KTn(x,Z))) − fX(x) and E(Re(KTn(x,Z))(Y − m(x)))

for f̂X and m̂, respectively; see Theorems 2 and 3. We estimate them simply by zero. In-
deed, plugging f̂X(x) = n−1∑n

i=1 Re(KTn(x,Zi)) into E(Re(KTn(x,Z))) and fX(x), and
n−1∑n

i=1 Re(KTn(x,Zi))(Yi − m̂(x)) into E(Re(KTn(x,Z))(Y − m(x))), gives zero esti-
mates. One might employ a sophisticated method of bias correction here, but we do not
pursue it in this paper.

To justify the zero estimators of the biases in the construction of confidence intervals based
on Theorems 2 and 3, it is essential to verify that the variances dominate the squared biases.
In the case of f̂X , this amounts to showing

√
n · E(Re(KTn(x,Z))) − fX(x)√

Var((Re(KTn(x,Z))))
= o(1).

It turns out that the latter is implied by

√
n · E(Re(KTn(x,Z))) − fX(x)√

E((Re(KTn(x,Z)))2)
= o(1).(12)

However, E((Re(KTn(x,Z)))2) with the rates in (T2′) and (T3′) do not satisfy (12) in the
scenarios (S2) and (S3). Hence, we construct a confidence interval for fX only for the sce-
nario (S1). As we mentioned above, we estimate E(Re(KTn(x,Z)))− fX(x) by zero. For the
variance VfX

(x) := Var(Re(KTn(x,Z))), we estimate it by

V̂fX
(x) := n−1

n∑
i=1

(
Re
(
KTn(x,Zi)

))2 − (f̂X(x)
)2

.

By proving (12) and V̂fX
(x)/VfX

(x) → 1 in probability for all x ∈ G, we get the following
theorem.

THEOREM 6. Assume that either (G1) or (G2) holds, that the Fourier series of �r(fX)

converges absolutely on G and that the conditions (S1), (A1)(i), (A2) and (T1′) hold. Then,
for all x ∈ G,

√
n · f̂X(x) − fX(x)

(V̂fX
(x))1/2

d−→ N(0,1).

Therefore, a (1 − α) × 100% asymptotic confidence interval for fX(x) is given by

(
f̂X(x) − zα/2 · (V̂fX

(x))1/2
√

n
, f̂X(x) + zα/2 · (V̂fX

(x))1/2
√

n

)
.
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Similarly, we construct a confidence interval for m, now based on the asymptotic distri-
bution in Theorem 3. Again, we estimate E(Re(KTn(x,Z))(Y − m(x))) in the bias of m̂ by
zero. For the variance Vm(x) := Var(Re(KTn(x,Z))(Y − m(x))), we estimate it by

V̂m(x) := n−1
n∑

i=1

(
Re
(
KTn(x,Zi)

)(
Yi − m̂(x)

))2
.

THEOREM 7. Assume that either (G1) or (G2) holds, that the Fourier series of �r(fX)

and of �r(m · fX) converge absolutely on G and that the conditions (S1), (A1), (A2), (A3)
and (T1′) hold. Then, for all x ∈ G,

√
n · m̂(x) − m(x)

(V̂m(x))1/2/f̂X(x)

d−→ N(0,1).

Therefore, a (1 − α) × 100% asymptotic confidence interval for m(x) is given by(
m̂(x) − zα/2 · (V̂m(x))1/2/f̂X(x)√

n
, m̂(x) + zα/2 · (V̂m(x))1/2/f̂X(x)√

n

)
.

5.2. Confidence regions based on empirical likelihood. Asymptotic confidence regions
based on empirical likelihoods, called empirical likelihood confidence regions, are useful
alternatives to those based on asymptotic distributions. The empirical likelihood technique
has many advantages in constructing confidence regions. It allows the data to determine the
shape of the confidence region, respects the boundaries of the area where possible values of
the parameter of interest belong, produces transformation-invariant confidence regions and
often does not require the estimation of the variance. We refer to [63] for an introduction to
empirical likelihood methods. A broad review and a general theory for empirical likelihood
methods can be found in [9] and [37], respectively. Some examples of applying the technique
to the case of measurement errors include Euclidean density estimation ([71]) and Euclidean
partially linear regression ([79]).

To construct the empirical likelihood confidence regions for fX and m, let FfX
(z, θ; ·) =

Re(KTn(·, z)) − θ and Fm(z, y, θ; ·) = Re(KTn(·, z))(y − θ) for θ ∈ R, both as functions
defined on G. Define the corresponding empirical likelihood ratio functions on G by

ELfX
(θ; ·) = max

{
n∏

i=1

(nwi) : w1, . . . ,wn > 0,

n∑
i=1

wi = 1,

n∑
i=1

wiFfX
(Zi, θ; ·) = 0

}
,

ELm(θ; ·) = max

{
n∏

i=1

(nwi) : w1, . . . ,wn > 0,

n∑
i=1

wi = 1,

n∑
i=1

wiFm(Zi, Yi, θ; ·) = 0

}
.

Here, we set the maximum of an empty set to be zero. Then we define the respective empiri-
cal likelihood confidence regions for fX(x) and m(x), respectively, as {θ ∈ R : ELfX

(θ;x) ≥
cfX

} and {θ ∈ R : ELm(θ;x) ≥ cm} for suitable positive constants cfX
and cm. To determine

the constants, we derive the asymptotic distributions of the empirical likelihood ratio func-
tions. For this, we make the following assumptions:

(E1) P(ELfX
(fX(x);x) > 0) → 1 for each x ∈ G.

(E2) P(ELm(m(x);x) > 0) → 1 for each x ∈ G.

The conditions (E1) and (E2) are basic in empirical likelihood methods. The inequal-
ity ELfX

(fX(x);x) > 0 is satisfied as long as there are at least two data points Zi and Zj

such that FfX
(Zi, fX(x);x) > 0 and FfX

(Zj , fX(x);x) < 0. Likewise, ELm(m(x);x) > 0
is satisfied as long as there are at least two data points (Zi, Yi) and (Zj ,Yj ) such that
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Fm(Zi, Yi,m(x);x) > 0 and Fm(Zj ,Yj ,m(x);x) < 0. In the statements of the theorems be-
low, χ2

α(1) denotes the (1 − α) quantile of the chi-square distribution with degree of free-
dom 1.

THEOREM 8. Assume that either (G1) or (G2) holds, that the Fourier series of �r(fX)

converges absolutely on G and that the conditions (S1), (A1)(i), (A2), (T1′) and (E1) hold.
Then, for all x ∈ G,

−2 log ELfX

(
fX(x);x) d−→ χ2(1).

Therefore, a (1 − α) × 100% asymptotic confidence region for fX(x) is given by {θ ∈ R :
−2 log ELfX

(θ;x) ≤ χ2
α(1)} = {θ ∈ R : ELfX

(θ;x) ≥ exp(−χ2
α(1)/2)}.

THEOREM 9. Assume that either (G1) or (G2) holds, that the Fourier series of �r(fX)

and of �r(m · fX) converge absolutely on G and that the conditions (S1), (A1), (A2), (A3),
(T1′) and (E2) hold. Then, for all x ∈ G,

−2 log ELm

(
m(x);x) d−→ χ2(1).

Therefore, a (1 − α) × 100% asymptotic confidence region for m(x) is given by {θ ∈ R :
−2 log ELm(θ;x) ≤ χ2

α(1)} = {θ ∈ R : ELm(θ;x) ≥ exp(−χ2
α(1)/2)}.

The asymptotic confidence regions in Theorems 8 and 9 are in fact intervals. This is be-
cause tθ1 + (1 − t)θ2 for 0 < t < 1 belongs to the confidence regions whenever θ1 and
θ2 belong to those regions. In the practical implementation of the confidence regions, we
need to compute ELfX

(θ;x) and ELm(θ;x). A Lagrange multiplier technique shows that
the unique maximizing weights wi are 1/(n(1 + λfX

FfX
(Zi, θ;x))) for ELfX

(θ;x), and are
1/(n(1 + λmFm(Zi, Yi, θ;x))) for ELm(θ;x), where λfX

∈ R and λm ∈ R are the solutions
of

n∑
i=1

FfX
(Zi, θ;x)

1 + λfX
FfX

(Zi, θ;x)
= 0 and

n∑
i=1

Fm(Zi, Yi, θ;x)

1 + λmFm(Zi, Yi, θ;x)
= 0,(13)

respectively.

REMARK 6. Although the asymptotic confidence intervals are obtained only for the
cases (G1) and (G2), versions of Theorems 6, 7, 8 and 9 can be readily obtained for other G
and fU if they satisfy (B1)–(B3) with q = dim(G)/2. We note that, however, the cases (G1)
and (G2) still cover a large important class of G and fU .

6. Cases of unknown measurement error distribution. In this section, we extend the
results in Section 3.2 to the case where the measurement error distribution fU is unknown.
We refer to [18] for a review on Euclidean measurement error problems with unknown mea-
surement error distribution.

6.1. General results. We first study the effect of estimating φU(σM) with an arbitrary
estimator φ̂U (σM) such that φ̂U (σM)−1 exists. We write ν = m · fX and let φν(σM) de-
note its Fourier transform at σM . Let φ̂Z(σM) be an arbitrary estimator of φZ(σM) =
φX(σM)φU(σM) and φ̂ν,U (σM) an arbitrary estimator of φν,U (σM) := φν(σM)φU(σM).
Natural examples of these are φ̂Z(σM) = n−1∑n

i=1 σM(Z−1
i ) and φ̂ν,U (σM) =
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n−1∑n
i=1 σM(Z−1

i )Yi . We note that E(σM(Z−1)Y ) = φν,U (σM). We define new density
and regression estimators,

f̂ ∗
X(x) = Re

( ∑
σ∈Ĝ:kσ <Tn

dσ Tr
(
φ̂Z(σM)φ̂U (σM)−1

σM(x)
)
In

(
σM)),

m̂∗(x) = 1

f̂ ∗
X(x)

Re
( ∑

σ∈Ĝ:kσ <Tn

dσ Tr
(
φ̂ν,U (σM)φ̂U (σM)−1

σM(x)
)
In

(
σM)),

where In(σ
M) = I (‖φ̂U (σM)‖op ≥ an) and an is a positive sequence converging to zero.

Introducing the indicator term In(σ
M) in the above definitions is necessary in practice to

prevent a large variability induced by possibly small values of ‖φ̂U (σM)‖op. This treatment
is also important in our theoretical development. Such a truncation is common as well in
Euclidean measurement error problems with unknown measurement error distribution (e.g.,
[13, 17, 61]).

We start with the uniform error rate for f̂ ∗
X , which is required to derive the L2 error

rate for m̂∗. For this, we let Cσ denote the condition number of φU(σM), that is, Cσ =
‖φU(σM)‖op‖φU(σM)−1‖op. Likewise, let Ĉσ denote the condition number of φ̂U (σM). We
choose an such that

0 < an <

⎧⎪⎪⎨
⎪⎪⎩

c−1
1 T −β

n for (S1),

c−1
1 T −α

n exp
(−γ · T β

n

)
for (S2),

c−1
1 T −α

n exp
(−γ · T β

n (logTn − ξ1)
)

for (S3),

for sufficiently large n, where c1 is the constant in (Sj) for each j ∈ {1,2,3}. We note
that the above upper bounds for an are the reciprocals of the respective upper bounds for
‖φU(σM)−1‖op in (Sj)(i) with kσ being replaced by Tn.

THEOREM 10. Assume that φU(σM)φ̂U (σM) = φ̂U (σM)φU(σM) for all σ ∈ Ĝ and
that ‖φU(σM)‖op ≥ ‖φU(τM)‖op for all σ, τ ∈ Ĝ with kσ ≤ kτ . Also, assume that the series
in (4) converges uniformly to fX . Then, for each j ∈ {1,2,3}, under (Sj)(i), it holds that

sup
x∈G

∣∣f̂ ∗
X(x) − fX(x)

∣∣
= op(1) + Op

(
a−1
n

∑
σ∈Ĝ:kσ <Tn

d3/2
σ E

(
Ĉσ · ∥∥φ̂Z(σM)− φZ(σM)∥∥

HS · In

(
σM))

+ a−1
n

∑
σ∈Ĝ:kσ <Tn

d3/2
σ

∥∥φX(σM)∥∥
opCσ E

(
Ĉσ · ∥∥φ̂U (σM)− φU (σM)∥∥

HS · In

(
σM))

+ (bn − an)
−2

∑
σ∈Ĝ:kσ <Tn

d3/2
σ

∥∥φX(σM)∥∥
HSE

(∥∥φ̂U (σM)− φU (σM)∥∥2
op

))
,

where bn = c−1
1 T

−β
n for (S1), c−1

1 T −α
n exp(−γ · T

β
n ) for (S2) and c−1

1 T −α
n exp(−γ ·

T
β
n (logTn − ξ1)) for (S3).

We put the conditions on φU(σM) and φ̂U (σM) in Theorem 10 for technical rea-
sons. The first condition in Theorem 10 clearly holds when φU(σM) = cσ Idσ for some
0 �= cσ ∈ C. We note that every distribution on Abelian G has φU(σM) of this form since
dσ ≡ 1 in that case. Also, the families of Laplace and Gaussian distributions on G that we
introduced in Section 3.1 have φU(σM) of this form. More generally, this condition holds
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when φU(σM) and φ̂U (σM) are symmetric matrices such that either φU(σM)φ̂U (σM) or
φ̂U (σM)φU(σM) is symmetric. The second condition in Theorem 10 also holds for most dis-
tributions. For example, the distributions in Examples A.2–A.4 satisfy the condition. We note
that Cσ is uniformly bounded over σ by 1 if φU(σM) is of the form φU(σM) = cσ Idσ , and
by max{1, c1c2} if one of (S1)–(S3) holds, where c1 and c2 are the constants in (Sj). In the
next section, we show that f̂ ∗

X(x) achieves the uniform consistency with certain choices of
φ̂U (σM), φ̂Z(σM), Tn and an.

We now provide the L2 error rates of f̂ ∗
X and m̂∗. For this, we define the following term

for an integrable function f on G:

Rn(f ) = a−2
n

∑
σ∈Ĝ:kσ <Tn

dσ

∥∥φf (σM)∥∥2
opC

2
σ E
(
Ĉ2

σ · ∥∥φ̂U (σM)− φU (σM)∥∥2
HS · In

(
σM))

+ (bn − an)
−2

∑
σ∈Ĝ:kσ <Tn

dσ

∥∥φf (σM)∥∥2
HSE

(∥∥φ̂U (σM)− φU (σM)∥∥2
op

)
,

where bn is the sequence in Theorem 10.

THEOREM 11. Assume the first two conditions in Theorem 10 and the condition (A1)(i).
Then, for each j ∈ {1,2,3}, under (Sj)(i), it holds that∫
G

∣∣f̂ ∗
X(x) − fX(x)

∣∣2 dμ(x)

= Op

(
T −2r

n + Rn(fX) + a−2
n

∑
σ∈Ĝ:kσ <Tn

dσ · E
[
Ĉ2

σ · ∥∥φ̂Z(σM)− φZ(σM)∥∥2
HS · In

(
σM)]).

If we further assume the conditions (A1)(ii) and (A2), and that supx∈G |f̂ ∗
X(x) − fX(x)| =

op(1), then for each j ∈ {1,2,3}, under (Sj)(i), it holds that∫
G

∣∣m̂∗(x) − m(x)
∣∣2 dμ(x)

= Op

(
T −2r

n + Rn(fX) + Rn(ν) + a−2
n

∑
σ∈Ĝ:kσ <Tn

dσ

· E
[
Ĉ2

σ · (∥∥φ̂Z(σM)− φZ(σM)∥∥2
HS + ∥∥φ̂ν,U (σM)− φν(σM)φU (σM)∥∥2

HS

) · In

(
σM)]).

In the next section, we show that the above L2 error rates achieve the same or similar L2

error rates given in Corollary 1 for certain choices of φ̂U (σM), φ̂Z(σM), φ̂ν,U (σM), Tn and
an.

6.2. Specific results. In Euclidean measurement error problems with unknown measure-
ment error distribution, the following two situations are usually considered for the estimation
of fU or φU : (i) there is a sample from the measurement error distribution (e.g., [13, 20,
43, 44, 61]); (ii) there are repeated measurements of covariates for each subject (e.g., [11,
17, 44, 62]). In fact, such situations are frequent in the real world as noted in the literature.
For simplicity in both situations, we focus on the case where φU(σM) = cσ Idσ for some
0 �= cσ ∈ C satisfying |cσ | ≥ |cτ | for kσ ≤ kτ . In this case, the conditions on φU(σM) and
φ̂U (σM) in Theorem 10 hold. As we noted in Section 6.1, the case covers the most important
distributions. One may be able to treat cases with more general φU(σM) along the lines of the
theoretical development to be presented below, at a cost of more complexity under slightly
different conditions.
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We first consider the case where we have a random sample {Ũj : 1 ≤ j ≤ N} from fU .
In this case, we take φ̂U (σM) = ĉσ Idσ with ĉσ = d−1

σ Tr(N−1∑N
j=1 σM(Ũ−1

j )). We note

that φ̂U (σM) reduces to N−1∑N
j=1 σM(Ũ−1

j ) for Abelian G. We also choose φ̂Z(σM) =
n−1∑n

i=1 σM(Z−1
i ) and φ̂ν,U (σM) = n−1∑n

i=1 σM(Z−1
i )Yi . For Tn and an, we consider the

following choices:

Tn =

⎧⎪⎪⎨
⎪⎪⎩

L1 · n2/(4r+4β+dim(G)) for (S1),

L2 · (logn)1/β for (S2),

L3 · (logn/ log logn)1/β for (S3),

an =

⎧⎪⎪⎨
⎪⎪⎩

L̃ · n−2β/(4r+4β+dim(G)) for (S1),

n−1/(2+δ2) for (S2),

n−1/(2+δ3) for (S3),

(14)

where δ2, δ3 > 0. In the above specifications of Tn and an, Lj are the constants satisfy-
ing L1 > 0, 0 < L2 < ((2 + δ2)γ )−1/β and 0 < L3 < ((2 + δ3)γ /β)−1/β . Also, 0 < L̃ <

(c1L
β
1 )−1. We note that the speeds of Tn at (14) satisfy (T1′)–(T3′). We choose them so that

f̂ ∗
X and m̂∗ can achieve optimal L2 rates for suitable an such as those at (14). The above

choice of an is an example and other options may be also possible. In practice, we may con-
sider an as a tuning parameter. However, in the supersmooth and log-supersmooth scenarios,
we can use the above an with a small δj > 0 without tuning. In the following theorem, we
assume that the additional sample size N from fU satisfies N � n, that is, n = O(N); see the
first paragraph of Section 4.2 for the definition of �.

THEOREM 12. Suppose we choose Tn and an as specified at (14). Assume that N � n

and that the series in (4) converges uniformly to fX . Then, it holds that supx∈G |f̂ ∗
X(x) −

fX(x)| = op(1). If we further assume the condition (A1)(i), then
∫
G

|f̂ ∗
X(x) − fX(x)|2 dμ(x)

achieves the same rates as
∫
G

|m̂(x) − m(x)|2 dμ(x) given in Corollary 1. If we further as-
sume the conditions (A1)(ii) and (A2), then

∫
G

|m̂∗(x) − m(x)|2 dμ(x) achieves the same
rates as given in Corollary 1.

We now consider the case where we have repeated measurements

Zij = Uij ◦ Xi, 1 ≤ j ≤ Ri,1 ≤ i ≤ n,(15)

where Ri ≥ 1 are the numbers of replicates bounded by a constant Rmax and Uij ∼ fU

are independent across all i and j . The assumption that max1≤i≤n Ri ≤ Rmax is natu-
ral and also adopted in the Euclidean case since we usually do not have too many repli-
cates due to time, financial or other constraints. In this repeated measurements case,
we assume that cσ in φU(σM) = cσ Idσ is real and positive. Then it is easy to check
that fU is symmetric, that is, fU(u) = fU(u−1) for all u ∈ G. Considering symmet-
ric measurement error distributions is standard in Euclidean measurement error problems
with repeated measurements. We note that most of the distributions in Examples A.2–
A.4 satisfy the assumption on cσ . For the estimation of φU(σM), we note that Zij ◦
Z−1

ik = Uij ◦ U−1
ik holds for j �= k due to (15) and that Uij ◦ U−1

ik ∼ fU ∗ fU holds
for j �= k due to the symmetry of fU . Hence, E(σM((Zij ◦ Z−1

ik )−1)) = E(σM((Uij ◦
U−1

ik )−1)) = φU(σM)2 =: φU,2(σM) for j �= k. Let R = ∑n
i=1 Ri(Ri − 1)/2. We con-

sider φ̂U,2(σM) = R−1∑n
i=1
∑

1≤j<k≤Ri
σM(Zik ◦ Z−1

ij ) as an estimator of φU,2(σM),

and take φ̂U (σM) = ĉσ Idσ with ĉσ = |Re(d−1
σ Tr(φ̂U,2(σM)))|1/2. We choose φ̂Z(σM) =

(
∑n

i=1 Ri)
−1∑n

i=1
∑Ri

j=1 σM(Z−1
ij ) and φ̂ν,U (σM) = (

∑n
i=1 Ri)

−1∑n
i=1
∑Ri

j=1 σM(Z−1
ij )Yi .
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THEOREM 13. Assume the conditions in Theorem 12 with 4r + 4β + dim(G) in Tn and
an at (14) for (S1) being replaced by 4r + 8β + dim(G), the condition δj > 0 being replaced
by δj = 2 for each j ∈ {2,3} and the condition N � n being replaced by R � n. Then the
conclusions of Theorem 12 for (S2)(i) and (S3)(i) are valid. For (S1)(i), the L2 errors of f̂ ∗

X

and m̂∗ are Op(n−4r/(4r+8β+dim(G))).

The L2 error rate n−4r/(4r+8β+dim(G)) for the ordinary-smooth scenario in the above theo-
rem is suboptimal to the rate n−4r/(4r+4β+dim(G)), which is achieved by the estimators based
on a random sample from fU as asserted in Theorem 12. This is because φ̂U (σM) based on
the repeated measurements is subject to a large variability; see the proof of Theorem 13 in the
Supplementary Material S.19. The large variability of φ̂U (σM) does not influence on the L2

rates in the supersmooth and log-supersmooth scenarios. We recall that, in those scenarios,
there is a thresholding size of Tn around which the variance of m̂ either diverges to infinity
or is dominated by the bias. With Tn at the threshold, the variance and bias are not traded-off
but apart far away in their sizes (polynomial versus logarithmic); see the discussion in the
paragraph immediately above Corollary 1. The size of Tn at (14) differs from the aforemen-
tioned threshold only by a constant factor. For such Tn, the large variability of φ̂U does not
push up the polynomial rate of the variance of m̂ to a logarithmic rate. Thus, the bias still
dominates the variance with the estimated φU , which lets m̂∗ still achieve the optimal L2

error rates. For the same reason f̂ ∗
X also has the optimal rates in the supersmooth and log-

supersmooth scenarios. This phenomena was also observed in the Euclidean case; see [17],
for example.

The condition R � n is very weak. It is satisfied with a few replicates. For example, it holds
when Ri = 2 for all i or even in the case where some Ri = 1 (no replication for some subjects)
with some others greater than 1. The choices an with δ2 = δ3 = 2 in the super-smooth and log-
supersmooth scenarios are made to obtain the optimal L2 rates. The sub-optimal rate for the
ordinary-smooth scenario gets closer to the optimal rate as β is smaller. We note that most
of important ordinary-smooth measurement error distributions, such as those in Examples
A.2–A.4, have small values of β .

7. Finite sample performance.

7.1. Simulation study. In this section, we present the results of two simulation studies.
For both simulation studies, we considered the cases of G = T

1 and G = SO(3). We did
not cover the case where G = SU(2) since the lesson would be similar. The goal of the first
simulation study is to compare our regression estimators m̂ and m̂∗ with some competitors in
terms of estimation accuracy. For m̂∗, we considered the situation where there exists a random
sample from fU . We did not include the case of repeated measurements in the comparison
since in the latter case m̂∗ would use more observations of Z so that a fair comparison with
m̂ and other competitors could not be made. Instead, the case was treated in the real data
example to be presented in Section 7.2.

Since there is no other regression estimator designed for the non-Euclidean errors-in-
variables problem under study, we chose, as a competitor to m̂ and m̂∗, the estimator m̂0

defined in the same way as m̂ with KTn(x,Zi) being replaced by K0
Tn

(x,Zi) at (9). We note

that m̂0 is an estimator that one can use when there is no measurement error, that is, Zi = Xi .
In the case where G = T

1, we also considered two Nadaraya–Watson-type estimators, m̂M

of [19] and m̂P of [65], the local M-estimator m̂H of [35] constructed by using the ker-
nel weights of [65], and the Euclidean deconvolution regression estimator m̂E of [24]. The
estimators m̂M, m̂P and m̂H neglect measurement errors in covariate observation, while the
estimator m̂E ignores the geometric structure of T1. To construct the estimator m̂E, we treated
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θU and θZ , respectively, as the Euclidean measurement error and contaminated variable, and
thus used the Euclidean Fourier transform of θU for deconvolution. Here, θU ∈ [0,2π) and
θZ ∈ [0,2π) are the angles corresponding to U = exp(

√−1 ·θU) and Z = exp(
√−1 ·θZ), re-

spectively. In the case where G= SO(3), we considered as another competitor of our estima-
tors a multivariate version m̂E∗ of [24] treating the nine entries of SO(3) as a 9-dimensional
Euclidean variable. For the latter estimator, we estimated the Euclidean Fourier transform
of the vectorized version of U by the empirical Euclidean Fourier transform defined by
φ̂E

U(t) = N−1∑N
j=1 exp(

√−1 · 〈t, Ũvec
j 〉R9) for t ∈ R

9, where {Ũvec
j : 1 ≤ j ≤ N} is the vec-

torized version of a random sample {Ũj : 1 ≤ j ≤ N} from fU . As suggested by [61], we
also added the indicator term I (|φ̂E

U(t/h)| ≥ N−1/2) to the integrand of the corresponding
Euclidean deconvolution kernel, where h is the bandwidth. The role of the indicator term
is similar to that of the indicator term I (‖φ̂U (σM)‖op ≥ an) for our estimator m̂∗. We se-
lected Tn and other tuning parameters for our methods and their competitors by a five-fold
cross-validation.

For the case of G = T
1, we generated X from the wrapped Gaussian distribution with

circular variance Var(X) = 5/6. For the distribution of U in this case, we took the wrapped
Laplace distribution for (S1), the wrapped Gaussian distribution for (S2) and the von Mises
distribution for (S3). The definitions of these distributions are given in Example A.2. We set
the noise-to-signal ratio (NSR), defined as the ratio Var(U)/Var(X), to 0.2 and 0.4. For the
case of G= SO(3), we generated X from the rotational von Mises–Fisher (vMF) distribution
with λ = 0.1 and A = I3. As for the distribution of U , we took the rotational Laplace distribu-
tion for (S1), the rotational Gaussian distribution for (S2) and the rotational vMF distribution
with A = I3 for (S3). The definitions of these distributions are given in Example A.4. For
each distribution of U , we took two values of λ, one producing a relatively low NSR and one
producing a relatively high NSR, but we did not calculate the NSR values since there is no
closed form of the variance for each distribution on SO(3). Specifically, we took λ = √

0.2
and

√
0.25 for the rotational Laplace and Gaussian fU , and λ = 2.5 and 2 for the rotational

vMF fU .
For the case of G = T

1, we generated Y from the model Y = log(cos θX + 2) + ε, where
θX ∈ [0,2π) is the angle corresponding to X = exp(

√−1 · θX), and ε is the Gaussian random
variable with mean zero and standard deviation 0.1. We note that this model can also be
regarded as a regression model on the unit circle S

1. We generated R = 500 Monte Carlo
samples {(Y (r)

i ,U
(r)
i ◦ X

(r)
i ) : 1 ≤ i ≤ n} of sizes n = 125,250 and 500 for r = 1, . . . ,R.

Next, for the case of G= SO(3), we considered Y = det(X+0.1 ·I3)+ε, where ε is again the
Gaussian random variable with mean zero and standard deviation 0.1. We generated R = 500
Monte Carlo samples of sizes n = 400 and 800.

For m̂∗ in both cases, G = T
1 and G= SO(3), we generated an additional random sample

{Ũj : 1 ≤ j ≤ N} of size N = n from fU , corresponding to each pseudo sample {(Y (r)
i ,U

(r)
i ◦

X
(r)
i ) : 1 ≤ i ≤ n} for 1 ≤ r ≤ R. For simplicity, we took an = n−2/5 for all the smoothness

scenarios, where an is the threshold used in the construction of f̂ ∗
X and m̂∗. In the rotational

vMF measurement error case, φU(σM) does not take the form of cσ Idσ , which our estimator
φ̂U (σM) introduced in Section 6.2 is based on. In this case, we used the empirical mean
defined by φ̂U (σM) = N−1∑N

j=1 σM(Ũ−1
j ).

We compared the integrated squared bias (ISB), integrated variance (IV) and integrated
mean squared error (IMSE) defined by

ISB =
∫
G

(
R−1

R∑
r=1

m̆(r)(x) − m(x)

)2

dμ(x),
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IV = R−1
R∑

r=1

∫
G

(
R−1

R∑
s=1

m̆(s)(x) − m̆(r)(x)

)2

dμ(x),

IMSE = ISB+IV = R−1
R∑

r=1

∫
G

(
m̆(r)(x) − m(x)

)2
dμ(x),

where m̆(r)(x) is an estimator of m(x) obtained from {(Y (r)
i ,U

(r)
i ◦X

(r)
i ) : 1 ≤ i ≤ n}, the r th

Monte Carlo sample. Tables 1 and 2 give the results of the first simulation. The ISB values
for m̂ in Tables 1 and 2 are always much smaller than the corresponding values for m̂0. This
is well explained by the unbiased scoring property of m̂ as demonstrated in Proposition 2.
The estimator m̂∗ also performs similarly as m̂, which demonstrates the validity of using φ̂U

in the estimation of m. The IMSE values in Tables 1 and 2 show that m̂ and m̂∗ behave better
than their competitors in all scenarios except some cases with smaller sample sizes. In the

TABLE 1
Integrated squared bias (ISB), integrated variance (IV) and integrated mean squared error (IMSE), multiplied by
103, of the proposed estimators and competitors for G = T

1 and scenarios (S1)–(S3), based on R = 500 Monte
Carlo samples

NSR 0.2 0.4

n Criterion m̂ m̂∗ m̂0 m̂E m̂H m̂M m̂P m̂ m̂∗ m̂0 m̂E m̂H m̂M m̂P

fU Laplace
125 ISB 0.12 0.11 5.58 8.11 9.85 10.28 10.79 13.40 16.45 21.36 27.31 28.85 31.12 31.64

IV 9.39 10.27 4.47 3.03 3.13 3.35 3.05 38.53 38.09 5.07 3.43 4.17 4.21 3.84
IMSE 9.51 10.38 10.05 11.14 12.98 13.63 13.84 51.93 54.54 26.43 30.74 33.02 35.33 35.48

250 ISB 0.07 0.07 5.91 7.14 8.63 9.11 9.49 0.67 1.31 21.86 24.38 26.79 28.76 29.32
IV 3.80 4.07 1.96 1.51 1.60 1.78 1.61 15.68 18.41 2.43 1.69 2.03 2.21 2.00

IMSE 3.87 4.14 7.87 8.65 10.23 10.89 11.10 16.35 19.72 24.29 26.07 28.82 30.97 31.32

500 ISB 0.08 0.09 5.91 6.86 8.03 8.47 8.76 0.07 0.10 22.30 23.59 25.40 27.39 27.83
IV 2.04 2.16 1.05 0.74 0.81 0.93 0.85 4.81 6.40 1.13 0.79 1.10 1.22 1.13

IMSE 2.12 2.25 6.96 7.60 8.84 9.40 9.61 4.88 6.50 23.43 24.38 26.50 28.61 28.96

fU Gaussian
125 ISB 0.27 0.20 5.83 9.07 10.15 10.26 10.66 14.00 16.32 21.30 27.21 29.21 30.70 30.79

IV 8.28 8.97 4.03 3.18 3.31 3.38 3.13 38.76 39.75 4.77 3.43 4.33 4.22 3.94
IMSE 8.55 9.17 9.86 12.25 13.46 13.64 13.79 52.76 56.07 26.07 30.64 33.54 34.92 34.73

250 ISB 0.07 0.09 5.81 7.69 8.87 9.07 9.31 0.80 1.98 21.53 23.56 27.25 27.96 28.71
IV 3.92 4.27 2.11 1.65 1.70 1.72 1.62 17.78 21.38 2.56 2.20 2.25 2.32 2.11

IMSE 3.99 4.38 7.92 9.34 10.57 10.79 10.93 18.58 23.36 24.09 25.76 29.50 30.28 30.82

500 ISB 0.07 0.07 5.90 6.94 8.29 8.31 8.70 0.14 0.15 21.91 21.39 26.12 26.68 27.46
IV 2.21 2.31 1.06 0.82 0.91 0.95 0.88 5.95 6.89 1.24 1.12 1.24 1.28 1.19

IMSE 2.28 2.38 6.96 7.76 9.20 9.26 9.58 6.09 7.04 23.15 22.51 27.36 27.96 28.65

fU von Mises
125 ISB 0.18 0.13 5.58 8.72 9.84 10.32 10.47 9.48 11.82 21.08 26.24 29.11 30.70 31.27

IV 9.11 9.72 4.22 3.19 3.29 3.40 3.20 36.44 39.38 5.02 3.92 4.20 4.54 3.91
IMSE 9.29 9.85 9.80 11.91 13.23 13.72 13.67 45.92 51.20 26.10 30.16 33.31 35.24 35.18

250 ISB 0.07 0.07 5.73 7.34 8.95 8.99 9.42 1.35 1.87 21.90 23.95 27.17 28.41 29.29
IV 3.99 4.31 2.00 1.61 1.60 1.70 1.58 19.33 21.12 2.38 1.80 2.19 2.17 2.07

IMSE 4.06 4.38 7.73 8.95 10.55 10.69 11.00 20.68 22.99 24.28 25.75 29.36 30.58 31.36
500 ISB 0.08 0.07 6.00 6.88 8.26 8.37 8.83 0.09 0.10 22.07 22.21 25.75 26.99 27.59

IV 2.35 2.49 1.01 0.80 0.87 0.97 0.86 5.17 5.53 1.20 0.90 1.17 1.24 1.13
IMSE 2.43 2.56 7.01 7.68 9.13 9.34 9.69 5.26 5.63 23.27 23.11 26.92 28.23 28.72
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TABLE 2
Integrated squared bias (ISB), integrated variance (IV) and integrated mean squared error (IMSE), multiplied by

103, of the proposed estimators and competitors for G = SO(3) and scenarios (S1)–(S3), based on R = 500
Monte Carlo samples

NSR Low High

n Criterion m̂ m̂∗ m̂0 m̂E∗ m̂ m̂∗ m̂0 m̂E∗

fU Laplace
400 ISB 0.16 0.15 0.82 12.12 0.22 0.24 1.14 12.04

IV 1.83 1.88 0.61 0.17 3.18 3.22 0.61 0.91
IMSE 1.99 2.03 1.43 12.29 3.40 3.46 1.75 12.95

800 ISB 0.14 0.14 0.86 12.10 0.14 0.14 1.19 12.07
IV 0.69 0.69 0.29 0.20 0.85 0.86 0.30 0.45

IMSE 0.83 0.83 1.15 12.30 0.99 1.00 1.49 12.52

fU Gaussian
400 ISB 0.15 0.16 0.34 12.15 0.16 0.16 0.50 12.15

IV 1.03 1.07 0.59 0.06 1.20 1.26 0.59 0.06
IMSE 1.18 1.23 0.93 12.21 1.36 1.42 1.09 12.21

800 ISB 0.13 0.13 0.36 12.12 0.13 0.13 0.52 12.13
IV 0.50 0.49 0.30 0.03 0.56 0.56 0.30 0.03

IMSE 0.63 0.62 0.66 12.15 0.69 0.69 0.82 12.16

fU von Mises-Fisher
400 ISB 0.16 0.16 0.47 12.13 0.18 0.16 0.78 12.12

IV 1.22 1.22 0.60 0.06 1.62 1.66 0.61 0.12
IMSE 1.38 1.38 1.07 12.19 1.80 1.82 1.39 12.24

800 ISB 0.13 0.13 0.50 12.12 0.15 0.14 0.82 12.13
IV 0.54 0.56 0.29 0.03 0.68 0.70 0.30 0.03

IMSE 0.67 0.69 0.79 12.15 0.83 0.84 1.12 12.16

latter cases, the small biases of m̂ and m̂∗ fail to offset the large variability produced in the
estimation of φZ(σM), which is further amplified by φU(σM)−1 or φ̂U (σM)−1. However,
m̂ and m̂∗ overtake the competitors quickly in the IMSE performance as the sample size
increases. Note that, unlike the proposed estimators, the performance of the competitors does
not get better much for larger sample sizes, due to the intrinsic bias caused by ignoring
measurement errors or the geometry of G. As expected, the performance of all the methods
becomes worse as the NSR increases. We note that the proposed estimators resist better than
the competitors as the NSR increases when the sample size is relatively large.

Now, we move to the discussion of the second simulation study. It is to compare the two
types of asymptotic confidence intervals for m(x) that appear in Theorems 7 and 9, namely
the confidence interval based on the asymptotic normality (AN) and the one based on the
empirical likelihood (EL). We note that there is no other method of constructing confidence
intervals that is currently available for this problem. Recall that we discussed the construction
of confidence intervals only for the scenario (S1). The distributions of X and U were the same
as in the first simulation study. We considered a set G of dense grid points of G, and for each
x ∈ G we computed the coverage rate C1−α(x) and the average length L1−α(x) from the
corresponding R = 500 confidence intervals of level (1 − α) × 100%. We then compared the
average values |G|−1∑

x∈G C1−α(x) and |G|−1∑
x∈G L1−α(x) for α = 0.9 and 0.95, where

|G| denotes the cardinality of G.
Tables 3 and 4 contain the results of the second simulation. Table 3 demonstrates that

the two methods are comparable in terms of coverage probability although the EL-based
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TABLE 3
Average coverage rate |G|−1∑

x∈G C1−α(x) (Cov) and average length |G|−1∑
x∈G L1−α(x) (Len) of

(1 − α) × 100% confidence intervals of m for G = T
1 and for the wrapped Laplace density fU , based on

R = 500 Monte Carlo samples

NSR = 0.2 NSR = 0.4

AN EL AN EL

1 − α n Cov Len Cov Len Cov Len Cov Len

0.9 125 0.898 0.248 0.896 0.269 0.674 0.259 0.675 0.285
250 0.898 0.196 0.900 0.208 0.838 0.226 0.837 0.240
500 0.894 0.146 0.898 0.150 0.888 0.189 0.888 0.200

0.95 125 0.940 0.295 0.945 0.334 0.705 0.309 0.708 0.357
250 0.942 0.233 0.946 0.255 0.878 0.269 0.878 0.295
500 0.942 0.173 0.945 0.182 0.937 0.225 0.938 0.245

method is slightly better, but that the EL-based confidence intervals are wider than the AN-
based ones. On the other hand, Table 4 reveals that the AN-based method outperforms the
EL-based in terms of both coverage probability and length. These results suggest that the AN-
based method is generally a better option than the EL-based, although the latter method is also
an attractive alternative. We note that these results are somewhat different from the existing
results for Euclidean data such as those in [71] and [79], which demonstrate the superiority
of EL-based methods against other competitors in terms of both coverage and length. As the
sample size increases, both AN- and EL-based methods tend to produce confidence intervals
with more accurate coverage rate and shorter length. As the NSR increases, the confidence
intervals get lengthier, which is well expected, and their coverage probabilities become worse
especially for smaller sample sizes.

7.2. Real data analysis. Particulate matter whose size is less than 2.5 micrometer, called
PM2.5, is an air pollutant mainly produced by a combination of other air pollution sources.
Due to its tiny size, it can penetrate lungs and blood vessels, which causes various health
problems. In Korea, the city “Seosan” is known to have the worst air quality among all Korean
cities and it is reported that there are many patients suffering from respiratory diseases. In
fact, its subregion “Daesan,” located in the north and northwest parts of the city made the
largest increase of air pollutants in the world as noted in [21]. It has been believed that a
number of large petrochemical and mechanical plants that have been built in the subregion
are the main cause of air pollution. Nevertheless, there have not been enough investigations

TABLE 4
Average coverage rate |G|−1∑

x∈G C1−α(x) (Cov) and average length |G|−1∑
x∈G L1−α(x) (Len) of

(1 − α) × 100% confidence intervals of m for G = SO(3) and for the rotational Laplace density fU , based on
R = 500 Monte Carlo samples

Low NSR High NSR

AN EL AN EL

1 − α n Cov Len Cov Len Cov Len Cov Len

0.9 400 0.888 0.123 0.866 0.135 0.776 0.119 0.755 0.133
800 0.882 0.087 0.864 0.090 0.885 0.095 0.863 0.099

0.95 400 0.931 0.147 0.918 0.169 0.812 0.141 0.799 0.169
800 0.940 0.104 0.924 0.110 0.942 0.113 0.924 0.121
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on this belief, in particular, on the impact of the local plants on the bad air quality in the city
center. As an investigation on this issue, we studied how the PM2.5 level in the city center is
related to the wind direction oriented from Daesan.

For this, we used a data set for these variables collected during the year 2020, available
from the Korea air pollution information system https://www.airkorea.or.kr/web/last_amb_
hour_data?pMENU_NO=123 and the Korea meteorological administration https://data.kma.
go.kr/data/grnd/selectAsosRltmList.do?pgmNo=36&tabNo=1. In the databases, wind direc-
tion is recorded in minute-level while PM2.5 level is hourly. We took the hourly measured
PM2.5 level as the response Y . Considering the time for air pollutants produced by the plants
to arrive at the city center, we took the wind direction one hour prior to the measuring time
of Y as the predictor X. As noted in [28] and [27] among many others, it is known that wind
direction is hard to measure precisely due to the inaccuracy of measuring devices. Hence,
it is natural to assume that recorded wind direction, say Z1, contains a measurement error
added to X. To calibrate such measurement errors, we took an additional observation of Z2
that is the wind direction measured one minute after the measurement of Z1. After deleting
some missing observations, we obtained a data set {(Zi1,Zi2, Yi) : 1 ≤ i ≤ n} with n = 6215,
where Zi1 and Zi2 are considered as the repeated measurements of Xi with errors. Among
them, 5938 observations contain both Zi1 and Zi2 and the remaining observations contain ei-
ther Zi1 or Zi2. We then applied the proposed method for repeated measurements presented
in Section 6.2. For comparison, we also applied the naive approach based on the assump-
tion that there is no measurement error. The latter estimator m̂0∗ takes the form of m̂∗ with
all φ̂U (σM) ∈ C being replaced by 1. We note that φU(σM) ≡ 1 for the circular case in the
absence of measurement error. We also applied the methods of [19, 65] and [35] by taking
the circular mean of Zi1 and Zi2 as the predictor corresponding to Yi for each i. The latter
three methods also ignore measurement errors. We selected tuning parameters by a five-fold
cross-validation. The selected values of tuning parameters were Tn = 4 for m̂∗, Tn = 16 for
m̂0∗, 0.27 for the estimator of [19] and 1.5 for the estimators of [65] and of [35].

Figure 1 shows the estimated regression functions for the five approaches. The top panel
clearly shows higher PM2.5 level for wind blown from the directions of the petrochemical
and mechanical plants. On the contrary, the middle and bottom panels do not reveal this
pattern but depict almost uniform functions on the unit circle. Hence, the proposed method
finds an evidence that the plants pollute the air of the city center, which might not be detected
by methods ignoring measurement errors.

8. Further discussion. One may be interested in the case where the predictor takes val-
ues in a general k-dimensional manifold, say M. Suppose that we cannot observe X(ω) of
a covariate X : � → M, but observe only its contaminated value Z(ω) ∈ M. If there is no
group structure and no other alternative on M, then we cannot define a measurement error
variable on M. A possible approach to this is to assume that φZ(Z) = φX(X)+U∗ for some
U∗ taking values in R

k , where φp : Vp → φp(Vp) ⊂ R
k is a homeomorphism on an open

neighborhood Vp of p ∈ M. Suppose that φp are known for all p although it is unrealistic
for many manifolds. Then, by applying Euclidean deconvolution techniques to the observa-
tions {φZi(ω)(Zi(ω)) : 1 ≤ i ≤ n} ⊂ R

k , we may be able to estimate the density fφX(X) of
φX(X). However, since the map φp depends on p ∈ M, it is difficult to construct an esti-
mator of fX from an estimator of fφX(X). In regression function estimation, in addition to
overcoming the hurdle, we need to establish an unbiased scoring property, which is a key to
the success of a deconvolution technique. The latter problem is also very hard to solve for
manifolds without group or other relevant structure. The Lie group structure and the associ-
ated harmonic analysis on which our approach relies facilitate all these components of the
work.

https://www.airkorea.or.kr/web/last_amb_hour_data?pMENU_NO=123
https://data.kma.go.kr/data/grnd/selectAsosRltmList.do?pgmNo=36&tabNo=1
https://www.airkorea.or.kr/web/last_amb_hour_data?pMENU_NO=123
https://data.kma.go.kr/data/grnd/selectAsosRltmList.do?pgmNo=36&tabNo=1
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FIG. 1. Estimated regression functions for the proposed m̂∗ (top), for m̂0∗ (middle left) and for the methods of
[19] (middle right), of [65] (bottom left) and of [35] (bottom right). In the panels, the directional position of a
point on the solid curve represents the value of the circular predictor corresponding to the value of the regression
function depicted as the distance from the point to the origin.

One may be also interested in the case where G is not compact. We summarize, in the
Supplementary Material S.21, some basic notions and results in harmonic analysis on gen-
eral Lie groups. Dealing with general Lie groups have many obstacles. For examples, some
irreducible representations on noncompact Lie groups can be infinite-dimensional and the
Fourier transforms at such irreducible representations become bounded linear operators on
infinite-dimensional Hilbert spaces. Treating infinite-dimensional irreducible representations
and operator-valued Fourier transforms are challenging both in theory and practice. To men-
tion first a couple of theoretical difficulties among many others, we may not have a property
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such as
∑

σ∈Ĝ:kσ <Tn
d2
σ � T

dim(G)/2
n that appears in the discussion above (6), neither can we

assume the condition (B4) since dσ = ∞ for some σ ∈ Ĝ. In practical aspects, implementing
infinite-dimensional irreducible representations and operator-valued Fourier transforms are
very difficult, and there are possibly uncountably many irreducible representations, which
makes the implementation even harder. Another fundamental obstacle to treating general Lie
groups is that the L2 Fourier inversion formula for the general case is very abstract, un-
like the one for the compact case given at (4), and its specific form is not discovered for
many noncompact Lie groups in mathematics. Furthermore, its pointwise, uniform-type and
absolute-type versions are not well studied in mathematics, to the best of our knowledge.

Another interesting case is that X : � → M, where M is a Riemannian symmetric space.
A Riemmanian symmetric space can be viewed as a quotient space G/H for some Lie group
G and a subgroup H of G. For the definition of Riemmanian symmetric space and also for
regression analysis with M-valued responses, we refer to [12]. For such an M, there exists
a smooth map � : G × M → M such that, for any x, z ∈ M, there exists an element u ∈ G
satisfying u � x = z. Hence, for a true value X(ω) ∈ M and its contaminated observation
Z(ω) ∈ M, we may consider a measurement error structure Z = U � X for U taking values
in G. However, studying on the deconvolution theory for a general class of Riemannian sym-
metric spaces also has the same obstacles as the case for general Lie groups we described
above. We refer to [74] and [73] for harmonic analysis on Riemannian symmetric spaces.
Among Riemannian symmetric spaces that are not a Lie group, the unit sphere S

2 is a statis-
tically most important example. In the case of S2, for any x, z ∈ S

2, there exists u ∈ SO(3)

such that u � x = z, where u � x is the usual matrix multiplication between the matrix u and
the vector x. In fact, the case of S2 is well studied in deconvolution density estimation (e.g.,
[33, 46, 48]) based on well-studied spherical harmonic analysis in mathematics. We believe
that it is possible to extend it to regression analysis and work on asymptotic confidence in-
tervals as well as asymptotic distributions, for which our novel idea and techniques we have
developed in this paper would be very useful.

APPENDIX: SOME DETAILS FOR PRACTICAL IMPLEMENTATION

We present full practical details on the implementation of KTn(x,Zi) for certain Lie
groups. They are largely unknown in statistics.

EXAMPLE A.1. (i) Toruses. Suppose that G = T
D . Recall from Example 1(ii) that

dim(G) = D, Ĝ = {σl : l = (l1, . . . , lD) ∈ Z
D} and dσl

≡ 1. In this case, kσl
=∑D

d=1 l2
d and

the matrix form σM
l (g) of σl(g) is given by σM

l (g) = ∏D
d=1(gd)ld ∈ T

1 regardless of the
choice of an orthonormal basis of C; see [25]. We note that each gd ∈ T

1 can be written as
exp(

√−1 · θd) for some θd ∈ [0,2π). It holds that

φU (σM
l

)= ∫
TD

fU(g) ·
D∏

d=1

(
g−1

d

)ld dμ(g)

= 1

(2π)D

∫
[0,2π ]D

fU

(
exp(

√−1 · θ1), . . . , exp(
√−1 · θD)

)

· exp

(
−√−1 ·

D∑
d=1

ldθd

)
dθ1 · · ·dθD,

where the latter integral is the usual Lebesgue integral; see [25].
(ii) Special unitary group of degree 2. Suppose that G= SU(2). Recall from Example 1(iii)

that dim(G) = 3, Ĝ = {σl : l ∈ {0}∪N} and dσl
= l+1. In this case, kσl

= l(l+2) and a matrix
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form σM
l (g) of σl(g) is given by a (l + 1) × (l + 1) complex matrix whose (i, j)th element

equals (
(i − 1)!(l + 1 − i)!
(j − 1)!(l + 1 − j)!

)1/2 ∫ 1

0

(
g11 · exp(2πt · √−1) − g12

)j−1

· (g12 · exp(2πt · √−1) + g11
)l+1−j · exp

(−2πt(i − 1)
√−1

)
dt;

(16)

see [25] and [26]. We also note that each g ∈ SU(2) can be written as

R(ϕ, θ,ψ)

=
(

cosϕ + √−1 · sinϕ cos θ sinϕ sin θ cosψ + √−1 · sinϕ sin θ sinψ

− sinϕ sin θ cosψ + √−1 · sinϕ sin θ sinψ cosϕ − √−1 · sinϕ cos θ

)

for some ϕ, θ ∈ [0, π) and ψ ∈ [0,2π). It holds that

φU (σM
l

)= ∫
SU(2)

σM
l

(
g−1)fU(g) dμ(g)

= 1

2π2

∫ 2π

0

∫ π

0

∫ π

0
σM

l

(
R(−ϕ, θ,ψ)

)
fU

(
R(ϕ, θ,ψ)

)
sin2(ϕ) sin(θ) dϕ dθ dψ;

see [25]. The integration on the right-hand side of the second equation is the usual matrix-
valued Lebesgue integral, so that φU(σM

l ) can be readily computed from the specific forms
of σM

l and R(ϕ, θ,ψ).
(iii) Rotation group. Suppose that G= SO(3). Recall from Example 1(iv) that dim(G) = 3,

Ĝ= {σl : l ∈ {0}∪N} and dσl
= 2l+1. In this case, kσl

= l(l+1); see [75]. To give an explicit
form of σM

l , we note that each element g ∈ SO(3) can be written as g = R(ϕ)S(θ)R(ψ) for
some Euler angles ϕ,ψ ∈ [0,2π) and θ ∈ [0, π), where

R(ϑ) =
⎛
⎝cosϑ − sinϑ 0

sinϑ cosϑ 0
0 0 1

⎞
⎠ , S(ϑ) =

⎛
⎝ cosϑ 0 sinϑ

0 1 0
− sinϑ 0 cosϑ

⎞
⎠ .

Let cl
ij = ((2l + 1 − i)!(i − 1)!(2l + 1 − j)!(j − 1)!)1/2 and dl

ij (θ) be the (i, j)th element of
the Wigner’s d-matrix such that

dl
ij (θ) = cl

ij ·
min{2l+1−i,j−1}∑

k=max{0,j−i}
(−1)k+i−j (cos(θ/2))2l−2k+j−i(sin(θ/2))2k+i−j

(2l + 1 − i − k)!(j − 1 − k)!(k + i − j)!k! .

Then a matrix form σM
l (R(ϕ)S(θ)R(ψ)) of σl(R(ϕ)S(θ)R(ψ)) is given by a (2l+1)×(2l+

1) complex matrix whose (i, j)th element equals

exp
(−√−1(i − l − 1)ϕ

) · dl
ij (θ) · exp

(−√−1(j − l − 1)ψ
);

see [75] and [67]. It holds that

φU (σM
l

)= ∫
SO(3)

σM
l

(
g−1)fU(g) dμ(g)

= 1

8π2

∫ 2π

0

∫ π

0

∫ 2π

0
σM

l

(
R(−ψ)S(−θ)R(−ϕ)

)
fU

(
R(ϕ)S(θ)R(ψ)

)
· sin(θ) dϕ dθ dψ,

where again the integration on the right-hand side of the second equation is the usual matrix-
valued Lebesgue integral; see [75].
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(iv) Product of compact and connected Lie groups. Suppose that G= G1 ×G2 for compact
and connected Lie groups G1 and G2 equipped with respective group operations ◦1 and ◦2.
Recall from Example 1(v) that dim(G) = dim(G1) + dim(G2), Ĝ= {σ1 ⊗ σ2 : σ1 ∈ Ĝ1, σ2 ∈
Ĝ2} and dσ1⊗σ2 = dσ1 · dσ2 . In this case, kσ1⊗σ2 = kσ1 + kσ2 ; see [3]. For orthonormal bases
{eσ1

k : 1 ≤ k ≤ dσ1} of Hσ1 and {eσ2
l : 1 ≤ l ≤ dσ2} of Hσ2 , {eσ1⊗σ2

i : 1 ≤ i ≤ dσ1⊗σ2} := {eσ1
k ⊗

e
σ2
l : 1 ≤ k ≤ dσ1,1 ≤ l ≤ dσ2} forms an orthonormal basis of Hσ1 ⊗Hσ2 . For e

σ1⊗σ2
i = e

σ1
ki

⊗
e
σ2
li

and e
σ1⊗σ2
j = e

σ1
kj

⊗ e
σ2
lj

with 1 ≤ ki , kj ≤ dσ1 and 1 ≤ li , lj ≤ dσ2 , it holds that

(σ1 ⊗ σ2)
M
ij (g1, g2) = 〈

σ1 ⊗ σ2(g1, g2)
(
e
σ1⊗σ2
j

)
, e

σ1⊗σ2
i

〉
Hσ1⊗Hσ2

= 〈
σ1(g1)

(
e
σ1
kj

)⊗ σ2(g2)
(
e
σ2
lj

)
, e

σ1
ki

⊗ e
σ2
li

〉
Hσ1⊗Hσ2

= 〈
σ1(g1)

(
e
σ1
kj

)
, e

σ1
ki

〉
Hσ1

〈
σ2(g2)

(
e
σ2
lj

)
, e

σ2
li

〉
Hσ2

= (σ1)
M
kikj

(g1)(σ2)
M
li lj

(g2).

Also,

φU ((σ1 ⊗ σ2)
M)= ∫

G1×G2

(σ1 ⊗ σ2)
M(g−1

1 , g−1
2

)
fU(g1, g2) dμ1 ⊗ μ2(g1, g2),

where μ1 and μ2 are the respective normalized Haar measures on G1 and G2, and μ1 ⊗ μ2
is the product measure of μ1 and μ2. We note that μ1 ⊗ μ2 is the normalized Haar measure
on G1 ×G2; see [77] for more details.

REMARK A.1. If implementation details such as those in Example A.1 are available for
some Lie group G equipped with a group operation ◦, then one may use them for another
Lie group M equipped with a group operation � for which there exists a group isomorphism
� : M → G, which is also a homeomorphism. Such M and G are said to be algebraically
and topologically isomorphic or simply isomorphic as Lie group. We note that they are also
diffeomorphic since every homeomorphism between two Lie groups is a diffeomorphism.
In that case, suppose that we are interested in estimating m : M → R in the model Yi =
m(X̃i)+ εi based on {(Z̃i, Yi),1 ≤ i ≤ n}, where Z̃i = Ũi � X̃i for some measurement errors
Ũi that are independent of (X̃i, Yi). Define m :G→R by m = m(�−1(·)). Let Xi = �(X̃i),
Ui = �(Ũi) and Zi = �(Z̃i). Then we have Yi = m(Xi) + εi and Zi = �(Z̃i) = �(Ũi �
X̃i) = �(Ũi) ◦ �(X̃i) = Ui ◦ Xi . We note that Ui ⊥ (Xi, Y ) since Ũi ⊥ (X̃i, Y ). If we obtain
an estimator m̂ of m based on {(Zi, Yi) : 1 ≤ i ≤ n}, then we may estimate m by m̂ = m̂(�(·)).
The same method applies to density estimation.

As an example, consider M =∏D
d=1 S

1 for D ≥ 1, where S
1 = {(x, y) ∈ R

2 : x2 + y2 =
1} is the unit circle. In this case, a point on M is identified to a point on G = T

D by the
homeomorphism

� : ((x1, y1), . . . , (xD, yD)
) 
→ (

(x1 + √−1 · y1), . . . , (xD + √−1 · yD)
)
.

Then M equipped with �, defined by p � q = �−1(�(p) ◦ �(q)) for p,q ∈ M, is isomor-
phic to G as Lie groups. As another example, consider the 3-dimensional unit hypersphere
M = S

3 := {(x, y, z,w) ∈ R
4 : x2 + y2 + z2 + w2 = 1}. In this case, M is homeomorphic to

G= SU(2) by the map

� : (x, y, z,w) 
→
(

x + √−1 · y z + √−1 · w
−z + √−1 · w x − √−1 · y.

)
.

Then, for � defined in the same way as in the first example, M and G are isomorphic as Lie
groups. These group operations � on

∏D
d=1 S

1 and S
3 are commonly used for the respective

Lie groups.
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We note that all compact and connected Abelian Lie groups of the same dimension D > 1
are isomorphic as Lie group to each other, indeed isomorphic to T

D (e.g., Chapter 4.4.2, [66]).
Hence, compact and connected Abelian Lie groups are essentially unique. We also note that,
in case M and G are compact and connected semisimple Lie groups, then a group isomor-
phism between them is automatically a homeomorphism ([51]). The definition of semisimple
Lie group can be found in the Supplementary Material S.1. We note that SU(2) and SO(3)

are examples of compact and connected semisimple Lie group. Some examples of Lie groups
isomorphic to SU(2) other than S

3 and those isomorphic to SO(3) as Lie group can be found
in Chapter 1.2 of [69], for example.

We now present some special distributions for the Lie groups in Example A.1 that can be
commonly adopted as a measurement error distribution in practice.

EXAMPLE A.2. Consider the case G = T
1. The following examples of distributions on

T
1 have not been considered in measurement error problems despite their practical impor-

tance. Below, in the expressions of the densities fU at u ∈ T
1, we use the representation

u = exp(
√−1 · θu), where θu ∈ [0,2π) is the angle corresponding to u. In all examples,

λ > 0 in the densities fU(·, λ) are real parameters and σM
l is the matrix form given in Exam-

ple A.1(i).

(i) Wrapped Laplace distribution. The density of a wrapped Laplace distribution on T
1

is given by

fU(u,λ) = π

λ
·
[

exp(−θu/λ)

1 − exp(−2π/λ)
+ exp(θu/λ)

exp(2π/λ) − 1

]
.

It holds that φU(σM
l ) = (1 + λ2l2)−1 for l ∈ Z, and this Fourier transform satisfies (S1) with

β = 1.
(ii) Wrapped exponential distribution. The density of a wrapped exponential distribution

on T
1 is given by

fU(u,λ) = 2π exp(−θu/λ)

λ(1 − exp(−2π/λ))
.

It holds that φU(σM
l ) = (1+√−1 ·λ · l)−1 for l ∈ Z, and this Fourier transform satisfies (S1)

with β = 1/2.
(iii) Wrapped Lindley distribution. The density of a wrapped Lindley distribution on T

1 is
given by

fU(u,λ) = 2πλ2(1 + λ)−1 exp(−λθu)

[
1 + θu

1 − exp(−2πλ)
+ 2π exp(−2πλ)

(1 − exp(−2πλ))2

]
.

It holds that φU(σM
l ) = λ2(1 + λ)−1(λ + √−1 · l)−2(1 + λ + √−1 · l) for l ∈ Z, and this

Fourier transform satisfies (S1) with β = 1/2.
(iv) Wrapped Gaussian distribution. The density of a wrapped Gaussian distribution on

T
1 is given by

fU(u,λ) =
√

2π

λ
· ∑
q∈Z

exp
(−(θu + 2πq)2/

(
2λ2)).

It holds that φU(σM
l ) = exp(−λ2l2/2) for l ∈ Z, and this Fourier transform satisfies (S2) with

β = 1, α = 0 and γ = λ2/2.
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(v) Wrapped Cauchy distribution. The density of a wrapped Cauchy distribution on T
1

is given by

fU(u,λ) = sinh(λ)

cosh(λ) − cos(θu)
,

where sinh and cosh denote the hyperbolic sine and cosine functions, respectively. It holds
that φU(σM

l ) = exp(−λ|l|) for l ∈ Z, and this Fourier transform satisfies (S2) with β = 1/2,
α = 0 and γ = λ.

(vi) Wrapped Lévy distribution. The density of a wrapped Lévy distribution on T
1 is given

by

fU(u,λ) = √
2πλ · ∑

q∈Z

exp(−λ(θu + 2πq)/2)

(θu + 2πq)3/2 .

It holds that φU(σM
l ) = exp(−√

λ|l| ·(1+√−1 ·sgn(l))) for l ∈ Z, and this Fourier transform
satisfies (S2) with β = 1/4, α = 0 and γ = √

λ.
(vii) von Mises distribution. The density of a von Mises distribution on T

1 is given by

fU(u,λ) = exp(λ cos θu)/B0(λ),

where Bk is the modified Bessel function of the first kind of order k. It holds that φU(σM
l ) =

B|l|(λ)/B0(λ) for l ∈ Z. Using the result of Section 5.3 in [50], we may prove that it satisfies
(S3) with β = 1/2, α = 0, γ = 1/2, ξ1 = 2(1 + logλ) and ξ2 = 2(1 + log(2λ)).

EXAMPLE A.3. Next, consider the case G = SU(2). Again, λ > 0 in the densities
fU(·, λ) below are real parameters and σM

l is the matrix form given in Example A.1(ii).

(i) Hyperspherical Laplace distribution. The density of a hyperspherical Laplace distri-
bution is given by

fU(u,λ) =
∞∑
l=0

(l + 1)
(
1 + λ2 · l(l + 2)

)−1 Tr
(
σM

l (u)
)
, u ∈ SU(2).

For this distribution, φU(σM
l ) = (1 + λ2 · l(l + 2))−1Il+1 so that it belongs to the ordinary-

smoothness scenario (S1) with β = 1.
(ii) Hyperspherical Gaussian distribution. The density of a hyperspherical Gaussian dis-

tribution is given by

fU(u,λ) =
∞∑
l=0

(l + 1) exp
(−λ2 · l(l + 2)/2

)
Tr
(
σM

l (u)
)
, u ∈ SU(2).

For this distribution, φU(σM
l ) = exp(−λ2 · l(l + 2)/2)Il+1 so that it belongs to the super-

smoothness scenario (S2) with β = 1, α = 0 and γ = λ2/2.

EXAMPLE A.4. Now, consider the case G = SO(3). Below, λ > 0 in the densities
fU(·, λ) are real parameters and σM

l is the matrix form given in Example A.1(iii).

(i) Rotational Laplace distribution. Let ru = arccos((Tr(u) − 1)/2) ∈ [0, π] for u ∈
SO(3) and aλ =

√
1/4 − λ−2 ∈ C. The density of a rotational Laplace distribution is given by

fU(u,λ) = λ−2π · cos(aλ(π − ru))

cos(aλπ) sin(ru/2)
· I (ru > 0), u ∈ SO(3).

In this case, φU(σM
l ) = (1 + λ2 · l(l + 1))−1I2l+1 (Theorem 3.5 in [33]). Thus, it satisfies

(S1) with β = 1.
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(ii) Rotational Gaussian distribution. The density of a rotational Gaussian distribution is
given by

fU(u,λ) =
∞∑
l=0

(2l + 1) exp
(−λ2 · l(l + 1)/2

)
Tr
(
σM

l (u)
)
, u ∈ SO(3).

For this distribution introduced in [48], φU(σM
l ) = exp(−λ2 · l(l + 1)/2)I2l+1 so that it sat-

isfies (S2) with β = 1, α = 0 and γ = λ2/2.
(iii) Rotational von Mises–Fisher distribution. The density of a rotational von Mises–

Fisher distribution is given by

fU

(
u, (λ,A)

)= c(λ,A)−1 exp
(
λ · Tr

(
A−1u

))
, u ∈ SO(3),

where A ∈ SO(3) is an additional parameter that indicates the mean direction and c(λ,A) is
the normalizing constant. This belongs to the log-supersmoothness scenario (S3) with β =
1/2, γ = 1/2, α = 2, ξ1 = 2(1 + logλ) and ξ2 = 2(1 + log(3λ)) ([50]).
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(DOI: 10.1214/22-AOS2218SUPP; .pdf). The Supplementary Material contains additional
propositions and all technical proofs. It starts with a brief introduction to some notions on
manifolds and to harmonic analysis on general Lie groups.
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