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Gambler’s Ruin and the ICM
Persi Diaconis and Stewart N. Ethier

“In the case where there are three players with limited fortunes, the various problems appear to be of quite a different
order of difficulty than in the case of two players.”

Louis Bachelier (1912)

Abstract. Consider gambler’s ruin with three players, 1, 2, and 3, having
initial capitals A, B, and C units. At each round a pair of players is chosen
(uniformly at random) and a fair coin flip is made resulting in the transfer of
one unit between these two players. Eventually, one of the players is elim-
inated and play continues with the remaining two. Let σ ∈ S3 be the elimi-
nation order (e.g., σ = 132 means player 1 is eliminated first and player 3 is
eliminated second, leaving player 2 with A + B + C units).

We seek approximations (and exact formulas) for the elimination order
probabilities PA,B,C(σ ). Exact, as well as arbitrarily precise, computation
of these probabilities is possible when N := A + B + C is not too large.
Linear interpolation can then give reasonable approximations for large N .
One frequently used approximation, the independent chip model (ICM), is
shown to be inadequate. A regression adjustment is proposed, which seems
to give good approximations to the elimination order probabilities.

Key words and phrases: Gambler’s ruin problem, tower problem, linear in-
terpolation, independent chip model (ICM), Plackett–Luce model, linear re-
gression.

1. INTRODUCTION

As motivation, first consider gambler’s ruin with two
players, 1 and 2, who initially have 1 and N − 1 units. At
each round a fair coin flip is made resulting in the transfer
of one unit from one player to the other. Eventually, one
of the players goes broke. It is a classical result that

P1,N−1(player 2 goes broke) = 1

N
.

Consider next the game with three players having ini-
tial fortunes 1, 1, N − 2. At each round a pair of play-
ers is chosen (uniformly at random) and a fair coin flip is
made resulting in the transfer of one unit between these
two players. What is

P1,1,N−2(player 3 goes broke first)?
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This basic problem has had little study. A first thought
is, “Consider player 3 versus {1,2}.” This is like gam-
bler’s ruin with two players. Perhaps

P1,1,N−2(player 3 goes broke first) ≈ constant

N
.

A well-studied scheme, the independent chip model
(ICM), explained in Section 2.7 below, suggests

P1,1,N−2(player 3 goes broke first) = 2

N(N − 1)
.

We prove below that both of these are off. Indeed,

P1,1,N−2(player 3 goes broke first) ≈ constant

N3 .

It does not seem easy to give a simple heuristic for the N3,
and for k ≥ 4 players, the correct order of decay is open.

Let the initial capitals be A, B , and C units, and put
N := A+B+C. Let σ ∈ S3 be the elimination order (e.g.,
σ = 132 means player 1 is eliminated first and player 3 is
eliminated second, leaving player 2 with N units). Use-
ful approximations to PA,B,C(σ ) are important in widely
played versions of tournament poker; if, at the final table,
three players remain, the first-, second-, and third-place
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TABLE 1
The final three in the 2019 World Series of Poker Main Event

Player Chip count Big blinds Actual payoff

Dario Sammartino 67,600,000 33.8 $6,000,000
Alex Livingston 120,400,000 60.2 $4,000,000
Hossein Ensan 326,800,000 163.4 $10,000,000

Total 514,800,000 257.4

TABLE 2
The approximate probabilities of the six possible elimination orders in

the scenario of Table 1, assuming chip counts (in units of 400,000
chips, or 1/5 of the big blind) equal to A = 169, B = 301, and

C = 817

σ 123 132 213 231 312 321

PA,B,C(σ ) 0.4196 0.2079 0.2152 0.1062 0.0260 0.0251

finishers get fixed amounts α, β , and γ , say, not depend-
ing on A, B , and C. Clearly, PA,B,C(σ ) is crucial in evalu-
ating an equitable split of the prize pool α+β +γ , should
the players decide to “settle.” Such calculations are also
required to evaluate the results of various actions through-
out the game.

EXAMPLE 1.1. In the 2019 World Series of Poker
Main Event, at the time the fourth-place finisher was elim-
inated, the three remaining players had chip counts as
shown in Table 1 (WSOP, 2019a).

At this stage of the tournament, the standard unit bet—
the big blind—was 2,000,000 chips. Initial capital, in big
blinds, is shown for the three players in Table 1, but to
avoid fractions we multiply these numbers by 5 to get
A = 169, B = 301, and C = 817. In the ensuing compe-
tition, the elimination order turned out to be 213, leaving
Hossein Ensan with all 514,800,000 chips and the $10
million first-place prize. The methods developed below
(see Examples 2.3 and 3.2) give the chances shown in Ta-
ble 2 for the six possible elimination orders, assuming our
random walk is a reasonable model for a no-limit Texas
hold’em tournament. Thus, the second most likely elimi-
nation order is what actually occurred.

Section 2 contains background on gambler’s ruin and
the independent chip model. We review the connections
with absorbing Markov chain theory. This allows exact
computation for N up to at least 200. Another approach,
Jacobi iteration, allows virtually exact computation for N

up to at least 300.
We also observe that the N = 300 data can be linearly

interpolated to give reasonable approximations for arbi-
trary N . One other method of approximation, based on a
Monte Carlo technique, is described.

Recent results for “nice” absorbing Markov chains (see
Diaconis, Houston-Edwards and Saloff-Coste, 2021) al-
low crude but useful approximations of PA,B,C(σ ) uni-
formly. The constant/N3 result is proved as a conse-
quence of that work.

A new approximation approach is introduced in Sec-
tion 3. The ratio

P GR
A,B,C(σ )/P ICM

A,B,C(σ )

appears to be a smooth function of A, B , and C. A sixth-
degree polynomial regression is fit to this ratio and seen to
give good approximations to P GR

A,B,C(σ ). In the sequel, su-
perscripts GR (“gambler’s ruin”) and ICM (“independent
chip model”) will be used only when there is a chance of
confusion. (No superscript implicitly means GR.)

Section 4 gives some results for the gambler’s ruin
problem with k ≥ 4 players as well as a conjecture,
namely the scaling conjecture

PA′,B ′,C′(σ )
.= PA,B,C(σ ) whenever

A′

A
= B ′

B
= C′

C
,

where .= denotes approximate equality. (The symbol ≈
has a different meaning; see Theorem 2.4 below.) An
equivalent formulation,

(1.1) PnA,nB,nC(σ )
.= PA,B,C(σ ), n ≥ 2,

may be preferable because it is closely related to the
provable result that limn→∞ PnA,nB,nC(σ ) exists; indeed,
the limit can be expressed in terms of standard two-
dimensional Brownian motion. A conjecture that is math-
ematically sharper than (1.1) appears in Section 4.1.

Finally, Section 5 summarizes the various methods of
evaluating and approximating the elimination order prob-
abilities. In all, six methods of approximation are studied,
including a Brownian motion approximation along with
the methods mentioned above.

2. BACKGROUND

This section contains background on gambler’s ruin—
in two and higher dimensions (three or more players).
Exact computation of the Poisson kernel (harmonic mea-
sure) using absorbing Markov chains is taken up in Sec-
tion 2.2, and arbitrarily precise computation by Jacobi it-
eration is the subject of Section 2.3. The use of barycen-
tric coordinates to linearly interpolate these exact values
is taken up in Section 2.4. Another approaches to approx-
imate computation, Monte Carlo methods, is described in
Section 2.5.

The asymptotics of the Poisson kernel are treated in
Section 2.6, which includes a proof of P1,1,N−2(player 3
goes broke first) ≈ constant/N3. Finally, the ICM is in-
troduced and its relation to the Plackett–Luce model is
developed in Section 2.7.
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2.1 Gambler’s Ruin

With two players, gambler’s ruin is a classical topic,
well developed in Feller (1968), Chapter XIV, and Ethier
(2010), Chapter 7. Important extensions to unfair coin
flips and more-general step sizes are also well developed.
See Song and Song (2013) for a historical survey.

For k = 3 players, the subject was first studied by
Bachelier (1912). The first post-Bachelier reference we
have found is a formulation in terms of Brownian motion
in a triangle due to Cover (1987). This was solved by con-
formally mapping the triangle to a disk and using classical
results for the Poisson kernel of the disk, by Hajek (1987)
and later, independently, by Ferguson (1995). Further re-
sults for k = 3, including the poker connection, are in Kim
(2005).

Martingale theory can be used to get information about
the time to absorption. For three players, let T1 be the
first time one of the three players is eliminated. Bachelier
(1912), Section 204, Engel (1993), and Stirzaker (1994)
proved

(2.1) E(T1) = 3ABC

A + B + C
.

Thus, if A = B = C = 100, then E(T1) = 10,000. If
A = B = 1 and C = 298, then E(T1) = 2.98. Bruss,
Louchard and Turner (2003) and Stirzaker (2006) eval-
uated Var(T1). Let T2 be the first time two players are
eliminated. Bachelier (1912), Section 209, Engel (1993),
and Stirzaker (1994) showed that

(2.2) E(T2) = AB + AC + BC.

Thus, if A = B = C = 100, then E(T2) = 30,000. If A =
B = 1 and C = 298, then E(T2) = 597. Actually, Bache-
lier and Engel used first-order linear partial difference
equations, while Stirzaker used martingales. Bachelier’s
(1912), Section 209, proof of (2.2) is very much worth
reading.

A standard theorem (Bachelier, 1912, Section 14) is

(2.3) P(player 3 wins all) = C

A + B + C
.

The results (2.2) and (2.3) generalize to k players. There
is a related development in the language of the “Towers
of Hanoi” problem (Bruss, Louchard and Turner, 2003,
Ross, 2009). None of this literature addresses the position
at the first absorption time.

2.2 Exact Computation by Markov Chain Methods

The gambler’s ruin model is an example of an absorbing
Markov chain in the state space

X := {
(x1, x2, x3) ∈ Z3 : x1, x2, x3 ≥ 0,

x1 + x2 + x3 = N
}
.
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FIG. 1. When N = 6, the state space X is represented by 28 dots, of
which 10 are interior states (open dots), 15 are nonabsorbing bound-
ary states (solid dots), and 3 are absorbing states (larger solid dots).
Line segments show possible transitions. There are six from each inte-
rior state and two from each nonabsorbing boundary state.

The first two coordinates determine things and the state
space can be pictured (when N = 6) as in Figure 1. The
classical stars and bars argument shows that

|X | =
(
N + 2

2

)
,

and X has
(N−1

2

)
interior states, 3(N − 1) nonabsorb-

ing boundary states, and 3 absorbing states. The Markov
chain stopped at time T1 is itself a Markov chain whose
transition matrix can be written in block form as

( boundary interior
boundary I 0
interior S Q

)
,

and elementary arguments yield the following theorem
(Kemeny and Snell, 1976, Theorem 3.3.7).

THEOREM 2.1. For x ∈ Int(X ) and y in the set of
nonabsorbing boundary states of X , define

P(x,y) := Px(chain first reaches boundary at y),

so that P is an
(N−1

2

) × 3(N − 1) matrix. Then

P = (I − Q)−1S.

The function P(x,y) is called the Poisson kernel or
harmonic measure.

EXAMPLE 2.2. When N = 6, |X | = (6+2
2

) = 28,

with the
(6−1

2

) = 10 interior states ordered 114, 123, 132,
141, 213, 222, 231, 312, 321, 411, and the 3(6 − 1) = 15
nonabsorbing boundary states ordered 015, 024, 033, 042,
051, 105, 204, 303, 402, 501, 150, 240, 330, 420, 510.
The Poisson kernel is given by Figure 2.
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FIG. 2. The Poisson kernel for N = 6. Rows are labeled by initial interior states (114, 123, 132, 141, 213, 222, 231, 312, 321, 411), and columns
by nonabsorbing boundary states (015, 024, 033, 042, 051, 105, 204, 303, 402, 501, 150, 240, 330, 420, 510).

From this, we have the chance that the first absorption
occurs at a given boundary point. For the two remaining
players, classical gambler’s ruin gives the probability of
the final outcome. Summing over the appropriate part of
the boundary gives the chances of the various elimination
orders. For N = 6, these are given in Figure 3. Here the
row ordering is as before, whereas the column ordering is
123, 132, 213, 231, 312, 321.

Mathematica code, for arbitrary N , is provided in the
Supplementary Materials (see Section 6). The only com-
putationally difficult part of the program is inverting an(N−1

2

) × (N−1
2

)
matrix. When N = 200 (the largest N for

which we have results), this matrix is 19,701 × 19,701
and the program runtime (in double precision) was about
97 hours. A faster alternative is described in Section 2.3.

A very interesting paper by Swan and Bruss (2006) sug-
gests that much larger problems might be tackled. Their
ideas apply to more general absorbing chains, but let us
specialize to the three-player gambler’s ruin. They parti-
tion the transient states into disjoint “levels” and observe
that the transition matrix can be written as a block tridi-
agonal matrix (up to “corner effects”) with considerably
smaller blocks. Their second idea is to derive a “folded”

FIG. 3. The probabilities of the six elimination orders for N = 6.
Rows are labeled by initial interior states (114, 123, 132, 141, 213,
222, 231, 312, 321, 411) and columns by elimination orders (123, 132,
213, 231, 312, 321).

chain on the even blocks. This has the same block tridi-
agonal form and so recursion can be used. Finally the
absorption probabilities for the chain started in the odd
blocks can be filled in. They do an order of magnitude
calculation of the number of operations involved (along
the lines of “it takes order n3 steps to invert an n × n ma-
trix”) and conclude that the new algorithm would run a
factor of N2 steps faster than the straightforward matrix
inversion we have used above. The indexing is fairly so-
phisticated and we have not attempted to implement their
fine ideas.

Using weighted directed multigraphs, David (2015)
was able to reduce the number of transient states by about
a factor of two. His results, with N as large as 192, are
consistent with ours. For application of this approach to
four-player gambler’s ruin, see Marfil and David (2020).

Gilliland, Levental and Xiao (2007) found a way to
avoid the inversion of large matrices in a one-dimensional
gambler’s ruin problem, but we have not been able to
adapt their approach to the present setting.

These same techniques work for general absorbing
Markov chains. We have used them (Supplementary Ma-
terials, Section 6) to compute the elimination order prob-
abilities for k = 4 players, requiring the inverse of an(N−1

3

) × (N−1
3

)
matrix. When N = 50 (the largest N for

which we have results), this matrix is 18,424×18,424 and
the program runtime (in single precision) was about 84.5
hours. Here the walk takes place in a discrete 4-simplex.
Initial absorption is on one of the four triangular faces,
and from there to final absorption one can apply the three-
player results.

Our colleague Lexing Ying points out that the matrix
I − Q in Theorem 2.1 is sparse (it has at most seven
nonzero entries per row). Sparse matrix inversion is a
standard “off the shelf” tool in languages such as MAT-
LAB. A useful textbook account is in Davis (2006). Using
these techniques, Ying was able to write code that gener-
ates results for N as large as 3200 in about 2 minutes on
a laptop computer. He graciously agreed to determine the
probabilities of the six elimination orders for the WSOP
data of Example 1.1, in which N = 1287, and we compare
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these numbers with those from our various algorithms in
Table 8.

2.3 Arbitrarily Precise Computation by Jacobi
Iteration

Fix an elimination order σ ∈ S3 and total capital N . Let
PA,B be short for PA,B,N−A−B(σ ). Then, for A,B ≥ 1
with A + B ≤ N − 1,

PA,B = 1

6
(PA−1,B+1 + PA+1,B−1 + PA−1,B

+ PA+1,B + PA,B−1 + PA,B+1)

with boundary conditions determined by σ . This may be
used in two ways. Start with any values for the PA,B

agreeing with the boundary conditions, say all PA,B = 1
6

except when A = 0, B = 0, or A + B = N . Then repeat-
edly iterate this recurrence. Again this may be done in two
ways, either using (at stage n) P n+1 in terms of P n or us-
ing updated values as they become available. This method
was used by Kim (2005) and seen to converge well for
small values of N (e.g., N = 16).

A second approach harnesses a monotonicity property
of the recurrence. Let P ∗

A,B be the true gambler’s ruin

probabilities. If P n
A,B ≤ P ∗

A,B for all A, B , then P n+1
A,B ≤

P ∗
A,B for all A, B . Similarly for P n

A,B ≥ P ∗
A,B . Thus, start-

ing the recurrence off with the correct boundary values
and all other P

0,−
A,B ≡ 0 and P

0,+
A,B ≡ 1 gives

P
n,−
A,B ≤ P ∗

A,B ≤ P
n,+
A,B for all A,B and n.

When the lower and upper bounds are suitably close,
this gives sharp control of P ∗

A,B . For a proof of conver-
gence and further development, history, and references,
see Ethier (2010), Theorem 7.2.4.

We adopt the latter approach, and we find that we can
ensure the desired accuracy (18 significant digits) with
2N2 iterations. Mathematica code (for arbitrary N ) is pro-
vided in the Supplementary Materials. No matrix inver-
sion is needed, so the program runs faster and uses much
less memory than the one based on Markov chain meth-
ods. When N = 200, the program runtime (in double pre-
cision) was about 19 hours. When N = 300 (the largest N

for which we have results) it was about 98.5 hours.
The output of this program is a list of PA,B,C(123) for

all A,B,C ≥ 1 with A+B +C = N . If, for example, we
want P1,1,N−2(321), we simply look up PN−2,1,1(123)

instead. Thus, there is no real loss of information in this
condensed form of the output.

While this method allows for a larger N in evaluating
the three-player elimination order probabilities than the
Markov chain method does (N = 300 vs. N = 200), the
improvement is more significant in the four-player setting.
Here we generate the probabilities PA,B,C,D(1234) for all
A,B,C,D ≥ 1 with A + B + C + D = N and again find
that 2N2 iterations suffice to ensure the desired accuracy

(9 significant digits). When N = 100 (the largest N for
which we have results), the runtime was about 36 hours.
Mathematica code is provided in the Supplementary Ma-
terials, but C++ code would run substantially faster.

2.4 Linear Interpolation from Exact Probabilities

The virtually exact results for N = 300 can be used to
get useful approximations for other N . Given positive in-
tegers A, B , and C, let N := A + B + C and

A0 := A
300

N
, B0 := B

300

N
, C0 := C

300

N
.

Typically, these are not integers. Therefore, consider the
four points

v00 := (�A0�, �B0�,300 − �A0� − �B0�),
v01 := (�A0�, 
B0�,300 − �A0� − 
B0�),
v10 := (
A0�, �B0�,300 − 
A0� − �B0�),
v11 := (
A0�, 
B0�,300 − 
A0� − 
B0�),

belonging to X , and discard the one (v00 or v11) whose
third coordinate is neither �C0� nor 
C0�. The remain-
ing three points, call them (A1,B1,C1), (A2,B2,C2), and
(A3,B3,C3), form a triangle with (A0,B0,C0) belong-
ing to its interior, and we can estimate PA,B,C(σ ) by lin-
ear interpolation from the three values of PAi,Bi,Ci

(σ )

(i = 1,2,3).
The key idea is to represent (A0,B0,C0) in barycentric

coordinates. The relevant weights are(
λ1
λ2

)
:=

(
A1 − A3 A2 − A3
B1 − B3 B2 − B3

)−1 (
A0 − A3
B0 − B3

)
and

λ3 := 1 − λ1 − λ2,

so that

(A0,B0,C0) = λ1(A1,B1,C1) + λ2(A2,B2,C2)

+ λ3(A3,B3,C3),

and our interpolation estimate is then

P̄A,B,C(σ ) := λ1PA1,B1,C1(σ ) + λ2PA2,B2,C2(σ )

+ λ3PA3,B3,C3(σ ).

EXAMPLE 2.3. As described in Example 1.1, the fi-
nal three players in the 2019 WSOP Main Event had
chip counts (in units of 400,000 chips, or 1/5 of the
big blind) equal to A = 169, B = 301, and C = 817.
Thus, N = 1287 and A, B , and C, multiplied by 300/N ,
are A0

.= 39.39, B0
.= 70.16, and C0

.= 190.44. It fol-
lows that (A1,B1,C1) = (39,70,191), (A2,B2,C2) =
(39,71,190), and (A3,B3,C3) = (40,70,190). The
weights can then be evaluated as

λ1 = 190

429
, λ2 = 70

429
, λ3 = 13

33
,

and we can look up the probabilities PAi,Bi,Ci
(σ ) for i =

1,2,3 and each σ , with results shown in Table 3.
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TABLE 3
Linearly interpolating elimination order probabilities from N = 300 data. Here A = 169,

B = 301, and C = 817 from Example 1.1

σ 123 132 213 231 312 321

P39,70,191(σ ) 0.422050 0.207786 0.214617 0.105295 0.025547 0.024705
P39,71,190(σ ) 0.422204 0.210495 0.211129 0.104734 0.026172 0.025266
P40,70,190(σ ) 0.415774 0.206898 0.217559 0.107757 0.026436 0.025576

P̄A,B,C(σ ) 0.419603 0.207878 0.215207 0.106174 0.025999 0.025139

The scaling conjecture and observed smoothness of
PA,B,C(σ ) in A, B , and C suggest that this will be a
good approximation. One way to assess the accuracy of
the method is to use it to estimate probabilities that are
already known; we have done so in several cases, and it
appears that the interpolated probabilities are accurate to
four or five decimal places. See Example 3.2 below for an
alternative approach.

Note that rounded proportions often do not sum pre-
cisely to 1. See Diaconis and Freedman (1979).

2.5 Monte Carlo Methods

While the interpolation method of Section 2.4 is our
method of choice, this subsection records a further ap-
proximation method, Monte Carlo. Guanyang Wang sug-
gested a straightforward Monte Carlo procedure that ap-
proximates PA,B,C(σ ) for a given A,B,C ≥ 1 and all σ ∈
S3. Simply run the Markov chain, starting at (A,B,C),
until it first reaches the boundary. If N := A + B + C and
the Markov chain first reaches the boundary at (0, x,N −
x), for example, then σ = 123 and σ = 132 are counted
(N − x)/N and x/N times, by virtue of the two-player
gambler’s ruin formula. Do this repeatedly, recording the
proportion of times each σ ∈ S3 occurs, and use these pro-
portions as estimates. A difficulty is that this procedure is
rather slow. For example, the expected number of steps
for the Markov chain to first reach the boundary is given
by (2.1), which is 96,876.4 when using the WSOP data of
Examples 1.1 and 2.3 (A = 169, B = 301, and C = 817).

Wang suggested an optimization method to speed up
the process. Starting from state (x1, x2, x3), let m =
min(x1, x2, x3) and consolidate the next m steps of the
Markov chain into a single step by simulating (n1, n2,

n3) ∼ multinomial(m, 1
3 , 1

3 , 1
3), with ni representing the

number of matchups in the next m trials not involving
player i, and ζi ∼ binomial(ni,

1
2) (i = 1,2,3), with ζi

representing the number of the ni matchups won by player
mod(i,3) + 1.

Wang has written R code and shown that it works well
for quite large N (and also for k = 4). Starting with
the just mentioned WSOP data (A = 169, B = 301, and
C = 817), the standard Monte Carlo procedure requires
2.7 seconds per sample path or 7.5 hours for sample size

104, with the optimized procedure requiring only 0.0182
seconds per sample path or 3 minutes for sample size 104

(148 times faster). Example 3.2 below compares simula-
tion results (optimized, with sample size 106) with other
approximations.

2.6 Analytic Approximation

Some rather sophisticated analysis (John and inner
uniform domains, Whitney covers, parabolic Harnack
inequalities, Carlesson estimates) has been applied to
get analytic approximations to the harmonic measure
(Diaconis, Houston-Edwards and Saloff-Coste, 2021).
The results apply to the k-player gambler’s ruin prob-
lem, but we will content ourselves with the case k = 3.
Code things up as in Figure 1 with two integer coordi-
nates x1, x2 in the triangle x1, x2 ≥ 0, x1 + x2 ≤ N . This
corresponds to A = x1, B = x2, and C = N − x1 − x2. By
symmetry, it is enough to have approximations to

P
(
x, (y,0)

) := Px
(
walk first reaches boundary at (y,0)

)
with x = (x1, x2) in the interior of X , satisfying 2x1 +
x2 ≤ N . The boundary point (y,0) has 0 < y < N .

THEOREM 2.4 (Diaconis, Houston-Edwards, Saloff-
Coste, 2021). For x1, x2, y as above,

(2.4)
P

(
x, (y,0)

)
≈ x1x2(x1 + x2)(N − x1 − x2)(N − x2)y

2(N − y)2

N4(x1 + d)2(x2 + d)2(x1 + x2 + 2d)2

with d being the graph distance from x to (y,0). Here
aN ≈ bN means there exist positive c and c′ (universal)
such that

caN ≤ bN ≤ c′aN

for all N . The constants implicit in (2.4) are uniform for
all x, y.

Let us illustrate this result by proving the 1/N3 result
claimed in Section 1.

THEOREM 2.5.

P1,1,N−2(player 3 goes broke first) ≈ 1

N3 .
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PROOF. To get things into the notation of Theo-
rem 2.4, take x1 = 1, x2 = N − 2. Then for 0 < y < N ,

P
(
x, (y,0)

) = P(player 2 goes broke first

at which time player 1 has y).

For any y, d ≈ N so the denominator in (2.4) is ≈ N10.
The numerator is ≈ N2y2(N − y)2. Thus,

P
(
x, (y,0)

) ≈ y2(N − y)2

N8 = 1

N4

(
y

N

)2(
1 − y

N

)2
.

Summing in y and reversing the roles of players 2 and 3,

(2.5)

P1,1,N−2(player 3 goes broke first)

≈ 1

N3

1

N

N−1∑
y=1

(
y

N

)2(
1 − y

N

)2
∼ B(3,3)

N3 ,

where B denotes the beta function. �
COROLLARY 2.6.

P1,1,N−2(player 3 goes broke second) ∼ 2

N
.

PROOF. The desired probability is

1 − P1,1,N−2(player 3 wins all)

− P1,1,N−2(player 3 goes broke first)

= 1 − N − 2

N
− O

(
1/N3) = 2

N
− O

(
1/N3)

by (2.3) and Theorem 2.5, and the result follows. �
REMARKS.

(1) The constant B(3,3) = 1/30 in (2.5) is meaning-
less because of all the cruder approximations being used.
Now

P1,1,N−2(player 3 goes broke first)

= P1,1,N−2(312) + P1,1,N−2(321),

and because of symmetry,

P1,1,N−2(312) = P1,1,N−2(321),

so Theorem 2.5 implies

P1,1,N−2(312) = P1,1,N−2(321) ≈ 1

N3 .

(2) A similar calculation shows, for 1 ≤ i < N/2,

Pi,i,N−2i (player 3 goes broke first) ≈ i3

N3 ,

uniformly in i. This is consistent with the scaling conjec-
ture of Section 4.

(3) The asymptotics above may be supplemented by
the exact computing of Sections 2.2 and 2.3. Table 4 gives
P1,1,N−2(321) for N = 50, 100, 150, 200, 250, 300 as
well as these values multiplied by N3.

TABLE 4
The exact values of P1,1,N−2(321), rounded to 15 significant digits,

suggesting that this quantity is asymptotic to c/N3 for c
.= 4.5597945

N P1,1,N−2(321) N3P1,1,N−2(321)

50 0.0000364783779008280 4.55979723760
100 0.00000455979467170448 4.55979467170
150 0.00000135105023226911 4.55979453391
200 0.000000569974313837992 4.55979451070
250 0.000000291826848279112 4.55979450436
300 0.000000168881277854908 4.55979450208

(4) In unpublished work, Sangchul Lee has used
Ferguson’s (1995) Brownian motion approximation to the
discrete gambler’s ruin problem to derive an analytical
closed form expression for the constant c

.= 4.5597945 in
Table 4. He shows

c =
√

π

3
√

3

(
	(1/3)

	(5/6)

)3
.= 4.55979449996,

in remarkable agreement to the numbers in Table 4. The
validity of the Brownian motion approximation has not
been rigorously established to this degree. See Denisov
and Wachtel (2015).

(5) Theorem 2.4 allows proof of similar asymptotics
for other values of A, B , and C. For example, we have
proved the following:

• For fixed A,B ≥ 1 and CN := N − A − B ,

PA,B,CN
(321) ≈ PA,B,CN

(312) ≈ 1

N3 .

• For A = 1, BN = �√N�, and CN := N − 1 − BN ,

P1,BN ,CN
(player 3 goes broke first) ≈ 1

N2 .

Exact computations suggest that in the first case N3 ×
PA,B,CN

(321) and in the second case N2PA,BN,CN
(player

3 goes broke first) rapidly approach limits.
(6) Similarly, P1,BN ,CN

(321) ≈ P1,BN ,CN
(312) ≈ 1/

N2. This is a bit surprising. Of course, the event that
the player with the big stack is eliminated first is a rare
event but then the advantage that player 2 had over player
1 disappears. Indeed, numerical computations show that,
for this case, given player 3 is eliminated first, the con-
ditional gambler’s ruin probability that 1 is eliminated
second is 1/2 to remarkable approximation. For exam-
ple, P1,14,185(321)

.= 0.000059822 and P1,14,185(312)
.=

0.000059872.
(7) The results of Diaconis, Houston-Edwards and

Saloff-Coste (2021) were not intended to give good nu-
merics. We hope that comparing them to data will allow
better choices of omitted constants as in item (3) above.
The following results are examples.
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(8) For any N ,

P1,1,N−2(123) = P1,1,N−2(213)

= 1

2
P1,1,N−2(player 3 wins all)

= 1

2

N − 2

N
= 1

2

(
1 − 2

N

)
.

When N = 200, the right side is 0.495. Using Theo-
rem 2.4,

P1,1,N−2(123) ≈ 1

2

N−1∑
y=1

(1 − y/N)3

y4

= ζ(4)

2

(
1 + o(1)

) .= 0.5412.

Similarly, if 1 ≤ i < N/2,

Pi,i,N−2i (123) = Pi,i,N−2i (213) = 1

2

N − 2i

N

= 1

2

(
1 − 2i

N

)
,

confirming the scaling conjecture in this case. So perhaps
not all hope is lost for using Theorem 2.4.

(9) Similarly, taking x1 = x2 = 1,

P1,1,N−2(132) = P1,1,N−2(231)

≈ 1

2

N−1∑
y=1

(1 − y/N)2

y4

y

N

= 1

2N

N−1∑
y=1

(1 − y/N)2

y3 ∼ ζ(3)

2N
.

By Corollary 2.6, these probabilities are asymptotic to
1/N , so this estimate is off by a factor of ζ(3)/2 .=
0.6010.

2.7 The Independent Chip Model (ICM)

There are a variety of reasons for wanting to compute
the chances of the various elimination orders. The most
classical one, “The Problem of Points,” has to do with
splitting the capital in a k-player game when the game
must be called off early. This is one of the problems that
got Fermat and Pascal in correspondence—the start of
modern probability theory. In tournament poker, we have
seen three players decide to “settle,” dividing the final

prize money in proportion to their current chip totals. (As
we will see, this is not the right way to do it.) Of course,
calculating expectations for various decisions (mentioned
earlier) is a key application.

The independent chip model (ICM), a popular scheme,
originated in a 1986 article by Mason Malmuth in Poker
Player Newspaper, which was reprinted in Malmuth
(1987, 2004). Although the name came later, the concept
was used to argue that rebuying in a percentage-payback
poker tournament is mathematically correct, contrary to
conventional wisdom at the time. Other implications of
the ICM for poker tournaments were discussed by Gilbert
(2009). See Aguilar (2016) for its use in “chopping” the
prize pool in poker tournaments, using a poker ICM cal-
culator (ICMizer, 2020).

ICM builds on a solid foundation: In the two-player
gambler’s ruin problem for fair coin-tossing, if player 1
starts with A and player 2 starts with B , the chance that
player 1 (respectively, player 2) wins all is A/(A + B)

(resp., B/(A + B)). Now a heuristic step: Consider three
players with initial capitals A, B , and C. The chance that
a given player wins all is (rigorously) proportional to his
initial capital (so the chance that player 1 wins all is A/N ,
where N := A+B +C). The ICM calculation conditions
on this, uses the relative initial capitals of the two nonwin-
ners to calculate the chance of being second eliminated,
and then multiplies. This results in the chances shown in
Table 5 assigned to the six elimination orders.

The probabilities for k ≥ 4 players are determined sim-
ilarly.

We can now be more explicit about how the prize pool
is chopped when the last three players decide to settle.
First, apportioning it in proportion to current chip totals
does not take prize money into account and is unsupport-
able. For example, in Example 1.1, the chip leader would
get about $12.696 M, more than he would get by finish-
ing first, and the player in third place would get about
$2.626 M, less than he would get by finishing third. So
let P(σ) be the probability of elimination order σ . Let α.
β , and γ be the payouts for first, second, and third place.
Then the expression for the amounts apportioned to play-
ers 1, 2, and 3 should be

(γ,β,α)P (123) + (γ,α,β)P (132)

+ (β, γ,α)P (213) + (α, γ,β)P (231)

+ (β,α, γ )P (312) + (α,β, γ )P (321).

TABLE 5
The ICM with three players

σ 123 132 213 231 312 321

P ICM
A,B,C(σ ) C

N
B

A+B
B
N

C
A+C

C
N

A
A+B

A
N

C
B+C

B
N

A
A+C

A
N

B
B+C
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It is standard practice to use P ICM
A,B,C(σ ) in place of P(σ).

Alternatively, one could use P̄ GR
A,B,C(σ ). Of course, both

are approximations.

EXAMPLE 2.7. Let us return to Example 1.1 with
A = 169, B = 301, and C = 817; also α = $10 M, β =
$6 M, and γ = $4 M. Using the ICM probabilities from
Table 5, we get ($5.325 M,$6.287 M,$8.388 M), which
is consistent with ICMizer (2020), whereas using the in-
terpolated gambler’s ruin probabilities from Example 2.3,
we get ($5.270 M,$6.293 M,$8.437 M). The player with
third-largest chip total gets about $54 K more from an
ICM chop than from a GR chop.

REMARKS.

(1) ICM is different from gambler’s ruin. Consider
N = 6 and initial capital A = 1, B = 2, and C = 3. What
is the chance the elimination order is 321? Using the exact
calculation in Figure 3 and the ICM formula yields

P GR
1,2,3(321) = 569

9456
.= 0.06017,

P ICM
1,2,3(321) = 1

6

2

5
.= 0.06667.

(2) The results can be of different orders of magnitude.
With starting capitals 1, 1, N − 2,

P GR
1,1,N−2(321) ≈ 1

N3 ,

P ICM
1,1,N−2(321) = 1

N

1

N − 1
∼ 1

N2 .

(3) Sometimes they agree. With starting capitals i, i,
N − 2i, where 1 ≤ i < N/2,

P GR
i,i,N−2i (123) = P ICM

i,i,N−2i (123) = N − 2i

N

1

2

= 1

2

(
1 − 2i

N

)
.

(4) They are often quite different. In the next section,
we calculate of the ratios

P GR
A,B,C(σ )/P ICM

A,B,C(σ )

for all A,B,C ≥ 1 with A+B +C = 300 and all σ ∈ S3.
The ratios vary considerably, ranging from about 0.015 to
about 1.15.

(5) But poker is a complicated game, particularly no
limit where the bets can be arbitrary. The gambler’s ruin
model is based on single-unit bets. Why is this relevant?
Some variants of the ±1 transfer have been studied.

• All in: After two players out of the remaining k are cho-
sen, if they have A and B respectively, the bet size is
min(A,B). The player with the smaller chip count is
eliminated or doubles up.

• Occasionally all in: This is a compromise between unit
bets and all-in bets. After two players out of the re-
maining k are chosen, if they have A and B respec-
tively, the bet size is chosen uniformly at random from
{1,2, . . . ,min(A,B)}.

• Compulsive gambler (Aldous, Lanoue and Salez, 2015):
After two players out of the remaining k are chosen,
one gets the other’s money with probabilities given by
the two-player gambler’s ruin formula. That is, if the re-
spective amounts are A and B , the player with A wins
(and then has A + B) with probability A/(A + B), or
loses (and is eliminated) with probability B/(A + B).

A fascinating effort at finding an optimal strategy for
k-player gambler’s ruin with all-in betting is in Ganzfried
and Sandholm (2008). Interestingly, they use ICM as a
starting evaluation of the value function and then sharpen
this using fictitious play and value iteration.

These variants will (almost surely) result in different
elimination order probabilities. The ICM assignment is
different yet again. Thus, there are many distinct models.
It would be worthwhile to look at some of the available
data for tournament poker and compare. We wouldn’t be
surprised if all these models are inadequate.

The next section salvages something from these differ-
ences, using the ratios and regression to give a useful ap-
proximation to the gambler’s ruin probabilities.

To finish this section, let us note that ICM is well stud-
ied as the Plackett–Luce model. This is a model allowing
nonuniform distributions on Sk , the set of permutations
of k distinct items, labeled 1,2, . . . , k. Each item i is as-
signed a weight wi > 0 with w1 + w2 + · · · + wk = w.
Now imagine these weights placed in an urn and the
weights removed sequentially, each time with probabil-
ity proportional to its size among the remaining weights.
Thus,

P(σ) := wσ(1)

w

wσ(2)

w − wσ(1)

wσ(3)

w − wσ(1) − wσ(2)

· · · .

The model was introduced in perception psychology by
R. Duncan Luce (1959, 1977). It has a variety of deriva-
tions: via the elimination by aspect axiom; as the distri-
bution of the order statistics of independent exponential
variables (the ith having mean wi ); and as the stationary
distribution of the Tsetlin library. See Diaconis (1988),
pages 174–175, for further references.

Later reinventions of the model were published by
Harville (1973) and Plackett (1975), both of whom ap-
plied it to horse racing, and it seems to have a life of
its own for this application (Stern, 2008). There is good
available code for fitting this model to data (Turner et al.,
2017) and many applications. Although the model is re-
ferred to in the literature as the Plackett–Luce model, per-
haps Luce–Harville–Plackett–Malmuth would be chrono-
logically more correct.
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Finally, we note that enumerative combinatorics for the
Plackett–Luce model can be interesting and challenging;
What is the approximate distribution of the number of
fixed points or cycles, and how does it depend on the
weights?

3. ICM AND REGRESSION FOR GAMBLER’S RUIN

Here we show how to use the easy-to-compute ICM
probabilities P ICM

A,B,C(σ ) to get surprisingly good approx-

imations to the gambler’s ruin probabilities P GR
A,B,C(σ ).

Throughout, we work with k = 3 players, fair coin flips,
and ±1 transfers at each stage.

We can base the analysis on the N = 300 data, which
gives PA,B,C(123) (in double precision) for all A,B,C ≥
1 with A+B +C = 300. There are

(300−1
2

) = 44,551 such
points. Notice that, for σ = σ(1)σ (2)σ (3),

PA1,A2,A3(σ ) = PAσ(1),Aσ(2),Aσ(3)
(123),

so there is no loss of information by restricting to σ =
123.

As efficient as this data set is, there is still some redun-
dancy in the data, as has already been alluded to in (2.3)
and elsewhere, namely

PA,B,C(123) + PA,B,C(213) = C

A + B + C
,

PA,B,C(132) + PA,B,C(312) = B

A + B + C
,(3.1)

PA,B,C(231) + PA,B,C(321) = A

A + B + C
,

a consequence of the optional stopping theorem. The re-
sult is that it suffices to consider only one of the two prob-
abilities in each row of (3.1). Incidentally, the equations
in (3.1) hold trivially with superscript ICM.

We begin by evaluating, for N = 300 and σ = 123, the
ratios

(3.2) Rσ (A,B,C) := P GR
A,B,C(σ )/P ICM

A,B,C(σ )

for all A,B,C ≥ 1 with A + B + C = N . As already
noted, there are 44,551 such ratios and all of them belong
to (0.015,1.15). The function R123 is plotted in Figure 4.

Notice that R123 appears smooth as a function of (A,B)

(C = N −A−B), except for a singularity near (1,1). We
can mitigate the effect of the singularity by considering
Rσ over 1 ≤ A ≤ B ≤ C with A + B + C = N for σ =
213, 312, and 321. (The number of such triples (A,B,C)

is N2/12 if N is divisible by 6, hence 7500 if N = 300.)
In each case we fit a sextic polynomial in

x := A

N
and y := B

N

to the function Rσ . A quadratic approximation does not
give very good results, while a quartic approximation is
quite good, and a sextic is even better. At the same time,
the higher the degree, the closer the design matrix is to be-
ing less than full rank. An octic approximation results in
some disturbingly large estimated regression coefficients,
so we have settled on a sextic polynomial approximation.
Thus, we want to approximate Rσ by the polynomial with
28 terms

pσ (x, y) := ∑
i,j≥0,i+j≤6

βij x
iyj .

FIG. 4. A plot of R123 defined in (3.2) as a function of (A,B) when N = 300. (The domain of R123 is restricted to A,B ≥ 1 with A+B ≤ N −1.).
The second figure is a rotation of the first that reveals the singularity near (1,1).
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TABLE 6
The estimated regression coefficients in fitting a sextic polynomial in

x := A/N and y := B/N to P GR
A,B,C(σ )/P ICM

A,B,C(σ ), when
1 ≤ A ≤ B ≤ C and A + B + C = N . Here N = 300

σ = 321 σ = 312 σ = 213

β̂00 0.00000716459 −0.00000434510 0.951694
β̂10 2.27836 2.27978 7.07267
β̂01 2.28007 2.28028 −3.74069
β̂20 −2.25895 0.0295644 −85.5467
β̂11 −2.24587 −2.30603 −23.1325
β̂02 −0.00740617 −2.28407 37.7612
β̂30 0.0793010 −0.618044 336.603
β̂21 −0.581954 0.285484 646.261
β̂12 −0.191389 0.241672 −111.109
β̂03 0.0630814 0.0171583 −197.597
β̂40 1.48069 0.533492 −557.212
β̂31 7.41061 −3.71135 −2327.47
β̂22 3.41508 −4.35883 −1723.69
β̂13 −5.89118 5.79382 874.263
β̂04 −2.67189 2.49997 540.005
β̂50 −0.556140 −4.34151 401.498
β̂41 −3.73983 −14.9318 2829.27
β̂32 −5.73258 14.4755 5167.69
β̂23 0.0461851 13.5284 1655.90
β̂14 1.48366 −7.28960 −1925.03
β̂05 −0.274686 −2.71321 −746.323
β̂60 −0.0378116 2.48372 −100.681
β̂51 −1.05892 21.5551 −1101.29
β̂42 −4.84129 6.48502 −3408.10
β̂33 −5.77799 −35.4065 −3643.90
β̂24 1.08693 −12.3409 −213.799
β̂15 5.19094 5.44466 1420.66
β̂06 1.88817 1.07997 410.303

Let Y be the column vector of values of R321 (with
N = 300), indexed by the vectors (A,B,C) (with 1 ≤
A ≤ B ≤ C and A + B + C = N ) ordered lexicograph-
ically, let X be the matrix whose rows are indexed as
the entries of Y , and with row (A,B,C) containing
1, x, y, x2, xy, y2, x3, x2y, . . . , y6, where x = A/N and
y = B/N . Note that Y has length 7500 and X is 7500

by 28. To quantify the claim that X′X becomes closer to
being singular as the degree of the approximating polyno-
mial increases, we note that, with N = 300, det(X′X) is
1.68 × 106 for quadratic approximation, 3.90 × 10−29 for
quartic, 1.14 × 10−136 for sextic, and 1.10 × 10−415 for
octic.

The estimated regression coefficients are

β̂ = (
X′X

)−1
X′Y ,

and the values of the fitted polynomial p̂321 are the entries
of Xβ̂ . Table 6 lists the estimated regression coefficients,
and the error sum of squares is 7.86 × 10−9 for σ = 321,
8.95 × 10−9 for σ = 312, and 0.0177 for σ = 213. Addi-
tional detail is given in the Supplementary Materials (Sec-
tion 6).

This gives the approximation

(3.3)

P̂ GR
A,B,C(321) := P ICM

A,B,C(321)p̂321

(
A

N
,
B

N

)

= A

N

B

B + C
p̂321

(
A

N
,
B

N

)
,

and the cases σ = 312 and σ = 213 are treated in the
same way. The derivation assumed N = 300 throughout.
We did the same computation for N = 200, and the es-
timated regression coefficients did not change much, in-
dicating stability. We expect the approximation to be rea-
sonable for other (perhaps much larger) values of N . That
is, for general N use the approximation (3.3) in which the
function p̂321 is determined by the coefficients in Table 6
computed from the N = 300 data. We investigate this in
two examples below.

EXAMPLE 3.1. Table 7 compares exact values of
PA,B,C(σ ) with its interpolation approximation
P̄A,B,C(σ ) and its regression-corrected ICM P̂A,B,C(σ ).
In the two examples, which are representative, we find
that, for σ = 321 and σ = 312 (and their “complements”
σ = 231 and σ = 132), the regression approximation is
often accurate to six significant digits (except near the
boundary of X ). But with σ = 213 (and σ = 123) the re-
gression approximation is not as good, perhaps only three

TABLE 7
Two examples comparing the exact value of PA,B,C(σ ) (to six significant digits) with its

interpolation approximation P̄A,B,C(σ ) and its regression approximation P̂A,B,C(σ )

σ 123 132 213 231 312 321

P23,45,67(σ ) 0.342769 0.264802 0.153527 0.108430 0.0685310 0.0619406
P̄23,45,67(σ ) 0.342763 0.264801 0.153533 0.108430 0.0685326 0.0619404
P̂23,45,67(σ ) 0.342744 0.264802 0.153552 0.108430 0.0685311 0.0619404

P10,40,90(σ ) 0.532690 0.268542 0.110167 0.0553389 0.0171721 0.0160897
P̄10,40,90(σ ) 0.532702 0.268540 0.110155 0.0553369 0.0171744 0.0160917
P̂10,40,90(σ ) 0.532773 0.268542 0.110084 0.0553389 0.0171721 0.0160897



300 P. DIACONIS AND S. N. ETHIER

TABLE 8
Approximations to P GR

A,B,C(σ ) when A = 169, B = 301, and C = 817. Row (a) uses ICM, row (b) uses Monte
Carlo, row (c) uses linear interpolation, row (d) uses linear regression, and row (e) is exact (see the last

paragraph of Section 2.2). All figures are rounded to the degree shown

σ 123 132 213 231 312 321

(a) P ICM
A,B,C(σ ) 0.406548 0.193791 0.228261 0.095960 0.0400865 0.0353535

(b) P̂ GR
A,B,C(σ ) 0.419345 0.207492 0.215650 0.106286 0.0261205 0.0251065

(c) P̄ GR
A,B,C(σ ) 0.419603 0.207878 0.215207 0.106174 0.0259991 0.0251395

(d) P̂ GR
A,B,C(σ ) 0.419635 0.207879 0.215175 0.106174 0.0259984 0.0251388

(e) P GR
A,B,C(σ ) 0.4195973 0.2078788 0.2152123 0.1061744 0.02599843 0.02513876

or four significant digits. In the latter case, we see from
Table 6 that the estimated regression coefficients are sub-
stantially larger, which is indicative of a poorer fit. On the
other hand, the interpolation approximation is typically
accurate to four or five decimal places.

EXAMPLE 3.2 (Example 2.3 continued). Recall that,
in Example 2.3, we estimated PA,B,C(σ ) when A = 169,
B = 301, and C = 817. We did so using linear interpo-
lation based on the N = 300 data. Results are restated in
Table 8 (row (c)), so that we can compare them with the
ICM (row (a)), Monte Carlo (row (b)), and the regression
approximation (row (d)), which used (3.3) (and its ana-
logues for σ = 312 and σ = 213) with A, B , and C as
above and N = 1287.

We find that linear interpolation and linear regression
match to four or more decimal places, Monte Carlo to
three, and ICM to one or two.

4. A CONJECTURE AND MORE THAN THREE
PLAYERS

This section treats two further topics, the scaling con-
jecture and k ≥ 4 players (in particular, k = 4).

4.1 Scaling Conjecture

The scaling conjecture says, for all A,B,C ≥ 1, σ ∈
S3, and n ≥ 2,

(4.1) PnA,nB,nC(σ )
.= PA,B,C(σ ).

As noted in Section 1, this is closely related to the re-
sult, provable as a consequence of Donsker’s theorem,
that limn→∞ PnA,nB,nC(σ ) exists and can be expressed
in terms of standard two-dimensional Brownian motion.

To formulate such a theorem, we adopt the setup used
by Ferguson (1995). Let 
 be the equilateral triangle with
vertices (−1,0), (1,0), and (0,

√
3), and let V3 be the

edge that lies on the x-axis. Let A, B , and C be posi-
tive integers and N := A + B + C. Then the barycentric
coordinates (A/N,B/N,C/N) correspond to the initial
state x := ((B − A)/N,

√
3C/N).

THEOREM 4.1. Let {B(t), t ≥ 0} be standard two-
dimensional Brownian motion, and let T1 be the exit time
of x + B from 
. Then

(4.2)
lim

n→∞
[
PnA,nB,nC(321) + PnA,nB,nC(312)

]
= P

(
x + B(T1) ∈ V3

)
.

Furthermore,

(4.3)

lim
n→∞PnA,nB,nC(321)

= E

( |x + B(T1) − (1,0)|
2

;x + B(T1) ∈ V3

)
.

The integrand in (4.3) is the proportion of the length of
the edge V3 that lies between the exit position x + B(T1)

and the corner (1,0) corresponding to player 2 winning
all. This amounts to applying the two-player gambler’s
ruin formula to the exit position.

Ferguson (1995) (see also Bruss, Louchard and Turner,
2003) and Hajek (1987) used conformal mapping to give
complicated expressions for the right-hand sides of (4.2)
and (4.3), respectively. It remains to massage their for-
mulas into computable form. In a special case this can
easily be done for Ferguson’s formula. If the initial state
(A,B,C) satisfies A = B , or equivalently, if the initial
state in barycentric coordinates has the form (a, a,1 −
2a), then the Mathematica function defined in Figure 5
gives the exit probability in (4.2).

Ferguson (1995) showed that standard two-dimensional
Brownian motion starting at (0,

√
3/2) exits the equilat-

eral triangle with vertices (−1,0), (1,0), and (0,
√

3)

FIG. 5. Mathematica code for the right-hand side of (4.2) when the
initial state, in barycentric coordinates, is (a, a,1 − 2a).



GAMBLER’S RUIN AND THE ICM 301

TABLE 9
PA,B,C(σ ) for (A,B,C) = (2n,3n,5n) (1 ≤ n ≤ 15 and n = 20,25,30), rounded
to 12 significant digits, in support of the scaling conjecture. Here we include only

three choices of σ . Results for the others can be deduced from (3.1)

A, B, C σ = 213 σ = 312 σ = 321

2, 3, 5 0.190419015064 0.0704242611225 0.0662121426098
4, 6, 10 0.190374670083 0.0704067672263 0.0662043067857
6, 9, 15 0.190371967724 0.0704057817695 0.0662038677034
8, 12, 20 0.190371502992 0.0704056143412 0.0662037932082
10, 15, 25 0.190371375036 0.0704055684270 0.0662037727906
12, 18, 30 0.190371328913 0.0704055519070 0.0662037654463
14, 21, 35 0.190371309103 0.0704055448186 0.0662037622955
16, 24, 40 0.190371299477 0.0704055413763 0.0662037607656
18, 27, 45 0.190371294349 0.0704055395436 0.0662037599511
20, 30, 50 0.190371291418 0.0704055384960 0.0662037594855
22, 33, 55 0.190371289645 0.0704055378624 0.0662037592040
24, 36, 60 0.190371288521 0.0704055374610 0.0662037590256
26, 39, 65 0.190371287781 0.0704055371968 0.0662037589082
28, 42, 70 0.190371287279 0.0704055370172 0.0662037588284
30, 45, 75 0.190371286927 0.0704055368917 0.0662037587726

40, 60, 100 0.190371286171 0.0704055366216 0.0662037586526
50, 75, 125 0.190371285964 0.0704055365478 0.0662037586198
60, 90, 150 0.190371285890 0.0704055365213 0.0662037586080

along the x-axis with probability about 0.1421. Now
(0,

√
3/2) has barycentric coordinates (1

4 , 1
4 , 1

2), so Fig-
ure 5 shows that Ferguson’s probability, evaluated to 12
decimal places, is 0.142154976126. On the other hand,
the corresponding gambler’s ruin probability with N =
300 is

(4.4)

P75,75,150(player 3 goes broke first)

= P75,75,150(312) + P75,75,150(321)

.= 0.142154976161,

which we have computed to 18 decimal places, the first
ten of which agree with Ferguson’s number!

In support of the scaling conjecture we present evidence
in Table 9. We have looked at many other examples. Scal-
ing to good approximation seems to hold always.

A second piece of evidence comes from

(4.5)

Pi,i,N−2i (123) = Pi,i,N−2i (213)

= 1

2

(
1 − 2i

N

)
, 1 ≤ i < N/2.

These are exactly invariant under scaling. Indeed, they
match the ICM.

A third piece of evidence comes from the Brownian
motion approximation of the random walk. As we have al-
ready seen for k = 3, the gambler’s ruin walk converges to
Brownian motion on the k-simplex (Denisov and Wach-
tel, 2015). It follows that the first hitting probabilities con-
verge to those of Brownian motion. Finally, the Brown-
ian motion extinction probabilities are scale invariant via
properties of Brownian motion.

A fourth piece of evidence comes from the asymptotic
approximation (2.4) above. This is (approximately) scale
invariant.

The rapid convergence of rescaled probabilities (as seen
in Table 9) is surprising. Theorem 4.1 shows that these
approach limits expressible in terms of standard two-
dimensional Brownian motion. We might denote the limit
of PnA,nB,nC(σ ) as n → ∞ by P BM

A,B,C(σ ), where the
superscript refers to Brownian motion. For example, if
σ = 321, this limit is given by (4.3). Usually, Gaussian ap-
proximation of features of random walk converge at rate
1/

√
N . The numerics would be explained by the follow-

ing conjecture, which may be regarded as a more precise
version of the scaling conjecture (4.1).

CONJECTURE 4.2.

(a) For each A,B,C ≥ 1, σ ∈ S3, and n ≥ 2,∣∣PnA,nB,nC(σ ) − PA,B,C(σ )
∣∣ < 0.0004.

(b) For each A,B,C ≥ 1 and σ ∈ S3, let N := A +
B + C. Then∣∣PnA,nB,nC(σ )−P BM

A,B,C(σ )
∣∣ = O

(
1

(nN)4

)
as n → ∞.

In the case of (a), we have found differences as large as
0.000383. As for (b), the ten-digit match seen in (4.4) is
consistent with this because 1/(300)4 .= 1.235 × 10−10.

In practical problems scale invariance and smoothness
(so fine details don’t matter much) can reduce things to
“manageable numbers” within the range of computer cal-
culation.
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TABLE 10
PA,B,C,D(σ ) for (A,B,C,D) = (n,2n,3n,4n) (1 ≤ n ≤ 10) and four choices of

σ ∈ S4, rounded to nine decimal places, in support of the scaling conjecture.
Notice that the rate of convergence appears to be slower than for the three-player

data in Table 9

A, B, C, D σ = 1234 σ = 2143 σ = 3412 σ = 4321

1, 2, 3, 4 0.147755766 0.055231830 0.012087939 0.007499579
2, 4, 6, 8 0.148462055 0.054618468 0.012147611 0.007459339
3, 6, 9, 12 0.148582024 0.054511807 0.012158593 0.007452294
4, 8, 12, 16 0.148621208 0.054476628 0.012162415 0.007449874
5, 10, 15, 20 0.148638685 0.054460859 0.012164179 0.007448762
6, 12, 18, 24 0.148647981 0.054452450 0.012165136 0.007448161
7, 14, 21, 28 0.148653514 0.054447436 0.012165712 0.007447800
8, 16, 24, 32 0.148657074 0.054444206 0.012166086 0.007447565
9, 18, 27, 36 0.148659501 0.054442002 0.012166342 0.007447405
10, 20, 30, 40 0.148661229 0.054440432 0.012166526 0.007447290

4.2 Gambler’s Ruin with More than Three Players

The questions above make sense for k players with
initial capitals A1,A2, . . . ,Ak . The exact calculations of
Section 2.2 are (potentially) available. We have carried
them out to give exact results for k = 4 and N := A1 +
A2 + A3 + A4 as large as 100. The results for N = 100
are in the Supplementary Materials (Section 6). By anal-
ogy with (4.5),

Pi,i,i,N−3i (1234) = 1

6

(
1 − 3i

N

)
, 1 ≤ i < N/3.

The scaling conjecture for k = 4, either in the form

PA′,B ′,C′,D′(σ )
.= PA,B,C,D(σ )

whenever
A′

A
= B ′

B
= C′

C
= D′

D
,

or in the equivalent form

PnA,nB,nC,nD(σ )
.= PA,B,C,D(σ ), n ≥ 2,

seems to hold. Here A,B,C,D ≥ 1 and σ ∈ S4 are arbi-
trary. Table 10 gives a few data points. These numbers are
consistent with those of Marfil and David (2020). Notice
that convergence is slower for four players than for three.

The ICM formula is available for all k. Preliminary in-
vestigations (including Table 13) suggest it is just as un-
reliable as an approximation to PA1,...,Ak

(σ ) as it is when
k = 3. We have tried interpolation (Section 4.3) but not
yet regression. Plots such as Figure 4 are not feasible
when k = 4.

One final point: The constant/N3 results described
above for k = 3 should not stir false hope of similar re-
sults for k = 4. There are reasons to expect that

P1,1,1,N−3(4321) ∼ constant

Nκ

with κ an irrational number. This (heuristically) follows
from the connection between gambler’s ruin and the

“cops and robbers” problem. See Ratzkin and Treibergs
(2009). Table 11 gives ten data points, which suggest
κ = 5.72 · · · .

4.3 Linear Interpolation for Four Players

Just as we could interpolate three-player elimination or-
der probabilities with arbitrary N from three known such
probabilities with N = 300, we can also interpolate four-
player elimination order probabilities with arbitrary N

from four known such probabilities with N = 100.
Given positive integers A, B , C, and D, let N := A +

B + C + D and

A0 := A
100

N
, B0 := B

100

N
,

C0 := C
100

N
, D0 := D

100

N
.

Typically, these are not integers. Therefore, consider the
eight points

v000 := (�A0�, �B0�, �C0�,100 − �A0� − �B0� − �C0�),
v001 := (�A0�, �B0�, 
C0�,100 − �A0� − �B0� − 
C0�),
v010 := (�A0�, 
B0�, �C0�,100 − �A0� − 
B0� − �C0�),
v100 := (
A0�, �B0�, �C0�,100 − 
A0� − �B0� − �C0�),

TABLE 11
P1,1,1,N−3(4321) for N = 10,20, . . . ,100

N P1,1,1,N−3(4321) N P1,1,1,N−3(4321)

10 2.61956573 × 10−4 60 9.43556904 × 10−9

20 5.03729359 × 10−6 70 3.90711745 × 10−9

30 4.96691782 × 10−7 80 1.82032195 × 10−9

40 9.58966829 × 10−8 90 9.28008330 × 10−10

50 2.67684672 × 10−8 100 5.07937120 × 10−10
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TABLE 12
The final four in the 2019 World Series of Poker Millionaire Maker Event. The big blind

was 1,600,000

Big blinds Big blinds
Player Chip count (rounded) ×16 (exact) Actual payoff

Vincas Tamasauskas 9,700,000 6 97 $464,375
Lokesh Garg 12,500,000 8 125 $619,017
John Gorsuch 14,400,000 9 144 $1,344,930
Kazuki Ikeuchi 183,900,000 115 1839 $830,783

Totals 220,500,000 138 2205

v011 := (�A0�, 
B0�, 
C0�,100 − �A0� − 
B0� − 
C0�),
v101 := (
A0�, �B0�, 
C0�,100 − 
A0� − �B0� − 
C0�),
v110 := (
A0�, 
B0�, �C0�,100 − 
A0� − 
B0� − �C0�),
v111 := (
A0�, 
B0�, 
C0�,100 − 
A0� − 
B0� − 
C0�),
and choose four of them for the purpose of linear interpo-
lation, discarding any whose fourth coordinate is neither
�D0� nor 
D0�. Denote by {a} := a − �a� the fractional
part of a.

If {A0} + {B0} + {C0} ∈ (0,1), then we choose v000,
v001, v010, and v100.

If {A0} + {B0} + {C0} ∈ (2,3), then we choose v011,
v101, v110, and v111.

If {A0} + {B0} + {C0} ∈ (1,2), then we choose four
of the six points v001, v010, v100, v011, v101, and v110
in such a way that the resulting tetrahedron contains
(A0,B0,C0,D0) in its interior. The choice is not unique.

Let us call these four points (Ai,Bi,Ci,Di) (i =
1,2,3,4). We can estimate PA,B,C,D(σ ) by linear in-
terpolation from the four values of PAi,Bi,Ci ,Di

(σ ) (i =
1,2,3,4). As before, we represent (A0,B0,C0,D0) in
barycentric coordinates. The relevant weights are⎛

⎝λ1
λ2
λ3

⎞
⎠ :=

⎛
⎝A1 − A4 A2 − A4 A3 − A4

B1 − B4 B2 − B4 B3 − B4
C1 − C4 C2 − C4 C3 − C4

⎞
⎠

−1

·
⎛
⎝A0 − A4

B0 − B4
C0 − C4

⎞
⎠

and λ4 := 1 − λ1 − λ2 − λ3, so that

(A0,B0,C0,D0) =
4∑

i=1

λi(Ai,Bi,Ci,Di),

and our interpolation estimate is then

P̄A,B,C,D(σ ) :=
4∑

i=1

λiPAi,Bi,Ci,Di
(σ ).

If one or more of the weights λi is negative, that indi-
cates (A0,B0,C0,D0) lies outside the resulting tetrahe-
dron, and we must choose the four points differently.

EXAMPLE 4.3. At the final table of the 2019 World
Series of Poker Millionaire Maker Event, at the time the
fifth-place finisher was eliminated, the remaining four
players had chip counts (in units of 100,000, 1/16 of
the big blind) equal to A = 97, B = 125, C = 144,
and D = 1839 (WSOP, 2019b). See Table 12. Thus,
N = 2205 and A, B , C, and D, multiplied by 100/N ,
are A0

.= 4.40, B0
.= 5.67, C0

.= 6.53, and D0
.= 83.40.

Since {A0} + {B0} + {C0} .= 1.60, we must choose four
of the six vertices v2 = (4,5,7,84), v3 = (4,6,6,84),
v4 = (5,5,6,84), v5 = (4,6,7,83), v6 = (5,5,7,83),
and v7 = (5,6,6,83). We choose v2, v3, v5, and v7, the
four points closest to (A0,B0,C0,D0). We find that

λ1 = 146

441
, λ2 = 31

441
,

λ3 = 88

441
, λ4 = 176

441
,

and results are shown in Table 13. For the record, the ac-
tual elimination order turned out to be σ = 1243, the sev-
enth most likely result.

5. SUMMARY

In summary, we have discussed six different methods
of approximating the gambler’s ruin probabilities:

1. Exact computation by Markov chain methods (Sec-
tion 2.2)

2. Arbitrarily precise computation by Jacobi iteration
(Section 2.3)

3. Linear interpolation from exact probabilities (Sec-
tion 2.4)

4. Monte Carlo methods (Section 2.5)
5. Regression on ICM (Section 3)
6. Approximation by Brownian motion (Section 4.1)

While exact computation using Markov chain methods
and arbitrarily precise computation using Jacobi iteration
are feasible for N := A + B + C not too large, it seems
difficult for N of practical interest. Linear interpolation is
our preferred method, using the nearly exact results for
N = 300. Monte Carlo allows computation for a single
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TABLE 13
For (A,B,C,D) = (97,125,144,1839), row (a) gives P ICM

A,B,C,D(σ ), and row (b) gives the interpolated

approximations P̄ GR
A,B,C,D(σ ). Here ε = 10−5

σ = 1234 σ = 1243 σ = 1324 σ = 1342 σ = 1423 σ = 1432
σ = 2134 σ = 2143 σ = 2314 σ = 2341 σ = 2413 σ = 2431
σ = 3124 σ = 3142 σ = 3214 σ = 3241 σ = 3412 σ = 3421
σ = 4123 σ = 4132 σ = 4213 σ = 4231 σ = 4312 σ = 4321

(a) 0.184762 0.0328106 0.170195 0.0299478 0.00376238 0.00372801
0.143375 0.0254611 0.118324 0.0205440 0.00287798 0.00281381
0.114645 0.0201732 0.102712 0.0178333 0.00245171 0.00241914
0.000198451 0.000196638 0.000195621 0.000191260 0.000191977 0.000189427

(b) 0.193685 0.0365869 0.177240 0.0338414 0.00127429 0.00127379
0.139180 0.0264827 0.118035 0.0228907 0.000947236 0.000946428
0.107017 0.0207477 0.0988571 0.0193277 0.000811526 0.000811141
0.751143 ε 0.750991 ε 0.750703 ε 0.750331 ε 0.750250 ε 0.750030 ε

A, B , C of interest and is useful for two- or three-digit
accuracy. Regression analysis is quite accurate but prob-
ably needs an app to to be “real-time useful.” Brownian
approximation changes the problem into one that requires
special function calculations and so probably also needs
an app. Finally, the widely used ICM is roughly useful
(say for single-digit accuracy), and it can be “done in your
head.”

6. SUPPLEMENTARY MATERIALS

Supplementary materials include four Mathematica
programs, four output files, and three regression analyses
using Mathematica. Here are the details.

1. Mathematica program to compute three-player elim-
ination order probabilities in double precision by Markov
chain methods (N arbitrary), and output when N = 200.
http://www.math.utah.edu/~ethier/3ruin-program.nb,
http://www.math.utah.edu/~ethier/3ruin200-output.

2. Mathematica program to compute three-player elim-
ination order probabilities in double precision by iteration
(N arbitrary), and output when N = 300.
http://www.math.utah.edu/~ethier/3iteration-program.nb,
http://www.math.utah.edu/~ethier/3iteration300-output.

3. Mathematica program to compute four-player elim-
ination order probabilities in single precision by Markov
chain methods (N arbitrary), and output when N = 50.
http://www.math.utah.edu/~ethier/4ruin-program.nb,
http://www.math.utah.edu/~ethier/4ruin50-output.

4. Mathematica program to compute four-player elim-
ination order probabilities in single precision by iteration
(N arbitrary), and output when N = 100.
http://www.math.utah.edu/~ethier/4iteration-program.nb,
http://www.math.utah.edu/~ethier/4iteration100-output.

5. Mathematica files containing regression analyses for
σ = 321, 312, and 213.
http://www.math.utah.edu/~ethier/regression321-300.nb,

http://www.math.utah.edu/~ethier/regression312-300.nb,
http://www.math.utah.edu/~ethier/regression213-300.nb.
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