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Abstract.

Important advances have recently been achieved in developing

procedures yielding uniformly valid inference for a low dimensional causal
parameter when high-dimensional nuisance models must be estimated. In
this paper, we review the literature on uniformly valid causal inference and
discuss the costs and benefits of using uniformly valid inference procedures.
Naive estimation strategies based on regularization, machine learning, or a
preliminary model selection stage for the nuisance models have finite sample
distributions which are badly approximated by their asymptotic distributions.
To solve this serious problem, estimators which converge uniformly in distri-
bution over a class of data generating mechanisms have been proposed in the
literature. In order to obtain uniformly valid results in high-dimensional situ-
ations, sparsity conditions for the nuisance models need typically to be made,
although a double robustness property holds, whereby if one of the nuisance
model is more sparse, the other nuisance model is allowed to be less sparse.
While uniformly valid inference is a highly desirable property, uniformly
valid procedures pay a high price in terms of inflated variability. Our discus-
sion of this dilemma is illustrated by the study of a double-selection outcome
regression estimator, which we show is uniformly asymptotically unbiased,
but is less variable than uniformly valid estimators in the numerical experi-

ments conducted.
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1. INTRODUCTION

High-dimensional situations, where the number of co-
variates is larger than the number of observations are com-
mon in causal inference applications. Using regularization
type estimators such as lasso [54] or other post-model se-
lection estimators are popular strategies in such cases. Im-
portant advances have been achieved in developing pro-
cedures yielding uniformly valid inference (defined be-
low) for a low dimensional causal parameter when high-
dimensional nuisance models must be fitted (e.g., [5, 13,
24,57, 59)). In this paper, we review the literature on uni-
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formly valid causal inference, and discuss the costs and
benefits of using uniformly valid inference procedures.
This discussion is important since naive and invalid post-
model selection inference is to this day still common in
statistical practice.

Leeb and Potscher [34] demonstrated how a data-driven
model selection step can affect the distribution of the es-
timate of a parameter of interest. Loosely, they show that
the scaled (4/n) bias of a naive two step estimator, which
does not take into account the selection step, goes to infin-
ity or stay bounded for a sequence of worst case scenario
data generating processes (DGPs), when relying on con-
sistent or conservative model selection, respectively. We
say that such a naive estimator is not uniformly unbiased.
An estimator with associated uniformly valid inference,
on the other hand, is such that its distribution F, con-
verges uniformly over a set of DGPs ‘P, that is, for any
uelR

lim sup|F,(u) — Fp(u)| =0,
=0 pep
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where Fp is the cumulative distribution derived from P.
Hereafter, we use the terms uniformly valid inference and
valid inference interchangeably.

Valid inference for every single parameter in a lin-
ear regression model needs careful consideration in high-
dimensional settings. Some have considered debiasing
lasso for a valid inference that target the true data gen-
erating process parameters [31, 56, 61] and others have
considered valid inference conditional on the model that
has been selected [6, 33]. In a causal inference context,
there is typically a low dimensional parameter of inter-
est, for example, the average causal effect of a treat-
ment, and high-dimensional nuisance parameters. Bel-
loni, Chernozhukov and Hansen [5] proposed an estima-
tor with valid inference for a causal parameter in a lin-
ear model explaining outcome with a treatment variable
and a set of covariates, which can be of high dimension.
To achieve uniformly valid inference, they proposed to in-
clude the union of two sets of covariates in the model: one
obtained by selecting covariates relevant when regressing
the outcome on the covariates, and the second by selecting
covariates relevant when regressing the treatment on the
covariates. Their model implicitly implies a homogeneous
causal effect. This can be relaxed to allow for individual
heterogeneous effects, using the potential outcome frame-
work [43, 50], and nuisance models for both the potential
outcomes and for the treatment assignment given the co-
variates (propensity score). For this general case, van der
Laan and Rubin [59] and van der Laan [57] obtained
valid inference for a causal parameter using targeted max-
imum likelihood estimation, where nuisance models are
estimated nonparametrically. Farrell [24] considered the
augmented inverse probability of treatment weighting es-
timator [41], and showed that uniformly valid inference
is achieved when using post-lasso estimation for the nui-
sance models. Similar results were derived in [13] using a
double machine learning approach.

In both Belloni, Chernozhukov and Hansen [5] and Far-
rell [24], approximate sparsity is assumed for the nuisance
models. However, in Farrell [24] the outcome model can
be less sparse if the propensity score is more sparse and
vice versa (called nonparametric double robustness prop-
erty, [32]). Yet consistency in the nonparametric estima-
tion of all the nuisance models is required, a condition
relaxed in van der Laan [57], and in more recent work [2,
52], where one of the nuisance models may be inconsis-
tently estimated.

Procedures yielding uniformly valid inference for a
causal parameter, in the general context of heteroge-
neous treatment effects, allow for the selection of instru-
ments (loosely, variables related to the treatment but not
the outcome) in the fit of the propensity score model.
This is known to result in possibly large inflation of
the variance of the estimators (e.g., [19, 29, 42, 46]).

Thus, while uniformly valid inference is a highly de-
sirable property, uniformly valid procedures pay a high
price in terms of inflated variability. We discuss and il-
lustrate this dilemma by studying a compromise solu-
tion, an outcome regression estimator (e.g., [5S1]), which
we allow to select instruments, but which does not use
the fitted propensity score, in contrast with uniformly
valid estimators proposed in the literature. The resulting
post-model selection estimator is shown to be uniformly
asymptotically unbiased under a commonly used product
rate condition [24], even though the propensity score is
not used in the estimator except for the covariate selec-
tion step.

This paper is organised as follows. Section 2 presents
a review of the literature on uniformly valid causal infer-
ence. Section 3 gives a theoretical discussion of the costs
and benefits of uniformly valid inference, by studying a
double-selection outcome regression estimator. Section 4
illustrates this discussion with a Monte Carlo study of fi-
nite sample properties of a collection of estimators. Sec-
tion 5 concludes the paper. All proofs are delayed to an
Appendix.

2. UNIFORMLY VALID CAUSAL INFERENCE:
A REVIEW

This is an extremely active research area. The focus is
here on uniformly valid inference on a low dimensional
causal parameter after regularization/model selection of
high-dimensional nuisance models. We start by introduc-
ing some general concepts, and then review first corner-
stone work on the homogeneous and then general hetero-
geneous case. A review of important advances in recent
years concludes this section.

The parameter of interest is a causal effect of a binary
treatment variable 7" on an outcome Y as defined below
in different contexts. We use the notation X to denote a
one dimensional pretreatment covariate and X to denote
a set of pretreatment covariates which has dimension p,
allowed to grow with n. Note that the set may contain
not only the covariates but also transformations of them.
We consider a set of identically and independently dis-
tributed (i.i.d.) observations, {(x;, y;, #;)}?_,, drawn from
a distribution P,. To study uniformly valid post-model se-
lection inference it is essential that the probability law P,
is allowed to vary with the sample size n. We use further
the notations E,[w;] = %Zl” (w; and a vV b = max{a, b}.
Moreover, n; denotes the number of individuals under
treatment.

2.1 Hodges Estimator and Superefficiency

Superefficient estimators of a parameter of a model
M are variants of the well-known Hodges estimator
[60] when a model restriction holds; meaning that a
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model My C M contains the true data generating pro-
cess. The asymptotic variance of a superefficient estima-
tor is smaller than the efficiency bound for the class of
regular asymptotic linear (RAL) estimators of the param-
eter under model M, when there is a submodel Mg un-
der which the same bound is smaller. Superefficiency has
a cost in the sense that the asymptotic distribution of a
superefficient estimator is valid only pointwise at M in-
stead of uniformly over a larger family of models (uni-
formly valid inference).

This was highlighted by Leeb and Pétscher [34] in a
parametric setting (see below for a detailed exposition),
where a consistent model selection step that selects out
a “redundant” variable (not part of M) before a max-
imum likelihood fit results in a superefficent estimator.
Such an estimator has an oracle property in the sense that
it asymptotically (only pointwise at My instead of uni-
formly over a larger family of models) performs as well
as a fictitious orcale estimator which can be constructed
by knowing Mg [23].

2.2 Homogenous Causal Effect

As a primer, consider the parametric regression model
yi = at; + Bxi + €, with ¢ ~ N(0,02),6% > 0. Ac-
cording to Leeb and Potscher [34], if we are interested
in o, the post-selection estimator which includes a pre-
liminary consistent model selection step on X (i.e., a test
whether 8 = 0) is more efficient than the simple OLS es-
timator without this step if corr(X, T') # 0. However, if
B # 0 and corr(X, T') # 0, the finite sample distribution
of the post-selection estimate is a mixture of two nor-
mal distributions, that is, not well approximated by the
normal asymptotic distribution. This is because in the se-
lection step the nonzero coefficient can be detected for
some samples and not detected for others. If the resulting
omitted variable bias is considerable, the empirical cov-
erage of a naive confidence interval can be far from the
nominal coverage. Leeb and Poétscher [34] have shown
that the minimal coverage of the naive confidence inter-
val with respect to all possible S values goes to zero as
n grows for consistent model selection steps, while the
empirical coverage for any fixed 8 value goes to the nom-
inal one. Their result highlights the importance of uni-
formly valid inference compared to pointwise asymptotic
results.

For « to have a causal interpretation, the linear regres-
sion needs to include all confounders as formally defined
in next section, and it must be correctly specified as a
model for E(Y | T, X) (in particular implying a homo-
geneous/constant causal effect). Concerning the former
condition, the number of available covariates, hence po-
tential confounders, may be very large when using large
observational databases. The latter condition, implicitly

requires that series expansions need to be used to approx-
imate E(Y | T, X) increasingly well with increasing sam-
ple sizes. Therefore, these two conditions often yield a
high-dimensional setting in practice, that is, where the
number of covariates is at least as large as the sample size.
Belloni, Chernozhukov and Hansen [5] proposed a strat-
egy for reaching valid inference in such high-dimensional
settings [35]. Their suggestion is a two-step lasso-based
method, where the union of covariate sets selected by
two distinct lasso regressions of ¥ and 7 on the co-
variates, respectively (often called double selection), are
utilized in a second step in the main linear model in-
cluding 7' as a regressor. Instead of exact sparsity con-
ditions typically used in high-dimensional settings, they
consider the following approximate sparsity conditions.
Let

(D E(Y|T,X)=aT + ByX + Ry,
2) E(T|X)=prX + Rr,

where Ry is the specification error of using a sparse B
with only s s nonzero elements, respectively for f =Y, T.
The regularity conditions to obtain uniform valid infer-
ence include

E(EJ[R%;])'? = 0( /sy /n),
log® p/n = o(1),

stlog*(p v n)/n=o(l).

In other words, models (1) and (2) are assumed well ap-
proximated by a sparse linear combination of the covari-
ate vector X. Under these conditions (and other regular-
ity conditions), Belloni, Chernozhukov and Hansen ([5],
Corollary 2) showed that their estimator of « is asymptot-
ically normal uniformly over P,, thereby uniformly valid
inference can be made.

2.3 Heterogeneous Causal Effect

The effect of a binary treatment is now allowed to be
heterogeneous using the Neyman—Rubin potential out-
come framework [43, 50]. For any unit in the study, de-
note Y (1) its potential outcome under treatment (7' = 1),
and Y (0) its potential outcome without treatment (or al-
ternative treatment). We assume that Y =T7Y (1) + (1 —
T)Y (0) is the observed outcome, and no interference be-
tween units is allowed (stable unit treatment value as-
sumption; [44]). Each unit may have a different causal
effect Y(1) - Y(0), and the average causal effect 7 =
E(Y (1) — Y(0)) is the parameter of interest in the sequel.
This parameter is identified given the following assump-
tions.

ASSUMPTION 1 (No unobserved confounding).

Y(1),Y(©O) LLT|X.
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ASSUMPTION 2 (Overlap).

P(T =¢t|X)> pmin >0, t=0,1.

Thus, all confounding covariates are included in X and
all units in the study have nonzero probability to be in-
cluded in both treatment groups. These assumptions are
made throughout the article. Note, however, that a sen-
sitivity analysis (see [21], and references therein) should
accompany inference based on Assumption 1, even when
many covariates are available, since this assumption is not
testable without further information (e.g., [18]). Assump-
tion 2 has also important implications as was recently
demonstrated in D’ Amour et al. [17] for high-dimensional
situations, where overlap is linked to the sparsity condi-
tions discussed herein.

Let EY|IT =1,X) =m(X) and E(Y|T =0,X) =
mo(X) denote the outcome models, E(T|X) = P(T =
1|X) = e(X) denotes the propensity score model. One
of the earliest proposals that addressed inference on t
when estimating nuisance models nonparametrically is
the targeted maximum likelihood estimator (TMLE; [58,
59]). Denote fits of the nuisance models P(T = 1|X),
E(Y(1)|X) and E(Y (0)|X) by é(x;), i} (x;) and i (x;),
respectively. Then, a fluctuated version of the predicted
outcome values is used in the following manner:

PrMLE = Eq[m] (xi) —md(x)],
where the fluctuations are found by

logitrﬁtl (x;) = logitm?(xi) + enhsi(x;), te{0,1},

where
Hr=1} 1{r =0}

e(x;)  1—eé(x)’
and ¢, is found by running logistic regression of outcome
Y on hr(X) using logitn%(}(X) as intercept. TMLE is
consistent if either e(-) or mg(-) and m(-) are consis-
tently estimated. Moreover, it is RAL and semiparamet-
rically efficient if all models are consistently estimated
and a product of rate of convergence similar to (9) hold.
TMLE can also be constructed by iteratively fluctuating
the propensity score and the outcome models, thereby
yielding a RAL estimator when at most one of the models
is consistently estimated, that is, this TMLE is then not
only consistent but also asymptotically normal (so called
double robust statistical inference, [57]).

In another major contribution, Farrell [24] showed how
to obtain uniformly valid inference for the popular doubly
robust augmented inverse probability of treatment weight-
ing (AIPW, [41, 45]) estimator:

tiyi — (ti —e(x;))my(x;)
e(x;)
=)y + (i — é(xi))fﬁo(xi)]
l—é(x,-) '

hi(x;) =

TpR = En|:
3)

The fitted values mg(x;), m1(x;) and é(x;) are obtained
using, for example, post-lasso estimators. Farrell [24] pro-
posed the use of group-lasso to benefit from grouped
sparsity patterns among potential outcomes and different
treatment levels. Similar to Belloni, Chernozhukov and
Hansen [5], Farrell [24] assumed approximate sparsity,
but for logistic propensity score and linear potential out-
come models, that is,

mt(X,Ut):U;X‘FRZ» te{oal}a

4) L
e(X, y) =-expit(y'X + Rr),

where R}, and R are approximation errors of estimat-
ing the true models with sparse parameters 7, and y
that have s}, and st nonzero elements, respectively. Far-
rell’s regularity conditions on the specification errors are
slightly different from those in Belloni, Chernozhukov
and Hansen [5]. In particular, he assumes

2172 212
Ea[(ryi)]"? v En [(r7.)]"

(%)

<Ry =0(ysy/n), 1€{0,1},
and
(6) En[(expit(y'x;) — expit(y'x; +r7.1))*]'/?

<Rr=0(/sr/n).

More importantly, the sparsity assumption required for
each nuisance model separately is weaker compared to
the one assumed by Belloni, Chernozhukov and Hansen
[5], that is,

3/248

(7)  sylog(p Vv n) =o(n), Sfe{sr,sg,s}},

for some & > 0, since here we have a multiplicative rate
condition

®)  shsrlog(pvn) P =om), re{0,1)}.

Thus, if the potential outcome models are more sparse,
the propensity score model is allowed to be more dense
and the other way around. These sparsity assumptions and
other regularity conditions result in the following rates of
convergence for the post-lasso estimators of the nuisance
models ([24], Section 6):

[ é(xi) - e(xi))z] = OPn(l)’

En[(
En[ (i (x:) — my (x))*] = 0p, (1),

©) A W22 5 T o 2
En[(e(xt) _e(xl)) ] En[(mt(xz) —m,(x,)) ]

~172)

1/2

=op,(n

for t € {0, 1}. Under these consistency and product rate
conditions (and other regularity assumptions) the estima-
tor (3) is asymptotically normal uniformly over P, ([24],
Corollary 3). This result is not restricted to the post-lasso
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estimator, but ensures /n-consistency of the AIPW esti-
mator of the low dimensional parameter of interest t for
any estimator of nuisance models which fulfills the as-
sumptions. High-dimensional parametric or nonparamet-
ric nuisance models fit into this framework even though
the estimation cannot be done at the /n-rate.

The presentation above has focused on robustness to
the danger of including too few covariates (regularization
bias), in settings where we believe in sparsity assump-
tions. Another possible source of bias arises from the dan-
ger of overfitting. This is a problem when the nuisance
functions are too complex (e.g., cannot be assumed to be-
long to a Donsker class; e.g., Diaz [20]; Kennedy [32]).
A general solution to avoid overfitting error, and thereby
obtain valid inference, is to use sample-splitting; see, [7,
11, 12, 62].

2.4 Advances in Recent Years

Recent years have witnessed a great deal of novel re-
sults in the field of uniformly valid causal inference. [13]
readdressed valid inference for the average causal effect
under the framework of double/debiased machine learn-
ers in light of the fact that the parameter t satisfies a Ney-
man orthogonal moment condition [36, 37]; a moment
condition that is not sensitive to local errors in nuisance
models and can be derived using the first order influence
function of the parameter [8, 55]. They suggest sample
splitting which together with the above Neyman orthogo-
nality leads to ignorable remainder terms even when ma-
chine learning nuisance estimators are converging rela-
tively slowly. Other works have considered a Neyman
orthogonal estimating equation of a /2-continuous func-
tional of a conditional expectation [9, 15]. In this setting,
both the conditional expectation and the Reisz representer
of the functional, which is the inverse propensity score in
the case of 7, must be estimated. However, in the latter
case, the estimation of the inverse propensity score is per-
formed differently compared to Chernozhukov et al. [13];
that is, using the equation which characterize the nuisance
model as a Riesz representer.

The notion of double robustness of an estimator has
been widely used to indicate that an estimator is con-
sistent if at least one of the nuisance models is esti-
mated consistently, not necessarily both [3, 41]. This
property has also been called parametric double robust-
ness [32]. As mentioned in the previous section, van der
Laan ([57], Section 4) was the first work which addressed
what they called double robust statistical inference (also
called model double robustness in Smucler, Rotnitzky and
Robins [49]), which indicates that inference on the pa-
rameter of interest requires consistent estimation of only
one of the nuisance models. The AIPW estimator men-
tioned in the previous section based on regularized maxi-
mum likelihood nuisance estimators has the nonparamet-
ric double robust property [32], also called rate double ro-
bustness in Smucler, Rotnitzky and Robins [49], whereby

weak consistency of the nuisance models is required for
uniformly valid inference, but slower convergence in es-
timating the propensity score can be bought out by faster
convergence in the outcome models, and vice versa (9).
However, this AIPW estimator does not yield double ro-
bust statistical inference. Alternative loss functions have
been considered in the estimation of nuisance models,
which endow the AIPW estimator double robust statis-
tical inference (e.g., [2, 9, 38, 52]). Smucler, Rotnitzky
and Robins [49] extends this area of work by general-
izing the property of double robust inference to the es-
timation of all parameters that belong to what is called
the class of bilinear influence function (BIF) functionals.
These estimators are specific to sparse settings and em-
ploy /;-regularized estimators. Moreover, they consider a
sparsity condition even for the limit of a possibly incon-
sistent nuisance model estimator.

The BIF class includes important causal parameters
such as the average treatment effect and the average treat-
ment effect among treated and cover the classes of pa-
rameters studied in Chernozhukov, Newey and Singh [15]
and Robins et al. [40]. However, the parameters who en-
joy a uniform valid inference are not limited to this class.
For example, the continuously differentiable functions of
the functionals with bilinear influence function do not
belong to the class while validity of inference for those
can be directly shown by the delta method [49]. A dif-
ferent technique has been used for constructing a valid
confidence interval for a parameter outside the BIF class,
a conditional average treatment effect, which is to in-
vert a chi-squared distributed double robust test statistic
[22].

Most of the above literature on uniformly valid causal
inference is concerned with high-dimensional settings,
which can arise both because of a large set of covariates
is available, but also because functions/transformations of
these covariates are considered in generalized linear (in
the parameters) nuisance models with a sparsity property.
However, alternative regularity conditions, for example,
smoothness, may be considered attractive. For example,
neural networks can be used for smooth nuisance func-
tions belonging to Sobolev spaces [25]. Some of the re-
sults in the above-mentioned papers are not specific to
l1-regularized estimators and apply to any well-behaved
nonparametric nuisance model estimation [13, 24, 59].
In van der Laan and Rubin [59] the choice of a sin-
gle nonparametric estimator is not considered to be done
apriori, but a data-adaptive cross-validated combination
of a set of estimators (super learner, ensemble learner)
was suggested. Finally, more recently, Cui and Tchet-
gen Tchetgen [16] suggest two novel selection criteria,
where the main focus is on getting smaller bias in the es-
timation of the target parameter instead of the nuisance
ones.
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While the literature has focused on situations where the
parameter (a causal effect) is of low dimension, Semen-
ova and Chernozhukov [47] recently addressed situations,
where the Neyman orthogonal property can be applied to
obtain uniformly valid results in nonparametric situations,
that is, where the parameter of interest is of infinite di-
mension. Examples include causal effects conditional on
a continuous covariate and causal effects of a continuous
valued treatment.

3. COST OF UNIFORMITY AND A
DOUBLE-SELECTION OUTCOME REGRESSION
ESTIMATOR

One essential component of estimators with uniformly
valid inference reviewed in the latter section is that if
there are instruments — here covariates that explain T
although they are not related to Y conditional on the
other covariates included in X — these may be part of
the selected set of covariates. This is also obviously true
for propensity score centered methods; see, for exam-
ple, Shortreed and Ertefaie [48]. This is unfortunate be-
cause the semiparametric efficiency bound for the av-
erage treatment effect is lower if we have knowledge
on which variables are instruments [19, 28, 29, 42, 53].
The variance inflation due to instruments can be severe
and this has been reported in the literature numerous
times, see, Schnitzer, Lok and Gruber [46] and references
therein.

In the sequel, we provide a discussion and results which
shed new light on this issue by presenting an estimation
strategy which seems to yield a compromise between the
estimators for which we have a uniformly valid asymp-
totic distribution (using instruments) and superefficient
estimators, where irrelevant instruments are selected away
by using the data.

For simplicity, consider as parameter of interest 11 =
E(Y(1)). However, the results for 79 = E(Y(0)) and
thereby T = 7] — 10 are analogous. Let x =[x, ..., x,],
y =[y1,...,y.), superscript T denotes subsetting rows
that correspond to treated individuals and subscript S de-
notes subsetting columns using the set S. Then, PST =
xL(xT'xT)=1x 1" is the projection matrix onto the space
spanned by xg, while 135T = xg(xg’xg)_lxg’ is the ma-
trix used in predicting Y (1) for all n individuals. Given
a selected covariate set S, we define the post-selection
outcome regression (OR) estimator as

21,0r(S) = Ea[(P§ y7).]
1 _
= ;Ef’:l[xs,i(x?xg) iy
1 A
= ;E{’:l[ml(xs,,-)].

A classical post-selection OR estimator iS Tj 0ry, =
71,0r(Xy), where Xy is a set of covariates derived

from the y — x association using any covariate selec-
tion strategy; for instance, the set of covariates that cor-
responds to nonzero coefficients in a fitted lasso regres-
sion of y versus x may be considered. Instead, we study
here theoretically the post-double-selection OR estima-
tor

(10) T1.,0Rps = T1,0R (Xy U X71),

where X7 is derived by fitting the r — x association us-
ing lasso or any other covariate selection strategy. Note
that this can be considered as a generalization of [5]
early estimator for the homogeneous case presented in
Section 2.2 to the general situation of an heterogeneous
treatment effect. Although this estimator is mentioned
in the simulation experiments run in [1], no theoretical
results are available in the literature up to our knowl-
edge.

Estimator (10) is not asymptotically linear and can-
not be shown to yield uniformly valid inference as was
the case for the post-selection double robust estimators
described in Section 2.3. However, uniform fast rate of
decay of the bias can be guaranteed. The conditions
used below are of the type used to show uniform valid-
ity. In particular, a product convergence rate condition is
used.

THEOREM 3.1.  Suppose
@
En[(1 = tia () (Pg my (x7) — m1 (x));]
=op,(n7"),
(i)

En, [((Ln,xn, — P§ )a(x"))7]"?
X E”t[((l]'”txnt - PST)WL](xT))iz]l/2
=0p(n™"),

where 1y, xn, is the identity matrix of size n;, a(X) =
1/P(T =1|X). Let v =min(vy, v2). Then,

Bias(%j,0r) = E(E,[m1(xs,:)] — 1) =o(n™").

The first condition (i) requires that the order of the
scaled error for all the individuals is equal to the order
of the scaled error on the treated individuals weighted by
inverse propensity scores, similar to Farrell [24], Assump-
tion 3(c). The second condition (ii) is a multiplicative rate
condition similar to the multiplicative rate condition in
Farrell [24], Assumption 3(b). However, notice that here
the rate must be fulfilled using the same set of covariates
in both nuisance models. This necessitates doing double
selection to get the double robustness property in terms
of bias. The proof of Theorem 3.1 can be found in Ap-
pendix A.
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To illustrate how a double-selection procedure can ben-
efit in terms of bias, suppose

(11) mi(X,m)=n,X + Ry,
and
(12) a(X,)/):y/X—}—RT.

Here, we consider a linear model for the inverse of
propensity score model (e.g., [30]), and Ry and R; are
approximation errors of the true models with sparse co-
efficients n; and y in the outcome and inverse propen-
sity score models, respectively. The following corollary is
a direct consequence of Theorem 3.1 and the asymptotic
results for lasso regression in Farrell [24], Section 6.

COROLLARY 1.  Suppose that models (11) and (12),
hold, where the conditions (5), (6), (7) and (8) are ful-
filled. Moreover, assume the regularity conditions in Far-
rell [24], Corollary 5 and Appendix F.3. Consider T1 0R
in (10) where Xy and Xt are estimated using lasso re-
gression of the observed potential outcome (for treated
individuals) and the inverse propensity score on X, re-
spectively. Then,

Bias(%1.0rps) = 0(n1/?).

The above result shows that root-n decay of the bias can
be derived uniformly over a set of DGPs. In this sense, the
double-selection OR estimator may be seen as a compro-
mise between single selection estimators (superefficient
and no uniformly decaying bias) and the double-selection
estimators of Section 2 (with available uniformly valid
asymptotic distribution). The implications in terms of
finite sample behaviour are studied below with Monte
Carlo experiments.

In practice, the inverse propensity score a is not ob-
served and (12) cannot be fitted directly. Instead, we sug-
gest to fit a lasso logistic regression for the propensity
score to retrieve the relevant covariates.

4. SIMULATION STUDY

The aim of this simulation study is to illustrate the
above theoretical discussion on the cost and benefits of
uniformly valid inference. While many simulations stud-
ies are available in the literature reviewed above, their fo-
cus is either to show the necessity of using uniformly valid
procedures in order to avoid regularization bias, or to il-
lustrate the variance inflation due to the use of instruments
in the propensity score compared to superefficient proce-
dures. Here, we contrast these two aspects by consider-
ing both uniformly valid and superefficient post-selection
strategies, as well as the double-selection outcome regres-
sion estimator (10).

4.1 Simulation Design

We use 500 replicates in all situations, and consider
sample sizes n = 500, 1000, 1500, 2000. The covariate
vector X is generated from a multivariate normal distribu-
tion with zero mean and identity covariance matrix. The
dimension p of the covariate vector equals n. Results for
low dimensional settings, p < n, portray a similar general
picture and are available from the authors upon request.
Data generation and all computations are performed with
the software R [39].

4.1.1 High-dimensional setting. We consider the fol-
lowing models:

Y(0) =mo(X) + €0 =1+ nyX + €,
Y(I)=m(X)+ ¢ =2+T[/1X+€1,
P(T = 1|1X) = e(X) = expit(y'X),

indexed by the parameter vectors
k
=5 1,1/2,1/3,1/4,1/5,

0,0,0,0,0,
1,1/2,1/3,1/4,1/5,
0,...,0),
m=k-(1,1/2,1/3,1/4,1/5,
0,0,0,0,0,
1,1/2,1/3,1/4,1/5,
0,...,0),
y=(1,1/2,1/3,1/4,1/5,

L1111,

0,...,0),

where k € {0.1,0.4,0.8, 1.2} and the error terms, ¢, =
0,1, are generated from a normal distribution with
E(¢|X) =0 and Var(¢|X) = (1 + p)~ '+ - X?)
where ¢ is the vector of ones. The parameter k determines
the strength of the association between the outcome and
the covariates.

4.1.2 Post-selection estimators of T. We use lasso as
implemented in the R package hdm [14] to estimate the
nuisance models m;(X) and e(X). We denote the sets
of variables which corresponds to nonzero coefficients in
the estimated sparse linear outcome models and logistic
propensity score by Xy = Xy, U Xy,, the union of the
sets estimated by each of the two potential outcome mod-
els, and X7, respectively. The lasso penalty parameter is
selected as A = 2.2,/n® ! ([log(n) — 0.1][2plog(n)]™")
[4].
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With the purpose of estimating t, using different com-
binations of the above covariate sets, we compare two ver-
sions of the OR estimator, three versions of the doubly ro-
bust AIPW estimator and one version of the doubly robust
TMLE estimator. Specifically, ORy, and ORpgs use Xy
and the union X7 U Xy in the outcome models refitting
steps, respectively. AIPWy, uses Xy in the propensity
score and outcome model refitting steps, AIPWpg uses
the union X7 U Xy in both the propensity score and out-
come models (as in [5], Section 5) and AIPWy, x, uses
X in the propensity score model and Xy in the outcome
models (as in [24]). TMLEx, x, uses X7 in the propen-
sity score model and Xy in the outcome models.

Given the same consistency and product rate condi-
tions on the initial estimators of nuisance models as in
Farrell [24], TMLEYy, x, has the same uniformly valid
asymptotic distribution as AIPW, x, ([58], Chapter 27).
Hence, if the refitted models used in AIPWy, x, are
used as initial model estimates in TMLEy, x, we would
expect similar results for large samples. In summary,
AIPWx, x,, AIPWps and TMLEY, x, have uniformly
valid asymptotic distributions, ORx, and AIPWy, have
no such uniform validity, select away instruments and are
superefficient, while ORpg has uniformly decaying bias
(Corollary 1). For TMLE, we use the R package tmle
[27] and do not truncate the estimated propensity scores,
that is, gbound = ¢ (0, 1). For the other estimators,
we use own written R code as well as the R package ui
[26] for the variances.

4.2 Results

From 500 replicates, we compute empirical biases,
standard errors, root mean squared errors (RMSE), and
empirical coverages. We also compute mean estimated
standard errors. Table 1 presents results for £ = 0.4. Re-
sults for all values of k are given for bias, RMSE and cov-
erages in the Appendix, Tables 2—4.

We see that estimators selecting away instruments
(ORy, and AIPWy,) have lower Monte Carlo standard
error but at the cost of larger bias and poor empirical cov-
erages (clearly lower than nominal level). As expected the
other estimators, which all have uniformly decaying bias,
show low bias, but at the cost of larger standard error. This
cost is, however, smallest for ORpg, and AIPWy, x,,
AIPW ps and TMLEY, x, have standard errors roughly
up to five times as large as ORx, , while for ORps the in-
crease in standard error is not as severe (up to 1.22 times
the standard error of ORY, ). All the low-bias estimators
have good empirical coverages, at least for sample sizes
1000 and higher, although we do not have such theoretical
guarantee for OR pg.

On a side note, we observe that the estimated standard
errors of AIPWy, x,, AIPWpgand TMLEy, x, are dis-
tinctively smaller than the Monte Carlo standard errors,

TABLE 1
Results of 500 simulation replicates for estimators of T, for varying
sample sizes n, number of covariates p =n and k = 0.4. RMSE, root
mean-squared error; Bias; SE, Monte Carlo standard deviation; ESE,
estimated standard error (influence curve based estimates, ignoring
the variability in the selection step); CP, empirical coverage
probability of 95% confidence intervals

n Estimator RMSE Bias SE ESE CP
500 ORy, 0.26 —0.19 0.18 0.16 0.74
ATPWy, 0.26 —0.19 0.18 0.16 0.74

ORps 0.22 —0.05 0.22 0.21 0.94
AlPWx, x, 0.95 —0.06 0.95 0.35 0.93

AIPW pg 0.88 —0.06 0.88 0.34 0.91
TMLEy, x, 0.29 —0.08 0.28 0.24 0.91

1000 ORy, 0.19 —0.14 0.14 0.11 0.72
AlPWy, 0.19 —0.14 0.14 0.11 0.73

ORps 0.16 —0.02 0.16 0.15 0.94
AlPWx, x, 0.38 —0.00 0.38 0.25 0.97
AIPWpg 0.37 —0.00 0.37 0.25 0.95
TMLEy, x, 0.21 —0.04 0.20 0.18 0.95

1500 ORy, 0.15 —0.11 0.11 0.09 0.76
AlPWy, 0.15 —0.11 0.11 0.09 0.76

ORpg 0.12 —0.02 0.12 0.12 0.95

AIPWyx, x, 022 —0.03 022 0.8 095

AIPW pg 024 —0.02 024 0.8 0095
TMLEy, x,  0.15 —004 015 014 092
2000 ORy, 013 —009 0.10 0.08 0.80
AIPWy, 0.13 —009 0.0 008 080
ORps 0.10 —0.01 0.0 0.10 095
AIPWy, x, 019  —0.02 019 0.6 094
AIPW pg 019 —002 019 016 093
TMLEx, x,  0.15 —0.03 015 0.3 092

but the difference is reduced when increasing sample size.
For OR pg no such underestimation of the variance is ob-
served. Bootstrap estimation of the standard errors might
remedy the finite sample underestimation we see here.
Cai and van der Laan [10] recently proposed a consistent
bootstrap method for TMLE, but the validity of bootstrap
methods for post-selection estimators in general is yet to
be investigated.

5. DISCUSSION

To obtain an unbiased estimator of the average causal
effect of a treatment, we need to control for all con-
founders. Knowing that some covariates are related to
the outcome, but not to the treatment does not change
the semiparametric efficiency bound. However, knowl-
edge on the existence of instruments has implications on
the asymptotic variance that can be achieved by unbiased
estimators [19, 29, 42]. In practice, we typically do not
have such apriori (to data) knowledge. Naively select-
ing away covariates (here instruments) using the data at
hand, by, for example, regularization yields inference that
is not uniformly valid (may translate into large bias and
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incorrect coverage rates). On the other hand, using meth-
ods which yield uniformly valid inference may yield large
variability compared to these naive (often superefficient)
methods. In this paper, we have reviewed the literature on
uniformly valid causal inference, and have discussed the
costs and benefits of uniformly valid inference. The lat-
ter discussion has been illustrated by studying a double-
selection outcome regression estimator, which is shown
to be uniformly asymptotically unbiased under a product
rate condition. This seems to translate into finite sample
properties which are a compromise between uniformly
valid and superefficient estimators. The good properties
of the double-selection OR estimator may arguably be due
to the designs considered in our simulations, for which
the outcome regression models can be consistently fitted.
Consistency of the outcome regression model is indeed
assumed to show uniformly decaying bias of the double-
selection estimator. This assumption is also used by esti-
mators which have the nonparametric double robust prop-
erty. On the other hand, procedures that yield double ro-
bust statistical inference [2, 52, 57], allow for one of the
nuisance models to be inconsistent (converges to an in-
correct function of the covariates). This alternative limit
need, however, to be assumed sparse in the covariates, a
rather high-level assumption [49].

APPENDIX A: PROOF OF THEOREM 3.1

The bias of post selection outcome regression estimator
can be expressed as follows:

Bias(?1,0r)
= E(Ep[r1(xs,)] — 1)
= E(Ep[r1(xs,) —mi(x;)]) + E(Eq[m1(x)] — 1)
= E(E,[m1(xs,) —mi(x)]),
where the last equality follows by Assumption 1. To show
that the scaled bias term is asymptotically negligible we
show that it is negligible conditional on S and {#;, x;}}'_;:
n’ Bias(T1,0r|S, {ti, xi}}—;)
i=n"E(Ep[m1(xs,) —mi(x)]IS, {t:, xi}{_;)

= n”En[xs,,-(xg’xg)_lx?m1 (xT) —my(x)]

A n”En[t,'a(xi)(xS,i(xg/xg)flx?ml(xT)

—mi(x;))]
_ r;—va(xT)/(Pg — Ly en )1 (x7)

v

=P = s (P = T o (57).

where ~ means that both side have the same limits which
holds by 3.1(1):

|nv Bias(f1,0R|S, {t;, xi}?:1)|

211/2
- ﬂntxnt)a(xT))i] /
< En (P~ Ly ()

=op, (1),

where the last equality holds by 3.1(ii). The statement in
the theorem follows by the above result on the order of
decay of the conditional expectation and uniform integra-
bility of this conditional expectation.

<n"En[((P§

APPENDIX B: PROOF OF COROLLARY 1

By construction Xy C S. Therefore by Farrell [24], Ap-
pendix F.3, (5) and the sparsity condition (7) we have v| =
1/2. Moreover, using Farrell [24], Corollary 5, Xy C S,
X7 C §, and conditions (5), (6) and (8) we have v, = 1/2.

APPENDIX C: SIMULATION RESULTS

TABLE 2
«/n-bias based on 500 simulation replicates, for estimators of T, with
varying sample sizes n and values for k, and number of covariates

p=n
k
n Estimator 0.1 0.4 0.8 1.2
500 ORy, —1.25 —4.16 —3.44 —-2.97
AIPWy, —1.25 —4.17 —3.44 —2.96
ORpg —0.26 —1.08 —-2.09 —2.56
AIPWyx, x, —0.42 —1.26 —2.57 -3.12
AIPW pg —0.35 —1.45 —2.49 —2.44
TMLEy, x; —0.45 -1.79 —2.55 —2.84
1000 ORy, —1.81 —4.32 -3.14 —2.28
AIPWy, —1.81 —4.31 —3.15 —-2.27
ORpg —0.17 —0.76 —1.40 —1.63
AIPWx, x, 0.59 —0.06 —0.86 —1.12
AIPWpg 0.56 —0.03 —0.88 —1.08
TMLEy, x, —0.30 —1.23 —1.76 —1.83
1500 ORy, —2.50 —4.10 —3.20 —2.08
AlPWy, —2.50 —4.09 -3.21 —2.08
ORps —0.50 —-0.91 —1.44 —1.47
AIPWx, x, —0.66 —1.02 —1.36 —1.55
AIPW pg —0.42 —0.89 —-1.39 —1.48
TMLEy, x, —0.75 —1.38 -1.71 —-1.59
2000 ORy, —2.83 -3.91 —-291 —1.56
AlIPWy, —2.82 —-3.92 —2.89 —1.53
ORpgs —0.29 —0.60 —0.91 —0.87
AlPWx, x, —0.54 —-0.91 —-1.21 —1.02
AIPWpg —0.44 —0.81 —1.08 —0.85
TMLEy, x, —0.68 —1.15 —1.33 —1.04
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TABLE 3

RMSE based on 500 simulation replicates, for estimators of T, with
varying sample sizes n and values for k, and number of covariates

TABLE 4

Empirical coverage probability of 95% confidence intervals based on
500 simulation replicates, for estimators of T, with varying sample

p=n sizes n and values for k, and number of covariates p =n
k k
n Estimator 0.1 04 0.8 1.2 n Estimator 0.1 04 0.8 1.2
500 ORy, 0.17 0.26 0.25 0.24 500 ORy, 0.94 0.74 0.83 0.86
AIPWy, 0.17 0.26 0.25 0.24 AIPWy, 0.94 0.74 0.82 0.87
ORps 0.21 0.22 0.24 0.26 ORpg 0.93 0.94 0.92 0.92
AIPWx, x, 0.85 0.95 0.95 0.88 AIPWx, x, 0.95 0.93 0.92 0.91
AIPWpg 0.79 0.88 0.88 0.76 AIPWpg 0.92 0.91 0.90 0.90
TMLEy, x;, 0.28 0.29 0.31 0.32 TMLEx, x, 0.93 0.91 0.89 0.90
1000 ORy, 0.12 0.19 0.17 0.15 1000 ORy, 0.93 0.72 0.84 0.89
AIPW x, 0.12 0.19 0.17 0.15 AIPWx, 0.93 0.73 0.84 0.90
ORpg 0.15 0.16 0.17 0.17 ORpg 0.93 0.94 0.92 0.92
AIPWx, x, 0.37 0.38 0.37 0.38 AIPWx, x, 0.97 0.97 0.95 0.95
AIPW pg 0.36 0.37 0.38 0.38 AIPW pg 0.96 0.95 0.94 0.93
TMLEy, x, 0.20 0.21 0.22 0.22 TMLEy, x, 0.95 0.95 0.94 0.94
1500 ORy, 0.11 0.15 0.13 0.11 1500 ORy, 0.90 0.76 0.83 091
AIPWy, 0.11 0.15 0.13 0.11 AIPWy, 0.90 0.76 0.84 0.92
ORpg 0.12 0.12 0.13 0.13 ORpg 0.96 0.95 0.96 0.95
AIPWyx, x, 0.22 0.22 0.24 0.24 AIPWyx, x, 0.96 0.95 0.95 0.94
AIPW pg 0.22 0.24 0.25 0.25 AIPWpg 0.95 0.95 0.94 0.93
TMLEy, x, 0.15 0.15 0.16 0.16 TMLEx, x;, 0.95 0.92 0.93 0.92
2000 ORy, 0.10 0.13 0.11 0.10 2000 ORy, 0.88 0.80 0.86 0.92
AIPWy, 0.10 0.13 0.11 0.10 AIPWy, 0.88 0.80 0.87 0.92
ORpg 0.10 0.10 0.11 0.11 ORpg 0.95 0.95 0.94 0.95
AIPWy, x, 0.18 0.19 0.19 0.19 AIPWx, x, 0.94 0.94 0.94 0.95
AIPWpg 0.18 0.19 0.19 0.19 AIPWpg 0.94 0.93 0.94 0.94
TMLEx, x, 0.15 0.15 0.15 0.15 TMLEy, x, 0.92 0.92 0.92 0.93
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