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Detection and attribution analyses play a central role in establishing the
causal effect of human activities on global warming. The most commonly
used method in such analyses, optimal fingerprinting, is a multiple regression
where each covariate has a measurement error whose covariance matrix is
the same as that of the regression error up to a known scale. Inferences about
the regression coefficients are critical not only for making statements about
detection and attribution but also for quantifying the uncertainty in important
outcomes derived from detection and attribution analyses. When there are no
errors-in-variables (EIV), the optimal weight matrix in estimating the regres-
sion coefficients is the precision matrix of the regression error. This matrix,
however, is never known and has to be estimated from climate model simula-
tions with regularization. The consequence is that the optimal fingerprinting
method is not optimal, as believed in practice. We construct a weight matrix
by inverting a nonlinear shrinkage estimate of the error covariance matrix
that minimizes loss functions directly targeting the uncertainty of the result-
ing regression coefficient estimator. The resulting estimator of the regression
coefficients is asymptotically optimal as the sample size of the climate model
simulations and the matrix dimension go to infinity together with a limiting
ratio. When EIVs are present, the estimator of the regression coefficients,
based on the proposed weight matrix, is asymptotically more efficient than
that based on the inverse of the existing linear shrinkage estimator of the er-
ror covariance matrix. The performance of the method is confirmed in finite
sample simulation studies mimicking realistic situations in terms of the length
of the confidence intervals and empirical coverage rates for the regression co-
efficients. In an application to detection and attribution analyses of the mean
temperature at different spatial scales, the method yielded shorter confidence
intervals which are important for such analyses in practice.

1. Introduction. Detection and attribution analyses of climate change are critical com-
ponents in establishing a causal relationship from the human emission of greenhouse gases to
the warming of planet Earth (e.g., Bindoff et al. (2013)). In climate science, detection is the
process of demonstrating that a climate variable has changed in some defined statistical sense
without providing a reason for that change; attribution is the process of evaluating the relative
contributions of multiple causal factors to a change or event with an assignment of statistical
confidence (e.g., Hegerl and Zwiers (2011)). Casual factors usually refer to external forcings
which may be anthropogenic (e.g., greenhouse gases, aerosols, ozone precursors, land use)
and/or natural (e.g., volcanic eruptions, solar cycle modulations). By comparing simulated
results of climate models with observed climate variables, a detection and attribution analy-
sis evaluates the consistency of observed changes with the expected response, also known as
fingerprint, of the climate system under each external forcing.

Optimal fingerprinting is the most widely used method for detection and attribution anal-
yses (e.g., Allen and Stott (2003), Hasselmann (1997), Hegerl et al. (2010)). Fingerprinting
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is a procedure that regresses the observed climate variable of interest on the fingerprints of
external forcings and checks whether the fingerprints are found in and consistent with the ob-
served data. The central target of statistical inferences here is the regression coefficients, also
known as scaling factors, which scale the fingerprints of external forcings to best match the
observed climate change. Historically, the method was “optimal” in the context of general-
ized least squares (GLS), when the precision matrix of the regression error is used as weight,
such that the resulting estimator of the scaling factors have the smallest variances. It was later
recognized that the fingerprint covariates are not observed but estimated from climate model
simulations. This leads to an errors-in-variables (EIV) issue which has been approached by
the total least squares (TLS) (Allen and Stott (2003)) with both the response and the covari-
ates “prewhittened” by the covariance matrix of the error. The covariance matrix represents
the internal climate variation. In practice, it is unknown and has to be estimated from climate
model simulations (Allen and Tett (1999), Ribes, Planton and Terray (2013)) which is gen-
erally handled preliminarily and independently from the regression inference (e.g., Hannart,
Ribes and Naveau (2014)).

Estimating the error covariance matrix in fingerprinting is challenging because the number
of available runs from controlled climate model simulations is usually small relative to the
dimension of the covariance matrix. The sample covariance matrix is not invertible when the
sample size of control runs is less than its dimension. Earlier methods project data onto the
leading empirical orthogonal functions (EOF) of the internal climate variability represented
by the empirical covariance matrix of the control runs (Hegerl et al. (1996), Allen and Tett
(1999)). More recently, the regularized optimal fingerprinting (ROF) method avoids the pro-
jection step by a regularized covariance matrix estimation (Ribes, Azaïs and Planton (2009))
based on the linear shrinkage covariance matrix estimator (Ledoit and Wolf (2004)). In the
simulation study considered by Ribes, Planton and Terray (2013), the ROF method provides
a more robust and accurate implementation of optimal fingerprinting than the EOF projection
method, one reason being that the performance of EOF projection can be extremely sensitive
to the choice of number of EOFs.

In a Bayesian framework, Katzfuss, Hammerling and Smith (2017) treats the truncation
number of EOFs as a parameter which facilitates averaging over different number of trunca-
tions for more robust inference. Uncertainties from various sources, such as the error covari-
ance matrix estimation and EIV, can be naturally accounted for. Nonetheless, the Bayesian
method is computational intensive, especially for bigger maximum number of truncations;
and its performance can be sensitive to the priors. An alternative formulation is given by
Hannart (2016) where the closed-form joint likelihood of both the observational data and the
control runs is obtained by integrating out the unknown covariance matrix. The integrated
method is equivalent to a Bayesian framework with an informative, conjugate prior distribu-
tion on the covariance matrix. It allows for shrinkage toward targets from prior information
other than the identity matrix, such as one with a spatiotemporal structure used in the numer-
ical studies of Hannart (2016). In real world applications, however, the prior structure on the
covariance matrix may not be valid.

The uncertainty in estimating the error covariance matrix has important implications in
optimal fingerprinting. The optimality in inferences about the scaling factor in optimal finger-
printing was historically based on the assumption that the error covariance matrix is known.
The properties of the scaling factor estimator obtained by substituting the error covariance
matrix with an estimate have not been thoroughly investigated in the literature. For example,
it is not until recently that the confidence intervals for the scaling factors constructed from
asymptotic normal approximation (Fuller (1980), Gleser (1981)) or bootstrap (Pešta (2013))
were reported to be overly narrow when the matrix is only known up to a scale (DelSole
et al. (2019)) or completely unknown (Li et al. (2021)). A natural, fundamental question is:
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when the error covariance matrix is estimated, are the confidence intervals constructed using
the optimal approach under the assumption of known error covariance matrix still optimal?
Since optimality under unknown error covariance matrix is practically infeasible, to be pre-
cise, we term fingerprinting for optimal fingerprinting and regularized fingerprinting (RF) for
ROF in the sequel.

Our work was motivated by a detection and attribution analysis of changes in mean tem-
perature during 1951–2010 at different spatial scales. We develop a new method to construct
the weight matrix in RF by minimizing directly the uncertainty of the resulting scaling factor
estimators. The weight matrix is the inverse of a nonlinear shrinkage estimator of the error
covariance matrix inspired by Ledoit and Wolf (2017a). We first extend the validity of their
nonlinear shrinkage estimator to the context of RF via GLS regression with no EIV. We show
that the proposed method is asymptotically optimal, as the sample size of climate model sim-
ulations and the matrix dimension go to infinity together with a fixed ratio. When there is
EIV, as is the case in practice, we show that the proposed weight is more efficient than the
existing weight in RF (Ribes, Planton and Terray (2013)) in terms of the asymptotic vari-
ance of the scaling factor estimator when RF is conducted with generalized TLS (GTLS).
This is why we refer to the current practice by RF instead of ROF. Based on findings of
a comparison study under various realistic settings, we give practical recommendations for
assumptions about the structure of the error covariance matrix under which the sample co-
variance is estimated before any shrinkage in RF. In analyzing the motivating application, our
method yielded shorter confidence intervals than the competing methods, which have impor-
tant practical implications, as uncertainty quantification is crucial in detection and attribution
analyses. An implementation of our methods is publicly available in an R package dacc (Li,
Chen and Yan (2020)) for detection and attribution of climate change.

The rest of this article is organized as follows. After a review of RF in Section 2, we
develop the proposed weight matrix and the theoretical results to support the asymptotic
performance of proposed method in Section 3. A large scale numerical study assessing the
performance of the proposed method is reported in Section 4. In Section 5 we apply the
proposed method to detection and attribution analysis of changes in mean temperatures on
global and regional scales. A discussion concludes in Section 6. The technical proofs of the
theoretical results are relegated to the Supplementary Materials (Li et al. (2023)).

2. Regularized fingerprinting. Fingerprinting takes the form of a linear regression with
EIV,

Y =
p∑

i=1

Xiβi + ε,(1)

X̃i = Xi + νi, i = 1, . . . , p,(2)

where Y is a N × 1 vector of the observed climate variable of interest, Xi is the true but
unobserved N × 1 fingerprint vector of the ith external forcing with scaling factor βi , ε

is a N × 1 vector of normally distributed regression error with mean zero and covariance
matrix �, X̃i is an estimate of Xi based on ni climate model simulations under the ith
external forcing, and νi is a normally distributed measurement error vector with mean zero
and covariance matrix �/ni , and νi ’s are mutually independent and independent of ε, i =
1, . . . , p. The covariance matrices of νi ’s and ε only differ in scales under the assumptions
that the only source of uncertainty in climate model estimate of fingerprints is the internal
climate variability and that the climate models reflect the real climate variation. No intercept
is present in the regression because the response and the covariates are centered by the same
reference level. The primary target of inference is the scaling factors β = (β1, . . . , βp)�.
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The “optimal” in optimal fingerprinting originated from earlier practices under two as-
sumptions: 1) the error covariance matrix � is known, and 2) Xi’s are observed. The GLS
estimator of β with weight matrix W is

β̂(W) = (
X�WX

)−1
X�WY,

where X = (X1, . . . ,Xp). The covariance matrix of the estimator β̂(W) is

V
(
β̂(W)

) = (
X�WX

)−1
X�W�WX

(
X�WX

)−1(3)

The optimal weight matrix is W = �−1, in which case, β̂(�−1) is the best linear unbiased
estimator of β with covariance matrix

(
X��−1X

)−1. Since � is unknown, a feasible version
of GLS uses W = �̂−1, where �̂ is an estimator of � obtained separately from controlled
runs of climate model simulations.

Later on, it was recognized that, instead of Xi’s, only their estimates X̃i’s are observed
and that using X̃i’s in place of Xi ’s leads to bias in estimating β (Allen and Stott (2003)).
If � is given, the same structure (up to a scale 1/ni ) of the covariance matrices of νi ’s and
ε allows precise prewhitening of both Y and X̃i’s. Then, the TLS can be applied to the pre-
whitened variables. Inferences about β can be based on the asymptotic normal distribution of
the TLS estimator of β (Gleser (1981), Allen and Stott (2003)) or nonparametric bootstrap
(Pešta (2013)), as recently studied by DelSole et al. (2019). Similar to the GLS setting, a
feasible version of the GTLS procedure relies on an estimator of �.

The current practice of fingerprinting consists of two separate steps. First, estimate � from
controlled runs of climate model simulations under the assumption that the climate models
capture the internal variability of the real climate system. Second, use this estimated matrix
to prewhiten both the outcome and covariates in the regression model (1)–(2), and obtain
the GTLS estimator of β on the prewhitened data. Nonetheless, estimation of � in the first
step is not an easy task. The dimension of � is N × N , with N(N + 1)/2 parameters if
no structure is imposed, which is too large for the sample size n of available climate model
simulations (usually in a few hundreds at most). The sample covariance matrix, based on
the n runs, is a start, but it is of too much variation; when N > n, it is not even invertible.
The linear shrinkage method of Ledoit and Wolf (2004) regularizes the sample covariance
matrix �̂n to in the form of λ�̂n + ρI , where λ and ρ are scalar tuning parameters and I is
the identity matrix. This class of shrinkage estimators has the effect of shrinking the set of
sample eigenvalues by reducing its dispersion around the mean, pushing up the smaller ones
and pulling down the larger ones. This estimator has been used in the current RF practice
(Ribes, Azaïs and Planton (2009), Ribes, Planton and Terray (2013)).

Substituting � with an estimator introduces an additional uncertainty. The impact of this
uncertainty on the properties of resulting ROF estimator has not been investigated when the
whole structure of � is unknown (Li et al. (2021)). The optimality of the optimal finger-
printing in its original sense is unlikely to still hold. Now that the properties of the resulting
estimator of β depends on an estimated weight matrix, can we choose this weight matrix
estimator to minimize the variance of the estimator of β? The recently proposed nonlinear
shrinkage estimator (Ledoit and Wolf (2017a, 2018)) has high potential to outperform the
linear shrinkage estimators.

3. Weight matrix construction. We consider constructing the weight matrix by invert-
ing a nonlinear shrinkage estimator of � (Ledoit and Wolf (2017b)) in the fingerprinting con-
text. New theoretical results are developed to justify the adaptation of this nonlinear shrink-
age estimator of � to minimize the uncertainty of the resulting estimator β̂ of β . Assume that
there are n replicates from climate model simulations (usually preindustrial control runs) that
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are independent of Y and X̃i’s. Let Zi,Z2, . . . ,Zn ∈ R
N be the centered replicates so that the

sample covariance matrix is computed as �̂n = n−1 ∑n
i=1 ZiZ

�
i . Our strategy is to revisit the

GLS setting with no EIV first and then apply the result of the GTLS setting to the case under
EIV, the same order as the historical development.

3.1. GLS. Since the target of inference is β , we propose to minimize the “total variation”
of the covariance matrix V(β̂) of the estimated scale factors β̂(W) in (3) with respect to
W = �̂−1. Two loss functions are considered that measure the variation of β̂ , namely, the
summation of the variances of β̂ (trace of V(β̂)) and the general variance of β̂ (determinant
of V(β̂)), denoted, respectively, as L1(�̂,�,X) and L2(�̂,�,X). In particular, we have

L1(�̂,�,X) =Tr
((

X��̂−1X
)−1

X��̂−1��̂−1X
(
X��̂−1X

)−1)
,

L2(�̂,�,X) =
(

Tr(X�X)

pN

)p

det
(

X��̂−1��̂−1X

N

)
det −2

(
X��̂−1X

N

)
,

where the first loss function directly targets on the trace of V(β̂(W)) and the second loss func-
tion is proportional to the determinant of V(β̂(W)) (up to a constant scale {Tr(X�X)/p}p).

The theoretical development is built on minimizing the limiting forms of the loss functions
as n → ∞ and N → ∞. The special case of p = 1 has been approached by Ledoit and Wolf
(2017b). We extend their result to multiple linear regressions with p > 1.

LEMMA 1. The loss functions L1(�̂,�,X) and L2(�̂,�,X) remain unchanged after
orthogonalization of design matrix X via the singular value decomposition.

The proof of Lemma 1 is Appendix A, Supplementary Material (Li et al. (2023)).
Lemma 1 implies that, without loss of generality, we only need to consider orthogonal

designs in the regression model (1). In other words, we may assume that the columns of the
design matrix X are such that X�

i Xj = 0 for any i �= j .
Consider the minimum variance loss function

Lmv(�̂,�) = Tr(�̂−1��̂−1)/N

(Tr(�̂−1)/N)2
(4)

derived in Engle, Ledoit and Wolf (2019). We have the following result.

THEOREM 1. As dimension N → ∞ and sample size n → ∞ with N/n → c for a con-
stant c, minimizing limn,N→∞ L1(�̂,�,X) or limn,N→∞ L2(�̂,�,X), is equivalent to min-
imizing limn,N→∞ Lmv(�̂,�).

The proof for Theorem 1 is presented in Appendix B, Supplementary Material (Li et al.
(2023)).

Let �̂n = �nDn�
�
n be the spectral decomposition of the sample covariance matrix �̂n,

where Dn = diag(λ1, . . . , λN) is the diagonal matrix of the eigenvalues and �n contains
the corresponding eigenvectors. Consider the rotation invariant class of the estimators �̂ =
�nD̃n�

�
n , where D̃n = diag(δ(λ1), . . . , δ(λN)) for a smooth function δ(·). Then, under some

regularity assumptions on the data generation mechanism (Ledoit and Wolf (2017a), Assump-
tions 1–4), we can get the asymptotically optimal estimator �̂ which minimizes the limiting
form of proposed two loss functions as n → ∞ and N → ∞.

Let FN be the empirical cumulative distribution function of sample eigenvalues. Silverstein
(1995) showed that the limiting form F = limN,n→∞ FN exists under the same assumptions.
The oracle optimal nonlinear shrinkage estimator, minimizing the limiting form of proposed
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loss function under general asymptotics, depends only on the derivative f = F ′ of F and its
Hilbert transform Hf , and the limiting ratio c of N/n (Ledoit and Wolf (2017a)) with the
shrinkage form of the eigenvalues given by

(5) δoracle(λi) = λi

[πcλif (λi)]2 + [1 − c − πcλiHf (λi)]2 .

A feasible nonlinear shrinkage estimator (bona fide counterpart of the oracle estimator) can
be based on a kernel estimator of f which is proposed and shown by Ledoit and Wolf (2017a)
to perform as well as the oracle estimator asymptotically. Let cn = N/n which is an estimator
for the limiting concentration ratio c. The feasible nonlinear shrinkage δ(λi), i = 1, . . . ,N ,
of the sample eigenvalues is defined as following results for both cases of cn ≤ 1 and cn > 1.

Case 1. If cn ≤ 1, that is, the sample covariance matrix is nonsingular, then

δ(λi) = λi

[π N
n
λif̃ (λi)]2 + [1 − N

n
− π N

n
λiHf̃

(λi)]2
,

where f̃ (·) is a kernel estimator of the limiting sample spectral density f and H
f̃

is the

Hilbert transform of f̃ . Various authors adopt different conventions to define the Hilbert
transform. We follow Ledoit and Wolf (2017a) and apply the same semicircle kernel function
and Hilbert transform because of the consistency of the resulting feasible estimator. Specifi-
cally, we have

f̃ (λi) = 1

N

N∑
j=1

√
[4λ2

jh
2
n − (λi − λj )2]+
2πλ2

jh
2
n

,

H
f̃
(λi) = 1

N

N∑
j=1

sgn(λi − λj )
√

[(λi − λj )2 − 4λ2
jh

2
n]+ − λi + λj

2πλ2
jh

2
n

,

where hn = n−γ is the bandwidth of the semicircle kernel with tuning parameter γ and a+ =
max(0, a). For details on the Hilbert transform and the mathematical formulation of Hilbert
transform for commonly used kernel functions, see Bateman (1954).

Case 2. In optimal fingerprinting applications the case of cn > 1 is more relevant because
the number n of controlled runs that can be used to estimate the internal climate variation is
often limited, much less than the dimension N of the problem. If cn > 1, we have N − n null
eigenvalues. Assume that (λ1, . . . , λN−n) = 0. In this case we only consider the empirical
cumulative distribution function FN of the nonzero n eigenvalues. From Silverstein (1995),
there existing a limiting function F such that limN,n→∞ FN = F , and it admits a continuous
derivative f . The oracle estimator in equation (5) can be written as

δoracle(λi) = λi

π2λ2
i [f (λi)2 +Hf (λi)2] .

Then, the kernel approach can be adapted in this case. Let f̃ and H
f̃

be, respectively, the

kernel estimator for f and its Hilbert transform Hf . The feasible shrinkage estimator is

δ(0) = 1

π N−n
n

H
f̃
(0)

, i = 1, . . . ,N − n,

δ(λi) = λi

π2λ2
i [f̃ (λi)2 +H

f̃
(λi)2] , i = N − n + 1, . . . ,N,
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where

H
f̃
(0) = 1 −

√
1 − 4h2

n

2πnh2
n

N∑
j=N−n+1

1

λj

,

f̃ (λi) = 1

n

N∑
j=N−n+1

√
[4λ2

jh
2
n − (λi − λj )2]+
2πλ2

jh
2
n

,

H
f̃
(λi) = 1

n

N∑
j=N−n+1

sgn(λi − λj )
√

[(λi − λj )2 − 4λ2
jh

2
n]+ − λi + λj

2πλ2
jh

2
n

,

and hn = n−γ is the bandwidth with tuning parameter γ .
In both cases the pool-adjacent-violators-algorithm (PAVA) in isotonic regression can be

used to ensure the shrunken eigenvalues to be in ascending order. The bandwidth parameter
γ can be selected via cross validation on the estimated standard deviation of the scaling
factors or other information criteria. The feasible optimal nonlinear shrinkage estimator is
the resulting �̂MV = �nD̃n�

�
n , where MV stands for minimum variance.

3.2. GTLS. For the GTLS setting, which is more realistic with EIV, we propose to
prewhiten Y and X̃i’s by �̂MV and then apply the standard TLS procedure (Gleser (1981))
to estimate β . The resulting estimator of the β will be shown to be more efficient than that
based on prewhitening with the linear shrinkage estimator �̂LS (Ribes, Planton and Terray
(2013)).

Consider the GTLS estimator of β obtained from prewhitening with a class of regularized
covariance matrix estimator �̂ from independent control runs. In the general framework of
GTLS, the measurement error vectors usually have the same covariance matrix as the model
error vector for the ease of theoretical derivations. This assumption can be easily achieved in
the OF setting (1)–(2) by multiplying each observed fingerprint vector X̃i by

√
ni . Therefore,

without loss of generality, in the following we assume ni = 1 to simplify the notations.
Let X̃ = (X̃1, . . . , X̃p) and β0 ∈ R

p be the true coefficient vector for the fingerprints. The
GTLS estimator based on �̂ is

(6) β̂(�̂) = arg
β

min
‖�̂− 1

2 (Y − X̃β)‖2
2

1 + β�β
,

where ‖a‖2 is the �2 norm of vector a. The asymptotic properties of β̂(�̂) are established for
a class of covariance matrix estimators �̂, including both �̂MV and �̂LS.

ASSUMPTION 1. limN,n→∞ X��̂−1X/N = 1 exists, where 1 is a nonsingular ma-
trix.

ASSUMPTION 2. limN,n→∞ Tr(�̂−1�)/N exists and is a positive constant.

ASSUMPTION 3. limN,n→∞ Tr{(�̂−1/2��̂−1/2)2}/N = K exists with K > 0.

REMARK 1. Assumptions 1 originates from Gleser (1981) which is needed for the con-
sistency of β̂(�̂). Assumptions 2–3 are from Ledoit and Wolf (2017a, 2018). Assumption 2
states that the average of the variances of the components of the prewhitened error vectors
converge to positive constant. For the class of rotation invariant estimators defined in Ledoit
and Wolf (2017a, 2017b), which includes both �̂MV and �̂LS, Assumptions 2 and 3 are sat-
isfied.
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LEMMA 2. Under Assumptions 1–3, β̂(�̂)
P→ β0, as N,n → ∞ with a N/n → c for

some c > 0.

The proof for Lemma 2 is in Appendix C, Supplementary Material (Li et al. (2023)).
The asymptotic normality of β̂(�̂) is established with additional assumptions.

ASSUMPTION 4. limN,n→∞ X��̂−1��̂−1X/N = 2 exists for a nonsingular matrix
2.

ASSUMPTION 5. The regression error ε and measurement errors νi ’s, i = 1, . . . , p, are
mutually independent normally distributed random vectors.

REMARK 2. Assumption 4 originates from Gleser (1981) for the asymptotic normality
of the GTLS estimator. Assumption 5 is commonly used in the context of climate change
detection and attribution for mean state climate variables.

THEOREM 2. Under Assumptions 1–5, as N,n → ∞ with N/n → c for some c > 0,

(7)
√

N(β̂ − β0)
D→ N (0,�), where � = −1

1

{
2 + K

(
Ip + β0β

�
0

)−1}(
1 + β�

0 β0
)
−1

1 .

The proof of Theorem 2 is in Section C.2 of Appendix C, Supplementary Material (Li
et al. (2023)).

The higher efficiency of the resulting estimator for β from the proposed weight matrix in
comparison with that from the existing weight is summarized by the following result with
proof in Section C.3 of Appendix C, Supplementary Material (Li et al. (2023)).

THEOREM 3. Let �(�̂) be the asymptotic covariance matrix in equation (7) for a rota-
tion invariant estimator �̂ under Assumptions 1–5. Then, Tr(�(�̂MV)) ≤ Tr(�(�̂LS)).

The proofs of Theorem 3 is in Section C.3 of Appendix C, Supplementary Material (Li
et al. (2023)).

In our implementation, a five-fold cross validation is used to select the optimal bandwidth
parameter γ ∈ (0.2,0.5).

4. Simulation studies. The finite sample performance of the proposed method in com-
parison with the existing practice in RF needs to be assessed to make realistic recommen-
dations for detection and attribution of climate change. We conducted a simulation study
similar to the setting of a study in Ribes, Planton and Terray (2013). The observed climate
variable of interest is 11 decadal mean temperatures over 25 grid boxes, a vector of dimen-
sion N = 275. Two N × 1 fingerprints were considered, corresponding to the anthropogenic
(ANT) and natural forcings (NAT), denoted by X1 and X2, respectively. They were set to
the average of all runs from the CNRM-CM5 model, as in Ribes, Planton and Terray, 2013.
To vary the strength of the signals, we also considered halving X1 and X2. That is, there
were two levels of signal-to-noise ratio corresponding to the cases of multiplying each Xi ,
i ∈ {1,2}, controlled by a scale λ ∈ {1,0.5}. The case of λ = 1 is corresponding to a global
study with strong signal strength, while the λ = 0.5 matches with regional studies where the
signals are weaker. The true scaling factors were β1 = β2 = 1. The distribution of the error
vector ε was multivariate normal MVN(0,�). The distribution of the measurement error vec-
tor νi , i ∈ {1,2}, was MVN(0,�/ni), with (n1, n2) = (35,46), which are the values in the
detection and attribution analysis of annual mean temperature conducted in Section 5. The
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observed mean temperature vector Y and the estimated fingerprints (X̃1, X̃2) were generated
from Models (1)–(2). The control runs used to estimate � were generated from MVN(0,�)

with sample size n ∈ {50,100,200,400}.
Two settings of true � were considered. In the first setting, � was an unstructured matrix

�UN which was obtained by manipulating the eigenvalues but keeping the eigenvectors of
the proposed minimum variance estimate from the same set of climate model simulations as
in Ribes, Planton and Terray, 2013. Specifically, we first obtained the eigen decomposition
of the minimum variance estimate, and then restricted the eigenvalues to be equal over each
of the 25 grid boxes (i.e., only 25 unique values for the N = 25 × 11 eigenvalues) by taking
averages over the decades at each grid box. The pattern of the resulting eigenvalues is similar
to the pattern of the eigenvalues of a spatial-temporal covariance matrix with variance sta-
tionarity and weak dependence over the time dimension. Finally, the eigenvalues were scaled
independently by a uniformly distributed variable on [0.5,1.5] which results in a more un-
structured covariance matrix setting similar to the simulation settings in Hannart (2016). In
the second setting, � was set to be �ST, a separable spatiotemporal covariance matrix; the
diagonals were set to be the sample variances from the climate model simulations without
imposing temporal stationarity; the corresponding correlation matrix was set to be the Kro-
necker product of a spatial correlation matrix and a temporal correlation matrix, both with
autoregressive of order 1 and coefficient 0.1.

For each configuration, 1000 replicates were generated. For each replicate, the two GTLS
estimators of β in Theorem 3 were obtained. The one based on prewhitening matrix �̂LS is
denoted as LS. The one based on prewhitening matrix �̂MV is denoted as MV. For compar-
ison, we also obtained the estimator from the Bayesian hierarchical model Katzfuss, Ham-
merling and Smith (2017), denoted by BH with the code from Dr. Dori Hamerling, and the
estimator from the integrated likelihood method of Hannart (2016), denoted by IN with our
own implementation. In the Bayesian hierarchical method we implemented the model for the
number of principal components r ∈ {1, . . . ,25} and took average over all the choices. In
the integrated approach, since the true covariance matrix is unstructured, we considered the
noninformative shrinkage target, the identity matrix.

Figure 1 displays the boxplots of the point estimates of the ANT scaling factor β1 from
the four methods: LS, MV, BH, and IN. The shrinkage-based estimators LS, MV, and IN
appear to recover the true parameter values well on average. The BH estimator tends to un-
derestimate the true coefficients possibly due to the complexity of the true covariance ma-
trix, which echoes the findings in the numerical studies of Katzfuss, Hammerling and Smith
(2017), that the estimation of regression coefficients are shrunk toward zero. The variations
of all estimators are lower for larger n, higher λ, and more structured � (the case of �ST).

FIG. 1. Boxplots of the estimates of the “ANT” scaling factor obtained from the ROF approach with four esti-
mators, LS, MV, BH, and IN, based on 1000 replicates. The number of ensembles for estimating the ‘ANT’ and
‘NAT’ signals are n1 = 35 and n2 = 46, respectively.
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These observations are expected. A larger n means more accurate estimation of �; a higher λ

means stronger signal; a more structured � means an easier task to estimate �. In general, the
Bayesian approach BH has much larger bias and variations than the shrinkage based method
LS, MV, and IN. Since we only considered the noninformative target, the IN estimator per-
forms almost identically to the LS estimator, with the LS method having a slightly smaller
variations. When � = �UN, the MV estimates have smaller variations than the LS or IN es-
timate, since the eigenvalues were less smooth and, hence, favored the nonlinear shrinkage
function. When � = �ST, which is more structured, all the three shrinkage-based methods
estimate the true covariance matrix more accurately, and their differences are less obvious.
More detailed results are summarized in Web Table 1 and Web Table 2 in the Supplementary
Material (Li et al. (2023)), the latter of which had smaller ensembles in estimating the fin-
gerprints with (n1, n2) = (10,6). The standard deviations of the MV estimates are over 10%
smaller than those of the LS (or IN) estimates for both cases.

Confidence intervals are an important tool for detection and attribution analyses. It would
be desirable if the asymptotic variance in Theorem 2 can be used to construct confidence in-
tervals for the scaling factors. Unfortunately, it has been reported that the confidence intervals
constructed for the scaling factors, based on �̂LS, have coverage rates lower than, sometimes
much lower than, their nominal levels (Hannart (2016), Li et al. (2021)). The under-coverage
issue remains for the estimator based on �̂MV. To alleviate the problem, the prevailing prac-
tice is to obtain two independent estimators for the unknown covariance matrix by partition-
ing the available simulations into two independent samples, one used in estimating the scaling
factors and the other used in constructing their confidence intervals. Nonetheless, as reported
by Li et al. (2021), this approach does not solve the problem, as it was hoped for and performs
similarly to the methods based on asymptotic normality, especially under a completely un-
known structure of �. As a remedy, Li et al. (2021) proposed a calibration procedure which
enlarges the confidence intervals based on the asymptotic normality of the estimators by an
appropriate scale tuned by a parametric bootstrap to achieve the desired coverage rate. We
applied this calibration approach to both the LS and the MV estimators. For the BH estima-
tor, we constructed 95% credible intervals and recorded the corresponding lengths from the
posterior distribution. For the IN estimator, because of its similarity to the LS estimator, we
used the the same scaling ratios tuned for the LS estimator to enlarge its confidence intervals.

Figure 2 shows the empirical coverage rates of the 95% calibrated confidence intervals for
LS, MV, and IN and credible intervals for BH. The BH method has much lower coverage
rates than the nominal level with longer intervals than the proposed method in most cases,
except for sample size n = 50. For all three shrinkage-based methods the coverage rates of the
confidence intervals before calibration could be as low as 70% (not shown). After calibration,
the coverage rates are much closer to the nominal levels. The agreement is better for larger n

and more structured �. The calibrated MV confidence intervals are about 10% shorter than
the LS intervals and slightly shorter than the IN intervals overall in both � settings. The only
exception is for the case of � = �UN and sample size n = 50 where the calibrated confidence
intervals still suffer from under-coverage issue. The under-coverage issue is less satisfactorily
solved for the IN method which could be improved by finding its own calibration scales.
Overall, the proposed MV method outperforms the existing competitors in terms of interval
estimation in addition to point estimation.

5. Fingerprinting mean temperature changes. We apply the proposed approach to the
detection and attribution analyses of annual mean temperature of 1951–2010 at the global
(GL), continental, and subcontinental scales. The continental scale regions are Northern
Hemisphere (NH), NH midlatitude between 30◦ and 70◦ (NHM), Eurasia (EA), and North
America (NA) which were studied in (Zhang, Zwiers and Stott (2006)). The subcontinental
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FIG. 2. Estimated coverage rates and lengths of calibrated 95% confidence intervals for the “ANT” scaling
factor constructed from four estimators, LS, MV, BH, and IN, based on 1000 replicates. The number of ensembles
for estimating the ‘ANT’ and ‘NAT’ signals are n1 = 35 and n2 = 46, respectively.

scale regions are Western North American (WNA), Central North American (CNA), East-
ern North American (ENA), southern Canada (SCA), and southern Europe (SEU), where the
spatiotemporal correlation structure is more likely to hold.

In each regional analysis we first constructed observation vector Y from the HadCRUT4
dataset (Morice et al. (2012)). The raw data were monthly anomalies of near-surface air
temperature on 5◦ × 5◦ grid boxes. At each grid box, each annual mean temperature was
computed from monthly temperatures if at least nine months were available in that year;
otherwise, it was considered missing. Then, five-year averages were computed if no more
than two annual averages were missing. To reduce the spatial dimension in the analyses, the
5◦ × 5◦ grid boxes were aggregated into larger grid boxes. In particular, the grid-box sizes
were 40◦ × 30◦ for GL and NH, 40◦ × 10◦ for NH 30-70, 10◦ × 20◦ for EA, and 10◦ × 5◦ for
NA. For the subcontinent regions, no aggregation was done, except for SCA, in which case
10◦ × 10◦ grid boxes were used. Details on the longitude, latitude, and spatiotemporal steps
of each regions after processing can be found in Table 1.

Two external forcings, ANT and NAT, were considered. Their fingerprints X1 and X2 were
not observed, but their estimates X̃1 and X̃2 were averages over n1 = 35 and n2 = 46 runs
from CIMP5 climate model simulations. The missing pattern in Y was used to mask the
simulated runs. The same procedure used to aggregate the grid boxes and obtain the five-year
averages in preparing Y was applied to each masked run of each climate model under each
forcing. The final estimates X̃1 and X̃2 at each grid box were averages over all available runs
under the ANT and the NAT forcings, respectively, centered by the average of the observed
annual temperatures over 1961–1990, the same center used by the HadCRUT4 data to obtain
the observed anomalies.

Estimation of � was based on n = 223 runs of 60 years constructed from preindustrial
control simulations of various length; see Web Table 3 in Appendix E, Supplementary Ma-
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TABLE 1
Summaries of the names, coordinate ranges, ideal spatiotemporal dimensions (S and T ’), and dimension of

observation after removing missing values of the five regions analyzed in the study

Longitude Latitude Grid size S T n

Acronym Regions (◦E) (◦N) (1◦ × 1◦)

Global and Continental Regions
GL Global −180/180 −90/90 40 × 30 54 11 572
NH Northern Hemisphere −180/180 0/90 40 × 30 27 11 297
NHM Northern Hemisphere 30◦N to 70◦N −180/180 30/70 40 × 10 36 11 396
EA Eurasia −10/180 30/70 10 × 20 38 11 418
NA North America −130/−50 30/60 10 × 5 48 11 512

Subcontinental Regions
WNA Western North America −130/−105 30/60 5 × 5 30 11 329
CNA Central North America −105/−85 30/50 5 × 5 16 11 176
ENA Eastern North America −85/−50 15/30 5 × 5 21 11 231
SCA Southern Canada −110/−10 50/70 10 × 10 20 11 220
SEU South Europe −10/40 35/50 5 × 5 30 11 330

terial (Li et al. (2023)). The long-term linear trend was removed separately from the control
simulations at each grid box. As the internal climate variation is assumed to be stationary
over time, each control run was first split into nonoverlapping blocks of 60 years, and then
each 60-year block was masked by the same missing pattern as the HadCRUT4 data to create
up to 12 five-year averages at each grid box. The temporal stationarity of variance at each
grid implies equal variance over time steps at each observing grid box which is commonly
incorporated in detection and attribution analyses of climate change (e.g., Hannart (2016)).
Both LS and MV estimates based on linear and nonlinear shrinkage, respectively, were ob-
tained for comparison. Pooled estimation of the variance at each grid box was considered in
each of the shrinkage estimation to enforce the stationary, grid-box specific variance.

Figure 3 summarizes the GTLS estimates of the scaling factors β̂1 and β̂2 for the ANT and
NAT forcings, respectively. The estimates from prewhitening weight matrix �LS and �MV
are denoted again as LS and MV, respectively. The 95% confidence intervals were obtained
with the calibration approach of Li et al. (2021). The point estimates from LS and MV are
similar in all the analysis. The confidence intervals from the MV method are generally shorter
than those from the LS method in the analyses both at continental and subcontinental scale.
More obvious reduction in the confidence interval lengths is observed at the subcontinental
scales, for example, the ANT scaling factor in EA/NA/SCA and the NAT scaling factor in
NA/WNA/SCA. This may be explained by that signals at subcontinental scale are weaker
and that the error covariance matrix has nonsmooth eigenvalues that form some clustering
patterns due to weak temporal dependence, as suggested by the simulation study. Although
the detection and attribution conclusions based on the confidence intervals remain the same
in most cases, the shortened confidence intervals means reduced uncertainty in the estimate
of the attributable warming (Jones, Stott and Christidis (2013)) and other quantities based
on detection and attribution analysis, such as future climate projection and transient climate
sensitivity (Li et al. (2021)).

6. Discussion. Optimal fingerprinting, as the most commonly used method for detection
and attribution analyses of climate change, has great impact in climate research. Such anal-
yses are the basis for projecting observationally constrained future climate (e.g., Jones, Stott
and Mitchell (2016)) and estimating important properties of the climate system such as cli-
mate sensitivity (e.g., Schurer et al. (2018)). The original optimality of optimal fingerprinting,
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FIG. 3. Estimated signal scaling factors for ANT and NAT required to best match observed 1950–2010 annual
mean temperature for different spatial domains, and the corresponding 95% confidence intervals from different
methods. For weight matrix construction, “LS” denotes the linear shrinkage approach, and “MV” denotes the
minimum variance approach. For confidence interval the calibration method is used.

which minimizes the uncertainty in the resulting scaling factor estimator, is no longer valid
under realistic settings where � is not known but estimated. Our method constructs a weight
matrix by inverting a nonlinear shrinkage estimator of � which directly minimizes the vari-
ation of the resulting scaling factor estimator. This method is more efficient than the current
RF practice (Ribes, Planton and Terray (2013)), as evident from the simulation study. There-
fore, the lost optimality in fingerprinting is restored to a good extent for practical purposes,
which helps to reduce the uncertainty in important quantities, such as attributable warming
and climate sensitivity.

There are open questions that we have not addressed. It is of interest to further investigate
how the asymptotic results under N,n → ∞ and N/n → c can guide the RF practice. The
temporal and spatial resolution that controls N can be tuned in RF practice, which may lead to
different efficiencies in inferences and, hence, different results in detection and attribution. Is
there an optimal temporal/spatial resolution to obtain the most reliable result? Goodness-of-
fit check is an important element in detection and attribution analyses. The classic approach
to check the weighted sum of squared residuals against a chi-squared distribution, under the
assumption of known � is not valid when � has to be estimated. Can a test be designed,
possibly based on parametric bootstrap, to take into account of the uncertainty in regularized
estimation of �? These questions merit future research.
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SUPPLEMENTARY MATERIAL

Appendices and figures/tables referenced in the text (DOI: 10.1214/22-AOAS1624
SUPPA; .pdf). A) Sufficiency to Assume Orthogonal Covariates; B) Justification of Method
MV in the GLS Case; C) Justification of Method MV in the GTLS Case; D) Detailed Results
on Simulation Studies; E) Details of the CMIP5 climate models for the control runs.

Source code and data (DOI: 10.1214/22-AOAS1624SUPPB; .zip). The data and code
used to reproduce the simulation study and data analysis are contained in a zipped file
Rcodesdacc.zip. R functions used in the analysis are also publicly available in an R
package dacc (Li, Chen and Yan (2020)) for detection and attribution of climate change.
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