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A simple-to-implement weak-sense numerical method to approximate
reflected stochastic differential equations (RSDEs) is proposed and analysed.
It is proved that the method has the first order of weak convergence. Together
with the Monte Carlo technique, it can be used to numerically solve linear
parabolic and elliptic PDEs with Robin boundary condition. One of the key
results of this paper is the use of the proposed method for computing ergodic
limits, that is, expectations with respect to the invariant law of RSDEs, both
inside a domain in R

d and on its boundary. This allows to efficiently sample
from distributions with compact support. Both time-averaging and ensemble-
averaging estimators are considered and analysed. A number of extensions
are considered including a second-order weak approximation, the case of ar-
bitrary oblique direction of reflection, and a new adaptive weak scheme to
solve a Poisson PDE with Neumann boundary condition. The presented the-
oretical results are supported by several numerical experiments.
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1. Introduction. This paper is devoted to weak approximation of stochastic differential
equations (SDEs) with reflecting boundary conditions in a multidimensional domain G ⊂ R

d .
Many models from physics, biology, engineering, and finance can be described using SDEs.
In some of those scenarios reflected SDEs (RSDEs) can be used as a modelling tool. Let us list
a few examples from different fields. Applications of reflected diffusion processes in stock
management as well as in quality control were considered in [9]. Heavy traffic behaviour
of queuing systems is modelled using the reflected Brownian motion in [5]. In [22] (see
also [39]), it is demonstrated that the solution (known as the optimal portfolio process) of
consumption investment problems with transaction cost are governed by RSDEs. In [45],
the authors used RSDEs to model dynamics of reacting chemical species with the constraint
that concentration of species cannot be negative. Related issues in sampling measures and
modelling natural phenomena in constrained space using reflective boundaries arise in many
different connections, for example in molecular modeling [4], biological models [36, 41],
continuum mechanics [27], chemistry [21, 64], and statistical inference [1, 23]. We expect
our study therefore to be of wide interest.

The Feynman–Kac formula gives the probabilistic representation of solutions of parabolic
and elliptic PDEs with Neumann/Robin boundary condition as the expectation of a func-
tional of the reflected diffusion process. Solving such PDEs using deterministic methods, for
example finite difference methods, requires approximating solutions in the whole domain,
therefore the computational cost increases exponentially with increasing dimension. The use
of the Monte Carlo method to find solutions of such PDEs is preferred when the solution is
not needed in the whole domain but only at certain points. Further, in the case of the Monte
Carlo methods, independent trajectories can be simulated using parallel computers.

Another important application of RSDEs is in making use of a stochastic gradient system
with reflection for drawing samples from higher-dimensional distributions with compact sup-
port (see [14] and Section 4 here). This application is one of the main objectives of this paper
in the setting of ergodic limits (Section 4).

Let G ⊂ Rd be a bounded domain with boundary ∂G, Q := [T0, T ) × G be a cylinder in
R

d+1, and S be the lateral surface of Q. Let b : Q̄ → R
d and σ : Q̄ → R

d×d . Consider the
RSDEs

dX(s) = b
(
s,X(s)

)
ds + σ

(
s,X(s)

)
dW(s) + ν

(
X(s)

)
I∂G

(
X(s)

)
dL(s),

X(t0) = x,T0 ≤ t0 ≤ T , t0 ≤ s ≤ T , x ∈ Ḡ,
(1.1)
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where W(s) is a d-dimensional standard Wiener process defined on a filtered probability
space (�,F , (Fs)s≥0,P); ν(z), z ∈ ∂G, is the inward normal vector to the boundary ∂G;
and I∂G(z) is the indicator function of z ∈ ∂G. Further, L(s) is the local time of the process
X(s) on the boundary ∂G adapted to the filtration (Fs)s≥0. A local time is a scalar increasing
process continuous in s which increases only when X(s) ∈ ∂G (see the precise definition in,
e.g., [28, 38, 47]):

L(t) =
∫ t

t0

I∂G

(
X(s)

)
dL(s) a.s.

We also note [47] that in the integral form of (1.1) the term

K(t) =
∫ t

t0

ν
(
X(s)

)
I∂G

(
X(s)

)
dL(s)

is a d-dimensional bounded variation process.
The following questions are considered in this work:

• How to numerically (in the weak sense) solve RSDEs and the related linear parabolic
equation with Robin boundary condition?

The proposed simple-to-implement weak approximation of (1.1) numerically solves a
linear advection-diffusion equation with Neumann boundary condition, and its extension
solves an advection-diffusion equation with a decay/growth term and with the nonhomo-
geneous Robin (in other words, third) boundary condition (see Sections 2–3).

• How to compute ergodic limits in the domain G as well as on the boundary ∂G?
We introduce time-averaging and ensemble-averaging estimators to numerically calcu-

late expectations with respect to the invariant density of a reflected diffusion X(t) which
lies in Ḡ. We also propose estimators to compute integrals with respect to the normalised
restriction of the invariant density of X(t) on ∂G (see Section 4).

• How to sample from distributions with compact support using Brownian dynamics?
This directly follows from the previous point. Drawing samples from compactly sup-

ported targeted distributions has many applications, especially in machine learning and
molecular dynamics. The proposed algorithm applied to a stochastic gradient system
(Brownian dynamics) with reflection efficiently samples from distributions whose sup-
port is a compact set Ḡ as well as from distributions whose support is a d − 1-dimensional
hyper-surface ∂G (see Section 4.1.4).

• How to numerically solve a linear elliptic equation with Robin boundary condition?
The probabilistic representation of the solution of the elliptic Robin problem involves

integration of functionals of X(t) on [0,∞). The weak method of Section 2 is applied and
analysed in the case of the elliptic problem (see Section 5). The special case of the Poisson
equation with Neumann boundary condition is treated separately, for which a new adaptive
time-stepping algorithm is proposed (see Section 5.2).

The approaches to numerically approximate the solutions of RSDEs driven by Wiener
processes have taken three directions. The first two approaches are penalty methods [57, 63,
68] and projection methods [7, 18, 48, 57]. Introduce the projection map onto Ḡ: �(x) =
arg miny∈Ḡ |x − y|, x ∈ R

d . We note that if x ∈ Ḡ then �(x) = x. In projection schemes, the
map �(x) is applied at every step of a numerical scheme (e.g., the Euler method) approximat-
ing the RSDEs with the local time term omitted. To construct penalty schemes, one replaces
the reflection term in the RSDEs with βλ(X(s)) ds, where βλ(x) := (x − �(x))/λ, x ∈ R

d ,
and λ is a positive constant. We note that βλ(x) = 0 for x ∈ Ḡ. Then these resulting SDEs are
approximated, for example, by the Euler scheme (see a brief description of penalty and pro-
jection methods in [57], Section 5.6, and the references therein). The convergence of penalty
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schemes is mainly shown in the mean-square sense (see [63, 68]). In this paper, we are inter-
ested in weak approximation.

Liu [48] proposed a weak scheme by combining projection and orthogonal transformation
of the diffusion matrix and obtained weak first-order convergence. Costantini, Pacchiarotti
and Sartoretto [18] obtained weak order 1/2 through a projection scheme. Expectations of
complex functionals of local time can be evaluated using their scheme.

Methods which are neither penalty methods nor projection methods, we term reflection
methods [6, 12, 34, 35, 53, 57]. Milstein [53] (see also [57]) proposed a weak scheme with
first order of accuracy to solve the Robin boundary value problem for parabolic PDEs. The
scheme is not easy to implement as it requires to change the local coordinates when the dis-
cretized sample path reaches the proximity of the boundary (see its implementation in [10]).
Gobet [34, 35] suggested a reflected scheme in half space which locally approximates Ḡ and
gained a half order of weak convergence for any oblique direction of reflection. The order
is improved to one for the co-normal reflection. Bossy, Gobet and Talay [12] analyzed an
Euler scheme combined with a symmetrized procedure for simulation of reflected diffusion
with oblique reflection and obtained first order of accuracy. Since their scheme is based on
Gaussian increments, they propose to restart the simulation if a discretized sample path takes
a very large increment outside the domain. Approximating ergodic limits inside the domain
G using the scheme of [12] was considered in [16], where the corresponding convergence in
time step was proved with an order lower than 1. The other possible limitation of the method
is that it is not known how to adapt it to compute expectations of integrals with respect to
local time.

In this paper, we propose a new reflection method to numerically approximate RSDEs.
The method does not require any orthogonal transformation of diffusion matrix or change of
local coordinates thus it is easy to implement. This new method is based on the idea of sym-
metrized reflection on the boundary, however we apply the weak Euler scheme which uses
bounded random variables making sure that discretized sample paths cannot move beyond
the boundary outside the domain by more that O(

√
h), where h is the time step. We note

that although our method is based on symmetrized reflection like [12], our approach to prove
convergence is entirely different – we use appropriate PDEs as in typical proofs of weak
convergence [52, 53, 57, 69]. Further, the path we take for the analysis allows us to compute
expectations of functionals of local time accompanied by optimal error estimates. Moreover,
our approach works for time averaging estimation of ergodic limits, both in the domain G

and on the boundary ∂G, and the corresponding first-order convergence in the time step is
proved in both cases. We also extend our algorithm to approximate SDEs with reflection in
any oblique inward direction with first order of convergence. In addition, we modify our al-
gorithm by introducing a new procedure near the boundary which results in a second-order
method.

As already highlighted earlier, our method can be used to solve elliptic PDEs with Robin
boundary condition, where the two cases are considered separately: the first with a decay
term (equations (5.1)–(5.2)), where we achieve first order accuracy; the second case (equa-
tions (4.1)–(4.2)) is without a decay term (the Poisson problem), which causes additional
difficulties. We introduce an adaptive time-stepping scheme based on a novel idea of double
time-discretization to solve the Poisson problem with first order accuracy.

In, for example, molecular dynamics (see [43] and references therein) and Bayesian statis-
tics (see, e.g., [3, 44, 72] and references therein), it is usually necessary to compute the
expectation of a given function with respect to the invariant law of the diffusion (ergodic
limit). There are two common approaches to computing ergodic limits. One is to simulate
a numerical trajectory over a long period of time and take the average at discretized points
(time-averaging estimation, see, e.g., [16, 52, 58, 69] and references therein). The other is to
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simulate many independent numerical realizations of the associated SDEs and average them
at a sufficiently large finite time (ensemble-averaging estimation, see, e.g., [58]).

In this work we are interested in finding how close numerical time-averaging and
ensemble-averaging estimators are to the corresponding expectations with respect to the RS-
DEs’ stationary measure. In [52] it was shown how an appropriate Poisson equation can be
used to obtain the long time average of the functional of diffusion processes. In the same
spirit, here we make use of the Poisson equation with Neumann boundary condition for anal-
ysis of numerical time-averaging estimators. For proving accuracy of the ensemble-averaging
estimators, we exploit a parabolic PDE with Neumann boundary condition.

In many applications it is required to sample from distributions with compact support, Ḡ

(see, e.g., [11, 17, 40]). Although there are methods which have been proposed to sample
from distributions subject to certain constraints, most of them are not well studied theoret-
ically except for example, [13, 14], where [14] uses a projection scheme and [13] exploits
a penalty method for sampling from log-concave distributions with compact support. Both
works establish bounds on a distance (in total variation norm or Wasserstein distance) be-
tween the stationary measure of a Markov chain generated by a numerical method and the
corresponding stationary measure of the underlying reflected Brownian dynamics. We are in-
terested in establishing closeness (including convergence order) of estimators to the ergodic
limits with respect to generic ergodic RSDEs allowing us to sample from arbitrary distribu-
tions with compact support Ḡ.

Finally, in this paper, we also develop a methodology to sample from a targeted probability
distribution which lies on the hyper-surface ∂G that can be considered as the boundary of a
bounded domain G. There are geometric Monte Carlo methods for sampling from distribu-
tions lying on ∂G (see, e.g., [15, 33] and the references therein). Our approach is different
and is based on weak approximation of the local time of the reflected diffusion X(t) on the
boundary ∂G (see Section 4.1.4 for details).

2. Numerical method to approximate reflected SDEs. In this section, we first discuss
the existence and uniqueness of solutions of RSDEs (1.1).

In the paper we will use the following functional spaces. Let C
p+ε

2 ,p+ε(Q̄) (or Cp+ε(Ḡ))
be a Hölder space containing functions u(t, x) (or u(x)) whose partial derivatives ∂i+|j |u

∂ti ∂xj1 ···∂xjd

(or ∂ |j |u
∂xj1 ···∂xjd

) with 2i + |j | < p + ε (or |j | < p + ε) are continuous in Q̄ (or Ḡ) with finite

norm | · |(p+ε)
Q (or | · |(p+ε)

G ), where i ∈ N∪{0}, p ∈N∪{0}, 0 < ε < 1, j is a multi-index, and
| · |p+ε is the Hölder norm (see details in [42], pp. 7–8). However, for brevity of the notation,

in what follows we will omit ε and write C
p
2 ,p(Q̄) (or Cp(Ḡ)) instead of C

p+ε
2 ,p+ε(Q̄) (or

Cp+ε(Ḡ)), which should not lead to any confusion. The notation f (t, z) ∈ C
p
2 ,p(S̄) will have

the same meaning as explained above. In what follows we will omit ε in the notation of the
Hölder norm by writing | · |p instead of | · |p+ε . We also denote by C(Q̄) the set of functions
which are continuous in Q̄.

We make the following assumptions regarding the problem (1.1).

ASSUMPTION 2.1. The boundary ∂G of domain G belongs to C4.

ASSUMPTION 2.2. The coefficients b(t, x) and σ(t, x) are C1,2(Q̄) functions.

If Assumptions 2.1 and 2.2 hold, there exists a unique strong solution to the RSDEs (1.1).
The meaning of existence of unique strong solution is same as given in [38], p. 149. We note
that the unique solution of (1.1) exists when b(t, x) and σ(t, x) are just Lipschitz continuous
in x and the domain G is either a convex set or C2 smooth [47, 66, 70]. Assumptions 2.1–2.2
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FIG. 1. Four possible realizations (i)X
′
k+1 of X′

k+1 given Xk in two dimensions.

are used in subsequent sections to prove optimal (highest possible) order of convergence for
the proposed algorithm. At the same time, we note that the algorithm can be used in practice
under weaker assumptions.

Now we construct a new algorithm which approximates RSDEs (1.1). Let (t0, x) ∈ Q. We
introduce the uniform discretization of the time interval [t0, T ] so that t0 < · · · < tN = T ,
h := (T − t0)/N and tk+1 = tk + h.

We consider a Markov chain (tk,Xk)k≥0 with X0 = x approximating the solution Xt0,x(t)

of the RSDEs (1.1). Since X(t) cannot take values outside Ḡ, the Markov chain should
remain in Ḡ as well. To this end, the chain has an auxiliary (intermediate) step every time it
moves from the time layer tk to tk+1. We denote this auxiliary step by X′

k+1. In moving from
Xk to X′

k+1, we apply the weak Euler scheme

X′
k+1 = Xk + hbk + h1/2σkξk+1,(2.1)

where bk = b(tk,Xk), σk = σ(tk,Xk) and ξk+1 = (ξ1
k+1, . . . , ξ

d
k+1)

�, ξ i
k+1, i = 1, . . . , d , k =

0, . . . ,N − 1, are mutually independent random variables taking values ±1 with probability
1/2.

Taking this auxiliary step X′
k+1 while moving from Xk to Xk+1 represents cautious be-

haviour and gives us an opportunity to check whether the realized value of X′
k+1 is inside the

domain G or not (see Figure 1). If X′
k+1 ∈ Ḡ then on the same time layer we assign values to

Xk+1 as

Xk+1 = X′
k+1.(2.2)

However, if the realized value of X′
k+1 goes outside of Ḡ then we need an additional con-

struction so that Xk+1 ∈ G (see Figure 2). First, we find the projection of X′
k+1 onto ∂G

which we denote as Xπ
k+1 and we calculate rk+1 = dist(X′

k+1,X
π
k+1) which is the shortest

distance between X′
k+1 and Xπ

k+1. Note that dist(Xk,X
′
k+1) = O(h1/2), therefore under As-

sumption 2.1 and for sufficiently small h, the projection Xπ
k+1 of X′

k+1 on ∂G is unique [12],
Proposition 1. Moreover, the projection Xπ

k+1 and the shortest distance rk+1 satisfy the fol-
lowing equation, Xπ

k+1 = X′
k+1 + rk+1ν(Xπ

k+1), where ν(Xπ
k+1) is the inward normal vector

to the boundary ∂G at the projection Xπ
k+1. Thereafter, we add rk+1ν(Xπ

k+1) to Xπ
k+1 to arrive

at a point which we take as Xk+1. This transition from intermediate step X′
k+1 to Xk+1 makes

sure that Xk+1 ∈ G. We also highlight that X′
k+1 and Xk+1 are symmetric around Xπ

k+1 along

FIG. 2. One step transition in two dimensions from X′
k+1 to Xk+1 using projection Xπ

k+1 of X′
k+1 on ∂G.
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Algorithm 1 Algorithm to approximate normal reflected diffusion
Step 1: Set X0 = x, X′

0 = x, k = 0.
Step 2: Simulate ξk+1 and find X′

k+1 using (2.1).
Step 3: If X′

k+1 ∈ Ḡ then Xk+1 = X′
k+1, else

(i) find the projection Xπ
k+1 of X′

k+1 on ∂G,
(ii) calculate rk+1 = dist(X′

k+1,X
π
k+1) and find Xk+1 according to (2.3).

Step 4: If k + 1 = N then stop, else put k := k + 1 and return to Step 2.

the direction ν(Xπ
k+1). Therefore, combining the above steps of calculating Xπ

k+1 from X′
k+1

and then Xk+1 from Xπ
k+1, we have

Xk+1 = X′
k+1 + 2rk+1ν

(
Xπ

k+1
)
.(2.3)

We formally write our algorithm as Algorithm 1.

REMARK 2.1. To approximate the RSDEs inside the domain G in Algorithm 1, we ex-
ploit a particular method with discrete random variables used for approximating the Wiener
increments, the weak Euler scheme (2.1). Instead of (2.1), one can use any approximation
with local weak order 2 and bounded increments (e.g., the walk over spheres as in [53, 57]
(see also [10]) or any other method with discrete random variables) and complement it with
the symmetric reflection (2.3). Such versions of Algorithm 1 have the same convergence
properties as the ones proved in this paper for Algorithm 1. We restrict ourselves here to the
weak Euler scheme (2.1) because it is the simplest scheme and also for definiteness.

3. Solving parabolic PDEs with Robin boundary condition. In Section 3.1, we intro-
duce a parabolic PDE with Robin boundary condition along with assumptions required for the
existence of its solution and with the link to the reflected diffusion process via the Feynman–
Kac formula. Section 3.2 describes an extension of Algorithm 1 to solve the Robin parabolic
problem. We state the main convergence theorem of the proposed algorithm in Section 3.3
and prove it in Section 3.4.

3.1. Probabilistic representations. Consider the parabolic PDE

∂u

∂t
+ 1

2

d∑
i,j=1

aij (t, x)
∂u

∂xi ∂xj
+

d∑
i=1

bi(t, x)
∂u

∂xi
+ c(t, x)u + g(t, x) = 0,

(t, x) ∈ Q,

(3.1)

with terminal condition

u(T , x) = ϕ(x), x ∈ Ḡ,(3.2)

and Robin boundary condition

∂u

∂ν
+ γ (t, z)u = ψ(t, z), (t, z) ∈ S,(3.3)

where ν = ν(z) is the direction of the inner normal to the surface ∂G at a point z ∈ ∂G.
We can write equation (3.1) in a more compact form as

∂u

∂t
+ (b · ∇)u + 1

2
(a : ∇∇)u + cu + g = 0,(3.4)
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where (:) denotes the Frobenius product of two matrices, (·) denotes the scalar product of two
vectors, c = c(t, x) and g = g(t, x) are scalar functions, and a(t, x) = {aij (t, x)} is a d × d

symmetric matrix, that is, a : Q̄ →R
d×d .

In addition to Assumptions 2.1–2.2, we also make the following assumptions.

ASSUMPTION 3.1. g(t, x) ∈ C1,2(Q̄), ϕ(x) ∈ C4(Ḡ), and ψ(t, z) ∈ C1.5,3(S̄).

ASSUMPTION 3.2. c(t, x) ∈ C1,2(Q̄) and γ (t, z) ∈ C1.5,3(S̄).

ASSUMPTION 3.3. The symmetric matrix a = {aij } satisfies the condition of uniform
ellipticity in Q̄, that is, there exists a positive constant a0 such that for all y ∈ R

d :

a0|y|2 ≤ (
a(t, x)y · y), (t, x) ∈ Q̄.(3.5)

Define a sequence of functions vk recursively as

v0 = ϕ, vk+1 = −
k∑

i=0

(
k

i

)
A (i)vk−i − ∂kg

∂tk
(T , x),

with

A (i)v = 1

2

d∑
j,l=1

∂iajl

∂t i
(T , x)

∂2v

∂xj ∂xl
+

d∑
j=1

∂ibj

∂t i
(T , x)

∂v

∂xj
+ ∂ic

∂t i
(T , x)v.

ASSUMPTION 3.4. The compatibility condition of order 1 is fulfilled for the problem
(3.1)–(3.3), that is, the following relationship holds:[

∂vk

∂ν
+

k∑
i=0

(
k

i

)
∂iγ

∂t i

∣∣∣∣
t=T

vk−i

]∣∣∣∣
∂G

= ∂kψ

∂tk

∣∣∣∣
t=T

, k = 0,1.

It is known [42] that if Assumptions 2.1–2.2 and 3.1–3.4 are satisfied then the problem
(3.1)–(3.3) has a unique solution u(t, x) ∈ C2,4(Q̄) satisfying the inequality

|u|(4)

Q̄
≤ C(T )

(|g|(2)

Q̄
+ |ϕ|(4)

Ḡ
+ |ψ |(3)

S̄

)
,(3.6)

where C(T ) is a positive constant dependent on T . We also note that u(t, x) satisfies the PDE
(3.1) in Q̄ under Assumptions 2.1–2.2 and 3.1–3.4.

Let a matrix σ(t, x) be found from the equation

σ(t, x)σ (t, x)� = a(t, x).

As is known [28, 31, 38], the probabilistic representation of the solution of problem (3.1)–
(3.3) is given by

u(t0, x) = E
(
ϕ
(
Xt0,x(T )

)
Yt0,x,1(T ) + Zt0,x,1,0(T )

)
,(3.7)

where Xt0,x(s), Yt0,x,y(s), Zt0,x,y,z(s), s ≥ t0, is the solution of the Cauchy problem for the
system of RSDEs

dX(s) = b
(
s,X(s)

)
ds + σ

(
s,X(s)

)
dW(s) + ν

(
X(s)

)
I∂G

(
X(s)

)
dL(s),(3.8)

dY (s) = c
(
s,X(s)

)
Y(s) ds + γ

(
s,X(s)

)
I∂G

(
X(s)

)
Y(s) dL(s),(3.9)

dZ(s) = g
(
s,X(s)

)
Y(s) ds − ψ

(
s,X(s)

)
I∂G

(
X(s)

)
Y(s) dL(s),(3.10)

with X(t0) = x, Y(t0) = y, Z(t0) = z, T0 ≤ t0 ≤ s ≤ T , x ∈ Ḡ.
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Algorithm 2 Algorithm to approximate (3.8)–(3.10)
Step 1: Set X0 = x, Y0 = 1, Z0 = 0, X′

0 = x, k = 0.
Step 2: Simulate ξk+1 and find X′

k+1 using (2.1).
Step 3: If X′

k+1 ∈ Ḡ then Xk+1 = X′
k+1 and calculate Yk+1 and Zk+1 according to (3.11)

and (3.12), respectively, else find Xk+1, Yk+1, and Zk+1 according to (2.3), (3.13)
and (3.14), respectively.

Step 4: If k + 1 = N then stop, else put k := k + 1 and return to Step 2.

3.2. Numerical method. In this subsection we modify our Algorithm 1 to construct a
Markov chain (tk,Xk,Yk,Zk)k≥0 with X0 = x, Y0 = 1, Z0 = 0 to approximate the solution
u(t0, x) of (3.1)–(3.3) at (t0, x) ∈ Q̄. We approximate RSDEs (3.8) according to Algorithm 1
and complement it by an approximation of (3.9) and (3.10). If the intermediate step X′

k+1
introduced in Algorithm 1, belongs to Ḡ then we use the Euler scheme:

Yk+1 = Yk + hc(tk,Xk)Yk,(3.11)

Zk+1 = Zk + hg(tk,Xk)Yk.(3.12)

If X′
k+1 /∈ Ḡ then

Yk+1 = Yk + hc(tk,Xk)Yk + 2rk+1γ
(
tk+1,X

π
k+1

)
Yk

+ 2r2
k+1γ

2(tk+1,X
π
k+1

)
Yk,

(3.13)

Zk+1 = Zk + hg(tk,Xk)Yk − 2rk+1ψ
(
tk+1,X

π
k+1

)
Yk

− 2r2
k+1ψ

(
tk+1,X

π
k+1

)
γ
(
tk+1,X

π
k+1

)
Yk,

(3.14)

where Xπ
k+1 is the projection of X′

k+1 on ∂G and rk+1 = dist(X′
k+1,X

π
k+1) which is the

shortest distance between X′
k+1 and Xπ

k+1.
The approximation (3.13)–(3.14) is derived via numerical analysis (see Lemma 3.3 and

Theorem 3.1) aimed at obtaining first-order weak convergence of the proposed algorithm.
We write this modified algorithm as Algorithm 2.

We note that Algorithm 2 can be applied to the Robin problem (3.1)–(3.3) in the layer-
wise manner. Recall (see [57], Chapters 7–8, and also references therein) that layer methods
are deterministic numerical methods for PDEs which are constructed using probabilistic rep-
resentations of the PDEs’ solutions together with the weak-sense approximation of SDEs.
Based on Algorithm 2, we can write a layer method which is a deterministic method with
fictitious nodes for (3.1)–(3.3). In the one-dimensional case such a layer method was pro-
posed in [56] (see also [57], Section 8.4.4). It was applied to a one-dimensional semilinear
parabolic PDE with Neumann boundary condition. Thanks to the results of our paper, we
now have a probabilistic representation of that layer method from [56] and hence can prove
its global order of convergence. Furthermore, based on Algorithm 2, we can construct a layer
method for a multidimensional semilinear Neumann problem, which is simpler than the layer
method proposed in [56] (see also [57], Section 8.5) for the multidimensional case which
used the weak approximation from [53]. This connection of Algorithms 1 and 2 with layer
methods also provides further intuition for the approximation of X(t) near the boundary:
from the weak-sense perspective, we replace the directional derivative in the Robin boundary
condition with the central finite-difference using a fictitious node outside the domain.

3.3. Finite-time convergence theorem. We state the main theorem of this section which
gives the estimate for the weak-sense error of Algorithm 2 at finite time.
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THEOREM 3.1. The weak order of accuracy of Algorithm 2 is O(h) under Assump-
tions 2.1–2.2 and 3.1–3.4, that is, for sufficiently small h > 0∣∣E(

ϕ(XN)YN + ZN

) − u(t0,X0)
∣∣ ≤ Ch,(3.15)

where u(t, x) is solution of (3.1)–(3.3) and C is a positive constant independent of h.

We will prove this theorem in the next subsection. The scheme of the proof is roughly
as follows (cf. [53, 57]). We first prove two lemmas on weak local errors of Algorithm 2:
Lemma 3.2 gives order O(h2) for the one-step approximation for the intermediate step X′

k+1
(i.e., of the Euler approximation) and Lemma 3.3 gives local order O(h3/2) for Xk+1 when
X′

k+1 goes outside Ḡ. The number of steps when X′
k+1 ∈ Ḡ is obviously O(1/h). The sense

of Lemma 3.4 is that the average number of steps when X′
k+1 /∈ Ḡ is O(1/

√
h). Appropriately

combining the three lemmas, we get first order convergence as stated in the theorem.

3.4. Proof of Theorem 3.1. This subsection is devoted to analysis of the error incurred
while numerically solving the Robin problem (3.1)–(3.3) using Algorithm 2 and the prob-
abilistic representation (3.7). In Section 3.4.1 we prove two lemmas regarding the one-step
approximation corresponding to Algorithm 2. In Section 3.4.2 we prove a lemma on the av-
erage number of steps when X′

k+1 /∈ Ḡ. Theorem 3.1 itself is proved in Section 3.4.3. We in-
troduce the additional notation to be used in the future analysis: uk+1 = u(tk+1,Xk+1), uk =
u(tk,Xk), uπ

k+1 = u(tk+1,X
π
k+1), u

′
k+1 = u(tk+1,X

′
k+1), ak = a(tk,Xk), bk = b(tk,Xk), ck =

c(tk,Xk), gk = g(tk,Xk), ψπ
k+1 = ψ(tk+1,X

π
k+1), γ π

k+1 = γ (tk+1,X
π
k+1), σk = σ(tk,Xk),

Y ′
k+1 = Yk + hckYk , and Z′

k+1 = Zk + hgkYk . For d-dimensional vectors Vj , j = 1, . . . , p,
we denote the pth spatial derivative of a smooth function v(x) evaluated in the directions Vj

by Dpv(x)[V1, . . . , Vp]:

Dpv(x)[V1, . . . , Vp] =
d∑

i1,...,ip=1

∂p

∂xi1 . . . ∂xip
v(x)

p∏
j=1

V
ij
j .

It is not difficult to see that in Algorithm 1, under Assumptions 2.1–2.2, rk :=
dist(X′

k,X
π
k ) = O(h1/2) whenever X′

k+1 ∈ Ḡc. Under Assumption 2.1, we can introduce
a d − 1-dimensional surface outside G parallel to ∂G whose distance to ∂G is r which is
large enough so that for all k, we have rk ≤ r and r = O(h1/2). We denote this surface
as S−r , and we denote the layer between the two surfaces ∂G and S−r as G−r and also
Q−r := [T0, T ) × G−r .

3.4.1. One-step approximation. In this subsection, we will prove two lemmas. Lem-
ma 3.2 estimates the error of the one-step approximation in moving from Xk at time layer
tk to X′

k+1 at time layer tk+1, that is, it is about the local weak error of the Euler scheme.
Lemma 3.3 estimates the error of the one-step approximation at the same time layer tk+1 in
moving from X′

k+1 to Xk+1 given that X′
k+1 goes outside Ḡ.

We will use the following result. It is known [30], Proposition 1.17, that under Assump-
tion 2.1 the solution u(t, x) ∈ C2,4(Q̄) can be extended to a function u(t, x) ∈ C2,4(Q̄ ∪
Q̄−r ). This extension of u(t, x) and its derivatives will be used in proofs where we need to
expand u(t, x) around xπ ∈ ∂G when x ∈ Ḡc. We pay attention to the fact that u(t, x) and its
derivatives are uniformly bounded for (t, x) ∈ Q̄ ∪ Q̄−r .

LEMMA 3.2. Under Assumptions 2.1–2.2 and 3.1–3.4, the one-step error of Algorithm 2
associated with moving from Xk to X′

k+1 is estimated as∣∣E(
u′

k+1Y
′
k+1 + Z′

k+1 − (ukYk + Zk)|Xk,Yk,Zk

)∣∣ ≤ CYkh
2, k = 0,1, . . . ,N − 1,

where C is a positive constant independent of h.
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PROOF. This is a standard result (see, e.g., [57]) for the weak Euler approximation (2.1),
(3.11)–(3.12) used in Algorithm 2 but we include its proof here as we will refer to it later (in
Section 4), where we will need to take into account dependence of the error on time.

We expand u′
k+1 first around (tk,X

′
k+1) and then around (tk,Xk):

u′
k+1 = uk + h

∂uk

∂t
+ h(bk · ∇)uk + h

2
(ak : ∇∇)uk + R1,k+1 + R2,k+1,

so that

R1,k+1 = (
h2/2

)
D2uk[bk, bk] + (

h3/6
)
D3uk[bk, bk, bk] + (

h2/2
)
D3uk[bk, σkξk+1, σkξk+1]

+ (1/24)D4u(tk,Xr)[δk+1, δk+1, δk+1, δk+1] + h2(bk · ∇)Dtuk

+ (h/2)DtD
2u

(
tk,X

′
r

)[δk+1, δk+1] + (
h2/2

)
D2

t u
(
tr ,X

′
k+1

)
,

R2,k+1 = h1/2(σkξk+1 · ∇)uk + (h/2)
(
D2uk[σkξk+1, σkξk+1] − (ak : ∇∇)uk

)
+ h3/2D2uk[bk, σkξk+1] + (

h3/2/6
)
D3uk[σkξk+1, σkξk+1, σkξk+1]

+ (
h5/2/2

)
D3uk[bk, bk, σkξk+1] + h3/2(σkξk+1 · ∇)Dtuk,

where D
j
t = ∂j

∂tj
with j = 1,2, δk+1 = hbk + h1/2σkξk+1, tr = tk + α1h, X′

r = Xk + α2δk+1
with some α1, α2 ∈ (0,1). Notice that

E
(
ξ i
k+1|Xk,Yk,Zk

) = 0, E
(
ξ i
k+1ξ

j
k+1|Xk,Yk,Zk

) = 0, i = j,

E
(
ξ i
k+1ξ

j
k+1ξ

m
k+1

)|Xk,Yk,Zk) = 0, E
((

ξ i
k+1

)2|Xk,Yk,Zk

) = 1,

where i, j,m = 1, . . . d , then it is not difficult to deduce that E(R2,k+1|Xk,Yk,Zk) = 0,
k = 0, . . . ,N − 1. Further, again using moments of ξk+1, noticing E(δk+1)

2 = O(h), k =
0, . . . ,N − 1, and recalling that the function u(t, x) is uniformly bounded for all (t, x) ∈
[T0, T ] × Ḡ ∪ Ḡ−r , we get |E(R1,k+1|Xk,Yk,Zk)| ≤ Ch2, k = 0, . . . ,N − 1. Therefore, us-
ing equation (3.4), we obtain the desired bound as∣∣E(

u′
k+1Y

′
k+1 + Z′

k+1 − (ukYk + Zk)|Xk,Yk,Zk

)∣∣
= ∣∣E(

u′
k+1(Yk + hckYk) − ukYk + Z′

k+1 − Zk|Xk,Yk,Zk

)∣∣
≤

∣∣∣∣
(
uk + h

∂u

∂t
(tk,Xk) + h(bk · ∇)uk + h

(ak : ∇∇)

2
uk

)
(Yk + hckYk) − ukYk + hgkYk

∣∣∣∣
+ ∣∣E(R1,k+1 + R2,k+1|Xk,Yk,Zk)(Yk + hckYk)

∣∣ ≤ CYkh
2. �

LEMMA 3.3. Under Assumptions 2.1–2.2 and 3.1–3.4, the one-step error of Algorithm 2
near the boundary is estimated for all k = 0, . . . ,N − 1 as∣∣uk+1Yk+1 + Zk+1 − (

u′
k+1Y

′
k+1 + Z′

k+1
)∣∣ ≤ CYkrk+1hIḠc

(
X′

k+1
)

a.s.,(3.16)

where C is a positive constant independent of h.

PROOF. It is obvious that the left-hand side of (3.16) is equal to 0 when X′
k+1 ∈ Ḡ.

Let us consider the error on the event {X′
k+1 ∈ Ḡc}. We have∣∣uk+1Yk+1 + Zk+1 − (

u′
k+1Y

′
k+1 + Z′

k+1
)∣∣

= ∣∣(uk+1 − u′
k+1

)
Yk+1 + u′

k+1
(
Yk+1 − Y ′

k+1
) + Zk+1 − Z′

k+1
∣∣,

where we have three errors to analyse: �1 := (uk+1 − u′
k+1)Yk+1, �2 := u′

k+1(Yk+1 − Y ′
k+1),

and �3 := Zk+1 − Z′
k+1.
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Taylor expansion of uk+1 and u′
k+1 around the boundary point Xπ

k+1 of the same time layer
tk+1 gives

uk+1 = uπ
k+1 + rk+1(ν · ∇)uπ

k+1 + (
r2
k+1/2

)
D2uπ

k+1[ν, ν] + R3,k+1,(3.17)

u′
k+1 = uπ

k+1 − rk+1(ν · ∇)uπ
k+1 + (

r2
k+1/2

)
D2uπ

k+1[ν, ν] + R4,k+1,(3.18)

where ν is evaluated at Xπ
k+1 and for j = 3,4,

Rj,k+1 = (−1)j+1(r3
k+1/6

)
D3u

(
tk+1,X

π
k+1 + (−1)j+1αj rk+1ν

)[ν, ν, ν], αj ∈ (0,1).

We notice that (rk+1)
m ≤ Chm/2, k = 0, . . . ,N −1, for any m ≥ 1. Recall u(t, x) ∈ C2,4(Q̄∪

Q̄−r ) which implies that

|Rj,k+1| ≤ Cr3
k+1, j = 3,4,

where C > 0 is a nonrandom constant independent of h.
Using the expansions (3.17)–(3.18) and substituting Yk+1 from (3.13), �1 becomes

�1 = 2rk+1(ν · ∇)uπ
k+1

(
Yk + hckYk + 2rk+1γ

π
k+1Yk + 2r2

k+1
(
γ π
k+1

)2
Yk

)
+ (R3,k+1 − R4,k+1)Yk+1

= 2rk+1Yk(ν · ∇)uπ
k+1 + 4r2

k+1γ
π
k+1Yk(ν · ∇)uπ

k+1 + 2hrk+1ckYk(ν · ∇)uπ
k+1

+ 4r3
k+1

(
γ π
k+1

)2
Yk(ν · ∇)uπ

k+1 + (R3,k+1 − R4,k+1)Yk+1.

Similarly �2 gives

�2 = (
uπ

k+1 − rk+1(ν · ∇)uπ
k+1

)(
2rk+1γ

π
k+1Yk + 2r2

k+1
(
γ π
k+1

)2
Yk

)
+

(
r2
k+1

2
D2uπ

k+1[ν, ν] + R4,k+1

)(
Yk+1 − Y ′

k+1
)

= 2rk+1γ
π
k+1Yku

π
k+1 − 2r2

k+1γ
π
k+1Yk(ν · ∇)uπ

k+1 + 2r2
k+1

(
γ π
k+1

)2
Yku

π
k+1

− 2r3
k+1

(
γ π
k+1

)2
Yk(ν · ∇)uπ

k+1 +
(

r2
k+1

2
D2uπ

k+1[ν, ν] + R4,k+1

)(
Yk+1 − Y ′

k+1
)
,

and, using the value of Zk+1 and Z′
k+1, �3 becomes

�3 = −2rk+1ψ
π
k+1Yk − 2r2

k+1γ
π
k+1ψ

π
k+1Yk.

Combining �1,�2,�3 and using the boundary condition (3.3), we obtain

|�1 + �2 + �3| ≤
∣∣2hrk+1ckYk(ν · ∇)uπ

k+1

∣∣
+

∣∣∣∣2r3
k+1

(
γ π
k+1

)2
Yk(ν · ∇)uπ

k+1 + r2
k+1

2
D2uπ

k+1[ν, ν](Yk+1 − Y ′
k+1

)∣∣∣∣
+ ∣∣R3,k+1Yk+1 − R4,k+1Y

′
k+1

∣∣ ≤ CYkhrk+1,

which gives the error estimate in the case {X′
k+1 ∈ Ḡc}. �

3.4.2. Lemma on the number of steps when X′
k /∈ Ḡ. Consider the Markov chain (tk,X

′
k)

generated by Algorithm 2. Recall that X′
k can take values outside Ḡ. If X′

k ∈ Ḡc, to calculate
X′

k+1 we first determine Xk according to (2.3) and then simulate ξk+1 to find X′
k+1 as in (2.1).

Let Ph = P be the one-step transition operator for the Markov chain (tk,X
′
k), k =

0, . . . ,N :

(PhV )(t, x) = PV (t, x) := E
[
V
(
t + h,X′

1
)|t0 = t,X′

0 = x
]
,
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where (t, x) is an arbitrary point in [T0, T )×G and V (t, x) is a function from [T0, T ]× (Ḡ∪
Ḡ−r ) to R. We note that

E
[
V
(
tk+1,X

′
k+1

)|X′
k = x

] = PV (tk, x).

Consider the boundary value problem associated with the Markov chain (tk,X
′
k):

q(x)PV (t, x) − V (t, x) = −g(t, x), (t, x) ∈ [T0, T − h] × (Ḡ ∪ Ḡ−r ),(3.19)

V (T , x) = 0, x ∈ (Ḡ ∪ Ḡ−r ),(3.20)

where g(t, x) ≥ 0 and q(x) > 0. The solution to this problem starting from (t, x) = (tk, x) is
given by [55, 57, 73]:

V (tk, x) = E

[
N−1∑
i=k

g
(
ti ,X

′
i

) i−1∏
j=k

q
(
X′

j

)|X′
k = x

]
.(3.21)

The next lemma is related to an estimate of the number of steps which the Markov chain
X′

k spends in the layer G−r that lies outside the Ḡ. It is used in proving the main convergence
theorem (Theorem 3.1).

LEMMA 3.4. Under Assumptions 2.1–2.2, for any constant K > 0 and for sufficiently
small h, the following inequality holds:

E

(
N−1∑
k=0

rkIG−r

(
X′

k

) k−1∏
i=0

(
1 + KriIG−r

(
X′

i

))) ≤ C,

where C is a positive constant independent of h.

PROOF. Let r0(x) be the distance of x from boundary ∂G. If we take g(t, x) =
r0(x)IG−r (x) and q(x) = (1 + Kr0(x)IG−r (x)) in (3.19), then the solution to (3.19)–(3.20)
is (cf. (3.21)):

v(t0, x) = E

(
N−1∑
k=0

rkIG−r

(
X′

k

) k−1∏
i=0

(
1 + KriIG−r

(
X′

i

))|X′
0 = x

)
,

where rk = dist(X′
k, ∂G) as before. If we can find a solution V (t, x) to (3.19)–(3.20) with a

function g(t, x) such that it satisfies the inequality

g(t, x) ≥ r0(x)IG−r (x),(3.22)

for all (t, x) ∈ [T0, T − h] × (Ḡ ∪ Ḡ−r ), then we have

v(t0, x) ≤ V (t0, x).

Introduce the function

w(x) =
{

0, x ∈ Ḡ\Ḡl,

dist2(x,Sl), x ∈ Ḡl ∪ Ḡ−r .
(3.23)

Since Algorithm 2 takes steps according to (2.1)–(2.3), we can write

�X′ := X′ − x = 2r0(x)νIG−r (x) + δ,

where the normal ν = ν(xπ) is evaluated at the projection of x on ∂G, that is, xπ , and
δ = b(t, x + 2r0(x)IG−r (x)ν)h + σ(t, x + 2r0(x)IG−r (x)ν)h1/2ξ . Note that∣∣E(δ)

∣∣ = O(h), |δ|2 = O(h),
∣∣�X′∣∣2 = O(h).(3.24)
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We have the following approximation when x ∈ Ḡl ∪ G−r (cf. [53, 57]):

dist
(
x + �X′,Sl

) = dist(x,Sl) +
(
�X′ · x − xπ

l

|x − xπ
l |

)
+O(h),(3.25)

where xπ
l is the projection of x onto the surface Sl . Hence, we have

E
(
dist

(
x + �X′,Sl

))2

= E

(
dist(x,Sl) +

(
�X′ · x − xπ

l

|x − xπ
l |

)
+O(h)

)2
(3.26)

= (
dist(x,Sl)

)2 + 2 dist(x,Sl)E

(
�X′ · x − xπ

l

|x − xπ
l |

)
+O(h).

Also, define another function U(t, x) as

U(t, x) =
{

0, (t, x) ∈ {T } × (Ḡ ∪ Ḡ−r ),

eK1(T −t)eK2w(x), (t, x) ∈ [T0, T − h] × (Ḡ ∪ Ḡ−r ),
(3.27)

where K1 and K2 are positive constants which choice will be discussed later in the proof.
Applying the one step operator P to U , for t < T we get

PU(t, x) = eK1(T −t−h)
E
(
eK2w(X′

1)
)
.

We note that if x as well as X′
1 ∈ Ḡl ∪ Ḡ−r , then due to (3.25) and (3.26) we ascertain

PU(t, x) = eK1(T −t)eK2w(x)(1 − K1h +O
(
h2))

×E

(
1 + 2K2 dist(x,Sl)

(
�X′ · x − xπ

l

|x − xπ
l |

)
+O(h)

)
,

(3.28)

where O(h2) depends on K1 and O(h) depends on K2.
Thereafter, we calculate (1 + Kr0(x)IG−r (x))PU(t, x) − U(t, x) at points (t, x) lying in

different regions identified by four different cases discussed below with the aim of finding
g(t, x) satisfying the inequality (3.22). Introduce the region Sh = {x|dist(x,Sl) < K3h

1/2}
where K3 is chosen so that for x ∈ Gl\Sh, in one step transition, any of the 2d realizations of
X′

1 cannot cross Sl . We also note that for x ∈ Sh, in one step transition X′
1 may or may not

cross the surface Sl . In the first case, that is, in Case 1, we discuss the scenario when x ∈ Ḡ−r .
In Case 2, we choose x ∈ Gl\Sh so that X′

1 cannot cross Sl and remains in Gl ∪ G−r . In
Case 3, we take x ∈ Ḡ\(Ḡl ∪ Sh) so that all realizations of X′

1 also belong to Ḡ\Ḡl . We
examine the scenario when x ∈ Sh in Case 4.

Case 1: x ∈ Ḡ−r .
In this case dist(x,Sl) = l + r0(x). Since Sl is parallel to ∂G, ν(xπ) = ν(xπ

l ). Further,

using (3.28), (3.24), r2
0 (x) = O(h), and (ν(xπ

l ) · x−xπ
l|x−xπ
l |) = −1, we get(

1 + Kr0(x)
)
PU(t, x) − U(t, x)

= eK1(T −t)eK2w(x)

((
1 + Kr0(x)

)(
1 − K1h +O

(
h2))

×
(

1 + 4K2r0(x)l

(
ν · x − xπ

l

|x − xπ
l |

)
+O(h)

)
− 1

)

= (− (
4K2r0(x)l − Kr0(x)

)︸ ︷︷ ︸
1
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− (
K1h − β1(K2)O(h) + β2(K1,K2)O

(
h3/2))︸ ︷︷ ︸

2

)
eK1(T −t)eK2w(x),

where |O(hk)| ≤ Chk with C > 0 being independent of h, K1, and K2, β1(K2) is a func-
tion of K2, and β2(K1,K2) is a function of K1 and K2.

Case 2: x ∈ Gl\Sh and hence all realizations of X′
1 ∈ Gl ∪ G−r .

In this case �X′ = δ, where δ = b(t, x)h + σ(t, x)h1/2ξ . Using (3.24) and (3.28), we
obtain

PU(t, x) − U(t, x)

= eK1(T −t)eK2w(x)(1 − K1h +O
(
h2))

×
(

1 + 2K2

(
b(t, x) · x − xπ

l

|x − xπ
l |

)
dist(x,Sl)h +O(h)

)
− eK1(T −t)eK2w(x)

= (−hK1 + β1(K2)O(h) + β2(K1,K2)O
(
h2))eK1(T −t)eK2w(x),

where |O(hk)| ≤ Chk with C > 0 being independent of h, K1, and K2, β1(K2) is a func-
tion of K2, and β2(K1,K2) is a function of K1 and K2 (note that the functions βi here are
different than the ones in Case 1).

Case 3: x ∈ Ḡ\(Gl ∪ Sh) and all realizations of X′
1 ∈ Ḡ\Ḡl .

We have, PU(t, x) − U(t, x) = eK1(T −t−h) − eK1(T −t) = (−K1h +O(h2))eK1(T −t).
Case 4: x ∈ Sh.

It can be observed that w(x) = O(h) and w(x + δ) =O(h). Hence

PU(t, x) − U(t, x) = (−K1h + K2O(h) + β2(K1,K2)O
(
h2))eK1(T −t),

where |O(hk)| ≤ Chk with C > 0 being independent of h, K1, and K2 and β2(K1,K2) is
a function of K1 and K2.

Now first we analyze Case 1. We take K2 > K+1
4l

which ensures that term 1 is always greater
than r0(x). Then we choose K1 in a manner that not only term 2 in Case 1 is positive but
also f (t, x) = −((1 +Kr0(x)IG−r (x))PU(t, x)−U(t, x)) is positive in Case 2 as well as in
Case 4. It is evident from the second and fourth case that such a choice of K1 is dependent
on K2. As one can see, Case 3 trivially satisfies the condition that f (t, x) = −(PU(t, x) −
U(t, x)) is positive. We take g(t, x) = f (t, x) which is greater than r0(x) in G−r . As can
be easily observed, we have constructed a function V (t, x) = U(t, x) which is a solution
of (3.19)–(3.20) with q(x) = (1 + Kr0(x)IG−r (x)) and g(t, x) ≥ IG−r (x)r0(x). Therefore,
v(t0, x) ≤ V (t0, x) and the lemma is proved. �

COROLLARY 3.1. Under Assumptions 2.1–2.2, for any constant K > 0 the following
inequalities hold:

E

(
N∑

k=1

k−1∏
i=0

(
1 + KriIG−r

(
X′

i

))) ≤ C

h
(3.29)

and also

E

(
N−1∏
i=0

(
1 + KriIG−r

(
X′

i

))) ≤ C,(3.30)

where C is a positive constant independent of h.
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PROOF. Again consider the boundary value problem (3.19)–(3.20) related to the Markov
chain (tk,X

′
k) with the solution given by (3.21). If we chose g(t, x) = 1 and q(x) = (1 +

r0IḠ−r
(x)) then the solution of the problem is

v(t0, x) = E

(
N−1∑
k=0

k−1∏
i=0

(
1 + KriIG−r

(
X′

i

))|X′
0 = x

)
.(3.31)

If we can find a solution to (3.19)–(3.20) with a function g(t, x) ≥ 1 then v(t, x) ≤ V (t, x).
Keeping this in mind, one can easily check if we take g(t, x) = f (t, x)/h where f (t, x) is
constructed according to the cases discussed in Lemma 3.4 then our aim to get g(t, x) ≥ 1 is
fulfilled. In turn we obtain v(t0, x) ≤ V (t0, x) where V (t, x) = U(t, x)/h.

We now show that E(
∏N−1

i=0 (1 + KriIG−r (X
′
i ))) ≤ C, where C is independent of h. Note

that

E

(
N−1∑
k=0

rkIG−r

(
X′

k

) k−1∏
i=0

(
1 + KriIG−r

(
X′

i

)))

= 1

K
E

(
N−1∑
k=0

(
k∏

i=0

(
1 + KriIG−r

(
X′

i

)) −
k−1∏
i=0

(
1 + KriIG−r

(
X′

i

))))

= 1

K
E

(
N−1∏
i=0

(
1 + KriIG−r

(
X′

i

)) − 1

)
,

which on using Lemma 3.4 gives (3.30). We have v(t0, x) ≤ C/h, where v(t0, x) is from
(3.31), which together with (3.30) yields (3.29). �

3.4.3. Convergence theorem. In Lemma 3.2 we have shown that the order of the one-
step approximation in moving from (Xk , Yk , Zk) to (X′

k+1, Y ′
k+1, Z′

k+1) is O(h2) and in
Lemma 3.3 we have obtained the order O(hrk+1) of the one-step approximation in the case
X′

k+1 /∈ Ḡ. Now we combine these two lemmas along with Lemma 3.4 and Corollary 3.1 to
obtain the weak order of convergence of Algorithm 2.

PROOF OF THEOREM 3.1. We have∣∣E(
ϕ(XN)YN + ZN

) − u(t0,X0)Y0
∣∣

=
∣∣∣∣∣E

(
N−1∑
k=0

(
uk+1Yk+1 + Zk+1 − (ukYk + Zk)

))∣∣∣∣∣
=

∣∣∣∣∣E
(

N−1∑
k=0

uk+1Yk+1 − u′
k+1Y

′
k+1 + u′

k+1Y
′
k+1 − ukYk + Zk+1 − Z′

k+1 + Z′
k+1 − Zk

)∣∣∣∣∣.
When X′

k+1 ∈ Ḡ, we have uk+1 = u′
k+1, Yk+1 = Y ′

k+1 and Zk+1 = Z′
k+1, therefore∣∣E(

ϕ(XN)YN + ZN

) − u(t0,X0)Y0
∣∣

≤
∣∣∣∣∣E

(
N−1∑
k=0

(
uk+1Yk+1 − u′

k+1Y
′
k+1 + Zk+1 − Z′

k+1
)
IG−r

(
X′

k+1
))∣∣∣∣∣

+
∣∣∣∣∣E

(
N−1∑
k=0

(
u′

k+1Y
′
k+1 − ukYk + Z′

k+1 − Zk

))∣∣∣∣∣(3.32)
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≤
∣∣∣∣∣E

(
N−1∑
k=0

(
uk+1Yk+1 − u′

k+1Y
′
k+1 + Zk+1 − Z′

k+1
)
IG−r

(
X′

k+1
))∣∣∣∣∣

+
∣∣∣∣∣E

(
N−1∑
k=0

E
(
u′

k+1Y
′
k+1 − ukYk + Z′

k+1 − Zk|Xk,Yk,Zk

))∣∣∣∣∣.
Now we apply Lemma 3.2 and Lemma 3.3 to get

∣∣E(
ϕ(XN)YN + ZN

) − u(t0,X0)Y0 + Z0
∣∣ ≤ Ch

∣∣∣∣∣E
(

N−1∑
k=0

rk+1YkIG−r

(
X′

k+1
))∣∣∣∣∣

+ Ch2

∣∣∣∣∣E
N−1∑
k=0

Yk

∣∣∣∣∣.
(3.33)

From (3.11) and (3.13), we have

Yk = Yk−1 + hck−1Yk−1 + 2rkγ
π
k Yk−1IG−r

(
X′

k

) + 2r2
k

(
γ π
k

)2
Yk−1IG−r

(
X′

k

)
,

which, using the uniform boundedness of γ (t, x) and c(t, x), (t, x) ∈ Q̄, and recalling rk =
O(h1/2), gives

Yk ≤ Yk−1
(
1 + C1h + C2rkIG−r

(
X′

k

)) ≤ Yk−1(1 + C1h)
(
1 + C2rkIG−r

(
X′

k

))
≤ Y0(1 + C1h)k

k∏
i=1

(
1 + C2riIG−r

(
X′

i

)) ≤ eC1T
k∏

i=1

(
1 + C2riIG−r

(
X′

i

))
,

(3.34)

where C1 and C2 are some positive constants. Then substituting (3.34) in (3.33), we obtain∣∣E(
ϕ(XN)YN + ZN

) − u(t0,X0)
∣∣

≤ ChE

(
N∑

k=1

rkIG−r

(
X′

k

) k−1∏
i=1

(
1 + C2riIG−r

(
X′

i

)))

+ Ch2
E

(
N∑

k=1

k−1∏
i=1

(
1 + C2riIG−r

(
X′

i

)))
,

(3.35)

which, together with Lemma 3.4, (3.29) and the fact that rN = O(h1/2), implies the required
result (3.15). �

REMARK 3.1. We observe that Lemma 3.4 does not require Assumption 3.3 and the
proofs of Lemmas 3.2–3.3 and Theorem 3.1 rely only on sufficient smoothness of the solution
u(t, x) of (3.1)–(3.3). This implies that Assumption 3.3 can be replaced by an appropriate
hypoellipticity condition, but we do not pursue such a refinement of our results here. We
also note that Milstein’s algorithm [53] (see also [57]) does intrinsically require the strong
ellipticity (i.e., Assumption 3.3) as its construction rests on changing local coordinates near
the boundary.

REMARK 3.2. If we define the PDE (3.1) on [0, T ) × Ḡ (cf. (4.73)–(4.75) and (4.83)–
(4.85) in the next section) then under Assumptions 2.1–2.2 and 3.1–3.3 the solution u(t, x)

of (3.1)–(3.3) belongs to C2,4([0, T ) × Ḡ) [35, 42] and C(Q̄) [49]. Under these relaxed
conditions, we can also prove the result of Theorem 3.1 (cf. Lemmas 4.9 and 4.11).
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4. Computing ergodic limits. In Section 4.1, we set the scene required for introduc-
ing and analyzing time-averaging and ensemble-averaging estimators for computing ergodic
limits. In Section 4.2, we introduce continuous time-averaging and ensemble-averaging esti-
mators, and in Section 4.3, we present their numerical counterparts, which is computationally
the main part of this section. Sections 4.4 and 4.5 are devoted to error analysis of numeri-
cal time-averaging and ensemble-averaging estimators, respectively. Section 4.6 addresses
the question how close the stationary measure μ of the RSDEs’ (4.7) solution X(t) and a
stationary measure μh of the Markov chain (Xk)k≥0 (constructed according to Algorithm 1)
are.

Here we consider computing ergodic limits using the simple-to-implement Algorithm 1.
At the same time, we note that for this purpose one can also use Milstein’s algorithm [53] (see
also [57], Chapter 6). As we mentioned in the Introduction, weak first-order convergence of
this algorithm at finite time was proved in [53]. The theoretical results of this section on com-
puting ergodic limits by Algorithm 1 can be transferred without any additional ideas required
to the use of Milstein’s algorithm for computing ergodic limits (see also Remark 3.1).

4.1. Ergodic RSDEs and Poisson PDE. This subsection is divided into four parts. As it
was mentioned in the Introduction, the main tool for obtaining continuous time-averaging es-
timators and analysis of errors of numerical time-averaging estimators is the Poisson equation
with Neumann boundary condition. We discuss the existence and uniqueness of its solution
in Section 4.1.1. We consider ergodic limits with respect to the invariant density of the solu-
tion X(t) of RSDEs in a bounded domain G in Section 4.1.2 and integrals with respect to the
normalised restriction of the invariant density of X(t) on the boundary ∂G in Section 4.1.3.
We showcase our methodology by demonstrating how to sample from a given measure on G

or on ∂G using Brownian dynamics (in other words, stochastic gradient system, which is also
called Langevin equations in the fields of statistics and machine learning) with reflection on
the boundary in Section 4.1.4.

4.1.1. Poisson PDE with Neumann boundary condition. Consider the Neumann problem
for the Poisson equation

A u(x) := 1

2

d∑
i,j=1

aij (x)
∂2u(x)

∂xi ∂xj
+

d∑
i=1

bi(x)
∂u(x)

∂xi
= φ1(x), x ∈ G,(4.1)

(∇u(z) · ν(z)
) = φ2(z), z ∈ ∂G.(4.2)

We will need the following assumptions in addition to Assumption 2.1.

ASSUMPTION 4.1. The symmetric matrix a = {aij } in the operator A is uniformly el-
liptic in Ḡ.

ASSUMPTION 4.2. a(x) and b(x) are C2(Ḡ) functions.

ASSUMPTION 4.3. φ1(x) ∈ C2(Ḡ) and φ2(z) ∈ C3(∂G).

By η denote the co-normal vector on the boundary ∂G whose direction cosines are

cos
(
η(z), ei) = 1

α0(z)

d∑
k=1

aik(z)

2
cos

(
ν(z), ek), z ∈ ∂G,
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where ei , i = 1, . . . , d , represent the standard basis in the Cartesian notation, cos(ν(z), ei)

are the direction cosines of the inward normal ν(z) at z ∈ ∂G, and α0(z) is the normalization
factor given by

α0(z) =
(

d∑
i=1

(
d∑

k=1

aik(z)

2
cos

(
ν(z), ek))2)1/2

, z ∈ ∂G.

Under Assumptions 2.1, 4.1, and 4.2, there is a unique solution ρ(x) of the following
Robin problem for the stationary Fokker–Planck equation [8, 59]:

A ∗ρ(x) := 1

2

d∑
i,j=1

∂2

∂xi ∂xj

(
aij (x)ρ(x)

) −
d∑

i=1

∂

∂xi

(
bi(x)ρ(x)

) = 0, x ∈ G,(4.3)

with boundary condition

α∗(z)
(∇ρ(z) · η∗(z)

) − b̃(z)ρ(z) = 0, z ∈ ∂G,(4.4)

where η∗(z), z ∈ ∂G, is a unit vector whose direction cosines are

cos
(
η∗(z), ei) = 2α0(z)

α∗(z)
cos

(
η(z), ei) − α(z)

α∗(z)
cos

(
ν(z), ei).

Here the normalization constant, α∗(z), is such that
∑d

i=1(cos(η∗(z), ei))2 = 1, and

α(z) = α0(z) cos
(
η(z), ν(z)

) = 1

2

(
ν(z) · a(z)ν(z)

)
,(4.5)

while b̃ is given in [59], pp. 13–15. Since the expression for b̃ is cumbersome and not used
in this paper, we do not provide it here. Note that ρ(z), z ∈ ∂G, in (4.4) is the trace of ρ(x),
x ∈ Ḡ. We note that (4.3)–(4.4) is an adjoint homogeneous problem to (4.1)–(4.2).

As is known [28, 59], solvability of the problem (4.1)–(4.2) requires the compatibility
(centering) condition ∫

G
φ1(x)ρ(x) dx +

∫
∂G

φ2(z)α(z)ρ(z) dz = 0.(4.6)

If Assumptions 2.1, 4.1, 4.2, and 4.3 hold along with the centering condition (4.6) then the
problem (4.1)–(4.2) has a unique solution (up to an additive constant) u(x) ∈ C4(Ḡ) (see [8,
59], [32], Chapter 6, [46], Theorem 3).

4.1.2. Ergodic limits in G. Consider the RSDEs

(4.7) dX(s) = b
(
X(s)

)
ds + σ

(
X(s)

)
dW(s) + ν

(
X(s)

)
I∂G

(
X(s)

)
dL(s), X(0) = x.

If Assumptions 2.1, 4.1, and 4.2 hold then there exists a unique invariant probability mea-
sure of the process X(t) governed by the RSDEs (4.7). Moreover, this measure is absolutely
continuous with respect to Lebesgue measure. We denote this invariant measure by μ(x) and
its density by ρ(x), x ∈ Ḡ, and we state that ρ(x) > 0 and ρ(x) ∈ C2(Ḡ) (see [8] for more
details). Indeed, ρ(x) is the solution of the stationary Fokker–Planck equation (4.3), and the
restriction ρ(z), z ∈ ∂G, of the invariant density ρ(x), satisfies the boundary condition (4.4).
We are interested in computing ergodic limits inside the domain, that is, in calculating the
following integral for some function ϕ(x) ∈ C2(Ḡ):

ϕ̄ =
∫
G

ϕ(x)ρ(x) dx.(4.8)

We consider the corresponding approximations in Section 4.3.
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4.1.3. Ergodic limits on ∂G. There are two aspects related to computing ergodic limits
on the boundary ∂G using RSDEs as explained below.

(i) Consider the (restricted) function ρ(z) defined on ∂G. We denote
∫
∂G ρ(z) dz as κ

and define

ρ′(z) = ρ(z)/κ.(4.9)

One can notice that ρ′(z) is a probability density on the boundary ∂G. We can calculate, for
some function ψ(z) ∈ C3(∂G),

ψ̄ ′ =
∫
∂G

ψ(z)ρ′(z) dz.(4.10)

To find ψ̄ ′, we first need to calculate

ψ̄ =
∫
∂G

ψ(z)ρ(z) dz.(4.11)

(ii) Using L(t) as the random time change process allows us to build a Markov process
X̃(t) = X̃x(t) from the solution X(t) = Xx(t) of RSDEs (4.7). We obtain this process X̃(t)

on the boundary ∂G by putting X̃(t) = X(L−1(t)), where L−1(t) is the right continuous in-
verse of L(t). Note that limt→∞ L(t) = ∞ (cf. (4.29)). Denote by F̃ and F̃t the smallest
sigma algebras which make {X̃(t),0 ≤ t < ∞} and {X̃(s),0 ≤ s ≤ t} measurable, respec-
tively. Further, let P̃ be the probability measure defined by P̃(B) = P(X(L−1(·)) ∈ B), where
B ∈ F̃ (see [67]). The process X̃(t) is a strong Markov [71], Theorems 1 and 2, jump [60]
process on ∂G. It induces the following semigroup T̃t on C(∂G) [67], Theorem 9.1:

T̃tf (x) = Ẽf
(
X̃x(t)

) = Ef
(
Xx

(
L−1(t)

))
,(4.12)

where f is a bounded measurable function on ∂G, x ∈ ∂G, Ẽ(·) is expectation with respect
to the probability measure P̃. Under Assumptions 2.1 and 4.1–4.2, X̃(t) has a unique sta-
tionary distribution on ∂G [28], p. 174, which we denote as μ̃ and its density we denote as
ρ̃. Hence, computing ergodic limits on the boundary ∂G also means evaluating the integral∫
∂G ψ(z)ρ̃(z) dz, which is the expectation with respect to the invariant law of X̃(t):

ψ̃ =
∫
∂G

ψ(z)ρ̃(z) dz.(4.13)

We will discuss the relationship between the densities ρ̃(z) and ρ(z) in Section 4.2.1.

We consider approximations of ψ̄ ′ and ψ̃ in Section 4.3.

4.1.4. Gradient system for sampling from a given measure with compact support. This
subsection highlights one of the major applications of this paper. Consider the simplified
RSDEs

dX(s) = b
(
X(s)

)
ds + σdW(s) + ν

(
X(s)

)
I∂G

(
X(s)

)
dL(s),(4.14)

where σ > 0 is a constant.
Under Assumptions 2.1 and 4.2, the above RSDEs has a stationary distribution whose

density, ρ(x), solves the following stationary Fokker–Planck equation:

σ 2

2

d∑
i=1

∂2

(∂xi)2 ρ(x) −
d∑

i=1

∂

∂xi

(
bi(x)ρ(x)

) = 0, x ∈ G,(4.15)
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with boundary condition (note that b̃(z) reduces to b(z) in (4.4), cf. [59], pp. 13–15):

σ 2

2

(∇ρ(z) · ν(z)
) − (

b(z) · ν(z)
)
ρ(z) = 0, z ∈ ∂G.(4.16)

Suppose we are given a probability density ρ(x) ∈ C3(Ḡ), ρ(x) > 0 for x ∈ Ḡ from which
we want to sample/with respect to which we would like to compute some integrals. As we
mentioned in the Introduction, such problems often occur in statistics [3, 44, 72] and in
molecular dynamics [43]. To solve this problem, we can use the RSDEs (4.14) analogously
to how SDEs (Brownian dynamics and Langevin equations) are used for this task in R

d (see,
e.g., [43, 58, 65] and references therein). Indeed, if we take in (4.14)

b(x) = σ 2

2
∇ logρ(x),(4.17)

then the equations (4.15)–(4.16) are trivially satisfied. The RSDEs (4.14), (4.17) are a
stochastic gradient system with reflection, or, in other words, Brownian dynamics with re-
flection. Long time simulation of the gradient system (4.14), (4.17) can be used for sampling
from a given distribution having density ρ(x) with the compact support Ḡ.

As we have emphasized in the Introduction, using the methodology developed in this paper
we can also sample from the distribution having density ρ ′(z) with support on the boundary
∂G. To illustrate the normalised restricted density ρ ′(z), let us look at a simple example.
Consider G = {x2

1 + x2
2 < 1}, ∂G = {z2

1 + z2
2 = 1}, and the density function

ρ(x) = 1

Z

(
x2

1 + x2
2
)
eβx1, x ∈ Ḡ,

where β ≥ 0 is a constant and Z is the normalisation constant. Further, κ = ∫
∂G ρ(z) dz =

2πI0(β)
Z

, where I0(β) is the modified Bessel function of order 0. Then the normalised restric-

tion ρ′(z) is given by ρ′(z) = eβz1

2πI0(β)
, z ∈ ∂G. We write ρ ′(z) in the polar coordinates to

get

ρ′(θ) = eβ cos(θ)

2πI0(β)
,

which is the probability density function of von Mises’ distribution. The motivation for con-
sidering this particular example lies in the fact that this distribution has a number of applica-
tions in directional statistics (see, e.g., [50]). Algorithm 1 described in Section 2 as well as
the estimators of Section 4.3 can be used to sample from von Mises’ distribution. The same
approach is applicable to von Mises–Fisher, Bingham, and Kent distributions or any other
distribution on d − 1-dimensional hyper-surface ∂G (see a related numerical experiment,
Experiment 7.3, in Section 7.2), which are widely used in bioinformatics, computer vision,
geology, and astrophysics (see, e.g., [51]).

To conclude, the application of Algorithm 1 to the gradient system with reflection (4.14),
(4.17) allows us to efficiently sample from any given distribution with the density ρ(x) de-
fined in G and from its normalised restriction ρ′(z) on ∂G.

4.2. Time-averaging and ensemble-averaging estimators. In Section 4.2.1, we obtain
continuous time-averaging estimators for ϕ̄ from (4.8) and for ψ̄ ′ from (4.10). In Sec-
tion 4.2.2, we introduce continuous ensemble-averaging estimators for the same.
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4.2.1. Time-averaging estimators. Time-averaging estimator for ϕ̄ from (4.8). Consider
the Neumann problem

A u(x) = ϕ(x) − ϕ̄, x ∈ G,(4.18) (∇u(z) · ν(z)
) = 0, z ∈ ∂G.(4.19)

It is not difficult to verify that the compatibility condition (4.6) is satisfied for the problem
(4.18)–(4.19). Then, under Assumptions 2.1, 4.1, and 4.2 for any ϕ(x) ∈ C2(Ḡ), there exists
a solution u(x) ∈ C4(Ḡ) (see Section 4.1.1). Apply Ito’s formula to the function u(X(t))

with X(t) from (4.7):

u
(
X(t)

) − u(x) =
∫ t

0
A u

(
X(s)

)
ds +

∫ t

0
∇u

(
X(s)

) · σ (
X(s)

)
dW(s)

+
∫ t

0

(∇u
(
X(s)

) · ν(X(s)
))

dL(s).

(4.20)

Rearranging the terms in (4.20), dividing by t , and using equation (4.19), we get

1

t

∫ t

0
A u

(
X(s)

)
ds = −M(t)

t
+ u(X(t)) − u(x)

t
,(4.21)

where M(t) = ∫ t
0 ∇u(X(s)) · σ(X(s)) dW(s) is a martingale with respect to (Ft )t≥0. Then

(4.18) implies

1

t

∫ t

0
ϕ
(
X(s)

)
ds − ϕ̄ = −M(t)

t
+ u(X(t)) − u(x)

t
.(4.22)

We know from Ito’s isometry that E(M(t)2) ≤ Ct , where C is some positive constant inde-
pendent of t . As a consequence of uniform boundedness of u(x) in Ḡ, we obtain

E

(
1

t

∫ t

0
ϕ
(
X(s)

)
ds − ϕ̄

)2
≤ C

t
.(4.23)

Kronecker’s lemma [24], Theorem 3.3, implies M(t)
t

→ 0 a.s. as t → ∞. Again uniform
boundedness of u(x), x ∈ Ḡ, yields that the last term on the right-hand side of (4.22) goes to
0 as t → ∞. Therefore, we have

lim
t→∞

1

t

∫ t

0
ϕ
(
X(s)

)
ds = ϕ̄ a.s.(4.24)

If we take expectation on both sides of (4.22), we get∣∣∣∣1t E
(∫ t

0
ϕ
(
X(s)

)
ds

)
− ϕ̄

∣∣∣∣ ≤ C

t
.(4.25)

Consequently, it is natural to take 1
T

∫ T
0 ϕ(X(s)) ds as a time-averaging estimator of ϕ̄. We

can also say based on (4.25) that

Bias
(

1

T

∫ T

0
ϕ
(
X(s)

)
ds

)
=O

(
1

T

)
.

One may notice that by combining (4.23) and the above bound on the bias, we get

Var
(

1

T

∫ T

0
ϕ
(
X(s)

)
ds

)
= O

(
1

T

)
.

Time-averaging estimator for ψ̄ ′ from (4.10). To obtain results related to ergodic limits on

the boundary, we will consider the PDE problem (4.1)–(4.2) with φ2(z) = 1
α(z)

or ψ(z)−ψ̄ ′
α(z)

,
where α(z) depends on a(z) (a(z) is the restriction of a(x) on ∂G), and hence we need a
new assumption on a(x) to ensure that φ2(z) ∈ C3(∂G) and therefore to guarantee that the
solution u(x) ∈ C4(Ḡ) (cf. Assumption 4.3).
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ASSUMPTION 4.2′ . a(x) ∈ C3(Ḡ) and b(x) ∈ C2(Ḡ) in (4.1).

Before we move ahead to discuss estimators for ψ̄ ′, we need to look at the asymptotic
behavior of the integral

∫ t
0

1
α(X(s))

dL(s). Consider the following Poisson equation with Neu-
mann boundary condition:

A u(x) = −κ, x ∈ G,(4.26) (
ν(z) · ∇u(z)

) = 1/α(z), z ∈ ∂G,(4.27)

where κ and α(z) are defined in Section 4.1.3 (see (4.9)) and Section 4.1.1 (see (4.5)), re-
spectively. Note that under Assumption 4.1, α(z) > 0 for all z ∈ ∂G. If we take φ1(x) = −κ

and φ2(z) = 1
α(z)

in (4.1)–(4.2) then it is not difficult to notice that compatibility condition
(4.6) is satisfied. This implies that under Assumptions 2.1 and 4.1, 4.2′ the solution u(x) of
(4.26)–(4.27) belongs to C4(Ḡ).

Introduce the notation

Z1(t) =
∫ t

0

ψ(X(s))

α(X(s))
dL(s), Z2(t) =

∫ t

0

1

α(X(s))
dL(s).

Applying Ito’s formula to u(X(t)) with u(x) being the solution of (4.26)–(4.27) and acting
analogously to how we obtained (4.23), (4.24), and (4.25) above, we get

E

(
1

t
Z2(t) − κ

)2
≤ C

t
,(4.28)

lim
t→∞

1

t
Z2(t) = κ a.s.,(4.29) ∣∣∣∣1t E(

Z2(t)
) − κ

∣∣∣∣ ≤ C

t
,(4.30)

lim
t→∞

1

t
E
(
Z2(t)

) = κ.(4.31)

We use a similar reasoning to find an estimator for ψ̄ . For that purpose, first consider the
problem

A u(x) = 0, x ∈ G,(4.32) (∇u(z) · ν(z)
) = (

ψ(z) − ψ̄ ′)/α(z), z ∈ ∂G.(4.33)

As one can check, the compatibility condition (4.6) is verified. Then under Assumptions 2.1
and 4.1, 4.2′, for any ψ ∈ C3(∂G), there exists a solution of (4.32)–(4.33) which is unique
up to an additive constant (see Section 4.1.1). Therefore, Ito’s formula again gives us (4.20),
however in this case A u(X(s)) = 0 and (∇u(X(s)) · ν(X(s))) = (ψ(X(s)) − ψ̄ ′)/α(X(s)).
Consequently, after rearrangement and dividing by t , we have

(4.34)
1

t

∫ t

0

ψ(X(s))

α(X(s))
dL(s) − ψ̄ ′ 1

t

∫ t

0

1

α(X(s))
dL(s) = −M(t)

t
+ u(X(t)) − u(x)

t
.

Using (4.29) and applying the same arguments as used above, we obtain

lim
t→∞

1

t
Z1(t) = ψ̄ ′κ = ψ̄ a.s.(4.35)

If we take expectation on both sides of (4.34) and use (4.30), we get∣∣∣∣1t E(
Z1(t)

) − ψ̄

∣∣∣∣ ≤ C

t
,
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where C is some positive constant independent of time t , and

lim
t→∞

1

t
E
(
Z1(t)

) = ψ̄.(4.36)

Moreover, one can also show

E

(
Z1(t)

t
− ψ̄

)2
≤ C

t
.(4.37)

Note that using (4.28) and Chebyshev’s inequality, we get

P
(
Z2(t) = 0

) ≤ C

t
,

where C > 0 is independent of t .
Furthermore, from almost sure convergence in (4.29), we have a set �0 ⊂ � with P(�0) =

1, and for every ω ∈ �0 and for every ε > 0, there exists a t0(ω, ε) such that for all t >

t0(ω, ε) |Z2(t)/t − κ| < ε, whence choosing ε = κ/2:

κt

2
< Z2(t) <

3κt

2
,

consequently, for sufficiently large t we have Z2(t) > 0 a.s. Then, combining (4.29) with
(4.35), we get

lim
t→∞

(
Z1(t)/Z2(t)

) = ψ̄ ′ a.s.(4.38)

Note that the limit (4.31) guarantees that for a sufficiently large t we have E(Z2(t)) > κt/2.
Therefore, by taking expectation of (4.34) and using (4.30), we get the following for suffi-
ciently large t :

∣∣E(
Z1(t)

)
/E

(
Z2(t)

) − ψ̄ ′∣∣ ≤ C

t
.(4.39)

Furthermore, we have

(
Z1(t)

)2 =
(∫ t

0

ψ(X(s))

α(X(s))
dL(s)

)2
≤ C

(∫ t

0

1

α(X(s))
dL(s)

)2
≤ C

(
Z2(t)

)2 a.s.,

which implies (
Z1(t)

Z2(t)

)2
I(0,∞)

(
Z2(t)

) ≤ C a.s.,

where C > 0 is independent of t . Therefore,

E

(
Z1(t)

Z2(t)
I(0,∞)

(
Z2(t)

) − ψ̄ ′
)2

= E

(
Z1(t)/t

Z2(t)/t
I(0,∞)

(
Z2(t)

) − ψ̄

κ
I(0,∞)

(
Z2(t)

)

− ψ̄

κ
I{Z2(t)=0} − Z1(t)/t

κ
I(0,∞)

(
Z2(t)

) + Z1(t)/t

κ
I(0,∞)

(
Z2(t)

))2

≤ C

(
E

(
Z1(t)

κZ2(t)
I(0,∞)

(
Z2(t)

)(Z2(t)

t
− κ

))2

+E

(
Z1(t)

t
− ψ̄

)2
+ P

(
Z2(t) = 0

)) ≤ C

t
,

(4.40)
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where C > 0 is independent of t . In the similar manner, using the Cauchy–Bunyakovsky–
Schwarz inequality, we get∣∣∣∣E

(
Z1(t)

Z2(t)
I(0,∞)

(
Z2(t)

) − ψ̄ ′
)∣∣∣∣

≤ 1

κ

∣∣∣∣E
(

Z1(t)

t
− ψ̄

)∣∣∣∣ + 1

κ

∣∣∣∣E
((

Z2(t)

t
− κ

)

×
(

Z1(t)

Z2(t)
I(0,∞)

(
Z2(t)

) − ψ̄ ′
))∣∣∣∣ + ψ̄ ′

κ

∣∣∣∣E
(

Z2(t)

t
− κ

)∣∣∣∣ + ψ̄ ′
P
(
Z2(t) = 0

)
(4.41)

≤ 1

κ

∣∣∣∣E
(

Z1(t)

t
− ψ̄

)∣∣∣∣ + 1

κ

(
E

(
Z1(t)

Z2(t)
I(0,∞)

(
Z2(t)

) − ψ̄ ′
)2

E

(
Z2(t)

t
− κ

)2)1/2

+ ψ̄ ′

κ

∣∣∣∣E
(

Z2(t)

t
− κ

)∣∣∣∣ + ψ̄ ′
P
(
Z2(t) = 0

) ≤ C

t
.

For a fixed T , we can view (
Z1(T )/Z2(T )

)
I(0,∞)

(
Z2(T )

)
(4.42)

as a time-averaging estimator for ψ̄ ′. It follows from the above analysis that the bias and
variance of the estimator (4.42) is O( 1

T
).

Time-averaging estimator for ψ̃ from (4.13). In Section 4.1.3, we discussed the invariant
density ρ̃(z) of X̃(t), a jump process evolving on ∂G. From [61] and (4.12, Lemma 2.1), we
have

E

(
I(0,∞)(L(t))

L(t)

∫ t

0
ψ
(
X(s)

)
dL(s) − ψ̃

)2

= E

(
I(0,∞)(L(t))

L(t)

∫ L(t)

0
ψ
(
X
(
L−1(s)

))
ds − ψ̃

)2
(4.43)

= Ẽ

(
I(0,∞)(L(t))

L(t)

∫ L(t)

0
ψ
(
X̃(s)

)
ds − ψ̃

)2
.

Recalling that X̃(s) is an ergodic process, limt→∞ L(t) = ∞ (cf. (4.29)) and also (4.13), it is
not difficult to see that the right-hand side of (4.43) converges to 0 as t → ∞. Introduce

κ̃ =
∫
∂G

α(z)ρ(z) dz and ψ̃0 =
∫
∂G

ψ(z)α(z)ρ(z) dz,(4.44)

where α(z) is from (4.5). It follows from (4.35) that

ψ̃0 = lim
t→∞

1

t

∫ t

0
ψ
(
X(s)

)
dL(s) a.s. and κ̃ = lim

t→∞
L(t)

t
a.s.(4.45)

We can also obtain the following by the same procedure used to ascertain (4.40):

E

( 1
t

∫ t
0 ψ(X(s)) dL(s)

L(t)
t

I(0,∞)

(
L(t)

) − ψ̃0

κ̃

)2
≤ C

t
,(4.46)

where C is a positive constant independent of t . Furthermore,

ψ̃0

κ̃
= lim

t→∞
1

L(t)

∫ t

0
ψ
(
X(s)

)
dL(s) a.s.(4.47)

Comparing (4.43) and (4.46), we get

ψ̃ = ψ̃0/κ̃,
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and by (4.13) and (4.44), we arrive at the relationships between the densities ρ̃(z), ρ(z), and
ρ ′(z) (see (4.9)):

ρ̃(z) = α(z)ρ(z)/κ̃ = α(z)ρ′(z)κ/κ̃(4.48)

and

ρ′(z) = κ̃ ρ̃(z)/
(
κα(z)

)
.(4.49)

Based on (4.45) and (4.47), we can take

1

t

∫ t

0
ψ
(
X(s)

)
dL(s),

L(t)

t
,

I(0,∞)(L(t))

L(t)

∫ t

0
ψ
(
X(s)

)
dL(s),

as the continuous time-averaging estimators for ψ̃0, κ̃ , and ψ̃ , respectively.

REMARK 4.1. If we replace ν(X(s)) by a(X(s))ν(X(s))/2 (one should note that
a(z)ν(z)/|a(z)ν(z)| represents the conormal direction at ∂G) in RSDEs (4.7) then the com-
patibility (centering) condition to be satisfied for the existence of the solution of correspond-
ing Poisson PDE (4.1) with boundary condition (a(z)ν(z) · ∇u(z))/2 = φ2(z) is (see [8]):∫

G
φ1(x)ρ(x) dx +

∫
∂G

φ2(z)ρ(z) dz = 0.

In this case, one can show that κ̃ = κ = ∫
∂G ρ(z) dz and ψ̃0 = ψ̄ = ∫

∂G ψ(z)ρ(z) dz which
implies ρ′(z) = ρ̃(z). In particular, this equality also holds for the RSDEs (4.14) when
ν(X(s)) is replaced by σ 2ν(X(s))/2. See also Section 6.2.

4.2.2. Ensemble-averaging estimators. It is known [28] that reflected diffusion governed
by (4.7) satisfies Doeblin’s condition under Assumptions 2.1, 4.1, and 4.2, and therefore for
any bounded and measurable function ϕ,∣∣Eϕ

(
X(t)

) − ϕ̄
∣∣ ≤ Ce−λt ,(4.50)

where ϕ̄ = ∫
G ϕ(x)ρ(x) dx, ρ(x) is invariant density of X(t) (see Section 4.1), and C and λ

are positive constants independent of t . This implies that we can compute ϕ̄ approximately
by evaluating Eϕ(X(t)) for sufficiently large t using the Monte Carlo technique.

Further, from (4.39)–(4.41), we infer that we can calculate ψ̄ ′ defined in (4.10) by evalu-
ating

E
(
Z1(t)

)
/E

(
Z2(t)

)
or E

((
Z1(t)/Z2(t)

)
I(0,∞)

(
Z2(t)

))
for sufficiently large t .

REMARK 4.2. At the end of Section 4.2.1 we introduced the continuous time-averaging
estimator to find ψ̃ . In the same manner the ensemble-averaging estimators for calculating
the expectation with respect to the invariant law of X̃(t) are

E

(∫ t

0
ψ
(
X(s)

)
dL(s)

)
/EL(t) and E

(
I(0,∞)(L(t))

L(t)

∫ t

0
ψ
(
X(s)

)
dL(s)

)
.
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4.3. Numerical time-averaging and ensemble-averaging estimators. We now come to
the central part of this section. We first introduce the discrete time-averaging estimators ϕ̂N

and ψ̂ ′
N to compute ϕ̄ and ψ̄ ′ (see (4.24) and (4.38)), respectively, as well as κ̂N and ψ̂N to

estimate κ and ψ̄ (see (4.29) and (4.35)), respectively:

ϕ̂N = 1

N

N−1∑
k=0

ϕk,(4.51)

κ̂N = 2

Nh

N−1∑
k=0

rk+1

απ
k+1

IḠc

(
X′

k+1
)
,(4.52)

ψ̂N = 2

Nh

N−1∑
k=0

rk+1ψ
π
k+1

απ
k+1

IḠc

(
X′

k+1
)
,(4.53)

ψ̂ ′
N = ψ̂N

κ̂N

I(0,∞)(κ̂N ) =
∑N−1

k=0
rk+1ψ

π
k+1

απ
k+1

IḠc (X
′
k+1)∑N−1

k=0
rk+1
απ

k+1
IḠc(X

′
k+1)

I(0,∞)(κ̂N ),(4.54)

where Xk is the approximation of RSDEs (4.7) according to Algorithm 1, X′
k+1 is the

auxiliary step from Algorithm 1, rk+1 = dist(X′
k+1,X

π
k+1), ϕk = ϕ(Xk), ψπ

k+1 = ψ(Xπ
k+1),

απ
k+1 = α(Xπ

k+1), and Xπ
k+1 is the projection of X′

k+1 on ∂G. In Section 4.4, we prove (The-
orems 4.2 and 4.7 and Lemma 4.4) that the bias of all the above numerical time-averaging
estimators is O(h + 1/T ) and that the second moment of the error of the estimators (Theo-
rems 4.3 and 4.6 and Lemma 4.5) is O(h2 + 1/T ).

Further, we take the expectation E(ϕN) as a discretized ensemble-averaging estimator for
computing ϕ̄. For calculating ψ̄ ′, we take the following as discretized ensemble-averaging
estimators:

E

(
N−2∑
k=0

rk+1ψ
π
k+1

απ
k+1

IḠc

(
X′

k+1
))

/E

(
N−2∑
k=0

rk+1

απ
k+1

IḠc

(
X′

k+1
))

(4.55)

or

E

((
N−1∑
k=0

rk+1ψ
π
k+1

απ
k+1

IḠc

(
X′

k+1
)
/

N−1∑
k=0

rk+1

απ
k+1

IḠc

(
X′

k+1
))

I(0,∞)(κ̂N )

)
.(4.56)

In Section 4.5 we prove (Theorem 4.10) that the error of the estimator E(ϕN) is O(h+ e−λT )

for some λ > 0 and (Theorem 4.12) that the error of the estimator (4.55) for ψ̄ ′ is O(h+1/T ).
The upper index of the sums in (4.55) is N − 2 due to the error analysis (see Remark 4.5).
The error of (4.56) is same as the bias of (4.54).

REMARK 4.3. At the end of Section 4.2.1, I(0,∞)(L(t))

L(t)

∫ t
0 ψ(X(s)) dL(s) was introduced

as the continuous time-averaging estimator to calculate the expectation with respect to the
invariant law of X̃(t), that is, ψ̃ . To approximate ψ̃ , we take the discrete time-averaging
estimator ψ̃N as

ψ̃N = Z̃1,N

Z̃2,N

I(0,∞)(Z̃2,N ),

and discretized ensemble averaging estimators as

E(Z̃1,N−1)

E(Z̃2,N−1)
or E

(
Z̃1,N

Z̃2,N

I(0,∞)(Z̃2,N )

)
,

where Z̃1,N = ∑N−1
k=0 rk+1ψ

π
k+1IḠc(X

′
k+1) and Z̃2,N = ∑N−1

k=0 rk+1IḠc(X
′
k+1).
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4.4. Error analysis for numerical time-averaging estimators. In this subsection our aim
is to establish the closeness of numerical time-averaging estimators obtained through the
approximation of RSDEs (4.7) by Algorithm 1 to their corresponding ergodic limits. Our
approach to the error analysis of numerical time-averaging estimators is analogous to the one
used in [52] in the case of the usual SDEs.

For brevity, we write uk = u(Xk), u′
k = u(X′

k), bk = b(Xk), σk = σ(Xk), νπ
k = ν(Xπ

k ),
απ

k = α(Xπ
k ), φ1,k = φ1(Xk), and φπ

2,k = φ2(X
π
k ), where X′

k and Xπ
k are as introduced in

Algorithm 1. From Proposition 1.17 in [30], it is known that under Assumption 2.1, u(x) ∈
C4(Ḡ) can be extended to a function in C4(Ḡ ∪ Ḡ−r ), where G−r was introduced in the
beginning of Section 3.4. This also implies that u(x) and its derivatives up to fourth order are
uniformly bounded on Ḡ ∪ Ḡ−r .

We write u(Xk+1) − u(Xk) as

uk+1 − uk = uk+1 − u′
k+1 + u′

k+1 − uk = (
uk+1 − u′

k+1
)
IḠc

(
X′

k+1
) + u′

k+1 − uk

since uk+1 = u′
k+1 if X′

k+1 ∈ Ḡ. Using the Taylor expansion, we get

uk+1 − uk = (
2rk+1φ

π
2,k+1 + R5,k+1 + R6,k+1

)
IḠc

(
X′

k+1
)

+ hφ1,k + R7,k+1 + R8,k+1,
(4.57)

where

R5,k+1 = (
r3
k+1/6

)
D3u

(
Xπ

k+1 + α1rk+1ν
π
k+1

)[
νπ
k+1, ν

π
k+1, ν

π
k+1

]
,

R6,k+1 = −(
r3
k+1/6

)
D3u

(
Xπ

k+1 − α2rk+1ν
π
k+1

)[
νπ
k+1, ν

π
k+1, ν

π
k+1

]
,

R7,k+1 = (
h2/2

)
D2uk[bk, bk] + (

h2/2
)
D3uk[bk, σkξk+1, σkξk+1] + (

h3/6
)
D3uk[bk, bk, bk]

+ (1/24)D4u(Xk + α3δk+1)[δk+1, δk+1, δk+1, δk+1],
R8,k+1 = h1/2(σkξk+1 · ∇)uk + (h/2)

(
D2uk[σkξk+1, σkξk+1] − (ak : ∇∇)uk

)
+ h3/2D2uk[bk, σkξk+1] + (

h3/2/6
)
D3uk[σkξk+1, σkξk+1, σkξk+1]

+ (
h5/2/2

)
D3uk[bk, bk, σkξk+1],

with δk+1 = bkh + σkξk+1h
1/2 and α1, α2, α3 ∈ (0,1).

Let us estimate the error terms Rj,k+1, j = 5, . . . ,8. It is not difficult to deduce that for
any k = 0, . . . ,N − 1:

E(R8,k+1|Xk) = 0.(4.58)

Recall that the functions b(x), σ(x) ∈ C2 for x ∈ Ḡ and u(x) ∈ C4, x ∈ Ḡ ∪ Ḡ−r . Then,
using boundedness of ξk+1, we obtain for all k = 0, . . . ,N − 1:

|Ri,k+1| ≤ Cr3
k+1 a.s., i = 5,6,(4.59)

|R7,k+1| ≤ Ch2 a.s.,(4.60)

where C is a positive constant independent of T and h. Proceeding in the same way as above,
we can also get the following estimates for all k = 0, . . . ,N − 1:

|Ri,k+1Rj,k+1| ≤ Cr6
k+1 a.s., i, j = 5,6,(4.61) ∣∣R2

7,k+1
∣∣ ≤ Ch4 a.s.,(4.62) ∣∣R2

8,k+1
∣∣ ≤ Ch a.s.,(4.63)

where C is a positive constant independent of T and h.
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The next lemma is related to an estimate of the number of steps which the Markov chain
X′

k spends in the layer G−r . We note that in comparison with the analogous Lemma 3.4 the
estimate in the below lemma has explicit (linear) dependence on time T , which is important
for the error analysis of the numerical time-averaging estimators introduced in the previous
subsection.

LEMMA 4.1. Under Assumptions 2.1 and 4.2, the following inequality holds for suffi-
ciently large T :

E

(
N∑

k=1

rkIG−r

(
X′

k

)) ≤ CT,

where C is a positive constant independent of T and h.

PROOF. The proof follows the same arguments as those in Lemma 3.4, but with (cf.
(3.27))

U(t, x) =
{

0, (t, x) ∈ {T } × (Ḡ ∪ Ḡ−r ),(
K(T − t) + w(x)

)
/l, (t, x) ∈ [0, T − h] × (Ḡ ∪ Ḡ−r ),

and with an appropriate choice of K . Here w(x) is from (3.23) and l is the distance between
Sl and ∂G. �

We will first consider estimates for bias of the estimator ϕ̂N (see (4.51)) and second mo-
ment of its error followed by respective error estimates of κ̂N , ψ̂N , and ψ̂ ′

N (see (4.52)–
(4.54)).

THEOREM 4.2. Under Assumptions 2.1 and 4.1–4.2, the following estimate holds for
ϕ ∈ C2(Ḡ): ∣∣E(ϕ̂N) − ϕ̄

∣∣ ≤ C

(
h + 1

T

)
,(4.64)

where ϕ̂N is from (4.51), ϕ̄ is from (4.8), and C > 0 is independent of T and h.

PROOF. Consider the Neumann problem for Poisson equation, (4.18)–(4.19), that is, the
problem (4.1)–(4.2) with φ1(x) = ϕ(x) − ϕ̄ and φ2(z) = 0. Then (4.57) becomes

uk+1 − uk = h(ϕk − ϕ̄) + R7,k+1 + R8,k+1 + (R5,k+1 + R6,k+1)IḠc

(
X′

k+1
)
,

and, summing over the first N terms, we get
N−1∑
k=0

(uk+1 − uk) = h

N−1∑
k=0

(ϕk − ϕ̄) +
N−1∑
k=0

(R7,k+1 + R8,k+1)

+
N−1∑
k=0

(
(R5,k+1 + R6,k+1)IḠc

(
X′

k+1
))

,

(4.65)

whence by reordering terms, taking expectation on both sides, dividing by T = Nh, and using
(4.58), we obtain

∣∣E(ϕ̂N) − ϕ̄
∣∣ ≤ |EuN − u0|

T
+ 1

Nh

N−1∑
k=0

|ER7,k+1|

+ 1

T

N−1∑
k=0

E
(
(R5,k+1 + R6,k+1)IḠc

(
X′

k+1
))

.
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Notice that |EuN − u0| ≤ C and using (4.59)–(4.60), we obtain

∣∣E(ϕ̂N) − ϕ̄
∣∣ ≤ C

(
1

T
+ h

)
+ C

T
hE

(
N−1∑
k=0

rk+1IḠc

(
X′

k+1
))

,

which by Lemma 4.1 gives the quoted result. �

THEOREM 4.3. Under Assumptions 2.1 and 4.1–4.2, the following estimate holds for
ϕ ∈ C2(Ḡ):

E(ϕ̂N − ϕ̄)2 ≤ C

(
h2 + 1

T

)
,

where C is a positive constant independent of T and h.

PROOF. The proof is based on two steps. We first square both sides of (4.65) and use
the estimates (4.62)–(4.63). The second step is to apply the following inequality obtained by
using (4.59) and (4.61):

E

(
N−1∑
k=0

Rk+1IḠc

(
X′

k+1
))2

= E

(
N−1∑
k=0

R2
k+1IḠc

(
X′

k+1
))

+ 2E

(
N∑

k=1

E

(
N∑

j=k+1

RjIḠc

(
X′

j

)|X′
k

)
RkIḠc

(
X′

k

))

≤ Ch5/2
E

(
N−1∑
k=0

rk+1IḠc

(
X′

k+1
)) + ChE

(
N∑

k=1

E

(
N∑

j=k+1

rj IḠc

(
X′

j

)|X′
k

)
RkIḠc

(
X′

k

))
,

where Rk+1 := R5,k+1 + R6,k+1 and C is a positive constant independent of T and h. Then
one can obtain the desired result using Lemma 4.1 and combining the above stated two steps.

�

Assumption 4.2 suffices for proving the previous two theorems. However, in the subse-
quent lemmas and theorems we will need Assumption 4.2′.

Now we proceed to error analysis for time-averaging estimators related to ergodic limits
on the boundary. The next lemma is proved analogously to Theorem 4.2.

LEMMA 4.4. Under Assumptions 2.1, 4.1, and 4.2′, the following hold for any ψ ∈
C3(∂G):

∣∣E(κ̂N) − κ
∣∣ ≤ C

(
h + 1

T

)
,(4.66)

∣∣E(ψ̂N) − ψ̄
∣∣ ≤ C

(
h + 1

T

)
,(4.67)

where κ̂N is from (4.52), κ is from (4.9), ψ̂N is from (4.53), ψ̄ is from (4.11), and C is a
positive constant independent of T and h.

The next lemma is proved analogously to Theorem 4.3.
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LEMMA 4.5. Under Assumptions 2.1, 4.1, and 4.2′, the following hold for any ψ ∈
C3(∂G):

E(κ̂N − κ)2 ≤ C

(
h2 + 1

T

)
,(4.68)

E(ψ̂N − ψ̄)2 ≤ C

(
h2 + 1

T

)
,(4.69)

where C is a positive constant independent of T and h.

Using Chebyshev’s inequality and (4.68), we have

P(κ̂N = 0) ≤ C

(
h2 + 1

T

)
,(4.70)

where C > 0 is independent of T and h.

THEOREM 4.6. Under Assumptions 2.1, 4.1, and 4.2′, the following holds for any ψ ∈
C3(∂G):

E
(
ψ̂ ′

N − ψ̄ ′)2 ≤ C

(
h2 + 1

T

)
,

where ψ̂ ′
N is from (4.54), ψ̄ ′ is from (4.10), and C is a positive constant independent of T

and h.

PROOF. Since ψ(z) ∈ C3(∂G), we have (cf. (4.52) and (4.53)):

ψ̂2
N =

(
2

Nh

N−1∑
k=0

rk+1ψ
π
k+1

απ
k+1

IḠc

(
X′

k+1
))2

≤ C

(
2

Nh

N−1∑
k=0

rk+1

απ
k+1

IḠc

(
X′

k+1
))2

= Cκ̂2
N.

Under Assumption 4.1, α(z) > 0 for all z ∈ ∂G (see (4.5)) which implies(
ψ̂2

N/κ̂2
N

)
I(0,∞)(κ̂N ) ≤ C.(4.71)

We have

E
(
ψ̂ ′

N − ψ̄ ′)2 = E

(
ψ̂Nκ − ψ̄ κ̂N

κ̂Nκ
I(0,∞)(κ̂N ) − ψ̄

κ
I{κ̂N=0}

)2

= E

(
(ψ̂N − ψ̄)κ̂N − (κ̂N − κ)ψ̂N

κ̂Nκ
I(0,∞)(κ̂N ) − ψ̄

κ
I{κ̂N=0}

)2

≤ C

(
E(ψ̂N − ψ̄)2 +E

(
(κ̂N − κ)2

(
ψ̂N

κ̂N

)2
I(0,∞)(κ̂N )

)
+ P(κ̂N = 0)

)
.

Using (4.71), we get

E
(
ψ̂ ′

N − ψ̄ ′)2 ≤ C
(
E(ψ̂N − ψ̄)2 +E(κ̂N − κ)2 + P(κ̂N = 0)

)
,

which by (4.68), (4.69), and (4.70) gives the desired result. �

THEOREM 4.7. Under Assumptions 2.1, 4.1, and 4.2′, the following holds for any ψ ∈
C3(∂G): ∣∣E(

ψ̂ ′
N

) − ψ̄ ′∣∣ ≤ C

(
h + 1

T

)
,(4.72)

where C is a positive constant independent of T and h.
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PROOF. We have∣∣Eψ̂ ′
N − ψ̄ ′∣∣

=
∣∣∣∣E

(
ψ̂N

κ̂N

I(0,∞)(κ̂N )

)
− ψ̄

κ

∣∣∣∣
=

∣∣∣∣E
(

ψ̂Nκ − ψ̄κ̂N

κ̂Nκ
I(0,∞)(κ̂N )

)
− ψ̄

κ
I{κ̂N=0}

∣∣∣∣
=

∣∣∣∣E
(

(ψ̂N − ψ̄)κ̂N + (κ − κ̂N )ψ̂N

κ̂Nκ
I(0,∞)(κ̂N )

)
− ψ̄

κ
I{κ̂N=0}

∣∣∣∣
≤ 1

κ

∣∣E(ψ̂N) − ψ̄
∣∣ + 1

κ

∣∣∣∣E
(
(κ − κ̂N )

ψ̂N

κ̂N

I(0,∞)(κ̂N )

)∣∣∣∣ + ψ̄ ′
P(κ̂N = 0)

≤ 1

κ

∣∣E(ψ̂N) − ψ̄
∣∣ + 1

κ

∣∣E(κ − κ̂N )
(
ψ̂ ′

N − ψ̄ ′)∣∣ + ψ̄ ′

κ

∣∣E(κ − κ̂N )
∣∣ + ψ̄ ′

P(κ̂N = 0).

By the Cauchy–Bunyakovsky–Schwarz inequality, we get |E(κ − κ̂N )(ψ̂ ′
N − ψ̄ ′)| ≤ (E(κ −

κ̂N )2)1/2(E(ψ̂ ′
N − ψ̄ ′)2)1/2. Then, using (4.66)–(4.68), (4.70), and Theorem 4.6, we obtain

(4.72). �

REMARK 4.4. In Remark 4.3, we introduced the numerical time-averaging estimators
for the ergodic limit ψ̃ , for which we can prove the following error estimates analogously to
the proofs of Theorems 4.6 and 4.7 for ψ̄ ′:

|Eψ̃N − ψ̃ | ≤ C

(
h + 1

T

)
, E(ψ̃N − ψ̃)2 ≤ C

(
h2 + 1

T

)
,

where C > 0 is independent of T and h.

4.5. Error analysis for numerical ensemble-averaging estimators. In this subsection our
aim is to estimate errors when we approximate the stationary averages ϕ̄ and ψ̄ ′ using dis-
cretized ensemble-averaging estimators introduced in Section 4.3. We split our discussion in
two parts. First, we will consider the error of the ensemble-averaging estimator for ϕ̄. The
proof exploits the backward Kolmogorov (parabolic) equation (cf. the similar approach in
[69] for the case of SDEs in R

d ). In the second part, we will estimate the error of the numer-
ical ensemble-averaging estimator for ψ̄ ′. We take t0 = 0, therefore Q = [0, T ) × G.

Consider the parabolic equation with nonzero terminal condition and homogeneous bound-
ary condition:

∂u

∂t
(t, x) + A u(t, x) = 0, (t, x) ∈ [0, T ) × Ḡ,(4.73)

u(T , x) = ϕ(x), x ∈ Ḡ,(4.74)

∂u

∂ν
(t, z) = 0, 0 ≤ t < T , z ∈ ∂G.(4.75)

If Assumptions 2.1 and 4.1–4.2 hold with ϕ(x) ∈ C4(Ḡ) then the solution u(t, x) of the
problem (4.73)–(4.75) belongs to C2,4([0, T ) × Ḡ) [35, 42]. Further, u(t, x) ∈ C(Q̄) [49].
The probabilistic representation of the solution is given by (see Section 3.1):

u(0, x) = Eϕ
(
X(T )

)
,

where X(s) is the solution of the RSDEs (4.7).
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Introduce the norm for t ∈ [0, T )〈
u(t, x)

〉p
Ḡ

= ∑
2i+|j |=p

max
Ḡ

∣∣Di
t D

j
xu(t, x)

∣∣,
where D

j
xu = ∂ |j |u

∂xj1 ...xjd
and j is a multi-index. We make the following natural assumption for

the solution of the Neumann problem (4.73)–(4.75).

ASSUMPTION 4.4. There are positive constants C and λ independent of T such that the
following bound holds for all t ∈ [0, T ):

4∑
p=1

〈
u(t, x)

〉p
Ḡ

≤ Ce−λ(T −t).(4.76)

A bound of the form (4.76) but with supremum over G is given in Theorem 4.1 of [34]
under Assumptions 2.1, 4.1, and 4.2. We also mention that such a decaying bound for the gra-
dient of the solution was proved for the heat equation with homogeneous Neumann boundary
condition in [62]. A bound similar to (4.76) is proved for the Cauchy case in [69].

From [30], Proposition 1.17, if Assumptions 2.1, 4.1, 4.2, and 4.4 hold then the solu-
tion u(t, x) ∈ C2,4([0, T ) × Ḡ) of problem (4.73)–(4.75) can be extended to a function in
C2,4([0, T ) × Ḡ ∪ Ḡ−r ) satisfying the bound (4.76).

Under Assumptions 2.1, 4.1, 4.2, and 4.4, the following error bounds hold for all k =
0,1 . . . ,N − 2: ∣∣E(

u′
k+1 − uk|Xk

)∣∣ ≤ Ch2e−λ(T −tk),(4.77) ∣∣uk+1 − u′
k+1

∣∣ ≤ Chrk+1e
−λ(T −tk+1)IḠc

(
X′

k+1
)

a.s.,(4.78)

where C > 0 is independent of T and h. The above bounds directly follow from Lemmas 3.2
and 3.3 together with Assumption 4.4 if we note that under Assumption 4.4, the terms ap-
pearing in R1,k+1 in Lemma 3.2 will be bounded by Ch2e−λ(T −tk) and the terms R3,k+1 and
R4,k+1 in Lemma 3.3 by Cr3

k+1e
−λ(T −tk+1).

Next, we state an appropriate lemma related to the average number of steps which the
chain X′

k spends in G−r .

LEMMA 4.8. Under Assumptions 2.1 and 4.2, the following inequality holds for any
λ > 0:

E

(
N∑

k=1

eλtk rkIG−r

(
X′

k

)) ≤ CeλT ,(4.79)

where C is a positive constant independent of T and h.

PROOF. We take U(t, x) in Lemma 3.4 as (cf. (3.27))

U(t, x) =
⎧⎪⎨
⎪⎩

0, (t, x) ∈ {T } × (Ḡ ∪ Ḡ−r ),

KeλT − eλt

(
K − 1

l
w(x)

)
, (t, x) ∈ [0, T − h] × (Ḡ ∪ Ḡ−r ),

where w(x) and l are as in Lemma 3.4. Following arguments similar to the ones used in the
proof of Lemma 3.4 with an appropriate choice of K , we can obtain the desired result. �
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LEMMA 4.9. Under Assumptions 2.1, 4.1, 4.2, and 4.4, the following inequality holds
for ϕ ∈ C4(Ḡ): ∣∣E(

ϕ(XN)
) − u(0, x)

∣∣ ≤ Ch,

where u(0, x) is the solution of (4.73)–(4.75) and C > 0 is independent of T and h.

PROOF. Analogously to the proof of Theorem 3.1, we have (cf. (3.32)):

∣∣E(
ϕ(XN)

) − u(0,X0)
∣∣ ≤

∣∣∣∣∣E
(

N−2∑
k=0

(
uk+1 − u′

k+1
)
IG−r

(
X′

k+1
))∣∣∣∣∣

+
∣∣∣∣∣E

(
N−2∑
k=0

E
(
u′

k+1 − uk|Xk

))∣∣∣∣∣ + ∣∣Eϕ(XN) − u(tN−1,XN−1)
∣∣,

then using (4.77) and (4.78), we obtain∣∣E(
ϕ(XN)

) −E
(
ϕ
(
X(T )

))∣∣
≤ Ch

∣∣∣∣∣E
(

N−2∑
k=0

e−λ(T −tk+1)rk+1IG−r

(
X′

k+1
))∣∣∣∣∣

+ Ch2e−λT
N−2∑
k=0

eλtk + ∣∣E(
ϕ(XN−1) − u(tN−1,XN−1)

)∣∣ + Ch.

(4.80)

Notice that due to Taylor expansion of u(tN ,XN−1) around (tN−1,XN−1), we have
|u(tN ,XN−1) − u(tN−1,XN−1)| ≤ Ch, where C is independent of T under Assumption 4.4.
Using Lemma 4.8, we obtain∣∣E(

ϕ(XN)
) −E

(
ϕ
(
X0,x(T )

))∣∣ ≤ Ch.(4.81) �

The proof of the next theorem directly follows from combining (4.50) and (4.81).

THEOREM 4.10. Under Assumptions 2.1, 4.1–4.2, and 4.4, the following inequality
holds for ϕ ∈ C4(Ḡ): ∣∣ϕ̄ −E

(
ϕ(XN)

)∣∣ ≤ C
(
h + e−λT )

,(4.82)

where C is a positive constant independent of T and h.

Now we move to estimating the error of the discretized ensemble-averaging estimators
corresponding to (4.55). Notice that the error bound for the discretized ensemble-averaging
estimator (4.56) has already been proved in Theorem 4.7.

Consider the parabolic equation with zero terminal condition and nonzero Neumann
boundary condition:

∂u

∂t
(t, x) + A u(t, x) = 0, (t, x) ∈ [0, T ) × Ḡ,(4.83)

u(T , x) = 0, x ∈ Ḡ,(4.84)

∂u

∂ν
(t, z) = ψ(z) − ψ̄ ′

α(z)
, 0 ≤ t < T , z ∈ ∂G.(4.85)
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If Assumptions 2.1, 4.1, and 4.2′ hold with ψ(z) ∈ C3(∂G) then there exists a solution
u(t, x) ∈ C2,4([0, T ) × Ḡ) of the problem (4.83)–(4.85) [35, 42]. Further, u(t, x) ∈ C(Q̄)

[49]. The probabilistic representation of the solution is given by (cf. (3.7)):

u(t, x) = E

(∫ T −t

0

ψ̄ ′ − ψ(X(s))

α(X(s))
dL(s)

)
,(4.86)

where X(s) is the solution of the RSDEs (4.7).
We make the following natural assumption for the solution of (4.83)–(4.85).

ASSUMPTION 4.5. The following inequality holds uniformly for (t, x) ∈ [0, T ) × Ḡ:

4∑
p=0

∑
2i+|j |=p

sup
[0,T )×Ḡ

∣∣Di
t D

j
xu(t, x)

∣∣ ≤ C,(4.87)

where C is a positive constant independent of T .

With respect to Assumption 4.5, we note that the solution of the problem (4.83)–(4.85)
converges to the solution of a stationary problem [19, 29] when time T goes to infinity (cf.
the case of the problem (4.73)–(4.75) where the solution converges to a constant). Also,
note that the solution u(t, x) can be expanded asymptotically in powers of 1/(T − t) (see
Theorem 3 and Section 7 in [29] for more details).

From [30], Proposition 1.17, if Assumptions 2.1, 4.1, 4.2′, and 4.5 hold then the solution
u(t, x) ∈ C2,4([0, T )×Ḡ) can be extended to a function in C2,4([0, T )×Ḡ∪Ḡ−r ) satisfying
the bound (4.87).

Now we state two results which directly follow from Lemmas 3.2 and 3.3 provided As-
sumptions 2.1, 4.1, 4.2′, and 4.5 hold along with ψ(z) ∈ C3(∂G):∣∣E(

u′
k+1 − uk|Xk

)∣∣ ≤ Ch2,(4.88) ∣∣uk+1 − u′
k+1 + Zk+1 − Zk

∣∣ ≤ Cr3
k+1IḠc

(
X′

k+1
)

a.s.(4.89)

where C is independent of T and h, and k = 0,1 . . . ,N − 2.
Before proceeding further, we introduce the additional notation

Z1,N−1 =
N−2∑
k=0

2rk+1ψ
π
k+1

απ
k+1

IḠc

(
X′

k+1
)
, Z2,N−1 =

N−2∑
k=0

2rk+1

απ
k+1

IḠc

(
X′

k+1
)
.

Recall that ψ̄ ′ = limT →∞ EZ1(T )
EZ2(T )

(see (4.39)) and the ensemble-averaging estimator for ψ̄ ′ is

equal to EZ1,N−1
EZ2,N−1

(see (4.55)).

LEMMA 4.11. Under Assumptions 2.1, 4.1, 4.2′, and 4.5, the following inequality holds
for ψ ∈ C3(∂G): ∣∣E(

ψ̄ ′Z2,N−1 − Z1,N−1
) − u(0, x)

∣∣ ≤ ChT,

where u(0, x) is from (4.86) and C is a positive constant independent of T and h.

PROOF. Analogously to the proof of Theorem 3.1 (cf. (3.32) with ZN−1 = ψ̄ ′Z2,N−1 −
Z1,N−1), we have (note that u(T , x) = 0 and Z0 = 0):∣∣E(

ψ̄ ′Z2,N−1 − Z1,N−1
) − u(0, x) − Z0

∣∣
≤

∣∣∣∣∣E
(

N−2∑
k=0

E
(
u′

k+1 − uk|Xk,Zk

))∣∣∣∣∣
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+
∣∣∣∣∣E

(
N−2∑
k=0

(
uk+1 − u′

k+1 + Zk+1 − Zk

)
IG−r

(
X′

k+1
))∣∣∣∣∣

+ ∣∣E(
u(tN ,XN−1) − uN−1

)∣∣.
Note that |E(u(tN ,XN−1) − uN−1)| ≤ Ch due to the Taylor expansion of u(tN ,XN−1)

around (tN−1,XN−1). Then, using (4.88), (4.89), and Lemma 4.1, we obtain∣∣E(
ψ̄ ′Z2,N−1 − Z1,N−1

) − u(0, x) − Z0
∣∣

≤ Ch

∣∣∣∣∣E
(

N−2∑
k=0

rk+1IG−r

(
X′

k+1
))∣∣∣∣∣

+ Ch2(N − 1) + Ch ≤ ChT . �

REMARK 4.5. The solution u(t, x) of (4.83)–(4.85) belongs to C2,4([0, T ) × Ḡ) and
C(Q̄), which does not allow us to use Taylor expansion in the previous lemma as we have
done in the proof of Theorem 3.1 (cf. Lemma 3.2) in the final step, that is, from k = N − 1
to k = N . Instead, in the above proof we use the fact u(T , x) = 0, take the estimator
E(Z1,N−1)/E(Z2,N−1) and expand only in time t in the final step from k = N − 1 to k = N .
This also, in particular, explains why we have used N − 2 and not N − 1 in the estimator
(4.55).

THEOREM 4.12. Under Assumptions 2.1, 4.1, 4.2′, and 4.5, the following inequality
holds for ψ ∈ C3(∂G): ∣∣∣∣E(Z1,N−1)

E(Z2,N−1)
− ψ̄ ′

∣∣∣∣ ≤ C

(
h + 1

T

)
,(4.90)

where ψ̄ ′ is from (4.10) and C is a positive constant independent of T and h.

PROOF. From Lemma 4.11, we have E(Z1,N−1 − Z2,N−1ψ̄
′ + u(0, x)) = O(h)T ,

whence by rearranging the terms we get

E(Z1,N−1)

E(Z2,N−1)
− ψ̄ ′ = O(h)T − u(0, x)

E(Z2,N−1)
.

Then, using (4.87) and (4.66), we ascertain

∣∣∣∣E(Z1,N−1)

E(Z2,N−1)
− ψ̄ ′

∣∣∣∣ ≤ C(h + 1
T
)

E(Z2,N−1)

T

≤ C(h + 1
T
)

κ +O(h + 1
T
)

≤ C

(
h + 1

T

)
.

�

REMARK 4.6. For the discretized ensemble-averaging estimators introduced in Re-
mark 4.3 for ψ̃ , we can get the following error bound in the same manner as we did in
Theorem 4.12 for ψ̄ ′:

∣∣∣∣E(Z̃1,N−1)

E(Z̃2,N−1)
− ψ̃

∣∣∣∣ ≤ C

(
h + 1

T

)
,

where C > 0 is independent of T and h.
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4.6. Error analysis for a stationary measure of Algorithm 1. We can express Algorithm 1
(its part for Xk) as the following recursive formula:

Xk+1 = F(Xk, ξk+1) + 2r0
(
F(Xk, ξk+1)

)
ν
(
F(Xk, ξk+1)

)
IḠc

(
F(Xk, ξk+1)

)
:= H(Xk, ξk+1),

where F(x, ξ) = x + b(x)h + σ(x)ξh1/2, r0(F (x, ξ)) = dist(F (x, ξ), ∂G), ν(F (x, ξ)) =
ν(Fπ(x, ξ)), and Fπ(x, ξ) is the projection of F(x, ξ) on ∂G for all realizations of ξ , x ∈ Ḡ,
and F(x) ∈ Ḡ∪ Ḡ−r . Under Assumptions 2.1 and 4.2, F(x, ξ), Fπ(x, ξ) and ν(F (x, ξ)) are
continuous functions on Ḡ for every realization of ξ . Note that for y = F(x, ξ) ∈ Ḡ ∪ Ḡ−r ,
IḠc(y) is discontinuous but r0(y)IḠc(y) is continuous on Ḡ ∪ Ḡ−r provided Assumption 2.1
holds. This implies that H(x, ξ) ∈ Ḡ is a continuous function for all x ∈ Ḡ and for ev-
ery realization of ξ . Consider a function g(x) ∈ C(Ḡ), where C(Ḡ) denotes the class of
continuous functions on Ḡ. Now take a sequence {xn}n∈N such that xn → x as n → ∞.
From the above discussion, it is clear that g(H(xn, ξ)) → g(H(x, ξ)) a.s. as n → ∞. Us-
ing the bounded convergence theorem, we obtain Eg(H(xn, ξ)) → Eg(H(x, ξ)) as n → ∞.
This shows that Pg(x) ∈ C(Ḡ), where Pg(x) is the one-step transition operator defined as
Pg(x) = E(g(X1)|X0 = x). Hence (Xk)k≥0 is a Feller chain [37]. Since the state space Ḡ is
compact, it follows from the Krylov–Bogoliubov theorem [20] that there exists a stationary
measure μh of Xk . We note that μh is, as a rule, not unique.

In this subsection, our focus is on how close μ and μh are. To this end, introduce the metric
D between two probability measures μ1 and μ2:

D(μ1,μ2) = sup
f ∈H

∣∣∣∣
∫
G

f (x)μ1(dx) −
∫
G

f (x)μ2(dx)

∣∣∣∣,
where H = {f : Ḡ →R and |f |(2)

Ḡ
≤ 1}. Now we are in a position to state the theorem.

THEOREM 4.13. Let Assumptions 2.1, 4.1, and 4.2 hold. Suppose μh is a stationary
measure of the Markov chain (Xk)k≥0 described in Algorithm 1, then

D
(
μ,μh) ≤ Ch,

where C is a positive constant independent of h.

PROOF. Denote by Ex the conditional expectation with conditioning on the initial point
X(0) = x. We have ∫

G
f (x)μh(dx) =

∫
G
Exf (Xk)μ

h(dx),

where Xk is from Algorithm 1 and f ∈ H. Therefore, we can write∫
G

f (x)μh(dx) =
∫
G

1

N

N∑
k=1

Exf (Xk)μ
h(dx).

Using Theorem 4.2, we get∣∣∣∣
∫
G

f (x)
(
μh(dx) − μ(dx)

)∣∣∣∣ =
∣∣∣∣∣
∫
G

(
1

N

N∑
k=1

Exf (Xk) − f̄

)
μh(dx)

∣∣∣∣∣ ≤ C

(
h + 1

Nh

)
,

where f̄ is the expectation of f with respect to the invariant measure μ and (in comparison
with Theorem 4.2) the constant C does not depend on f as here we consider only f ∈ H. By
letting N → ∞ in the above equation, we obtain the stated result. �
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5. Solving elliptic PDEs with Robin boundary condition. In Section 5.1, we introduce
elliptic PDEs with Robin boundary condition and discuss their link to reflected diffusion
processes via the Feynman–Kac formula. We use Algorithm 2 to numerically solve elliptic
PDEs with decay. However, the same algorithm does not work (we highlight the reason for
that later) when employed to solve the Poisson PDE with Neumann boundary condition. To
deal with that, we propose a new adaptive time-stepping algorithm in Section 5.2. We state
the two convergence theorems for the two cases (with decay and without decay) in Section 5.3
and prove them in Section 5.4.

5.1. Probabilistic representation. Consider the following elliptic equation:

A u + c(x)u + g(x) = 0, x ∈ G,(5.1)

with Robin boundary condition

∂u

∂ν
+ γ (z)u = ψ(z), z ∈ ∂G,(5.2)

where A was introduced in Section 4.1.1. We make the following assumptions in addition to
Assumptions 2.1, 4.1, and 4.2.

ASSUMPTION 5.1. g(x) ∈ C2(Ḡ) and ψ(z) ∈ C3(∂G).

ASSUMPTION 5.2. c(x) ∈ C2(Ḡ) is negative for all x ∈ Ḡ and γ (z) ∈ C3(∂G) is non-
positive for all z ∈ ∂G.

If Assumptions 2.1, 4.1–4.2, and 5.1–5.2 are satisfied then the problem (5.1)–(5.2) has
a unique solution u(x) ∈ C4(Ḡ) (see [32, 59] and [46], Theorem 3). Further, the following
estimates hold (see [2, 46]):

|u|(4)

Ḡ
≤ C

(|g|(2)
G + |ψ |(3)

∂G

)
.

The probabilistic representation of the solution of equations (5.1)–(5.2) is given by [28]:

u(x) = lim
T →∞E

(
Zx(T )

)
,

where Zx(s), x ∈ Ḡ, is governed by the following RSDEs:

dY (s) = c
(
X(s)

)
Y(s) ds + γ

(
X(s)

)
I∂G

(
X(s)

)
Y(s) dL(s), Y (0) = 1,

dZ(s) = g
(
X(s)

)
Y(s) ds − ψ

(
X(s)

)
I∂G

(
X(s)

)
Y(s) dL(s), Z(0) = 0,

and X(s) is from (4.7). The diffusion matrix σ(x) in (4.7) is related to a(x) as σ(x)σ (x)� =
a(x).

The case c(x) = 0 and γ (z) = 0. Consider the Poisson equation (4.1) with Neumann
boundary condition (4.2). We discussed the existence and uniqueness of the solution of (4.1)–
(4.2) in Section 4.1.1. The probabilistic representation of the solution u(x) has the form [8,
28]:

u(x) = lim
T →∞EZx(T ) + ū,(5.3)

where ū = ∫
G u(x)ρ(x) dx, ρ(x) is the solution of the adjoint problem (4.3)–(4.4) (note that

ρ(x) is the invariant density of X(s) from (4.7)), and Zx(s) = Z(s) is governed by

dZ(s) = −φ1
(
X(s)

)
ds − φ2

(
X(s)

)
I∂G

(
X(s)

)
dL(s), Z(0) = 0,(5.4)

where X(s) is given by (4.7).
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5.2. Numerical method for the Poisson equation. We will numerically solve elliptic PDE
(5.1) with Robin boundary condition (5.2) using Algorithm 2 and will prove its first order of
convergence when T → ∞ in Section 5.4. However, if c(x) = 0 and γ (z) = 0, that is, if
we consider the Poisson problem (4.1)–(4.2), and use Algorithm 2 to numerically solve it
then the algorithm’s error increases linearly with N for fixed h ∈ (0,1), that is, Algorithm 2
diverges for this case when T → ∞. Therefore, this case needs a different approach and
a new algorithm. This new algorithm (Algorithm 3) constructed in this subsection is based
on double partitioning of the time interval [0, T ] and is convergent in h and T , while its
computational cost grows with decrease of tolerance only slightly higher than linear. This
idea is of potential interest in other stochastic numerics settings.

We discretize the interval [0, T ] as follows

Tj − Tj−1 := �jT = Njhj ,

where Nj is the number of steps and hj is the time step size in the interval (Tj−1, Tj ]. The
hj and Nj are given by

hj = h

jβ
and Nj =

⌊
ϒ

hjj�

⌋
,

where 0 < � ≤ β ≤ 1, h > 0 is a fixed sufficiently small number, and ϒ > 0 is a constant
chosen independently of T . One can see that �jT ≤ ϒ/j�. Now we define a constant � as
the smallest natural number so that the following inequality is satisfied:

T ≤ T� :=
�∑

j=1

�jT .(5.5)

We note that � is well defined because of �jT ≥ ϒ/j� −hj and the condition 0 < � ≤ β ≤ 1.
The total number of steps until time Tj is equal to

N ′
j =

j∑
i=1

Ni,

and set N ′
0 = 0 and N = N ′

�. Note that �jT is independent of h.
Consider an interval (Tj−1, Tj ]. In this interval, as in Algorithm 2, while moving from Xk

to X′
k+1 in (2.1), we take the following step:

X′
k+1 = Xk + hjbk + h

1/2
j σkξk+1, k = N ′

j−1, . . . ,N
′
j − 1.(5.6)

Let us denote φ1,k = φ1(Xk) and φπ
2,k = φ2(X

π
k ). If X′

k+1 ∈ Ḡ then

Xk+1 = X′
k+1, Zk+1 = Zk − hjφ1,k,(5.7)

else we take the reflection step as in Algorithm 2:

Xk+1 = X′
k+1 + 2rj,k+1ν, k = N ′

j−1, . . . ,N
′
j − 1,(5.8)

where rj,k+1 denotes dist(X′
k+1,X

π
k+1) in time interval (Tj−1, Tj ], Xπ

k+1 is projection of
X′

k+1 on ∂G and ν is the inward unit normal at Xπ
k+1 ∈ ∂G. Analogous to (3.14), we write

Zk+1 = Zk − hjφ1,k − 2rj,k+1φ
π
2,k+1, k = N ′

j−1, . . . ,N
′
j − 1.(5.9)
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Algorithm 3 Algorithm to solve (4.1)–(4.2)
Step 1: Set X0 = x, Z0 = 0, T0 = 0, j = 0, k = 0, N ′

0 = 0.
Step 2: If Tj < T , set j := j + 1, hj := h

jβ , N ′
j := N ′

j−1 + � ϒ
hj j� �, Tj := Tj−1 + hj� ϒ

hj j� �,

and Goto Step 3, else Stop.
Step 3: Simulate ξk+1 and find X′

k+1 using (5.6).
Step 4: If X′

k+1 ∈ Ḡ then find Xk+1 and Zk+1 according to (5.7),
else find Xk+1 and Zk+1 according to (5.8)–(5.9).

Step 5: Put k := k + 1 and if k < N ′
j then return to Step 3 else return to Step 2.

5.3. Two convergence theorems. Theorem 5.1 shows the estimate of error incurred while
solving the Robin problem for elliptic PDE using Algorithm 2. Theorem 5.2 gives the error
estimate when Algorithm 3 is employed to solve the Poisson PDE with Neumann boundary
condition.

THEOREM 5.1. Under Assumptions 2.1, 4.1–4.2, and 5.1–5.2, the following inequality
holds for sufficiently small h > 0:∣∣E(ZN) − u(x)

∣∣ ≤ C
(
h + e−λT )

,(5.10)

where ZN is calculated according to Algorithm 2 approximating the solution u(x) of (5.1)–
(5.2), and C and λ are positive constants independent of T and h.

THEOREM 5.2. Let 0 < � ≤ β ≤ 1 and �/2 + β > 1 and Assumptions 2.1, 4.1, 4.2, 4.3
hold along with the centering condition (4.6). Assume that v(t, x0) = Eu(Xt,x0(T )) satisfies
Assumption 4.5, where u(x) is the solution of (4.1)–(4.2) and Xt,x0(s) solves (4.7). Then∣∣∣E(ZN) − lim

T →∞Zx0(T )
∣∣∣ ≤ C

(
h + e−λT )

,(5.11)

where ZN is calculated according to Algorithm 3, Z(s) solves (5.4), C and λ are positive
constants independent of T and h, and N = N ′

�.

The proofs follow the same procedure as in Section 3.4, that is, we first obtain error esti-
mates for local approximation and prove a lemma related to the number of steps the Markov
chain X′

k spends in Ḡ−r , and then based on them we prove the main convergence theorems.
Computational complexity of Algorithm 3 together with an optimal choice of � and β is
discussed at the end of Section 5.4.2.

We remark that, in Theorem 5.2, Assumptions 2.1, 4.1, 4.2, 4.3, and the compatibility
condition (4.6) guarantee (see Section 4.1.1) that the solution u(x) of the considered elliptic
problem (4.1)–(4.2) belongs to C4(Ḡ). Hence we can consider the parabolic problem (4.73)–
(4.75) with the coefficients as in (4.1)–(4.2) and with the terminal condition u(x) instead of
ϕ(x). Consequently, the solution v(t, x) = Eu(Xt,x(T )) of this parabolic problem can be as-
sumed to satisfy Assumption 4.4, which is natural (see the discussion after Assumption 4.4).
However, to prove Theorem 5.2, it is sufficient to assume a weaker assumption on v(t, x),
Assumption 4.5.

REMARK 5.1. If we take φ1(x) = −f (x) + f̄ and φ2(z) = 0 in (4.1)–(4.2), where f̄ =∫
Ḡ f (x)ρ(x) dx and ρ(x) is the invariant density of (4.7), then, for any f (x) ∈ C2(Ḡ), the

solution of (4.1)–(4.2) is given by u(x) = limT →∞E(Z(T )) = ∫ ∞
0 E(f (X(s))− f̄ ) ds under

Assumptions 2.1, 4.1, and 4.2. The solution of this stationary problem is of potential interest
for certain applications (see, e.g., [25]).
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5.4. Proofs. We first (Section 5.4.1) consider the case of (5.1)–(5.2) with c(x) < 0, x ∈
G, and γ (z) ≤ 0, z ∈ ∂G. The case of (4.1)–(4.2) with c(x) = 0, x ∈ G and γ (z) = 0, z ∈ ∂G

is considered in Section 5.4.2.
We need the following notation, uk+1 = u(Xk+1), uk = u(Xk), uπ

k+1 = u(Xπ
k+1), u′

k =
u(X′

k), ϕk = ϕ(Xk), ψπ
k+1 = ψ(Xπ

k+1), γ π
k+1 = γ (Xπ

k+1), gk = g(Xk), ck = c(Xk), bk =
b(Xk), ak = a(Xk), σk = σ(Xk), where Xk , Yk , Zk , X′

k , Y ′
k , Z′

k , Xπ
k are appropriately as

in Algorithm 2 in Section 5.4.1 and Algorithm 3 in Section 5.4.2. Here u(x) denotes the
solution of (5.1)–(5.2) in Section 5.4.1 and of (4.1)–(4.2) in Section 5.4.2.

5.4.1. The case c(x) < 0 and γ (z) ≤ 0. We first give error bounds on one-step ap-
proximations. Under Assumptions 2.1, 4.1–4.2, and 5.1–5.2, the following hold for all
k = 0,1 . . . ,N − 1:∣∣E(

u′
k+1Y

′
k+1 + Z′

k+1 − ukYk − Zk|Xk,Yk,Zk

)∣∣ ≤ Ch2Yk,(5.12) ∣∣uk+1Yk+1 + Zk+1 − u′
k+1Y

′
k+1 − Z′

k+1
∣∣ ≤ Chrk+1YkIḠc

(
X′

k+1
)

a.s.,(5.13)

where C is positive constant independent of h and T . With the change of notation as intro-
duced in the beginning of the current subsection, we can obtain (5.12) and (5.13) by following
exactly the same procedure as in the proof of Lemmas 3.2 and 3.3, respectively. The inde-
pendence of C from T trivially follows from the fact that we are dealing with the elliptic
equation.

The next lemma gives a bound related to the number of steps which the chain X′
k spends

in Ḡc.

LEMMA 5.3. Under Assumptions 2.1, 4.1, and 4.2, the following bound holds for λ > 0
and sufficiently small h > 0:

E

(
N−1∑
k=0

rk+1(1 − λh)kIḠc

(
X′

k+1
)) ≤ C,

where C is a positive constant independent of T and h.

PROOF. For λ > 0, consider the elliptic problem

A v(x) − λv(x) = 0, x ∈ G,(∇v(z) · ν(z)
) = −1, z ∈ ∂G.

In this case it follows from (3.11) and (3.14):

Yk = (1 − λh)k ≤ e−λtk ,(5.14)

Zk = 2
k−1∑
i=0

ri+1(1 − λh)iIḠc

(
X′

i+1
)
.(5.15)

Using (5.12), (5.13), and (5.14), we get∣∣E(
v′
k+1Y

′
k+1 − vkYk + Z′

k+1 − Zk|Xk,Zk

)∣∣ ≤ Ch2e−λtk ,∣∣vk+1Yk+1 − v′
k+1Y

′
k+1 + Zk+1 − Z′

k+1
∣∣ ≤ Chrk+1e

−λtk IḠc

(
X′

k+1
)

a.s.

Similar to the proof of Theorem 3.1, we obtain

∣∣E(
v(XN)YN + ZN

) − v(X0)Y0 − Z0
∣∣ ≤ ChE

(
N−1∑
k=0

rk+1e
−λtk IG−r

(
X′

k+1
))

+ Ch2
N−1∑
k=0

e−λtk .

(5.16)
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Using (5.14)–(5.16) and the facts that rk+1 = O(h1/2) and v(x) is uniformly bounded for
x ∈ Ḡ, we get (note that ZN ≥ 0 for λh < 1):

E

(
N−1∑
k=0

rk+1(1 − λh)kIḠc

(
X′

k+1
))

= 1

2
E(ZN)

≤ ∣∣v(x)
∣∣ + ∣∣Ev(XN)YN

∣∣ + ChE

(
N−1∑
k=0

rk+1e
−λtk IG−r

(
X′

k+1
)) + Ch2

N−1∑
k=0

e−λtk

≤ C + C
(
h3/2 + h2)N−1∑

k=0

e−λtk ,

which completes the proof. �

PROOF OF THEOREM 5.1. Using the notation introduced earlier in this section, we begin
the analysis with an inequality analogous to (3.32) from the proof of Theorem 3.1 combining
which with (5.12) and (5.13), we get

∣∣E(
u(XN)YN + ZN

) − u(X0)Y0 − Z0
∣∣ ≤ Ch

∣∣∣∣∣E
(

N−1∑
k=0

rk+1YkIG−r

(
X′

k+1
))∣∣∣∣∣

+ Ch2

∣∣∣∣∣E
(

N−1∑
k=0

Yk

)∣∣∣∣∣.
(5.17)

From (3.11) and (3.13), we have

Yk = Yk−1 + hck−1Yk−1 + 2rkγ
π
k Yk−1IG−r

(
X′

k

) + 2r2
k

(
γ π
k

)2
Yk−1IG−r

(
X′

k

)
.

Under the assumption γ (z) ≤ 0 and sufficiently small h > 0, we have 2rkγ
π
k Yk−1IG−r (X

′
k)×

(1 + rkγk) ≤ 0. Hence

Yk ≤ Yk−1(1 + ck−1h) ≤ (1 − λh)k ≤ e−λtk ,(5.18)

where λ = minx∈Ḡ |c(x)| > 0. Then substituting (5.18) in (5.17), we obtain

∣∣E(ZN) − u(x)
∣∣ ≤ C

∣∣Eu(XN)
∣∣e−λT + ChE

(
N−1∑
k=0

rk+1(1 − λh)kIG−r

(
X′

k+1
))

+ Ch2
N−1∑
k=0

e−λtk .

(5.19)

Applying Lemma 5.3 to (5.19), we get (5.10). �

5.4.2. The case c(x) = 0 and γ (z) = 0. Consider the problem (4.1)–(4.2) as described
in Section 4.1.1 together with the probabilistic representation (5.3), (4.7), (5.4).

Now we are in a position to state two results regarding the one-step approximation in the
time interval (Tj−1, Tj ]. Under Assumptions 2.1, 4.1, 4.2, 4.3, these results directly follow
from (5.12) and (5.13) for all k = N ′

j−1, . . . ,N
′
j − 1:∣∣E(

u′
k+1 + Z′

k+1 − uk − Zk|Xk,Zk

)∣∣ ≤ Ch2
j ,(5.20) ∣∣uk+1 + Zk+1 − u′

k+1 − Z′
k+1

∣∣ ≤ Chjrj,k+1IḠc

(
X′

k+1
)

a.s.,(5.21)

where C is a positive constant independent of T and h.
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Recall that the layer Ḡ−r was introduced in Section 3.4. We now state a lemma which is
related to the number of steps of X′

k in G−r . For that purpose, we first consider a surface Slj

which belongs to G and is parallel to the boundary ∂G. The distance between ∂G and Slj is

lj = min
{
(�jT )1/2,R/2,1

}
,(5.22)

where R is the radius of the uniform interior sphere inside G. We take R/2 in (5.22) so that
a surface Slj , which is parallel to ∂G, exists when R is not sufficiently large. We assume that

h > 0 is sufficiently small so that lj � h
1/2
j . By virtue of Assumption 2.1, lj -neighbourhood

of any point x ∈ Slj entirely belongs to G. The layer between Slj and ∂G will be denoted as
Glj .

LEMMA 5.4. Under Assumptions 2.1 and 4.2, the following inequality holds:

E

( N ′
j∑

k=N ′
j−1+1

rj,kIG−r

(
X′

k

)|XN ′
j−1

)
≤ C

�jT

lj
, j = 1, . . . ,�,(5.23)

where C is a positive constant independent of �jT and h.

PROOF. Let us fix j ∈ {1, . . . ,�} and hence consider t ∈ [Tj−1, Tj ]. Define a function
U(t, x) as

U(t, x) =
⎧⎪⎨
⎪⎩

0, (t, x) ∈ {Tj } × (Ḡ ∪ Ḡ−r ),
1

lj

(
K(Tj − t) + w(x)

)
, (t, x) ∈ [Tj−1, Tj − hj ] × (Ḡ ∪ Ḡ−r ),

where w(x) is from (3.23) but with distance from the surface Slj . Introduce the region Shj
=

{x | dist(x,Slj ) < K1h
1/2
j }. We choose K1 so that for any point x ∈ Glj \Shj

, there is zero

probability that in one step transition any of the 2d realizations of X′
j,1 cross the surface Slj ,

where X′
j,1 is constructed according to Algorithm 3 given X′

j,0 = x. Note that the region Shj

contains points x starting from which one-step realizations of X′
j,1 may or may not cross

the surface Slj . As we did in Lemma 3.4, we calculate PU(t, x) − U(t, x) at points (t, x)

lying in different regions identified by four cases: (I) x ∈ G\(Glj ∪ Shj
), when X′

j,1 remains

in G\Glj ; (II) x ∈ Shj
; (III) x ∈ Glj \Shj

; (IV) x ∈ Ḡ−r . We analyze PU(t, x) − U(t, x),
calculated according to the above four cases, analogously as in the proof of Lemma 3.4 to
obtain the desired bound. �

The next lemma gives an error estimate for Algorithm 3 applied to (4.1)–(4.2) accumulated
over an interval (Tj−1, Tj ].

LEMMA 5.5. Under Assumptions 2.1 and 4.1–4.3, the following inequality holds for all
j = 1, . . . ,�:

∣∣E(
u(XN ′

j
) + ZN ′

j
− u(XN ′

j−1
) − ZN ′

j−1
|XN ′

j−1
,ZN ′

j−1

)∣∣ ≤ C
hj�jT

lj
,(5.24)

where C > 0 is independent of hj and �jT .

PROOF. We can write∣∣E(
u(XN ′

j
) + ZN ′

j
− u(XN ′

j−1
) − ZN ′

j−1
|XN ′

j−1
,ZN ′

j−1

)∣∣
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≤
∣∣∣∣∣E

( N ′
j−1∑

k=N ′
j−1

(
uk+1 − u′

k+1 + Zk+1 − Z′
k+1

)
IG−r

(
X′

k+1
)|XN ′

j−1
,ZN ′

j−1

)∣∣∣∣∣

+
∣∣∣∣∣E

( N ′
j−1∑

k=N ′
j−1

E
(
u′

k+1 + Z′
k+1 − uk − Zk|Xk,Zk

)|XN ′
j−1

,ZN ′
j−1

)∣∣∣∣∣.
Using the inequalities (5.20), (5.21), Lemma 5.4, and (5.22), we ascertain (5.24). �

The probabilistic representation (5.3) of the solution of (4.1)–(4.2) contains two parts,
limT →∞ Z(T ) and ū. In Theorem 5.2, we estimate the error incurred in approximating
limT →∞ Z(T ), which proof is presented below.

PROOF OF THEOREM 5.2. We have

E
(
u(XN) + ZN − u(x)

)
= E

(
�∑

j=1

E
(
u(XN ′

j
) + ZN ′

j
− u(XN ′

j−1
) − ZN ′

j−1
|XN ′

j−1
,ZN ′

j−1

))
.

Using Lemma 5.5, we get

∣∣E(
u(XN) + ZN

) − u(x)
∣∣ ≤ C

�∑
j=1

hj�jT

lj
.

From (5.22), we know that either lj = (�jT )1/2 or lj = (R/2) ∧ 1. Therefore, we have

∣∣E(
u(XN) + ZN

) − u(x)
∣∣ ≤ C

�∑
j=1

hj

(
�jT + (�jT )1/2).(5.25)

Now consider the parabolic problem (4.73)–(4.75) whose solution we denote as v(t, x) in-
stead of u(t, x) and whose terminal condition at t = T� is u(x) instead of ϕ(x). In the current
setting we have assumed that the solution v(t, x) satisfies the following bound:

4∑
p=0

∑
2i+|l|=p

sup
[0,T�)×Ḡ

∣∣Di
t D

l
xv(t, x)

∣∣ ≤ C,(5.26)

where C > 0 is independent of T�. Then, analogously to the previous lemma, we can prove

∣∣E(
v(tj ,XN ′

j
) − v(tj−1,XN ′

j−1
)|XN ′

j−1

)∣∣ ≤ C
hj�jT

lj
, j = 1, . . . ,�,(5.27)

where C > 0 is independent of T� (hence also of T ) due to (5.26). Note that to obtain
(5.27) in the interval (T�−1, T�], we use the facts that Eu(XN) = Eu(XN−1) + O(h�) and
|v(tN ,XN−1) − v(tN−1,XN−1)| ≤ Ch� (cf. the proof of Lemma 4.9). Therefore, we have
(cf. (5.25)) ∣∣Eu(XN) −Eu

(
X(T�)

)∣∣ = ∣∣Eu(XN) − v(0, x)
∣∣

≤ C

�∑
j=1

hj

(
�jT + (�jT )1/2),
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which together with (4.50) (though with the appropriate change of notation) gives

∣∣Eu(XN) − ū
∣∣ ≤ C

(
�∑

j=1

hj

(
�jT + (�jT )1/2) + e−λT

)
,(5.28)

where ū is from (5.3), and C and λ are positive constants independent of T .
Using (5.3), (5.25), (5.28), and the fact that 1 < �/2 + β ≤ 3/2, we obtain∣∣∣E(ZN) − lim

T →∞Z(T )
∣∣∣

= ∣∣E((
u(XN) + ZN − u(x)

) − (
u(XN) − ū

))∣∣
≤ C

(
�∑

j=1

hj

(
�jT + (�jT )1/2) + e−λT

)
(5.29)

≤ C

(
h

�∑
j=1

(
1

j�/2+β
+ 1

j�+β

)
+ e−λT

)

≤ C

(
h

�/2 + β − 1
+ h + e−λT

)
. �

We now discuss the cost of Algorithm 3. Recall that the cost of Algorithms 1 and 2, in all
applications considered in this paper, is proportional to 1/h. First, let us define (cf. (5.11)) the
tolerance of Algorithm 3 as tol := 1

2(h + e−λT ). Taking h = e−λT (i.e., equal contributions
from the two sources of the total error), we get tol = h and T = − lnh

λ
. Further, we choose

� to guarantee T ≤ T� ≤ ∑�
j=1

ϒ
j� . Let � = 1. Then T ∼ ϒ�−�+1. Therefore, we need

� ∼ | lnh|1/(1−�) (we dropped λ and ϒ because here our only concern is to know how the
cost grows with decrease of the tolerance tol via decrease of h). The cost of Algorithm 3 is
appropriate to measure via the number of steps of a single trajectory of the algorithm which
is equal to

Cost =
�∑

j=1

Nj =
�∑

j=1

�jT

hj

∼ 1

h

�∑
j=1

1

j�−β
∼ 1

h
�β−�+1 ∼ 1

h
| lnh|1+ β

1−� = 1

tol
| ln tol|1+ β

1−� .

We need to choose � and β so that factor β
1−�

is small in the cost while the constant 1
�/2+β−1

in the error (5.29) is not too big under the constraints �/2 + β − 1 > 0 and 0 < � ≤ β ≤ 1. In
this case it is optimal to take β = 1 and small �. For example, � = 1/10 gives β

1−�
= 10/9,

1
�/2+β−1 = 20 and Cost ∼ | lnh|2.1

h
. Hence, we infer that with appropriate choice of � and β ,

the cost of Algorithm 3 is only slightly higher than linear in 1/h.
We note that instead of using the two level partitioning of the time interval [0, T ] we could

use the following single partition of [0, T ]: T = ∑�
k=1

h
kβ with 0 < β < 1. For this single

partition, by similar arguments as in the proof of Theorem 5.2, we would only prove∣∣∣E(ZN) − lim
T →∞Z(T )

∣∣∣ ≤ C

(
h3/2

�∑
j=1

1

j3β/2 + e−λT

)
≤ C

(
2h3/2

3β − 2
+ e−λT

)
,

2/3 < β < 1.

Here again it is natural to define the tolerance tol := 1
2(h3/2 + e−λT ) and again to take h3/2 =

e−λT . Then the cost in terms of tol is

Cost := � ∼
(

T

h

)1/(1−β)

∼ | ln tol|1/(1−β)

tol2/(3(1−β))
, 2/3 < β < 1,
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which is significantly worse than linear increase in 1/tol (e.g., for β = 2/3, we have Cost ∼
| ln tol|3/tol2). This emphasizes the importance of the idea of double partitioning of the time
interval in Algorithm 3.

6. Extensions. In Section 6.1, we present an algorithm to approximate RSDEs (3.8)
with second order of weak convergence based on adaptive time stepping near the boundary.
In Section 6.2, we generalise Algorithm 1 to approximate RSDEs in a weak sense when
reflection is in an inward oblique direction.

6.1. Second-order approximation. In this subsection we modify Algorithm 1 to construct
a second-order weak approximation of the solution X(t) of the RSDEs (1.1) on an interval
[T0, T ] (for simplicity, we do not include here a second-order approximation of (3.9)–(3.10)).
To obtain a second-order method for (1.1), we need an approximation of weak local order 3
for SDEs without reflection, which we will use inside the domain G, and we need a more
accurate approximation of the reflection than in Algorithm 1. To achieve the latter, we will
introduce an adaptive (random) time step so that the auxiliary chain X′

k belongs to Ḡ ∪ Ḡ−r

with r = �(h), where the notation Ḡ−r was introduced in Section 3.4.2 and the Landau big
theta notation, �(h), implies that there are constants C1,C2 > 0 independent of h such that
C1h ≤ r ≤ C2h. When X′

k ∈ Ḡ−r , we will use the same reflection as in Algorithm 1, but
because the layer Ḡ−r is of size �(h) in this subsection, the one-step error of reflection will
be O(h3). Note that in Algorithm 1 X′

k ∈ Ḡ ∪ Ḡ−r with r = O(h1/2) and the one-step error
of reflection was O(h3/2).

Let us write a generic approximation of weak local order 3 in the form suitable for this
section:

X = x + δ(t, x;h; ξ),(6.1)

where h > 0 is a time step, ξ is a random vector the components of which are some bounded
mutually independent random variables, and δ is such that for all x ∈ Ḡ

Ef
(
Xt,x(t + h)

) −Ef
(
x + δ(t, x;h; ξ)

) = O
(
h3),(6.2)

with Xt,x(t +h) being a solution of the SDEs (1.1) from which the reflection term is excluded,
and f being an arbitrary sufficiently smooth function with bounded derivatives. Note that δ

and ξ in (6.1) used in this subsection are different from δ and ξ associated with Algorithm 1
which have been used everywhere else in this paper except this Section 6.1. There are various
numerical approximations satisfying (6.1)–(6.2) (see, e.g., [57] and references therein).

Introduce a layer St,h ∈ Q̄ such that if (t, x) ∈ Q̄\St,h then X from (6.1) belongs to Ḡ and
if (t, x) ∈ St,h then at least one realization (i)X of X does not belong to Ḡ. Consequently, if
(t, x) ∈ Q̄\St,h, we can use (6.1) to approximate (1.1).

If (t, x) ∈ St,h, we find the largest time step θ ∈ [h2, h] such that all realizations of x +
δ(t, x; θ; ξ) belong to Ḡ∪ Ḡ−r with r = �(h). Then we draw a realization of ξ and compute

X′ = x + δ(t, x; θ; ξ).

If X′ ∈ Ḡ, we set X = X′, otherwise

X = X′ + 2r0ν
(
Xπ ),

where as usual r0 = dist(X′,Xπ) and Xπ is the projection of X′ on ∂G.
Having the above two ingredients, we now can construct a Markov chain Xk approximat-

ing the solution of (1.1) in the weak sense, which is formulated as Algorithm 4.
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Algorithm 4 Algorithm for second-order approximation
Step 1: Set τ0 = t0, X0 = x, k = 0.
Step 2: If τk ≤ T − h, then hk = h; else hk = T − τk .
Step 3: If (τk,Xk) ∈ Q̄\Sτk,hk

, then simulate ξk+1 independently of ξ1, . . . , ξk and

τk+1 = τk + hk,

Xk+1 = Xk + δ(τk,Xk;hk; ξk+1),

where δ satisfies (6.2). Goto Step 6.
Step 4: Find the largest time step θk+1 ∈ [h2, hk] so that all realizations of Xk +

δ(τk,Xk; θk+1; ξk+1) belong to Ḡ ∪ Ḡ−r with r = �(h). Simulate ξk+1 indepen-
dently of ξ1, . . . , ξk and

τk+1 = τk + θk+1,

X′
k+1 = Xk + δ(τk,Xk; θk+1; ξk+1).

Step 5: If X′
k+1 ∈ Ḡ, then Xk+1 = X′

k+1, else (the case X′
k+1 /∈ Ḡ)

Xk+1 = X′
k+1 + 2rk+1ν

(
Xπ

k+1
)
,

where rk+1 = dist(X′
k+1,X

′
k+1) and Xπ

k+1 is the projection of X′
k+1 on ∂G.

Step 6: If τk+1 ≥ T − h2 then the random number of steps κ = k + 1, the final state of the
chain Xκ = Xk+1 and STOP; else k = k + 1 and Goto Step 2.

Using the ideas introduced to study first order convergence of Algorithm 1 in Section 3,
one can prove convergence of Algorithm 4 with weak order 2, that is,∣∣Ef

(
Xt,x(T )

) −Ef (Xκ)
∣∣ ≤ Ch2,

where Xt,x(T ), T0 ≤ t ≤ T , is the solution of (1.1) and C > 0 is a constant independent of
h. It can be shown that the average number of steps of Algorithm 4 is O(1/h). The Markov
chain (τk,Xk) on average spends O(1/h) steps in the domain Q̄\Sτk,hk

and also O(1/h)

steps when (τk,Xk) ∈ Sτk,hk
. The proof of the latter exploits the rule how θk is chosen in the

algorithm and also that, thanks to the definition of St,h, if (τk,Xk) ∈ Sτk,hk
then at least one

realisation of Xk+1 /∈ Ḡ.

6.2. Oblique reflection. Consider the RSDEs

dX(s) = b
(
s,X(s)

)
ds + σ

(
s,X(s)

)
dW(s) + η

(
X(s)

)
I∂G

(
X(s)

)
dL(s),(6.3)

where η is a unit vector field belonging to class C4, and we assume that there exists a constant
c0 > 0 such that (

η(z) · ν(z)
)
> c0,(6.4)

for all z ∈ ∂G. The uniqueness and existence of the strong solution of SDEs with reflection
in the oblique direction was proved in [47] under weaker assumptions than Assumptions 2.1–
2.2, but we will continue using Assumptions 2.1–2.2 to ensure first-order of weak conver-
gence of our algorithms. We note that η in this subsection is an arbitrary oblique direction,
while in Section 4 η was the co-normal, however this should not lead to any confusion. For
applications of (6.3) see for example, [4].

In Section 3, we proposed Algorithm 2 to approximate the system (3.8)–(3.10). Here, for
simplicity we only consider approximation of the RSDEs (6.3). Again we assume a uniform
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Algorithm 5 Algorithm to approximate obliquely reflected diffusion
Step 1: Set X0 = x, X′

0 = x, k = 0.
Step 2: Simulate ξk+1 and find X′

k+1 according to (6.5).
Step 3: If X′

k+1 ∈ Ḡ then Xk+1 = X′
k+1, else

(i) find the projection, Xπ
k+1, of X′

k+1 on ∂G along the oblique direction η(Xπ
k+1)

according to (6.6)–(6.7);
(ii) compute rk+1 = dist (X′

k+1,X
π
k+1) and find Xk+1 according to (6.8).

Step 4: If k + 1 = N then stop, else put k := k + 1 and return to Step 2.

discretization of the time interval [t0, T ], t0 < · · · < tN = T , h = (T − t0)/N , and tk+1 =
tk +h. As was elaborated in Section 2 while constructing the Markov chain (Xk)k≥0, we take
an auxiliary step

X′
k+1 = Xk + hbk + h1/2σkξk+1,(6.5)

where bk = b(tk,Xk), σk = σ(tk,Xk), and ξk+1 represents the same random vector as in
(2.1). We follow the same idea as in Algorithm 1 of first taking an intermediate step, X′

k+1. If
X′

k+1 ∈ Ḡ then we set Xk+1 = X′
k+1, and if X′

k+1 ∈ Ḡc then we solve the following system
of implicit equations:

Xπ
k+1 = X′

k+1 + dist
(
X′

k+1,X
π
k+1

)
η
(
Xπ

k+1
)
,(6.6)

Xπ
k+1 ∈ ∂G,(6.7)

in order to find the projection Xπ
k+1 of X′

k+1 on ∂G along the direction η(Xπ
k+1), where

η(Xπ
k+1) is the inward oblique direction at Xπ

k+1. By [12], Proposition 1, there exists a unique
solution of the system of equations (6.6)–(6.7) under Assumption 2.1 for all X′

k+1 ∈ Ḡ−r .
We denote rk+1 as the distance of X′

k+1 from the boundary ∂G along the direction
η(Xπ

k+1), that is, rk+1 = dist(X′
k+1,X

π
k+1). If X′

k+1 goes outside Ḡ, the following symmetric
step is taken:

Xk+1 = X′
k+1 + 2rk+1η

(
Xπ

k+1
)
.(6.8)

This algorithm is presented in a formalized form as Algorithm 5. One can prove its first-order
of weak convergence analogously to proofs for Algorithm 2 considered in earlier sections.

7. Numerical experiments. In this section we perform numerical experiments to sup-
port the theoretical results obtained in Sections 3–5.

To evaluate the expectation E� where � is a generic random variable with some finite
moments, we use the Monte Carlo technique in the usual fashion:

E� � �̌M := 1

M

M∑
m=1

�(m),(7.1)

where �(m) are independent realisations of �. The Monte Carlo error is computed via the
sample variance:

D̄M = 1

M

(
1

M

M∑
m=1

(
�(m))2 − �̌2

M

)
.

The 95% confidence interval for E� is �̌M ± 2
√

D̄M .
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TABLE 1
Numerical solution of the parabolic problem (7.2)–(7.4) using Algorithm 2

h M ǔM(0,0,0) ± 2
√

D̄M e

0.1 105 36.5301 ± 0.0408 2.3331
0.05 106 35.4104 ± 0.0133 1.2134
0.025 106 34.8223 ± 0.0135 0.6253
0.0125 106 34.5120 ± 0.0136 0.3150

7.1. Parabolic PDE. In this subsection we solve a parabolic PDE with Neumann bound-
ary condition using Algorithm 2.

EXPERIMENT 7.1. Take the circular domain G = {x2
1 + x2

2 < R2} and ∂G = {x2
1 + x2

2 =
R2}. Consider the parabolic problem

∂u

∂t
+ 1

2

∂2u

∂x2
1

+ 2
∂2u

∂x2
2

− x2
∂u

∂x1
+ x1

∂u

∂x2
+ 5

(
1 + exp−(T −t))

− (
25 − x2

1 − x2
2
)

exp−(T −t) = 0, (t, x) ∈ [0, T ) × G,

(7.2)

with terminal condition

u(T , x) = 2
(
25 − x2

1 − x2
2
)
, x ∈ Ḡ,(7.3)

and Neumann boundary condition

∂u

∂ν
= 2R

(
1 + exp−(T −t)), z ∈ ∂G and t ∈ [0, T ).(7.4)

The solution of the above problem is given by u(t, x1, x2) = (25 − x2
1 − x2

2)(1 + exp−(T −t)).
The exact solution at (t, x1, x2) = (0,0,0) with R = 2 and T = 1 is 34.1970 (4 d.p.). We
note that the construction of the model problem in this experiment follows the same path as
in [54] (see also [57], Chapter 6).

We consider the absolute error e = |u(0,0,0)− ǔM |, where ǔM is the Monte Carlo estima-
tor for ū(0,0,0) = E[u(T ,XN)YN +ZN ] which approximates u(0,0,0). Here (XN,YN,ZN)

is due to Algorithm 2 applied to the problem (7.2)–(7.4). The results are presented in Table 1
and Figure 3, which demonstrate that the numerical integration error incurred in solving the
parabolic problem (7.2)–(7.4) is of order O(h) and hence it is consistent with the prediction
of Theorem 3.1.

7.2. Calculating ergodic limits. In this subsection we approximate ϕ̄ (cf. (4.8)) and ψ̄ ′
(cf. (4.10)) using the numerical time-averaging estimators (cf. (4.51) and (4.54)) and the nu-
merical ensemble-averaging estimators (cf. (4.82) and (4.90) together with the Monte Carlo
technique (7.1)) based on Algorithm 1.

There are three types of errors incurred while computing ϕ̄ and ψ̄ ′ via numerical time-
averaging estimators ϕ̂N and ψ̂ ′

N [52, 58]: (i) the error due to discretization of RSDEs (4.7)
(the numerical integration error) which is estimated by Ch, (ii) the error incurred because
integration is over finite time T (the time truncation error) which is estimated by C/T , and
(iii) the statistical error. The statistical error is also controlled by the final finite time T (see,
e.g. [52] for further discussion on the statistical error).

In practice to find the statistical error of ϕ̂N and ψ̂ ′
N , we simulate a long trajectory (here

according to Algorithm 1) and split that trajectory into L blocks of time length T ′, which
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FIG. 3. Plot to show the first order of convergence of Algorithm 2 applied to (7.2)–(7.4). Error bars correspond
to the Monte Carlo error.

means that the total length of the simulated trajectory is T = LT ′. We calculate f̂ (i) (here
f̂ (i) is either ϕ̂(i) or ψ̂ ′(i)) computed over the ith block, i = 1, . . . ,L, and the statistical error
is estimated as

J̄L = 1

L

(
1

L

L∑
i=1

(
f̂ (i))2 −

(
1

L

L∑
i=1

f̂ (i)

)2)
.(7.5)

This implies that the 95% confidence interval of Ef̂ is given by f̂ ± 2
√

J̄L, where the time-

averaging estimator f̂ is computed over the whole trajectory with the length T = LT ′.

EXPERIMENT 7.2. Consider the circular domain G = {x2
1 + x2

2 < R2} with boundary
∂G = {x2

1 + x2
2 = R2}, where R > 0 is the radius. Consider the RSDEs

[
dX1(s)

dX2(s)

]
= −

⎡
⎢⎣

X1(s)

2
+ X2(s)

4
X1(s)

4
+ X2(s)

2

⎤
⎥⎦ ds

+
⎡
⎣ sin

(
X1(s) + X2(s)

)
cos

(
X1(s) + X2(s)

)
sin

(
X1(s) + X2(s) + π

3

)
cos

(
X1(s) + X2(s) + π

3

)⎤⎦[
dW1(s)

dW2(s)

]
(7.6)

− 1

R

[
X1(s)

X2(s)

]
dL(s).

The invariant density of the RSDEs (7.6) is

ρ(x1, x2) = 1

2π(1 − e−R2/2)
e−(x2

1+x2
2 )/2.

It is not difficult to verify that the density function ρ(x1, x2) satisfies the stationary Fokker–
Planck equation (4.3) with Neumann boundary condition (4.4) corresponding to the RSDEs
(7.6).

In this experiment, we approximate the ergodic limit ϕ̄ (cf. (4.8)) with ϕ(x1, x2) = x2
1 +x2

2
using numerical time-averaging estimator (cf. (4.51)) and discretized ensemble-averaging
estimator (cf. (4.82) together with (7.1)) based on Algorithm 1. To evaluate the performance
of Algorithm 1 for computing ergodic limits, we have the exact value of ϕ̄:

ϕ̄ = 2 − 2e−R2/2 − R2e−R2/2

1 − e−R2/2
.
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TABLE 2
The parameters for calculating ϕ̂N are L = 104 and T ′ = 10 and the parameters for calculating ϕ̌M are T = 5

and M = 2 × 104

h ϕ̂N ± 2
√

J̄L errorta ϕ̌M ± 2
√

D̄M errorea

0.4 1.6590 ± 0.0073 0.2850 1.6651 ± 0.0167 0.2911
0.25 1.5428 ± 0.0072 0.1688 1.5403 ± 0.0164 0.1663
0.2 1.5039 ± 0.0072 0.1299 1.4989 ± 0.0161 0.1249
0.1 1.4236 ± 0.0070 0.0496 1.4262 ± 0.0154 0.0522

For R = 2, we have ϕ̄ = 1.3739 (4 d.p.). We introduce errorta = |ϕ̄ − ϕ̂N |, which is the
absolute error of the time-averaging estimator (4.8), and errorea = |ϕ̄ − ϕ̌M |, where ϕ̌M is the
Monte Carlo estimator (see (7.1)) of Eϕ(XN) (see (4.82)), that is, errorea is the absolute error
of the ensemble-averaging estimator. The simulations are run by taking (0,0) as the starting
point in both time-averaging and ensemble-averaging.

In Table 2, the second column corresponds to time-averaging estimation of ϕ̄ and it also in-
cludes the statistical error. The fourth column corresponds to ensemble-averaging estimation
of ϕ̄ and it also includes the Monte Carlo error. Table 2 and Figure 4 verify the theoretical re-
sults of Theorem 4.2 (see (4.64)) and Theorem 4.10 (see (4.82)) as the absolute errors errorta
and errorea are of order O(h).

EXPERIMENT 7.3. Consider the sphere G = {x2
1 + x2

2 + x2
3 < 1} with boundary ∂G =

{x2
1 + x2

2 + x2
3 = 1} and the RSDEs

dX(s) = 1

|X(s)|
(
V − (V · X(s))

|X(s)|2 X(s)

)
ds + √

2dW(s) − X(s) dL(s),

where W(s) is a three-dimensional standard Wiener process and V = (1/2,1/2,1/
√

2)�.
The invariant density of the above RSDEs is

ρ(x) = 3

4π sinh 1
e(V ·x)/|x|,

and the corresponding normalised restricted density ρ′(z) is

ρ′(z) = 1

4π sinh 1
e(V ·z),

where x = (x1, x2, x3) ∈ Ḡ and z = (z1, z2, z3) ∈ ∂G. The function ρ′(z) is the density of
Fisher distribution with the concentration parameter 1 and mean direction V [26].

We are interested in calculating κ (see (4.9)) and ψ̄ ′ for ψ(z) = z1 + z2 + z3. The exact
value of κ is 3 and of ψ̄ ′ is 0.53438 (5 d.p.). We introduce the absolute errors e1 = |ψ̂ ′

N − ψ̄ ′|
and e2 = |κ̂N − κ|, where ψ̂ ′

N is from (4.54) and κ̂N is from (4.52).

FIG. 4. Plot to show linear dependence of the errors in computing the ergodic limit, errorta, and errorea, on h.
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TABLE 3
The parameters used are T ′ = 30 and L = 104. The initial point taken for simulation is (-0.5,-0.5,-0.5)

h ψ̂ ′
N ± 2

√
J̄L e1 κ̂N ± 2

√
J̄L e2

0.1 0.5673 ± 0.0025 0.03294 3.1183 ± 0.0065 0.1183
0.075 0.5602 ± 0.0025 0.02577 3.0813 ± 0.0071 0.0813
0.05 0.5557 ± 0.0026 0.02127 3.0510 ± 0.0039 0.0510
0.025 0.5457 ± 0.0026 0.01130 3.0227 ± 0.0040 0.0227

The second column in Table 3 corresponds to the estimation of ψ̄ ′ and the fourth column—
to the estimation of κ via the time averaging estimators (4.54) and (4.52), respectively. One
can see from Table 3 and Figure 5 that the absolute errors e1 and e2 decay linearly with h for
sufficiently large T = LT ′, which verifies Theorem 4.7 and the estimate (4.66) of Lemma 4.4.

7.3. Elliptic PDEs. In this subsection we present two numerical experiments to verify
the theoretical results proved in Section 5.

EXPERIMENT 7.4. Consider the torus G = {(
√

x2
1 + x2

2 −R)2 +x2
3 < r2} with boundary

∂G = {(
√

x2
1 + x2

2 − R)2 + x2
3 = r2}, where 0 < r < R, and the elliptic equation

1

2

∂2u

∂x2
1

+ 5

2

∂2u

∂x2
2

+ ∂2u

∂x2
3

+ ∂2u

∂x1 ∂x2
+ 2

∂2u

∂x2 ∂x3
− x3

∂u

∂x1
+ x1

∂u

∂x2

+ x2
∂u

∂x3
− 2u + 2x3

3 − 3x2x
2
3 + 2x2

2 − 2x1x2 + 2x1 − 5x3 − 5 = 0,

(x1, x2, x3) ∈ G,

(7.7)

with Neumann boundary condition

∂u

∂ν
= 1

r

((
R√

z2
1 + z2

2

− 1
)(

z1 + 2z2
2
) − 3z3

3

)
, (z1, z2, z3) ∈ ∂G.(7.8)

In this experiment we solve the elliptic equation (7.7) with boundary condition (7.8) and
verify the estimate (5.10) that the numerical integration error decays linearly with respect
to step size h for sufficiently large T . For this experiment, we choose r = 2 and R = 4.
The exact solution is given by u(x1, x2, x3) = x1 + x2

2 + x3
3 and at (x1, x2, x3) = (1,2,1/2)

the solution is 5.125. We denote the absolute error as e = |u(1,2,1/2) − ǔM |, where ǔM

is the Monte Carlo estimator (see (7.1)) of the approximation of the solution to (7.7)–(7.8)
computed using Algorithm 2. Table 4 and Figure 6 confirm the result of Theorem 5.1.

FIG. 5. Plot to show the dependence of the errors e1 and e2 on h.
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TABLE 4
Results of numerical simulation for the elliptic problem (7.7)–(7.8) with T = 4

h M ǔM (1,2,1/2) ± 2
√

D̄M e

0.1 106 5.5144 ± 0.0168 0.3894
0.08 106 5.4615 ± 0.0167 0.3365
0.04 106 5.2874 ± 0.0163 0.1624
0.01 107 5.0820 ± 0.0050 0.0430

EXPERIMENT 7.5. Consider the circular domain G = {x2
1 + x2

2 < 4} with boundary
∂G = {x2

1 + x2
2 = 4} and the Poisson PDE

1

2

∂2u

∂x2
1

+ 1

2

∂2u

∂x2
2

+ 1

2

∂2u

∂x1∂x2
−

(
x1

2
+ x2

4

)
∂u

∂x1

−
(

x1

4
+ x2

2

)
∂u

∂x2
= 2 − x2

1 − x2
2 − x1x2, (x1, x2) ∈ G,

(7.9)

with Neumann boundary condition

∂u

∂ν
= −4, (z1, z2) ∈ ∂G.(7.10)

Note that the underlying RSDE for (7.9)–(7.10) is (7.6). It is not difficult to show that the
compatibility condition (4.6) is satisfied for (7.9)–(7.10). The exact solution is given by
u(x1, x2) = x2

1 + x2
2 , (x1, x2) ∈ Ḡ. In this experiment we use Algorithm 3 to solve the Pois-

son problem (7.9)–(7.10). As we know from Section 5.4.2, we can numerically evaluate the
solution of the Poisson PDE with Neumann boundary condition up to an additive constant
ū. For comparing the exact solution and numerical solution, we computed the exact value
of ū = 1.374 (3 d.p.). We evaluate u(x1, x2) − ū at (x1, x2) = (

√
2,

√
2), the exact value of

which is 2.626 (3 d.p.). We introduce the absolute error e = |u(
√

2,
√

2) − ū − ǔM |. Table 5
and Figure 7 show that e =O(h) that verifies the result of Theorem 5.2.
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FIG. 6. Plot to show linear dependence of absolute error e on h.
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TABLE 5
Numerical solution of the Poisson problem (7.9)–(7.10) at (

√
2,

√
2) up to the additive constant ū using

Algorithm 3 with parameters T = 5, � = 0.1, β = 1, ϒ = 1

h M ǔM(
√

2,
√

2)± 2
√

D̄M e

0.5 104 3.781 ± 0.111 1.155
0.4 105 3.438 ± 0.035 0.812
0.3 105 3.194 ± 0.034 0.568
0.2 105 2.998 ± 0.035 0.372

FIG. 7. Plot to show linear dependence of the absolute error e on h. Error bars correspond to the Monte Carlo
error from the third column of Table 5.
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