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Intention-to-Treat Comparisons in
Randomized Trials
Ross L. Prentice and Aaron K. Aragaki

Abstract. Intention-to-treat (ITT) comparisons have a central place in re-
porting on randomized controlled trials, though there are typically additional
analyses of interest such as those making adjustments for nonadherence.
In our ITT reporting of results from the Women’s Health Initiative (WHI)
randomized trials, we have relied primarily on highly flexible hazard ratio
(Cox) regression methods. However, these methods, especially the propor-
tional hazards special case, have been criticized for being difficult to inter-
pret and frequently oversimplified, and for not being consistent with modern
causality theories using potential outcomes. Here we address these topics and
extend our use of hazard rate methods for ITT comparisons in the WHI trials.

Key words and phrases: Causality, Cox model, failure time data, regres-
sion, restricted mean survival time.

1. INTRODUCTION

Prior to 1972 censored time-to-response data, often
referred to as ‘survival’ data, were typically analyzed
using fully parametric models, such as exponential or
Weibull models (e.g., Feigl and Zelen, 1965) or were ana-
lyzed using a Mantel–Haenszel (1959) stratified odds ra-
tio approach. The seminal paper by Cox (1972) quickly
changed this landscape. Cox’s hazard ratio regression
model extended the parametric models by including a
nonparametric baseline hazard rate factor, along with an
exponential form parametric hazard ratio factor. In doing
so, it also extended the flexibility of the Mantel–Haenszel
estimator to a full regression model for the instantaneous
odds ratio, or hazard ratio (HR). The regression parame-
ter in the Cox model was shown subsequently to be es-
timated in a semiparametric efficient manner by Cox’s
(1975) partial likelihood estimator, at least if regression
variates are time-independent (Begun et al., 1983). Some
decades of research followed that augmented the class
of Cox models to include stochastic time-varying regres-
sion variables and stratified time-varying baseline hazard
rates, to allow multiple failure types and multivariate fail-
ure time outcomes, and to accommodate missing and mis-
measured covariate data, among many other extensions.
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Novel research efforts focused also on asymptotic proper-
ties of estimators of parameters in hazard ratio regression
models, including asymptotic properties under a variety
of study subject selection and censoring patterns, as well
as under a variety of sampling procedures for (expensive)
covariate history assembly. Many of these developments
have been summarized in books along the way (e.g.,
Andersen et al., 1993, Kalbfleisch and Prentice, 2002,
O’Quigley, 2008, Aalen, Borgan and Gjessing, 2010,
Cook and Lawless, 2018, Prentice and Zhao, 2019).

As the Cox model, especially its proportional hazards
special case, became a prominent data analytic tool for
follow-up studies, some issues emerged. Of course it was
recognized early that some bias may arise for HR esti-
mators under departure from the assumed parametric HR
model. For example, Struthers and Kalbfleisch (1986) in-
vestigated biases associated with fitting a proportional
hazards model when an accelerated failure time model ob-
tains. See also Lagakos and Schoenfeld (1984) for studies
of the impact of nonproportionality and missing covari-
ates in a randomized trial setting. Hernán (2010) noted
that an estimated (constant) HR in a two-sample compari-
son is difficult to interpret if the HR changes over follow-
up time, and the characterized HR estimates at a specific
follow-up time as having ‘built-in selection bias’ due to
differential failure rates among susceptibles at times prior
to t . Aalen, Cook and Røysland (2015) noted further that
the HR is ‘not a quantity that admits a causal interpreta-
tion in the case of unmodeled heterogeneity’ even if the
HR is correctly modeled. Aalen et al. summarize by sug-
gesting that ‘modeling frameworks more compatible with
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causal reasoning may be preferable for estimation in gen-
eral.’

Over much of this same time period a major devel-
opment arose to formalize statistical aspects of causality
in terms of potential, or counterfactual, outcomes; that
is, outcomes that would arise if a study subject could
be assigned to each of two treatment groups in a ran-
domized controlled trial, with early influential contribu-
tions by Rubin (1974, 1978) and Robins (1986). Much
of this work was motivated by a desire to strengthen ob-
servational study analyses through emulation of random-
ized trials, by measuring additional variables which, when
conditioned upon, may be able to yield a state of ex-
changeability between treatments or exposure groups to
be compared. The resulting methods were proposed also
to correct for noncompliance in randomized trials (e.g.,
Robins, 1994), and ultimately as a framework for judging
ITT analyses of randomized trials according to whether or
not the estimands employed can be represented as aver-
ages of counterfactual differences (e.g., Aalen, Cook and
Røysland, 2015). For example, the preference for such
methods appears to have contributed to recent interest in
the use of restricted mean survival time (RMST) contrasts
rather than hazard ratio analyses (e.g., Uno et al., 2015,
Zhao et al., 2016), and to accelerated failure time mod-
els rather than Cox regression models (e.g., Hernán and
Robins, 2020, Chapter 17) for clinical trial reporting with
failure time outcomes.

Here we present a defense of hazard rate modeling,
and Cox regression in particular, for the ITT reporting of
causal effects in randomized controlled trials. We do so
in the context of the massive Women’s Health Initiative
(WHI) randomized, placebo controlled hormone therapy
trials in which we have been engaged for many years. The
recent book by Hernán and Robins (2020) provides a very
readable version of much of the literature on causality us-
ing a potential outcomes framework, and we will draw on
this work as an authoritative source in some of our argu-
ments.

2. WHI MENOPAUSAL HORMONE THERAPY TRIALS

The WHI hormone therapy trials of conjugated equine
estrogens 0.625 mg/d continuous and medroxyproges-
terone acetate 2.5mg/d continuous (CEE+MPA) among
16,608 postmenopausal US women with uterus, and the
companion trial of the same estrogens preparation (CEE)
among 10,739 women who were post-hysterectomy, led
to a sea change in clinical practice, with about 70% of the
approximately 6 million women using this CEE+MPA
regimen, and about 40% of the approximately 8 million
women using this CEE regimen, stopping usage abruptly
when the CEE+MPA trial was stopped early and re-
sults were released following an average 5.6 year inter-
vention period (Rossouw et al., 2002). The trigger for

early stoppage was a significant elevation in breast can-
cer risk, in conjunction with some elevations also in car-
diovascular disease incidence, for which major reductions
had been hypothesized based on a substantial observa-
tional literature. The CEE trial was also stopped early in
2004 following an average 7.2 year intervention period
(Anderson et al., 2004), largely based on a stroke eleva-
tion of similar magnitude to that for CEE+MPA. Reduc-
tions in postmenopausal breast cancer incidence in the US
(e.g., Ravdin et al., 2007) and elsewhere were reported
soon thereafter and reductions in US health care costs
from the reduction in use of CEE+MPA have been es-
timated at $37.1 billion through 2012 (Roth et al., 2014).

This brief account illustrates the weight that is attached
to well-conducted randomized trials by clinicians and reg-
ulators, as derives from the independence between in-
tervention group assignment and baseline risk factors,
whether recognized as such or not, in randomized trials.
Assuming equal outcome ascertainment between random-
ized groups, and the absence of post-randomization con-
founding by unplanned changes in the study population
during follow-up, it is logical to regard the outcome pat-
terns that emerge as being caused by the treatments under
study. As emphasized by Cox (1992) these types of causal
arguments may be able to be strengthened through eluci-
dation of biological mechanisms that attend differences in
outcome patterns between randomization groups.

The Cox regression method, with its time-dependent
covariate and stratification features has been the ‘work-
horse’ for reporting on the WHI hormone therapy trials
over many years, as nonintervention follow-up still con-
tinues, with median follow-up now in excess of 20 years.
An early analysis of the CHD primary efficacy outcomes
(Manson et al., 2003) listed HR estimates (95% CIs)
for CEE+MPA of 1.81 (1.09, 3.01), 1.34 (0.82, 2.18),
1.27 (0.64, 2.50) 1.25 (0.74, 2.12), 1.45 (0.81, 2.59) and
0.70 (0.42, 1.14) for years 1, 2, 3, 4, 5 and ≥6 years
from randomization. The early elevation in CHD rates
had not been recognized in the preceding observational
study reports. When the CEE+MPA trial data were an-
alyzed jointly with a corresponding sub-cohort from a
WHI Observations Study (n = 93,676), a good agreement
in HR pattern between cohorts was found after allowing
for time-dependence in the HR function (Prentice et al.,
2005). CHD contrasts in the CEE trial were similar, but
somewhat less pronounced (Hsia et al., 2006), and again
agreed well with HRs from the pertinent component of
the OS after allowing for HR function time-dependence
(Prentice et al., 2006).

An elevation in (invasive) breast cancer risk with post-
menopausal hormones was anticipated from observational
studies, leading to the specification of breast cancer as pri-
mary safety outcome in both trials. An observed breast
cancer risk elevation was a key element of the early stop-
page decision in 2002 for the CEE+MPA trial (Rossouw
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et al., 2002). Following a short period of lower breast
cancer incidence in the active CEE+MPA group, perhaps
due to influences of the intervention on mammographic
density with resulting delay in breast cancer diagnosis,
the breast cancer HR increased quite substantially with
time from randomization (e.g., Chlebowski et al., 2009)
and continued to be elevated with long-term follow-up
(e.g., Manson et al., 2013). In contrast, and unexpect-
edly, the breast cancer HR was reduced in the CEE trial
(Anderson et al., 2004), and continued to be reduced over
long-term follow-up (e.g., Chlebowski et al., 2020). The
major difference in breast cancer results from the two tri-
als is a continuing source of study and debate. The is-
sues under consideration primarily relate to variation in
hormone therapy influences according to such participant
characteristics as age at starting menopausal hormones
(Prentice et al., 2020), gap time from menopause to start
of hormone therapy (Prentice et al., 2009), and whether
or not hysterectomy was accompanied by bilateral oo-
pherectomy (Manson et al., 2019). We believe that these
timing issues are an appropriate focus for understanding
the causality and magnitude of effects of menopausal hor-
monal therapy on CHD and breast cancer, and that our
(sometimes) oversimplified HR modeling using the Cox
model has provided reliable insights into these effects.

3. HAZARD RATE CONTRASTS IN RANDOMIZED
CONTROLLED TRIALS

3.1 Estimands

A general regression notation will be used for censored
time-to-response, or failure time, data. Consider a univari-
ate failure time variate T > 0, subject to right censoring
by variate C ≥ 0, along with a covariate process Z that
may be evolving over time in a study population. Denote
by z(s) = {z1(s), z2(s), . . .} the covariate value at time
s ≥ 0, and by Z(t) = z(0) ∨ {z(s),0 < s < t} the covari-
ate history prior to time t . Hazard rates are fundamental
to the representation and analysis of censored failure time
data, since it is precisely these rates that are identifiable
under an independent censoring assumption. The hazard
rate, given Z, at follow-up time t can be written

(1) �
{
dt;Z(t)

} = P
{
t ≤ T < t + dt;T ≥ t,Z(t)

}
,

and independent censorship requires that C ≥ t can be
added to the conditioning event without changing the haz-
ard rate for any t ≥ 0 and Z(t). The corresponding (cumu-
lative) hazard function, using Stieltjes integration, is given
by

(2) �
{
t;Z(t)

} =
∫ t

0
�

{
ds;Z(s)

}
.

A randomized controlled trial typically has Z(t) ≡ z

for all t ≥ 0, where z = 0 in a control group, and z = 1

in an active treatment group. ITT comparisons between
randomized groups can be based on test statistics, such
as the logrank test, or on comparisons of various func-
tions of hazard rates. For example, ITT comparisons hav-
ing causal interpretations can derive from differences be-
tween groups of survival functions

(3) F(t; z) =
t∏
0

{
1 − �(ds; z)},

where
∏

denotes product integral. A causal interpretation
also derives from the randomized trial design for many
other functional estimands, based on hazard functions.
Such a causal interpretation has been noted also from
a potential outcome perspective. For example, (Hernán
and Robins, 2020, p. 7) write for a response variable not
subject to censoring that ‘. . . a population causal effect
may be defined as a contrast of functionals, including me-
dians, variances, hazards, or cdfs of counterfactual out-
comes’. Similarly, Martinussen, Vansteelandt and Ander-
sen, 2020, in a censored failure time setting, note that var-
ious functional contrasts derived from hazard rates, have
a causal interpretation using counterfactuals.

One such functional contrast that has been advocated
for use in a randomized controlled trials is the restricted
mean survival time difference

(4) RMST(t; z = 1) − RMST(t; z = 0), for t ≥ 0,

where

RMST(t; z) =
∫ t

0
F(s; z) =

∫ t

0

s∏
0

{
1 − �(ds; z)},

which has an attractive interpretation as the difference be-
tween groups in the expected time without failure in [0, t]
(e.g., Uno et al., 2015, Zhao et al., 2016). However, in dis-
ease prevention trials, such as the WHI hormone therapy
trials, the restricted mean difference may be quite small
during follow-up, perhaps reducing its value as a results
communication tool. Also (4) may depend more strongly
on eligibility and exclusionary criteria in a trial setting,
than does, for example, a functional based on relative haz-
ard rates between treatment groups.

There is also a literature on average hazard ratio
(AHR) estimands (e.g., Kalbfleisch and Prentice, 1981,
Schemper, Wakounig and Heinze, 2009). For example,
when there is a specific control group one can define an
AHR contrast by

AHR(t) =
∫ t

0

�(ds; z = 1)

�(ds; z = 0)
P (ds; z = 0)

for t > t0,

(5)

where P denotes the failure time probability distribution
in the control group, conditioned on [0, t], and t0 > 0 is
chosen to ensure a positive control group failure probabil-
ity in [0, t].
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3.2 Estimation

The estimands described above can each be estimated
nonparametrically by inserting Nelson–Aalen estimators
of hazard rates (2) for t ≥ 0. Specifically, based on an
independent random sample, {Si = Ti ∧ Ci, δi = I [Ti =
Si], zi}, i = 1, . . . , n, where I (·) denotes an indicator
function, this hazard function estimator {�̂(t; z);0 ≤ t ≤
τ }, for τ in the support of the observed times Ti ∧ Ci, i =
1, . . . , n, can be written as

�̂(t; z) =
∫ t

0

n∑
i=1

I (z = zi)Ni(ds)

/ n∑
i=1

I (z = zi)Yi(s),

(6)

where Ni(ds) = 1 if Si = s and δi = 1, and Ni(ds) = 0
otherwise, and Yi(s) = 1 if s ≤ Si and Yi(s) = 0 other-
wise. This estimator has well established asymptotic con-
vergence properties, and these lead to standard n−1/2 con-
vergence rates for many related compact differentiable
transformations, including Kaplan–Meier survival func-
tion estimators, given by

F̂ (t; z) =
t∏
0

{
1 − �̂(ds; z)},

as well as estimators given by

ÂHR(t) = {
1 − F̂ (t; z = 0)

}−1

×
∫ t

0
F̂ (s; z = 0)�̂(ds; z = 1), for t > t0

for the average hazard ratio estimand (5). The asymptotic
results alluded to above imply bootstrap applicability for
each of these functionals, as well as for the RMST differ-
ence function.

3.3 Illustration

Table 1 shows the number of study participants devel-
oping clinical outcomes during the intervention phase,
and during the subsequent nonintervention follow-up
phase of the WHI hormone therapy trials, for CHD, breast
cancer, and for several other important clinical outcomes
that together constituted a ‘global index’ used for trial
monitoring and reporting.

Figure 1 shows AHR estimators and RMST contrasts
for the CEE+MPA trial for CHD (upper) and breast can-
cer (lower), along with pointwise 95% confidence inter-
vals based on 1000 bootstrap samples. Both displays start
at 1 year post-randomization and continue through year
16. The AHR estimate for CHD shows an early elevation
but ceases to be significantly elevated after about 6 years
from randomization, whereas the RMST contrast doesn’t
clearly show a randomization influence. For breast can-
cer the AHR function can be observed to be elevated

by about 30% over the first six years from randomiza-
tion, and evidence for an elevation becomes stronger with
longer, mostly nonintervention, follow-up. A reduction in
RMST for breast cancer in the active treatment group is
not evident until about 12 years following randomization.

Supplementary Figure 1 (Prentice and Aragaki, 2022)
shows corresponding estimates for the CEE trial. Neither
estimator identifies a clear influence of randomization to
active CEE on CHD risk, while both estimate a breast can-
cer risk reduction, starting at about 5 years from random-
ization for the AHR estimator, and at about 8 years for the
RMST contrast. From these analyses, one might speculate
that AHR functions may be particularly useful for iden-
tifying early differences between randomization groups,
especially with rare outcomes.

The failure times in these analyses were times from ran-
domization to the occurrence of the outcome under analy-
sis, while the potential censoring times were the earliest of
time to the end of the follow-up period, time to earlier loss
to follow-up (which occurred rarely), and time to death.
Some authors (e.g., Fine, Jiang and Chappell, 2001) re-
gard time to death as a competing risk and entertain times
to CHD, or to breast cancer, that could have occurred had
the participant not died from some other cause. This ap-
proach leads to identifiability issues and strong additional
assumptions for estimation of targeted quantities. Instead,
in our WHI analyses we regard the hazard rates (1) as
implicitly conditioning on the continued survival of the
study subject to time t . A death from a competing cause
then simply shortens the time period for the individual’s
contribution to hazard rate estimation, without requiring
additional assumption. This approach, of course, has im-
plications for the interpretation of treatment group con-
trasts, but has the advantage of retaining randomization-
based causal interpretations for functionals based on com-
parisons among identifiable hazard functions.

As noted by Hernán (2010), hazard rates are somewhat
complex to describe, and hazard rate comparisons at spe-
cific times t > 0 typically do not involve comparisons be-
tween randomized groups. However, the hazard rate con-
trasts at a particular follow-up time, and contrasts for the
entire hazard function, have values that can be attributed
to the randomized group assignment. Though there is
room for discussion, we think from the AHR component
of Figure 1 that a summary such as ‘persons like you who
are randomly assigned to CEE+MPA have about an 80%
increase in risk for CHD during the first year compared
to similar persons assigned to placebo, but an overall ele-
vation in CHD is not evident over a longer-term interven-
tion and follow-up period’ provides a useful and appro-
priate communication for clinical application. Similarly,
for CEE+MPA and breast cancer a clinician could appro-
priately summarize the AHR display of Figure 1 as ‘there
may be a small early reduction in breast cancer diagno-
sis among women assigned to active CEE+MPA versus
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TABLE 1
Hazard ratios and 95% confidence intervals under a simple proportional hazards assumption, and corresponding inverse variance weighted estimators over the phases of the Women’s Health

Initiative menopausal hormone therapy trials, for major clinical outcomes

Inverse Variance
Intervention Phase Post-Intervention Proportional Hazards1 Weighted2

Cases Cases Cases Cases Test of Equality
Clinical outcome active placebo β̂ SEβ̂ active placebo β̂ SEβ̂ p-value3 HR 95% CI HR 95% CI

CEE+MPA Trial
Primary Outcomes

Coronary heart disease 196 159 0.162 0.107 514 493 0.015 0.063 0.23 1.05 0.95 1.17 1.05 0.95 1.17
Invasive breast cancer 205 155 0.211 0.107 369 277 0.258 0.080 0.72 1.27 1.12 1.44 1.27 1.12 1.44

Secondary outcomes
Stroke 159 110 0.308 0.125 420 382 0.056 0.071 0.08 1.13 1.00 1.27 1.12 1.00 1.27
Pulmonary embolism 87 41 0.683 0.190 148 158 −0.118 0.115 <0.001 1.11 0.92 1.35 1.10 0.91 1.33
Colorectal cancer 50 76 −0.493 0.182 128 121 0.010 0.127 0.02 0.85 0.70 1.05 0.86 0.70 1.05
Endometrial cancer 27 30 −0.182 0.266 70 97 −0.382 0.157 0.52 0.72 0.55 0.94 0.72 0.55 0.94
Hip fracture 53 75 −0.402 0.180 341 346 −0.051 0.077 0.07 0.90 0.78 1.03 0.90 0.78 1.03
All-cause mortality 250 238 −0.027 0.091 1620 1555 0.003 0.036 0.76 1.00 0.94 1.07 1.00 0.94 1.07

CEE Trial
Primary Outcomes

Coronary heart disease 205 222 −0.055 0.097 316 328 −0.011 0.079 0.73 0.97 0.86 1.10 0.97 0.86 1.10
Invasive breast cancer 103 135 −0.244 0.131 128 156 −0.194 0.119 0.77 0.81 0.68 0.96 0.81 0.68 0.96

Secondary Outcomes
Stroke 174 130 0.330 0.116 225 262 −0.114 0.091 0.003 1.06 0.92 1.22 1.06 0.92 1.22
Pulmonary embolism 52 39 0.303 0.212 101 111 −0.064 0.138 0.15 1.05 0.84 1.31 1.05 0.83 1.31
Colorectal cancer 65 58 0.139 0.181 54 60 −0.102 0.188 0.35 1.02 0.79 1.32 1.02 0.79 1.32
Hip fracture 48 74 −0.407 0.185 160 155 0.044 0.113 0.04 0.92 0.76 1.11 0.92 0.77 1.12
All-cause mortality 301 299 0.034 0.082 957 978 −0.006 0.046 0.67 1.00 0.93 1.08 1.00 0.93 1.08

1Possibly oversimplified proportional hazards (Cox) model over cumulative follow-up, with baseline hazard function stratified on age, dietary modification trial randomization status, prior history
of disease under analysis (if applicable), and study phase (time-dependent).
2Same as proportional hazards model described in footnote 1, except treatment HRs are allowed to differ in intervention and post-intervention phases, and summary HR (95% CI) is from average
inverse variance weighted linear combination of log HRs from the two phases.
3Stratified logrank test significance level (p-value) for testing equality of HRs between the two study phases.
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FIG. 1. Nonparametrically estimated average hazard ratios (AHRs) and restricted mean survival time differences (RMST active–RMST placebo)
with nonparametric bootstrap 95% confidence intervals (1000 bootstrap samples) for coronary heart disease (CHD) and breast cancer in the
Women’s Health Initiative estrogen plus progestin (CEE+MPA) trial among 16,608 postmenopausal US women with uterus.

placebo, possibly due to diagnosis delays in the interven-
tion group, but by 6 years the breast cancer risk is ele-
vated by about 30% on average in the intervention group,
and remains elevated over longer-term intervention and
follow-up’.

There are, of course, many other possibilities beyond
AHR and RMST contrasts for making useful ITT com-
parisons between randomized groups in clinical trials
with failure time outcomes. In particular there has been

much study and comparison null hypothesis tests for this
purpose. The left side of Table 2 shows p-values for
an RMST contrast at a ‘landmark time’ defined as the
smaller of the maximum intervention phase follow-up
times in the two groups, and for a traditional interven-
tion phase logrank test which is a score test of null hy-
pothesis against a proportional hazards alternative under
which �(dt; z = 1)/�(dt; z = 0) is constant as a func-
tion of t . The p-values for the two tests are similar for
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TABLE 2
Significance levels (p-values) for null hypotheses test over the intervention phase of the Women’s Health Initiative hormone therapy trials

HR model with x(t) = (z, zt)

Clinical Outcome RMST P value1 P value Logrank β̂1 SE β̂2 SE PH TestP value2 2DF P value3

CEE+MPA Trial
Primary Outcomes
Coronary heart disease 0.24 0.19 0.570 0.203 −0.136 0.054 0.01 0.02
Invasive breast cancer 0.17 0.05 −0.340 0.232 0.163 0.062 0.008 0.004
Secondary Outcomes
Stroke 0.01 0.02 0.254 0.253 0.013 0.066 0.85 0.06
Pulmonary embolism <0.001 <0.001 1.272 0.372 −0.181 0.094 0.05 <0.001
Colorectal cancer 0.009 0.007 −0.361 0.359 −0.041 0.100 0.69 0.02
Endometrial cancer 0.51 0.49 0.246 0.579 −0.124 0.150 0.40 0.56
Hip fracture 0.03 0.02 −0.387 0.369 −0.010 0.100 0.92 0.06
All-cause mortality 0.74 0.75 0.110 0.205 −0.038 0.051 0.45 0.71

CEE Trial
Primary Outcomes
Coronary heart disease 0.74 0.59 0.178 0.199 −0.055 0.042 0.19 0.36
Invasive breast cancer 0.16 0.06 −0.505 0.283 0.063 0.060 0.30 0.10
Secondary Outcomes
Stroke 0.02 0.005 0.164 0.236 0.038 0.050 0.45 0.02
Pulmonary embolism 0.10 0.13 0.475 0.488 −0.033 0.092 0.72 0.30
Colorectal cancer 0.44 0.44 −0.256 0.343 0.109 0.080 0.17 0.29
Hip fracture 0.03 0.03 −0.727 0.457 0.065 0.084 0.44 0.07
All-cause mortality 0.55 0.65 0.291 0.187 −0.055 0.036 0.13 0.29

1Test for zero value restricted mean survival time (RMST) difference between groups.
2Test for proportional hazards (PH) by testing β2 = 0 in HR model.
3Two degrees of freedom (DF) test β1 = β2 = 0 in HR model.

the two tests for most clinical outcomes for both hor-
mone therapy trials. However, the RMST test does not
identify (p = 0.17) an increased breast cancer risk in the
active CEE+MPA group, whereas the logrank p = 0.05.
This is an important difference because a breast cancer
risk elevation was the trigger for the early stoppage of
the CEE+MPA trial, which evidently impacted national
breast cancer rates (Ravdin et al., 2007). The Table 2 p-
values illustrate the importance of simultaneous consider-
ation for the set of outcomes that plausibly differ between
randomization groups, a topic that we will return to af-
ter discussing some properties of semiparametric hazard
ratio (Cox) regression in this type of setting.

4. HAZARD RATIO MODELING AND ESTIMATION

4.1 Properties

A hazard ratio regression (Cox) model for the hazard
rate at follow-up time t can be written

(7) �
{
dt;Z(t)

} = �0(dt) exp
{
x(t)β

}
,

where x(t) = {x1(t), x2(t), . . . , xp(t)} is a fixed length
modeled (row) regression vector formed from {t,Z(t)},
β = (β1, . . . , βp)′ is a corresponding (column) p-vector
and �0(dt) is an unspecified ‘baseline’ hazard rate, at

follow-up time t and modeled regression vector value
x(t) ≡ (0, . . . ,0). Note that (7) factors the hazard rates
into a hazard ratio component exp{x(t)β} that models
variations in hazard rates as a function of the regres-
sion vector x(t) that may distinguish study subjects, and
an absolute (baseline) hazard rate component �0, where
�0(t) = ∫ t

0 �0(ds). The HR component characterizes de-
pendence of the hazard rate on preceding covariate his-
tories over time. For example, in a randomized, con-
trolled trial one may consider x(t) ≡ z where z = 0 and
z = 1 again indicate control and active treatment assign-
ment, respectively, thereby modeling a constant hazard ra-
tio eβ for the active compared to the control treatment
groups. More generally, the HR may vary with follow-up
time. Dependencies of this type can be modeled through
‘defined’ time-dependent covariate specifications, such
as x(t) = {x1(t), x2(t)} = {zI (0 ≤ t < t0), zI (t0 ≤ t)},
where I (·) denotes an indicator function, which allows
possibly distinct hazard ratios eβ1 and eβ2 according to
whether follow-up time is < t0 or ≥ t0; or x(t) = (z, zt)

which gives a treatment hazard ratio function eβ1+β2t

that varies smoothly with follow-up time in an increas-
ing (β2 > 0), decreasing (β2 < 0) or constant (β2 = 0)

fashion. In general HR modeling factors the hazard rates
into a nonparametric and a parametric component. This
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model admits a very simple and computationally reliable
procedure for estimating the HR component parameter β

by solving the partial likelihood (Cox, 1975) score equa-
tion U(β, τ) = 0 where

(8) U(β, t) =
n∑

i=1

∫ t

0

{
xi(s) − E(s;β)

}
Ni(ds),

based on a random sample {Si = Ti ∧ Ci, δi = I [Ti =
Si],Zi(Si), i = 1, . . . , n} from a study population.

Also in (8)

E(s;β) =
n∑

i=1

Yi(s)xi(s)e
xi(s)β/

n∑
i=1

Yi(s)e
xi(s)β .

Under independent and identically distributed (IID)
conditions for {Si, δi,Zi(Si)}, i = 1, . . . , n, asymptotic
distribution theory for β̂ solving U(β, τ) = 0 can be de-
veloped using martingale convergence theory in a man-
ner that extends to counting process intensity modeling
for multivariate outcomes on the same failure time axis
(Andersen and Gill, 1982). Alternatively, asymptotic dis-
tribution theory for β̂ can be developed using empirical
process methods, in a manner that generalizes to mod-
els of the form (7) for marginal hazards with multivari-
ate outcomes on the same or different failure time axes
(e.g., Wei, Lin and Weissfeld, 1989, Spiekerman and
Lin, 1998). Under IID assumptions and regularity con-
ditions, the empirical process approach implies a mean
zero asymptotic Gaussian distribution for n1/2(β̂ − β)

with variance matrix that is consistently estimated by
n�̂(β̂)−1Â(β̂)�̂(β̂)−1, where �̂(β̂) = −∂U(β̂, t)/∂β̂ ′,
and

Â(β̂) =
n∑

i=1

[∫ τ

0

{
xi(t) − E(t, β̂)

}
M̂i(dt; β̂)

]⊗2
,

with M̂i(dt; β̂) = Ni(dt)−Yi(t)e
xi(t)β̂ �̂0(dt; β̂), and �̂0

is the Breslow–Aalen estimator of the baseline hazard
function �0 given by

(9) �̂0(dt;β) =
n∑

i=1

Ni(dt)/

n∑
i=1

Yi(t)e
xi(t)β .

Note that n�̂(β̂)−1 is the usual variance estimator for
n1/2(β̂ − β) under model (7). These are results of con-
siderable generality in view of the time-dependent fea-
ture of the parametric component of (7). For example the
treatment hazard ratio in a randomized controlled trial
can be modeled to allow distinct values over a partition
of the follow-up period, embracing a class of models
broader than overall proportional hazards. Furthermore,
the baseline hazard function �0 in (7) can be allowed to
have distinct values over a fixed number of possibly time-
dependent strata, defined from {t,Z(t)} at follow-up time
t , without adding appreciable complexity to parameter es-
timation.

The model (7) and its extensions separates comparative
rates through the hazard ratio factor, from absolute rates
that reflect also the baseline hazard rate function(s). Intu-
itively, comparative rates may be well modeled with few
parameters, while absolute rates may depend on many de-
tails of the study population, as may reflect eligibility and
exclusionary criteria in a clinical trial or cohort study set-
ting.

4.2 Illustration

The nonparametric AHR and RMST difference ITT
analyses of Figure 1 and Supplementary Figure 1 have
some limitations. Specifically the estimators tend to be
noisy, especially the AHR. Also neither estimator ac-
knowledges the variation, from about 3.5 to 8.5 years, in
the time from randomization to the end of an individual’s
intervention period. Also, it may be helpful to acknowl-
edge the dependence of disease rates on participant age
and other prominent risk factors.

To do so a Cox model (7) was applied with base-
line hazard rate stratification on age at enrollment (50–
54, 55–59, 60–69, 70–79), randomization status in the
companion randomized low-fat dietary pattern trial (in-
tervention, control, not randomized), prior history of the
disease under analysis (if applicable), and study phase
(time-dependent intervention and post-intervention). Ta-
ble 1 shows logHR (β) estimators and estimated standard
errors comparing the intervention and control groups for
each of the global index outcomes, for both hormone ther-
apy trials, along with a test of equality of phase-specific
HRs for each outcome. Also shown are simple propor-
tional hazards estimators and estimated 95% CIs over cu-
mulative follow-up, along with corresponding estimators
from an inverse variance weighted linear combination of
logHR estimates from the two study phases. The two sets
of estimators are essentially identical. Of course, HR esti-
mates may vary also within study phases. Supplementary
Table shows results of intervention phase ITT analyses
that allow distinct HRs by follow-up year, for CHD and
breast cancer. Also shown are intervention phase results
under a simple proportional hazards assumption, which
again are essentially identical to those under inverse vari-
ance weighting of follow-up year specific logHR esti-
mates, for both outcomes and both trials. An informal de-
scription as to why such agreement can be expected is also
included in Supplementary Material. See also O’Quigley
(2008, pp. 226–7) for related arguments, and Murphy and
Sen (1991) for formal developments.

In summary, although it is appropriate to criticize Cox
modeling under an oversimplified proportional hazards
assumption, the resulting HR estimator and confidence in-
terval may often provide a good approximation to an HR
estimator derived from an appropriately weighted linear
combination of logHR estimators over a time axis parti-
tion. It is a drawback that the inverse variance weighting
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FIG. 2. Semiparametrically estimated average hazard ratio (AHRs) and restricted mean survival time differences (RMST active-RMST, placebo)
with nonparametric bootstrap 95% confidence intervals (1000 bootstrap samples) from the Women’s Health Initiative estrogen plus progestin
(CEE+MPA) trial among 16,608 postmenopausal US women with uterus, under a hazard rate model defined by expressions (7) and (10).

may depend on censoring rates, though in the WHI trial
setting with mostly administrative censoring, this is un-
likely to be an important issue.

Importantly, with careful modeling of HR dependencies
on time, one can expect to estimate the ITT HR func-
tion well, and to do so also for related functions, such
as AHRs and RMST differences. For example, Figure 2
and Supplementary Figure 2 show estimators and point-
wise 95% confidence intervals (1000 bootstrap samples)

like those in Figure 1 and Supplementary Figure 1 under
a Cox model (1) with

xi(t) = {
zI (t ≤ t0i ), ztI (t ≤ t0i ),

zI (t > t0i ), z(t − t0i )I (t > t0i )
}(10)

where t0i denotes time from randomization to the end
of the trial intervention period for the ith participant.
This model allows separate HR function estimation in
the intervention and post-intervention trial phases, while
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allowing a smooth form of departure from proportion-
ality in each phase. Estimated average HR functions,
{ÂHR(t; z, t0), t ≥ 0}, for the primary CHD and breast
cancer outcomes for a participant having a t0i = 5.6 year
intervention period are shown over cumulative follow-
up for the CEE+MPA trial on the left-hand side of
Figure 2. Under the assumed HR form each point (t)

on these plots provides a consistent estimator of av-
erage HR from randomization to t . For CHD in the
CEE+MPA trial one obtains maximum partial likelihood
estimators (estimated standard errors) for the four HR pa-
rameters of 0.516 (0.198), −0.119 (0.049), 0.011 (0.113)
and −0.001 (0.014) respectively. The resulting AHR es-
timator shows a risk elevation over early follow-up pe-
riods, which dissipates over post-randomization follow-
up. For example, over the first 2, 6 and 16 years ÂHR
(95% CI) estimates are 1.48 (1.11, 1.97), 1.17 (0.97,
1.41) and 1.05 (0.94, 1.18), respectively. Corresponding
RMST difference (95% CI) estimates are difficult to read
from Figure 2 (right side) over early follow-up periods,
but convey a similar message with corresponding val-
ues −0.003 (−0.006, −0.001), −0.018 (−0.033, −0.003)
and −0.054 (−0.126, 0.017) respectively.

For breast cancer in the CEE+MPA trial the four re-
gression parameter estimates (95% CIs) from partial like-
lihood maximization are −0.318 (0.214), 0.156 (0.050),
0.221 (0.135) and 0.005 (0.018). From these one sees a
nonsignificantly reduced AHR over early follow-up peri-
ods that changes to an elevated AHR over the later in-
tervention period, and that remains elevated and fairly
constant over long-term follow-up. For example, AHR
(95%CI) estimates over 2, 6 and 16 year periods follow-
ing randomization are 0.87 (0.64, 1.19), 1.20 (1.00, 1.46)
and 1.25 (1.11, 1.41). Corresponding estimates (95% CIs)
for the RMST difference convey a somewhat different
message with values of 0.001 (−0.001, 0.003), −0.003
(−0.017, 0.010), −.088 (−0.157, −0.019) at 2, 6, and 16
years respectively, with evidence of reduction in RMST in
the intervention group not arising until about 12 years of
cumulative intervention and follow-up. Once again, since
breast cancer risk elevation was the principal trigger for
the early stoppage of the CEE+MPA intervention follow-
ing 5.6 year (median) follow-up period, this is a practi-
cally important difference between these two summary
measures.

For clinical interpretation it would be accurate to say
that postmenopausal US women, like those enrolled in the
WHI trial, who are assigned to CEE+MPA with a 5.6 year
intervention period experience about an average 20% in-
crease in breast cancer incidence over 6 years of interven-
tion and follow-up, compared to similar women assigned
to placebo. A risk elevation of about this same magnitude
is maintained over a 16 year cumulative intervention and
follow-up period. From the RMST function estimator one

could summarize that comparison of the same two pop-
ulations of women yielded a breast cancer–free survival
time that was about 4.6 weeks (0.088 years) shorter with
CEE+MPA assignment over 16 years of intervention and
follow-up, though a reduction was not clearly evident un-
til about 12 years of cumulative follow-up.

Similarly for CHD, from the AHR estimator one
could summarize in the population of postmenopausal
US women studied, that assignment to 5.6 years of
CEE+MPA led to about a 50% increase in CHD inci-
dence over the first two years, but this adverse effect dis-
sipated over long-term intervention and follow-up. From
the RMST estimator, one could summarize that the pop-
ulation of postmenopausal US women have an estimated
reduction by 1.1 days (0.003 years) in disease free ‘sur-
vival’ time over the first two years of intervention if as-
signed to CEE+MPA, but this small reduction dissipated
over a longer-term period of intervention and follow-up.
Even though breast cancer and CHD are relatively com-
mon outcomes over the lifespan of US women, the small
incidence rates experienced over a follow-up period of
a few years in prevention trials or cohort studies would
appear to reduce the utility of the RMST contrasts as a
clinical communication tool.

Supplementary Figure 2 presents corresponding analy-
ses under the same underlying hazard ratio model for the
CEE trial, now for a participant having 7.2 years from ran-
domization to the end of her intervention period. There is
no clear evidence of a CHD influence using either AHR
or RMST difference to summarize the data. A weak un-
favorable trend over early time periods is followed by a
weak favorable trend over a longer period of intervention
and follow-up, but neither trend is close to significant. For
breast cancer, the AHR assessment provides some evi-
dence for an early benefit, which becomes stronger over
a long period of intervention and follow-up. The RMST
difference also provides evidence of breast cancer benefit
over long cumulative follow-up periods.

For null hypothesis testing one could consider p-values
for a simultaneous test of zero values for the four coef-
ficients of the regression vector (10). Alternatively, one
could consider a simpler test of β1 = β2 = 0 with a Cox
model having x(t) = (z, zt). As shown in Table 2 this test
has p-value 0.004 for breast cancer, with a test of over-
all proportional hazards (β2 = 0) having p = 0.008. For
comparability with other null hypothesis tests, baseline
hazard stratification is dropped from these Cox model–
based tests. Note that p-values for testing β1 = β2 = 0
tend to be as extreme or more extreme than those for
the other tests shown, even when there is little evidence
against overall proportionality (β2 = 0).

5. MULTIVARIATE FAILURE TIME ITT ANALYSES

As illustrated in Table 1 a more complete view of ITT
effects in randomized trials can be obtained by consider-



390 R. L. PRENTICE AND A. K. ARAGAKI

ing multiple time-to-response outcomes that may plausi-
bly be influenced by the intervention. For example, haz-
ard ratio models (7) for marginal hazard rates for each
outcome have well developed distribution theory for pa-
rameter estimates based on (8) and (9) for each outcome
(e.g., Spiekerman and Lin, 1998).

In settings such as the WHI trials with outcomes that
are rare during the study follow-up period, most pertinent
information beyond that for marginal single failure haz-
ard estimands derives from marginal dual outcome hazard
rate analyses. Consider failure time variates (T1, T2) sub-
ject to right censoring by variate (C1,C2), and a covari-
ate process Z that may be two dimensional. Let Z(t1, t2)

denote the history of Z prior to T1 < t1 and T2 < t2.
One can define the marginal dual outcome hazard rate
at follow-up time t1 for T1 and t2 for T2, given Z, by
�{dt1, dt2;Z(t1, t2)} = P {t1 ≤ T1 < t1 + dt1, t2 ≤ T2 <

t2 + dt2;T1 ≥ t1, T2 ≥ t2,Z(t1, t2)}. In the randomized
trial setting, with Z(t1, t2) ≡ z a corresponding dual out-
come hazard function can be estimated nonparametrically
in each treatment group for additional causal treatment
comparisons. One can also define a two-dimensional av-
erage dual outcome hazard function estimand by

AHR(t1, t2)

=
∫ t1

0

∫ t2

0

�{ds1, ds2; z = 1}
�{ds1, ds2; z = 0)}F(ds1, ds2; z = 0)

/
{
1 − F(t1,0; z = 0) − F(0, t2; z = 0)

+ F(t1, t2; z = 0)
}
,

where F(t1, t2; z) is the joint survival function for (T1, T2)

in randomization group z. This estimand can be readily
estimated nonparametrically under IID conditions, for ex-
ample, using the Volterra estimator of F (e.g., Gill, van
der Laan and Wellner, 1995, Prentice and Zhao, 2019,
p. 55) and corresponding asymptotic distributions can be
derived using empirical process theory, and bootstrap pro-
cedures can be applied for confidence interval and confi-
dence band calculation.

Alternatively one can specify a Cox-type model for
dual outcome hazard rates according to

�
{
dt1, dt2;Z(t1, t2)

} = �(dt1, dt2) exp
{
x(t1, t2)β

}
,

where �(dt1, dt2) is a ‘baseline’ dual outcome hazard
rate at (t1, t2) and value x(t1, t2) ≡ 0 for fixed length
(row) vector x, with x(t1, t2) defined as a function of
{t1, t2,Z(t1, t2)}, while column vector β is a correspond-
ing dual outcome hazard ratio parameter to be estimated.
Empirical process theory leads to asymptotic results for
marginal single and dual outcome hazard rate parameters
jointly, and bootstrap procedures are applicable for related
estimation (Prentice and Zhao, 2020).

5.1 Illustration

Table 3 shows numbers of dual outcomes in the inter-
vention and control groups in the WHI hormone therapy
trials, along with dual outcome (proportional) hazard ratio
estimates and 95% CIs, for the primary CHD and breast
cancer outcomes, and for all-cause mortality, over cumu-
lative follow-up. For example, in the CEE+MPA trial, one
sees evidence of risk elevation for the dual outcome of
breast cancer followed by death from any cause. This type
of analysis adds information on the causal effects of be-
ing assigned to active CEE+MPA. Of course, a simple
proportional hazards specification for these dual outcome
hazard rates is likely an oversimplification, but the result-
ing estimated hazard ratios can presumably be thought of
as approximately arising from inverse variance weighted
linear combination of log-HR estimates over a partition
of the two-dimensional follow-up regions. See Prentice
et al. (2020b) for similar analyses for additional clinical
outcomes, and for analyses that exercise the time-varying
hazard ratio feature to distinguish HRs according to which
of two failure times occurred first. These types of Cox
model analyses can be powerful also for extending ITT
comparisons to include studies of disease pathways and
mechanisms.

6. DISCUSSION

Throughout this presentation, we have emphasized haz-
ard function contrasts, since these derive a causal in-
terpretation from the independence of randomization as-
signments and pre-randomizaiton risk factors for time-to-
response outcomes. The purity of these contrasts encour-
age their broad use in the reporting of randomized trials,

TABLE 3
Dual outcome cases, hazard ratio (HR) estimates and 95% confidence intervals (CIs) over cumulative follow-up in the WHI hormone therapy trials

CEE+MPA Trial CEE Trial

Outcome/Outcomes CHD Breast Cancer CHD Breast Cancer

Breast Cancer Cases I1 Cases C1 41 41 25 34
HR (95% CI) 0.96 (1.03,1.48) 0.73 (0.43,1.24)

Death Cases I Cases C 447 427 189 145 348 379 90 113
HR (95% CI) 1.03 (0.90,1.17) 1.26 (1.01,1.56) 0.93 (0.80,1.08) 0.80 (0.61,1.06)

1I—intervention group; C—control group.
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including analyses that aim to discover the temporal pat-
terns and biological bases for the treatment effects under
study. We think that hazard ratios provide an important
focus for ITT comparisons, and that the flexibilties and
reliable computations associated with the Cox model help
to justify its central place in the reporting of a range of
ITT analyses. While we acknowledge that it may be com-
plex to accurately describe hazard functions and hazard
ratios to nonstatistical audiences, statements such as, ‘the
intervention group had an elevated risk for a certain out-
come by about 30% over the first few years following ran-
domization’ are readily accepted by collaborators coming
from various disciplines, in our experience. Of course, the
identification of the preferred methods for communicat-
ing ITT results is an important research goal in itself. For
example RMST contrasts may be useful for this purpose
for common outcomes, while relative statements may be
preferred for rare outcomes. Note that even in settings
where ratio measures, such as HRs, provide the princi-
pal reported contrasts, additional information comparing
absolute risks should also be reported to provide context
for overall benefit versus risk considerations.

Along with our reliance on ITT analysis to the extent
possible, we are quick to acknowledge the wealth of ad-
ditional questions of interest that typically attend the re-
porting of a randomized, controlled trial. These are ‘what
if’ questions: For example, ‘What would the treatment ef-
fects be if study subjects fully adhered to the regimen un-
der study?’ ‘What would the hazard ratio be at follow-up
time t if there had not been differential selection due to
earlier outcomes, either for the study outcome under con-
sideration or for competing outcomes?’ ‘How would the
trial results look if study subjects had not made changes
beyond those specified in the protocol?’. These are im-
portant questions, but our ability to address them requires
the identification, measurement, and proper modeling of
post-randomization variables, L, that are relevant to these
topics, and related analyses conditional on L become ob-
servational in nature. As Hernán and Robins (2020, p. 29)
write, ‘Unfortunately, no matter how many variables are
included in L, there is no way to test that the assumption
is correct, which makes causal inference from observa-
tional data a risky task’. The assumption in question is
that of conditional exchangeability whereby treatment as-
signment is orthogonal to outcome given L. These consid-
erations should not dissuade one from attempting to make
treatment contrasts in randomized trials that, for exam-
ple, adjust from nonadherence or for post-randomization
confounding, but these analyses do not enjoy the same
reliability as do ITT comparisons, and related causality
claims are necessarily attended by assumptions that typi-
cally cannot be fully verified. Hence, causal inference via
ITT comparisons may be distinguished by validity in con-
junction with some limitations on interpretation, whereas

causal inference via emulation of randomized trials may
target parameters of clearer interpretation but lack the va-
lidity of ITT comparisons.

It seems to us that the theory of causal inference via
potential outcomes and conditional exchangeability pro-
vides an important pathway to inference on parameters
that can enhance the overall interpretation and impact of
randomized trials. We expect that hazard functions, and
hazard ratio modeling, can provide useful foundations
upon which to continue the development of these proce-
dures (see also Hernán and Robins, 2020, p. 211).
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