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Statistical Dependence: Beyond Pearson’s ρ
Dag Tjøstheim, Håkon Otneim and Bård Støve

Abstract. Pearson’s ρ is the most used measure of statistical dependence. It
gives a complete characterization of dependence in the Gaussian case, and it
also works well in some non-Gaussian situations. It is well known; however,
that it has a number of shortcomings; in particular, for heavy tailed distribu-
tions and in nonlinear situations, where it may produce misleading, and even
disastrous results. In recent years, a number of alternatives have been pro-
posed. In this paper, we will survey these developments, especially results
obtained in the last couple of decades. Among measures discussed are the
copula, distribution-based measures, the distance covariance, the HSIC mea-
sure popular in machine learning and finally the local Gaussian correlation,
which is a local version of Pearson’s ρ. Throughout, we put the emphasis on
conceptual developments and a comparison of these. We point out relevant
references to technical details as well as comparative empirical and simu-
lated experiments. There is a broad selection of references under each topic
treated.

Key words and phrases: Statistical dependence, Pearson’s ρ, nonlinear de-
pendence, distance covariance, HSIC, mutual information, local Gaussian
correlation.

1. INTRODUCTION

Pearson’s ρ, the product moment correlation, was not
invented by Pearson, but rather by Francis Galton. Gal-
ton, a cousin of Charles Darwin, needed a measure of as-
sociation in his hereditary studies (Galton, 1888, 1890).
This was formulated in a scatter diagram and regression
context, and he chose r (for regression) as the symbol for
his measure of association. Pearson (1896) gave a more
precise mathematical development and used ρ as a sym-
bol for the population value and r for its estimated value.
The product moment correlation is now universally re-
ferred to as Pearson’s ρ. Galton died in 1911, and Karl
Pearson became his biographer, resulting in a massive
four-volume biography (Pearson, 1922, 1930). All of this
and much more is detailed in Stigler (1989) and Stan-
ton (2001). Some other relevant historical references are
Fisher (1915, 1921), von Neumann (1941, 1942) and the
survey paper by King (1987).
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Write the covariance between two random variables
X and Y having finite second moments as Cov(X,Y ) =
σ(X,Y ) = E(X − E(X))(Y − E(Y )). The Pearson’s ρ, or
the product moment correlation, is defined by

ρ = ρ(X,Y ) = σ(X,Y )

σXσY

with σX =
√

σ 2
X = √

E(X − E(X))2 being the standard
deviation of X and similarly for σY . The correlation takes
values between and including −1 and +1. For a given set
of pairs of observations (X1, Y1), . . . , (Xn,Yn) of X and
Y , an estimate of ρ is given by

(1.1) r = ρ̂ =
∑n

j=1(Xj − X)(Yj − Y )√∑n
j=1(Xj − X)2

√∑n
j=1(Yj − Y)2

with X = n−1 ∑n
j=1 Xj , and similarly for Y . Consistency

and asymptotic normality can be proved using an appro-
priate law of large numbers and a central limit theorem,
respectively.

The correlation coefficient ρ has been, and probably
still is, the most used measure for statistical association,
and it is generally accepted as the measure of dependence,
not only in statistics, but in most applications of statistics
to the natural and social sciences. There are several rea-
sons for this:

(i) It is easy to compute (estimate).
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(ii) Linear models are much used, and in a linear re-
gression model of Y on X, say, ρ is proportional to the
slope of the regression line.

(iii) In a bivariate Gaussian density

f (x, y) = 1

2π

√
1 − ρ2σXσY

× exp
{
− 1

2(1 − ρ2)

(
(x − μX)2

σ 2
X

− 2ρ
(x − μX)(y − μY )

σXσY

+ (y − μY )2

σ 2
Y

)}
,

the dependence between X and Y is completely charac-
terized by ρ. In particular, two jointly Gaussian variables
(X,Y ) are independent if and only if they are uncorre-
lated. For a considerable number of data sets, the Gaus-
sian distribution works at least as a fairly good approx-
imation. Moreover, joint asymptotic normality often ap-
pears as a consequence of the central limit theorem for
many statistics, and the joint asymptotic behavior of such
statistics are therefore generally well defined by the cor-
relation coefficient.

(iv) The product moment correlation is easily general-
ized to the multivariate case. For p stochastic variables
X1, . . . ,Xp , their joint dependencies can simply (but not
always accurately) be characterized by their covariance
matrix � = {σij }, with σij being the covariance between
Xi and Xj . Similarly the correlation matrix is defined by
� = {ρij }, with ρij being the correlation between Xi and
Xj . Again, for a column vector x = (x1, . . . , xp)T , the
joint normality density is defined by

f (x) = 1

(2π)p/2|�|1/2 exp
{
−1

2
(x − μ)T �−1(x − μ)

}
,

where |�| is the determinant of the covariance matrix �

(whose inverse �−1 is assumed to exist), and μ = E(X).
Then the complete dependence structure of the Gaussian
vector is given by the pairwise covariances σij , or equiv-
alently the pairwise correlations ρij . This is remarkable:
the entire dependence structure is determined by pairwise
dependencies.

(v) It is easy to extend the correlation concept to time
series. For a time series {Xt }, the autocovariance and au-
tocorrelation function, respectively, are defined, assuming
stationarity and existence of second moments, by c(t) =
σ(Xt+s,Xs) and ρ(t) = ρ(Xt+s,Xs) for arbitrary inte-
gers s and t . For a Gaussian time series, the dependence
structure is completely determined by ρ(t). Even for non-
linear time series and nonlinear regression models, the au-
tocovariance function has often been made to play a major
role. In the frequency domain all of the traditional spectral
analysis is based again on the autocovariance function.

In spite of these assets, there are several serious weak-
nesses of Pearson’s ρ. These will be briefly reviewed in
Section 2. In the remaining sections of this paper, a num-
ber of alternative dependence measures going beyond the
Pearson ρ will be described. The emphasis will be on con-
cepts, conceptual developments and comparisons of these.
We do provide some illustrative plots of key properties,
but when it comes to technical details, empirical and sim-
ulated experiments with numerical comparisons, we point
out relevant references instead.

In Section 3, we briefly review the copula and its use
in dependence modeling. Global dependence functionals
based on distribution functions and density functions, if
they exist, are treated in Section 4, where we cover the
distance based functionals such as the distance covariance
function and the mutual information criterion as well as
related criteria. We also treat the HSIC criterion, which
is popular in machine learning, and its relationship to the
distance covariance. We discuss all of this in light of seven
properties that a dependence criterion ideally should pos-
sess according to Rényi (1959). In Section 5, we shift
our emphasis to local dependence measures, allowing the
statistical dependence to vary across different regions of
the support of the distribution functions. In particular, we
treat the recently introduced local Gaussian approxima-
tion in Section 6. To improve the focus of the paper, some
details, especially those related to Section 6, have been
moved to an online supplementary note (Tjøstheim, Ot-
neim and Støve, 2022).

2. WEAKNESSES OF PEARSON’S ρ

We have subsumed, somewhat arbitrarily, the problems
of Pearson’s ρ under three issues.

2.1 The Non-Gaussianity Issue

A natural question to ask is whether the close con-
nection between Gaussianity and correlation/covariance
properties can be extended to larger classes of distribu-
tions. The answer to this question is a conditional yes.
The multivariate Gaussian distribution is a member of the
vastly larger class of elliptical distributions. That class
of distributions is defined both for discrete and contin-
uous variables, but we limit ourselves to the continuous
case. An elliptical distribution can be defined in terms of
a parametric representation of the characteristic function
or the density function. For an overview of elliptical dis-
tributions see, for example, Gómez, Gómez-Villegas, and
Marín (2003).

Unfortunately, the equivalence between uncorrelated-
ness and independence is generally not true for ellipti-
cal distributions. Consider, for instance, the multivariate
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t-distribution with ν degrees of freedom

(2.1)

f (x) = �(
p+ν

2 )

(πν)p/2�(ν/2)|�|1/2

×
(

1 + (x − μ)T �−1(x − μ)

ν

)−p+ν
2

.

Unlike the multinormal distribution where the exponen-
tial form of the distribution forces the distribution to fac-
tor if � is a diagonal matrix (uncorrelatedness), this is not
true for the t distribution defined in equation (2.1) if � is
diagonal. In other words, if two components of a bivari-
ate t distribution are uncorrelated, they are not necessar-
ily independent. This pinpoints a serious deficiency of the
Pearson’s ρ in measuring dependence in t distributions,
and indeed in general elliptical (and, of course, nonellip-
tical) distributions.

2.2 The Robustness Issue

As is the case for regression, it is well known that the
product moment estimator is sensitive to outliers. Even
just one single outlier may be very damaging. There
are therefore several robustified versions of ρ, primarily
based on ranks. The idea of rank correlation goes back
at least to Spearman (1904), and it is most easily ex-
plained through its sample version. Given scalar obser-
vations {X1, . . . ,Xn}, we denote by R

(n)
i,X the rank of Xi

among X1, . . . ,Xn. (There are various rules for treating
ties.) The estimated Spearman rank correlation function
given n pairwise observations of two random variables X

and Y is given by

ρ̂S = n−1 ∑n
i=1 R

(n)
i,XR

(n)
i,Y − (n + 1)2/4

(n2 − 1)/12
.

The rank correlation is thought to be especially effective
in picking up linear trends in the data, but it suffers in a
very similar way as the Pearson ρ to certain nonlinearities
of the data, which are treated in the next subsection.

Another way of using the ranks is Kendall’s τ rank cor-
relation coefficient given by Kendall (1938). Again, con-
sider the situation of n pairs (Xi, Yi) of the random vari-
ables X and Y . Two pairs of observations (Xi, Yi) and

(Xj ,Yj ), i �= j are said to be concordant if the ranks for
both elements agree; that is, if both Xi > Xj and Yi > Yj

or if both Xi < Xj and Yi < Yj . Similarly, they are said
to be discordant if Xi > Xj and Yi < Yj or if Xi < Xj

and Yi > Yj . If one has equality, they are neither concor-
dant nor discordant, even though there are various rules
for treating ties in this case as well. The estimated Kendall
τ is then given by

τ̂ = (
(number of concordant pairs)

− (number of discordant pairs)
)
/
(
n(n − 1)/2

)
.

We will illustrate the robustness issue using a simple
example. In Figure 1(a), we see 500 observations that
have been simulated from the bivariate Gaussian distri-
bution having correlation ρ = −0.5. The sample value for
Pearson’s ρ is ρ̂ = −0.53. If we add just three outliers
to the data, however, as shown in Figure 1(b), the sample
correlation changes to ρ̂ = −0.36. The sample versions
of Spearman’s ρ for the simulated data in Figures 1(a)
and 1b are on the other hand very similar: ρ̂S = −0.52
and ρ̂S = −0.49, and the corresponding values for the es-
timated Kendall’s τ are τ̂ = −0.37 and τ̂ = −0.35.

2.3 The Nonlinearity Issue

This is probably the most serious issue with Pearson’s
ρ, and it is an issue also for the rank based correlations
of Spearman and Kendall. All of these (and similar mea-
sures), are designed to detect rather specific types of sta-
tistical dependencies, namely those for which large val-
ues of X tend to be associated with large values of Y ,
and small values of X with small values of Y (positive
dependence), or the opposite case of negative dependence
in which large values of one variable tend to be associated
with small values of the other variable. It is easy to find
examples where this is not the case, but where neverthe-
less there is strong dependence. A standard introductory
text book example is the case where

(2.2) Y = X2.

Here, Y is uniquely determined once X is given; that is,
basically the strongest form of dependence one can have.
Nevertheless, if X has a symmetric distribution on the real

FIG. 1. Illustration of some problems related to the Pearson correlation coefficient.
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line, and if sufficient moments exist in the case of ρ, then
the population quantities corresponding to these three test
statistics are all zero. A version of this situation is illus-
trated in Figure 1(c), where we have generated 500 obser-
vations of the standard normally distributed independent
variables X and ε, and calculated Y as Y = X2 + ε. Still,
ρ(X,Y ) = 0. The sample values for Pearson’s ρ, Spear-
man’s ρS and Kendall’s τ are ρ̂ = −0.001, ρ̂S = −0.03
and τ̂ = −0.02, respectively, and none of them are signif-
icantly different from zero. It may be noted that there is
a consistent nonnegative modification of Kendall’s τ ; see
Bergsma and Dassios (2014).

Essentially the same problem will occur if X = UW

and Y = V W , where U and V are independent of each
other and independent of W . It is trivial to show that
ρ(X,Y ) = 0 if E(U) = E(V ) = 0, whereas X and Y are
clearly dependent. This example typifies the kind of de-
pendence one has in ARCH/GARCH time series models:
If {εt } is a time series of zero-mean i.i.d. variables and if
the non-negative time series {ht } is independent of {εt },
and {Xt } and {ht } are given by the recursive relationship

(2.3) Xt = εth
1/2
t , ht = α + βht−1 + γX2

t−1,

where the stochastic process {ht } is the so-called volatil-
ity process, then the resulting model is a GARCH(1,1)

model. Further, α > 0, and β and γ are nonnegative con-
stants satisfying β+γ < 1. This model can be extended in
many ways and the ARCH/GARCH models are extremely
important in finance. A comprehensive book is Francq
and Zakoïan (2011). The work on these kinds of mod-
els was initiated by Engle (1982), and he was awarded the
Nobel Memorial Prize in Economic Sciences for his work.
The point as far as Pearson’s ρ is concerned is that Xt and
Xs are uncorrelated for t �= s, but they are in fact strongly
dependent through the volatility process {ht }, which can
be taken to measure financial risk.

In Figure 1(d), we see some simulated data from a
GARCH(1,1)-model with εt ∼ i.i.d.N(0,1), α = 0.1,
β = 0.7 and γ = 0.2, with Xt on the horizontal axis,
and Xt−1 on the vertical axis. In this particular case,
ρ̂(Xt ,Xt−1) = 0.018, despite the strong serial depen-
dence that is seen to exist directly from equation (2.3).

In the following sections, we will look at ways of de-
tecting nonlinear and non-Gaussian structures by going
beyond Pearson’s ρ.

3. BEYOND PEARSON’S ρ: THE COPULA

For two variables, one may ask, why not just take the
joint density function f (x, y) or the cumulative distri-
bution function F(x, y) as a descriptor of the joint de-
pendence? The answer is quite obvious. If a parametric
density model is considered, it is usually quite difficult
to give an interpretation of the parameters in terms of the
strength of the dependence. If one looks at nonparametric

estimates for multivariate density functions, to a certain
degree one may get an informal indication of strength of
dependence in certain regions from a display of the den-
sity, but the problems increase quickly with dimension
due both to difficulties of producing a graphical display
and to the lack of precision of the estimates due to the
curse of dimensionality. Another problem in analyzing a
joint density function is that it may be difficult to disentan-
gle effects due to the shape of marginal distributions and
effects due to dependence among the variables involved.

This last problem is resolved by the copula construc-
tion. Sklar’s (1959) theorem states that a multivariate cu-
mulative distribution function F(x) = F(x1, . . . , xp) with
marginals Fi(xi), i = 1, . . . , p can be decomposed as

(3.1) F(x1, . . . , xp) = C
(
F1(x1), . . . ,Fp(xp)

)
,

where C(u1, . . . , up) is a distribution function over the
unit cube [0,1]p . Klaassen and Wellner (1997) point out
that Hoeffding (1940) had the basic idea of summariz-
ing the dependence properties of a multivariate distribu-
tion by its associated copula, but he chose to define the
corresponding function on the interval [−1/2,1/2] in-
stead of on the interval [0,1]. In the continuous case, C

is a function of uniform variables U1, . . . ,Up , using the
well-known fact that for a continuous random variable
Xi , Fi(Xi) is uniform on [0,1]. Further, in the continuous
case C is uniquely determined by Sklar’s (1959) theorem.

The theorem continues to hold for discrete variables un-
der certain regularity conditions securing uniqueness. We
refer to Nelsen (1999) and Joe (2014) for extensive treat-
ments of the copula. Joe (2014), in particular, contains
a large section on copulas in the discrete case. See also
Genest and Nešlehová (2007).

The decomposition (3.1) very effectively disentangle
the distributional properties of a multivariate distribution
into a dependence part measured by the copula C and a
marginal part described by the univariate marginals. Note
that C is invariant with respect to one-to-one transforma-
tions of the marginal variables Xi . In this respect, it is
analogous to the invariance of the Kendall and Spearman
rank based correlation coefficients.

The decomposition in (3.1) is very useful in that it leads
to large classes of models that can be specified by defining
the marginals and the copula function separately. It has
great flexibility in that very different models can be cho-
sen for the marginal distribution, and there is a large cata-
log of possible parametric models available for the copula
function C; it can also be estimated nonparametrically. In
particular, the Clayton copula has been important in eco-
nomics and finance. It is defined by

(3.2)
CC(u1, u2) = max{u−θ

1 + u−θ
2 − 1;0]−1/θ

with θ ∈ [−1,∞)/0
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in the two-dimensional case. It can be extended to higher
dimensions. For a connection between Kendall’s τ and the
copula parameter θ , see Genest et al. (2011).

We will throughout this paper and its supplement il-
lustrate several points using a bivariate data set on some
financial returns. We use daily international equity price
index data for the United States (i.e., the S&P 500) and
the United Kingdom (i.e., the FTSE 100). The data are
obtained from Datastream (2018), and the returns are de-
fined as

rt = 100 × (
log(pt ) − log(pt−1)

)
,

where pt is the price index at time t . The observation span
covers the period from January 1, 2007, through Decem-
ber 31, 2009, in total 784 observations. In Figure 2, four
scatterplots are presented.

Figure 2(a) displays a scatterplot of the observed log-
returns with S&P 500 on the horizontal axis, and the

FTSE 100 on the vertical axis. Figure 2(b) displays the
uniform scores of the same data, that is, (Û1i , Û2i) =
(F̂1(X1i ), F̂2(X2i )) where F̂1 and F̂2 are the empirical
distribution functions of X1: S&P500 and X2: FTSE 100,
and we see indications of a somewhat cluttered behaviour
of the scores in the lower left and upper right corners of
the unit square corresponding to the tails of the joint dis-
tribution. The plot in Figure 2(b) then is a scatter diagram
of the copula dependence function C in the formula (3.1)
when p = 2. In Figure 2(c), the observations have been
transformed to normal scores given by Ẑi = �−1(F̂ (Xi)),
i = 1,2, where �−1 is the inverse cumulative distribution
function of the standard normal. The transformation to a
standard normal scale plays an important role in the the-
ory and application of the local Gaussian correlation mea-
sure; see, in particular, the discussion following equation
(6.4). For now, it is sufficient to note that it more clearly
reveals the tail properties of the underlying distribution

FIG. 2. Illustrations using the financial returns data set.
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than is the case of Figure 2(b). Finally, Figure 2(d) shows
the scatterplot of 784 simulated pairs of variables, on uni-
form scale, from a Clayton copula fitted to the return data.
The plot resembles Figure 2(b), in particular in the lower
left corner. However, there are some differences in the up-
per right corner. We will look into this discrepancy in Sec-
tion 6, and in Section 2 of the supplement.

In Figure 2(a), and perhaps more clearly in Figure 2(c),
we see that there seems to be stronger dependence be-
tween the variables when the market is going either up
or down, which is very sensible from an economic point
of view, but it is not easy to give an interpretation of the
parameter θ of the Clayton copula in terms of such type
of dependence. In fact, in this particular case, θ̂ = 0.96.
The difficulty of giving a clear and concrete interpreta-
tion of copula parameters in terms of measuring strength
of dependence can be stated as a potential issue of the
copula representation. In this respect, it is very different
from Pearson’s ρ. We will return to this point in Section 6,
where we define a local correlation.

Another issue of the original copula approach has been
the lack of good practical models as the dimension in-
creases, as it would, for example, in a portfolio problem
in finance. This has recently been sought solved by the so-
called pair copula construction. To simplify, in a trivariate
density f (x1, x2, x3), by conditioning this can be writ-
ten f (x1, x2, x3) = f1(x1)f23|1(x2, x3|x1), and a bivariate
copula construction, for example, a Clayton copula, can
be applied to the conditional density f23|1(x2, x3|x1) with
x1 fixed and with a parameter θ = θ(x1) depending on x1.
This conditioning can be extended to higher dimensions
under a few simplifying assumptions, resulting in a so-
called vine copula, of which there are several types. The
procedure is well described by Aas et al. (2009), and has
found a number of applications.

4. BEYOND PEARSON’S ρ: GLOBAL DEPENDENCE
FUNCTIONALS AND TESTS OF INDEPENDENCE

Studies of statistical dependence may be said to center
mainly around two problems: (i) definition and estimation
of measures of dependence and (ii) tests of independence.
Of course, these two themes are closely related. Measures
of association such as Pearson’s ρ can also be used in
tests of independence, or more precisely: tests of uncorre-
latedness. On the other hand, test functionals for tests of
independence can in many, but not all, cases be used as a
measures of dependence. A disadvantage with measures
derived from tests is that they are virtually always based
on a distance function and, therefore, nonnegative. This
means that they cannot distinguish between negative and
positive dependence.

Most of the test functionals are based on the defini-
tion of independence in terms of cumulative distribution
functions or in terms of density functions. Consider p

stochastic variables X1, . . . ,Xp . These variables are in-
dependent if and only if their joint cumulative distribution
function is the product of the marginal distribution func-
tions: FX1,...,Xp(x1, . . . , xp) = F1(x1) · · ·Fp(xp), and the
same is true for all subsets of variables of (X1, . . . ,Xp).
If the variables are continuous, this identity can be
phrased in terms of the corresponding density functions
instead. A typical test functional is then designed to mea-
sure the distance between the estimated joint distribu-
tions/densities and the product of the estimated marginals.
One would usually estimate the involved distributions
non- or semiparametrically, which, for joint distributions,
may be problematic for moderate and large p’s due to the
curse of dimensionality. We will treat these problems in
some detail in Sections 4.2–4.5.

Before starting on the description of the various de-
pendence measures, let us remark that Rényi (1959) pro-
posed that a measure of dependence δ(X,Y ) between two
stochastic variables X and Y should ideally have the fol-
lowing seven properties:

(i) δ(X,Y ) is defined for any X, Y neither of which
is constant with probability 1.

(ii) δ(X,Y ) = δ(Y,X).
(iii) 0 ≤ δ(X,Y ) ≤ 1.
(iv) δ(X,Y ) = 0 if and only if X and Y are indepen-

dent.
(v) δ(X,Y ) = 1 if either X = g(Y ) or Y = f (X),

where f and g are measurable functions.
(vi) If the Borel-measurable functions f and g map

the real axis in a one-to-one way to itself, then δ(f (X),

g(Y )) = δ(X,Y ).
(vii) If the joint distribution of X and Y is normal, then

δ(X,Y ) = |ρ(X,Y )|, where ρ(X,Y ) is Pearson’s ρ.

The product moment correlation ρ satisfies only (ii) and
(vii).

One can argue that the rules (i)–(vii) do not take into
account the difference between positive and negative de-
pendence; it only looks at the strength of the measured de-
pendence. If this wider point of view were to be taken into
account, (iii) could be changed into (iii′): −1 ≤ δ(X,Y ) ≤
1, (v) into (v′): δ(X,Y ) = 1 or δ(X,Y ) = −1 if there is
a deterministic relationship between X and Y . Finally,
(vii) should be changed into (vii′) requiring δ(X,Y ) =
ρ(X,Y ). Moreover, some will argue that property (vi)
may be too strong to require. It means that the strength
of dependence is essentially independent of the marginals
as for the copula case.

We will discuss these properties as we proceed in the
paper. Before we begin surveying the test functionals as
announced above, we start with the maximal correlation
which, it will be seen, is intertwined with at least one of
the test functionals to be presented in the sequel.
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4.1 Maximal Correlation

The maximal correlation is based on the Pearson ρ. It
is constructed to avoid the problem demonstrated in Sec-
tion 2.3 that ρ can easily be zero even if there is strong
dependence.

It seems that the maximal correlation was first intro-
duced by Gebelein (1941). He introduced it as

S(X,Y ) = sup
f,g

ρ
(
f (X), g(Y )

)
,

where ρ is Pearson’s ρ. Here, the supremum is taken over
all Borel-measurable functions f , g with finite and posi-
tive variance for f (X) and g(Y ). The measure S gets rid
of the nonlinearity issue of ρ. It is not difficult to check
that S = 0 if and only if X and Y are independent, and
in fact all of the Renyi’s seven criteria hold for the maxi-
mum correlation; see Lancaster (1957) for property (vii).
On the other hand, S cannot distinguish between negative
and positive dependence, and it is in general difficult to
compute.

Two more recent publications are Huang (2010), where
the maximal correlation is used to test for conditional
independence, and Yenigün, Székely and Rizzo (2011),
where it is used to test for independence in contingency
tables. The latter paper introduces a new example where
S(X,Y ) can be explicitly computed.

4.2 Measures and Tests Based on the Distribution
Function

We start with, and in fact put the main emphasis on, the
bivariate case. Let X and Y be stochastic variables with
cumulative distribution functions FX and FY . The prob-
lem of measuring the dependence between X and Y can
then be formulated as a problem of measuring the distance
between the joint cumulative distribution function FX,Y

of (X,Y ) and the distribution function FXFY formed by
taking the product of the marginals. Let �(·, ·) be a can-
didate for such a distance functional. It will be assumed
that � is a metric, and it is natural to require (see, e.g.,
Skaug and Tjøstheim, 1996), that

�(FX,Y ,FXFY ) ≥ 0

and �(FX,Y ,FXFY ) = 0 if and only if

FX,Y = FXFY .

(4.1)

Clearly, such a measure is capable only of measuring
the strength of dependence, not its direction.

A natural estimate �̂ of a distance functional � is ob-
tained by setting

�̂(FX,Y ,FXFY ) = �(F̂X,Y , F̂XF̂Y ),

where F̂ may be taken to be the empirical distribution
functions given by

F̂X(x) = 1

n

n∑
j=1

1(Xj ≤ x), F̂Y (y) = 1

n

n∑
j=1

1(Yj ≤ y)

and

F̂X,Y (x, y) = 1

n

n∑
j=1

1(Xj ≤ x)1(Yj ≤ y),

for given observations {(X1, Y1), . . . , (Xn,Yn)}.
Conventional distance measures between two distribu-

tion functions F and G are the Kolmogorov–Smirnov dis-
tance

�1(F,G) = sup
(x,y)

∣∣F(x, y) − G(x,y)
∣∣

and the Cramér–von Mises type distance of a distribution
G from a distribution F

�2(F,G) =
∫ {

F(x, y) − G(x,y)
}2 dF(x, y).

Here, both �1 and �2 satisfy (4.1).
Most of the work pertaining to measuring dependence

and testing of independence has been done in terms of
the Cramér–von Mises distance. This work started already
by Hoeffding (1948) who looked at i.i.d. pairs (Xi, Yi),
and studied finite sample distributions in some special
cases. With considerable justification, it has been named
the Hoeffding-functional by some. This work was contin-
ued by Blum, Kiefer and Rosenblatt (1961) who provided
an asymptotic theory, still for the i.i.d. case. It was ex-
tended to the time series case with a resulting test of se-
rial independence in Skaug and Tjøstheim (1993a). A pa-
per using a copula framework is Kojadinovic and Holmes
(2009). We will briefly review the time series case in an
online supplement that accompanies this paper because it
illustrates some of the problems, and because some of the
same ideas as for the Hoeffding-functional have been used
in more recent work on the distance covariance, which we
treat in Section 4.3.

As mentioned in the beginning of this section, an inde-
pendence test for p > 2 should test the cummulative dis-
tribution funcion for all subsets of X1, . . . ,Xp . Deheuvels
(1981a, 1981b) does exactly that using the Möbius trans-
formation. A recent follow-up is Ghoudi and Rémillard
(2018).

Instead of stating independence in terms of cumulative
distribution functions this can alternatively be expressed
in terms of the characteristic function. Székely, Rizzo and
Bakirov (2007) and Székely and Rizzo (2009), as will be
seen in Section 4.3, make systematic use of this in their
introduction of the distance covariance test. Two random
variables X and Y are independent if and only if the char-
acteristic functions satisfy

φX,Y (u, v) = φX(u)φY (v) ∀(u, v),

where

φX,Y (u, v) = E
(
eiuX+ivY )

, φX(u) = E
(
eiuX)

,

φY (v) = E
(
eivY )

.
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This was exploited by Csörgö (1985) and Pinkse (1998) to
construct tests for independence based on the characteris-
tic function in the i.i.d. and time series case, respectively.
Further work on testing of conditional independence was
done by Su and White (2007). Hong (1999) put this into
a much more general context by focussing on

σk(u, v) = φXt ,Xt−|k|(u, v) − φXt (u)φXt−|k|(v).

By taking Fourier transform of this quantity, one obtains

(4.2) f (ω,u, v) = 1

2π

∞∑
k=−∞

σk(u, v)e−ikω.

Hong (1999) called (4.2) the generalized spectral den-
sity function and based a test of serial independence on
this. More work related to this has been done by Es-
canciano and Velasco (2006). Some related ideas can be
found in Hong (2000), and more recently in Escanciano
and Hualde (2019).

4.3 Distance Covariance

We have seen that there are at least two ways of con-
structing functionals that are consistent against all forms
of dependence, namely those based on the empirical
distribution function initiated by Hoeffding (1948) and
briefly reviewed above, and those based on the charac-
teristic function represented by Csörgö (1985) in the i.i.d.
case and Pinkse (1998) in the serial dependence case, and
continued in Hong (1999, 2000) in a time series gener-
alized spectrum approach. Both Pinkse and Hong use a
kernel type weight function in their functionals.

The authors of two remarkable papers, Székely, Rizzo
and Bakirov (2007) and Székely and Rizzo (2009), take
up the characteristic function test statistic again in the
nontime series case. But what distinguishes these from
earlier papers is an especially judicious choice of weight
function reducing the empirical characteristic function
functional to empirical moments of differences between
the variables, or distances in the vector case, this leading
to covariance of distances. Some of these ideas go back to
what the authors term an “energy statistic”; see Székely
(2002), Székely and Rizzo (2013). It has been extended
to time series and multiple dependencies by Davis et al.
(2018), Fokianos and Pitsillou (2017), Zhou (2012) and
Dueck et al. (2014), and Yao, Zhang and Shao (2018).
In the locally stationary time series case, there is also a
theory; see Jentsch et al. (2020). The distance covariance,
dcov, seems to work well in a number of situations, and
it has been used as a yardstick by several authors writing
on dependence and tests of independence. In particular,
it has been used as a measure of comparison in the work
on local Gaussian correlation to be detailed in Section 6
and the supplementary material. There are also points of
contacts, as will be seen in Section 4.4, with the HSIC

measure of dependence popular in the machine learning
community.

The central ideas and derivations are more or less all
present in Székely, Rizzo and Bakirov (2007). The frame-
work is that of pairs of i.i.d. vector variables (X,Y ) in
R

p and R
q , respectively, and the task is to construct

a test functional for independence between X and Y .
Let φX,Y (u, v) = E(ei(〈X,u〉+〈Y,v〉)), φX(u) = E(ei〈X,u〉)
and φY (v) = E(ei〈Y,v〉) be the characteristic functions in-
volved, where 〈·, ·〉 is the inner product in R

p and R
q ,

respectively. The starting point is again the weighted char-
acteristic functional

V2(X,Y ;w) =
∫
Rp+q

∣∣φX,Y (u, v) − φX(u)φY (v)
∣∣2

× w(u, v)dudv,

(4.3)

where w is a weight function to be chosen. Similarly, one
defines

V2(X;w) =
∫
R2p

∣∣φX,X(u, v) − φX(u)φX(v)
∣∣2

× w(u, v)dudv

(4.4)

and V2(Y ;w). The distance correlation, dcor, is next de-
fined by, assuming V2(X)V2(Y ) > 0,

R2(X,Y ) = V2(X,Y )√
V2(X)V2(Y )

.

These quantities can be estimated by the empirical coun-
terparts given n observations of the vector pair (X,Y )

with

V2
n(X,Y ;w) =

∫
Rp+q

∣∣φn
X,Y (u, v) − φn

X(u)φn
Y (v)

∣∣2
× w(u, v)dudv,

(4.5)

where, for a set of observations {(X1, Y1), . . . , (Xn,Yn)}
the empirical characteristic functions are given by

φn
X,Y (u, v) = 1

n

n∑
k=1

exp
{
i
(〈Xk,u〉 + 〈Yk, v〉)}

and

φn
X(u) = 1

n

n∑
k=1

exp
{
i〈Xk,u〉},

φn
Y (v) = 1

n

n∑
k=1

exp
{
i〈Yk, v〉}.

It turns out that it is easier to handle the weight function in
the framework of the empirical characteristic functions. It
will be seen below that

(4.6) w(u, v) = (
cpcq |u|1+p

p |v|1+q
q

)−1

is a good choice. Here, | · |p is the Euclidean norm in R
p

and similarly for | · |q . Moreover, the normalizing con-
stants are given by cj = π(1+j)/2/�((1+j)/2), j = p,q .
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For it to make sense to introduce the weight function on
the empirical characteristic function, one must show that
the empirical functionals Vn converges to the theoretical
functionals V for this weight function. This is not triv-
ial because of the singularity at 0 for w given by (4.6).
A detailed argument is given in the proof of Theorem 2 in
Székely, Rizzo and Bakirov (2007).

The advantage of introducing the weight function for
the empirical characteristic functions is that one can com-
pute the squares in (4.5) and then interchange summa-
tion and integration. The resulting integrals can be com-
puted using trigonometric identities. The details are given
in the proof of Theorem 1 in Székely, Rizzo and Bakirov
(2007) and in Lemma 1 of the Appendix of Szekely and
Rizzo (2005) who in turn refer to Prudnikov, Brychkov
and Marichev (1986) for the fundamental lemma∫

Rd

1 − cos〈x,u〉
|u|d+α

d

du = C(d,α)|x|αd

for 0 < α < 2 with

(4.7) C(d,α) = 2πd/2�(1 − α/2)

α2α�((d + α)/2)
,

and where the weight function considered above corre-
sponds to α = 1 and d = p or d = q in (4.6). The general
α-case corresponds to a weight function

w(u, v;α) = (
C(p,α)C(q,α)|u|p+α

p |v|q+α
q

)−1
.

With the simplification α = 1 all of this implies that V2
n as

defined in (4.5), can be computed as

V2
n(u, v) = S1 + S2 − 2S3,

where

S1 = 1

n2

n∑
k,l=1

|Xk − Xl|p|Yk − Yl|q,

S2 = 1

n2

n∑
k,l=1

|Xk − Xl|p 1

n2

n∑
k,l=1

|Yk − Yl|q

and

(4.8) S3 = 1

n3

n∑
k=1

n∑
l,m=1

|Xk − Xl|p|Yk − Ym|q,

which explains the appellation distance covariance. In
fact, it is possible to further simplify this by introducing

akl = |Xk − Xl|p, ak. = 1

n

n∑
l=1

akl, a.l = 1

n

n∑
k=1

akl,

a.. = 1

n2

n∑
k,l=1

akl, Akl = al − ak. − a.l + a..,

for k, l = 1, . . . , n. Similarly, one can define bkl = |Yk −
Yl|q and Bkl = bkl − bk. − b.l + b.. and

V2
n(X,Y ) = 1

n2

n∑
k,l=1

AklBkl

and

V2
n(X) = V2

n(X,X) = 1

n2

n∑
k,l=1

A2
kl

and similarly for V2
n(Y ). From this, one can easily com-

pute R2
n(X,Y ). The computations are available in the R-

package energy by Rizzo and Szekely (2018).
As is the case of the empirical joint distribution func-

tional, it can be expected that the curse of dimensionality
will influence the result for large and moderate values of
p and q . Obviously, in the time series case, it is possi-
ble to base oneself on pairwise distances, which has been
done in Yao, Zhang, and Shao (2018).

Letting n → ∞, it is not difficult to prove that an al-
ternative expression for V(X,Y ) is given by (assuming
E|X|p < ∞ and E|Y |q < ∞)

V2(X,Y ) = EX,X′,Y,Y ′
{∣∣X − X′∣∣

p

∣∣Y − Y ′∣∣
q

}
+ EX,X′

{∣∣X − X′∣∣
p

}
EY,Y ′

{∣∣Y − Y ′∣∣
q

}
(4.9)

− 2EX,Y

{
EX′

∣∣X − X′∣∣
pEY ′

∣∣Y − Y ′∣∣
q

}
,

where (X,Y ), (X′, Y ′) are i.i.d. This expression will be
useful later in Section 4.4 in a comparison with the HSIC
statistic. Properly scaled V2

n has a limiting behavior un-
der independence somewhat similar to that described in
Theorem 2 of Skaug and Tjøstheim (1993a); see also
equation (1.2) in Section 1 in the online supplement. One
can also obtain an empirical process limit theorem, The-
orem 5 of Székely, Rizzo and Bakirov (2007). In the R-
package energy, as for the case of the empirical distri-
bution function, it has been found advantageous to rely on
re-sampling via permutations. This is quite fast since the
algebraic formulas (4.8) are especially amenable to per-
mutations. Both Székely, Rizzo and Bakirov (2007) and
Székely and Rizzo (2009) in their experiments only treat
the case of α = 1 in (4.7).

Turning to the properties (i)–(vii) of Rényi (1959) listed
in the beginning of this section, it is clear that (i)–(iv) are
satisfied by R. Moreover, according to Székely, Rizzo and
Bakirov (2007), if Rn(x;y) = 1, then there exists a vec-
tor α, a nonzero real number β and an orthogonal ma-
trix C such that Y = α + βXC, which is not quite the
same as Rényi’s requirement (v). The dcov measure, be-
ing a correlation based measure, in general depends on the
distribution of the margins, and hence Rényi’s invariance
property (vi) does not hold in general; see also Berrett and
Samworth (2019), Section 2.1. The final criterion (vii) of
Rényi is that the dependent measure should reduce to the
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absolute value of Pearson’s ρ in the bivariate normal case.
This is not quite the case for the dcov, but it comes close,
as is seen from Theorem 6 of Székely and Rizzo (2009). In
fact, if (X,Y ) is bivariate normal with E(X) = E(Y ) = 0
and Var(X) = Var(Y ) = 1 and with correlation ρ, then
R(X,Y ) ≤ |ρ| and

inf
ρ �=0

R(X,Y )

|ρ| = lim
ρ→0

R(X,Y )

|ρ|
= 1

2(1 + π/3 − √
3)1/2

≈ 0.891.

4.4 The HSIC Measure of Dependence

Recall the definition and formula for the maximal cor-
relation. This, as stated in Section 4.1, gives rise to a
statistic S(X,Y ), where S(X,Y ) = 0 if and only if X and
Y are independent. But it is difficult to compute since it
requires the supremum of the correlation ρ(f (X), g(Y ))

taken over Borel-measurable f and g. In the framework
of reproducing kernel Hilbert spaces (RKHS) it is possi-
ble to pose this problem, or an analogous one, much more
generally, and one can compute an analogue of S quite
easily. This yields the so-called HSIC (Hilbert–Schmidt
Independence Criterion).

Reproducing kernel Hilbert spaces are very important
tools in mathematics as well as in statistics. A general ref-
erence to applications in statistics is Berlinet and Thomas-
Agnan (2004). In the last decade or so, there has also
been a number of uses of RKHS in dependence model-
ing. These have often, but not always, been published in
the machine learning literature; see, for example, Gretton
and Györfi (2010), Gretton and Györfi (2012), Sejdinovic
et al. (2013) and Pfister et al. (2018).

We have found the quite early paper by Gretton et al.
(2005) useful both for a glimpse of the general theory and
for the HSIC criterion in particular.

A reproducing kernel Hilbert space is a separable
Hilbert space F of functions f on a set X , such that the
evaluation functional f → f (x) is a continuous linear
functional on F for every x ∈ X . Then, from the Riesz
representation theorem, Muscat (2014), Chapter 10, there
exists an element kx ∈ F such that 〈f, kx〉 = f (x), where
〈·, ·〉 is the inner product in F . Applying this to f = kx

and another point y ∈ X , we have 〈kx, ky〉 = kx(y). The
function (x, y) → kx(y) from X × X to R is the kernel
of the RKHS F . It is symmetric and positive definite be-
cause of the symmetry and positive definiteness of the
inner product in F . We use the notation k(x, y) for the
kernel.

The next step is to introduce another set Y with a corre-
sponding RKHS G and to introduce a probability structure
and probability measures pX , pY and pX,Y on X , Y and
X ×Y , respectively. With these probability measures and
function spaces F and G, one can introduce correlation of

functions of stochastic variables on X , Y and X ×Y . This
is an analogy of the functions used in the definition of the
maximal correlation. In the RKHS setting, the covariance
(or cross covariance) is an operator on the function space
F . Note also that this has a clear analogy in functional
statistics; see, for example, Ferraty and Vieu (2006).

It is time to introduce the Hilbert–Schmidt operator:
A linear operator C : G → F is called a Hilbert–Schmidt
operator if its Hilbert–Schmidt (HS) norm ‖C‖HS

‖C‖2
HS

.= ∑
i,j

〈Cvj ,ui〉2
F < ∞,

where ui and vj are orthonormal bases of F and G, re-
spectively. The HS-norm generalizes the Froebenius norm
‖A‖F = (

∑
i

∑
j a2

ij )
1/2 for a matrix A = (aij ). Finally,

we need to define the tensor product in this context: If
f ∈F and g ∈ G, then the tensor product operator f ⊗g :
G → F is defined by

(f ⊗ g)h
.= f 〈g,h〉G, h ∈ G.

Moreover, by using the definition of the HS norm it is not
difficult to show that

‖f ⊗ g‖2
HS = ‖f ‖2

F‖g‖2
G .

We can now introduce an expectation and a covariance
on these function spaces. Again, the analogy with corre-
sponding quantities in functional statistics will be clear.
We assume that (X ,�) and (Y,�) are furnished with
probability measures pX , pY , and with � and � being
σ -algebras of sets on X and Y . The expectations μX ∈ F
and μY ∈ G are defined by, X and Y are stochastic vari-
ables in (X ,�) and (Y,�), respectively,

〈μX,f 〉F = EX

[
f (X)

]
and

〈μY ,g〉G = EY

[
g(Y )

]
,

where μX and μY are well-defined as elements in F and
G because of the Riesz representation theorem. The norm
is obtained by

‖μX‖2
F = EX,X′

[
k
(
X,X′)],

where as before X and X′ are independent but have the
same distribution pX , and where ‖μY ‖F is defined in the
same way. With given φ ∈ F , ψ ∈ G, we can now define
the cross covariance operator as

CX,Y
.= EX,Y

[(
φ(X) − μX

) ⊗ (
ψ(Y ) − μY

)]
= EX,Y

[
φ(X) ⊗ φ(Y )

] − μX ⊗ μY .

Now, take φ(X) to be identified with kX ∈ F defined
above as a result of the Riesz representation theorem, and
ψ(Y ) ∈ G defined in exactly the same way. The Hilbert–
Schmidt Information Criterion (HSIC) is then defined as
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the squared HS norm of the associated cross-covariance
operator

HSIC(pXY ,F,G)
.= ‖CXY ‖2

HS.

Let k(x, x ′) and l(y, y′) be kernel functions on F and G.
Then (Gretton et al., 2005, Lemma 1), the HSIC criterion
can be written in terms of these kernels as

HSIC(pXY ,F,G)

= EX,X′,Y,Y ′
[
k
(
X,X′)l(Y,Y ′)]

+ EX,X′
[
k
(
X,X′)]EY,Y ′

[
l
(
Y,Y ′)]

− 2EX,Y

{
EX′

[
k
(
X,X′)]EY ′

[
l
(
Y,Y ′)]}.

(4.10)

Existence is guaranteed if the kernels are bounded. The
similarity in structure to (4.9) for the distance covariance
should be noted. Note that the kernel functions depend on
the way the spaces F and G and their inner products are
defined. In fact, it follows from a famous result by Moore–
Aronszajn (see Aronszajn, 1950), that if k is a symmetric,
positive definite kernel on a set X , then there is a unique
Hilbert space of functions on X for which k is a reproduc-
ing kernel. Hence as will be seen next, in practice when
applying the HSIC criterion, the user has to choose a ker-
nel.

With some restrictions, the HSIC measure is a proper
measure of dependence in the sense of the Rényi (1959)
criterion (iv): From Theorem 4 of Gretton et al. (2005),
one has that if the kernels k and l are universal (universal
kernel has a mild continuity requirement on the kernel)
on compact domains X and Y , then ‖CXY ‖HS = 0 if and
only if X and Y are independent. The compactness as-
sumption results from the application of an equality for
bounded random variables taken from Hoeffding (1963).

A big asset of the HSIC measure is that its empirical
version is easily computable. In fact, if we have indepen-
dent observations X1, . . . ,Xn and independent observa-
tions Y1, . . . , Yn, then

(4.11) HSICn(X,Y,F,G) = (n − 1)−2 tr{KHLH },
where tr is the trace operator and the n × n matrices H ,
K , L are defined by

K = {Kij } = {
k(Xi,Xj )

}
, L = {Lij } = {

l(Yi, Yj )
}
,

H = {Hij } = {
δij − n−1}

,

where δij is the Kronecker delta. It is shown in Gretton
et al. (2005) that this estimator converges in probability
toward ‖CXY ‖2

HS. The convergence rate is n−1/2. There is
also a limit theorem for the asymptotic distribution, which
under the null hypothesis of independence and scaled with
n, converges in distribution to the random variable Q =∑∞

i,j=1 λiηjN
2
ij , where the Nij are independent standard

normal variables, and λi and ηj are eigenvalues of integral
operators associated with centralized kernels derived from

k and l and integrating using the probability measures pX

and pY , respectively. Again, this could be compared to the
limiting variable for the statistic in the Cramér–von Mises
functional as stated in Theorem 2 by Skaug and Tjøstheim
(1993a), or see equation (1.2) in the online supplement.
Critical values can be obtained for Q, but as a rule one
seems to rely more on resampling as is the case for most
independence test functionals.

It is seen from (4.11) that computation of the empir-
ical HSIC criterion requires the evaluation of k(Xi,Xj )

and l(Yi, Yj ). Then appropriate kernels have to be cho-
sen. Two commonly used kernels are the Gaussian kernel
given by

k(x, y) = e
|x−y|2

2σ2 , σ > 0

and the Laplace kernel

k(x, y) = e
|x−y|

σ , σ > 0.

Pfister and Peters (2017) describe the recent R-package
dHSIC involving HSIC. Gretton et al. (2005) use these
kernels in comparing the HSIC test with several other
tests, including the dcov test in, among other cases, an in-
dependent component setting. Both of these tests do well,
and none of them decisively out-competes the other. This
is perhaps not so unexpected because there is a strong re-
lationship between these two tests. This is demonstrated
by Sejdinovic et al. (2013). They look at both the dcov test
and the HSIC test in a generalized setting of semimetric
spaces, that is, with kernels and distances defined on such
spaces X and Y . For a given distance function, they intro-
duce a distance-induced kernel, and under certain regular-
ity conditions they establish a relationship between these
two quantities.

For the distance covariance and the HSIC, the distribu-
tion under the null and under the alternative are generally
different. The discrepancy between the two distributions
has been analyzed by Zhang et al. (2018) and Yao, Zhang
and Shao (2018)

Lately there have been other extensions of both the
dcov and HSIC to conditional dependence, partial dis-
tance and to time series. A few references are Szekely and
Rizzo (2014), Zhang et al. (2012) and Pfister et al. (2018).
A recent tutorial on RKHS is Gretton (2019).

Further, the generalization of the distance covariance to
more than two vectors have independently been shown by
Bilodeau and Nangue (2017), building on Bilodeau and
Lafaye de Micheaux (2009) and Böttcher, Keller-Ressel
and Schilling (2019). More specifically, Bilodeau and
Nangue (2017) use the Möbius transformation of char-
acteristic functions to characterize independence, and a
generalization to p vectors of distance covariance and
Hilbert–Schmidt independence criterion (HSIC) is pro-
posed. Consistency and weak convergence of both types
of statistics are established.
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4.5 Density Based Tests of Independence

Intuitively, one might think that knowing that the den-
sity exists should lead to increased power of the indepen-
dence tests due to more information. This is true, at least
for some examples (see, e.g., Teräsvirta, Tjøstheim and
Granger, 2010, Chapter 7.7). As in the preceding sections,
one can construct distance functionals between the joint
density under dependence and the product density under
independence. A number of authors have considered such
an approach; both in the i.i.d. and time series case; see,
for example, Rosenblatt (1975), Robinson (1991), Skaug
and Tjøstheim (1993b, 1996), Granger, Maasoumi and
Racine (2004), Hong and White (2005), Su and White
(2007) and Berrett and Samworth (2019). For two ran-
dom variables X and Y having joint density fX,Y and
marginals fX and fY the degree of dependence can be
measured by �(fX,Y , fXfY ), where � is now the dis-
tance measure between two bivariate density functions.
The variables may be normalized with E(X) = E(Y ) = 0
and Var(X) = Var(Y ) = 1. It is natural to consider the
Rényi (1959) requirements again, in particular, the re-
quirements (iv) and (vi).

All of the distance functionals considered will be of
type

(4.12)
� =

∫
B

{
fX(x), fY (y), fX,Y (x, y)

}
× fX,Y (x, y)dx dy,

where B is a real-valued function such that the integral
exists. If B is of the form B(z1, z2, z3) = D(z1z2/z3), we
have

(4.13) � =
∫

D

{
fX(x)fY (y)

fX,Y (x, y)

}
fX,Y (x, y)dx dy

which by the change of variable formula for integrals is
seen to have the Rényi property (vi). Moreover, if D(w) =
0 if and only if w = 1, then Rényi property (iv) is fulfilled.
If D(1) = 0 and D is convex, then D is a so-called f -
divergence (Csiszár, 1967) measure with f = D. Several
well-known distance measures for density functions are
of this type. For instance, letting D(w) = 2(1 − w1/2),
we obtain the Hellinger distance

H =
∫ {√

fX,Y (x, y) −
√

fX(x)fY (y)
}2 dx dy

= 2
∫ {

1 −
√

fX(x)fY (y)

fX,Y (x, y)

}
fX,Y (x, y)dx dy

between fX,Y and fXfY . The Hellinger distance is a met-
ric, and hence satisfies the Rényi property (iv).

The familiar Kullback–Leibler information (entropy)
distance is obtained by taking D(w) = − lnw,

(4.14) I =
∫

ln
{

fX,Y (x, y)

fX(x)fY (y)

}
fX,Y (x, y)dx dy.

Since this distance is of type (4.13), it satisfies (vi). A very
recent paper linking I with other recent approaches to in-
dependence testing is Berrett and Samworth (2019). Tak-
ing D(w) = w2 −1 yields the χ2-divergence; see also the
test of fit distance in Bickel and Rosenblatt (1973).

All of the above measures are trivially extended to two
arbitrary multivariate densities. However, estimating such
densities in high or moderate dimensions may be difficult
due to the curse of dimensionality. A functional built up
from pairwise dependencies can be considered instead.

For a given functional � = �(f,g) depending on two
densities f and g, � may be estimated by �̂ = �(f̂ , ĝ).
There are several ways of estimating the densities, for ex-
ample, the kernel density estimator,

f̂X(x) = 1

n

n∑
i=1

Kb(x − Xi)

for given observations {X1, . . . ,Xn}. Here, Kb(x −Xi) =
b−pK{b−1(x −Xi)}, where b is the bandwidth (generally
a matrix), K is the kernel function and p is the dimension
of Xi . It should be pointed out that there are often differ-
ent estimators of �(f,g) that are much easier to calculate
and have better theoretical properties. For example, in the
case of � = I , one can consider the KSG-estimator; see
Kraskov, Stögbauer and Grassberger (2004).

Under regularity conditions (see, e.g., Skaug and Tjøs-
theim, 1996), consistency and asymptotic normality un-
der the null hypothesis of independence can be obtained
for the estimated test functionals. Berrett and Samworth
(2019) have demonstrated that local asymptotic power
properties can also sometimes be proved. It should be
noted that the leading term in an asymptotic expansion of
the standard deviation of �̂ for the estimated Kullback–
Leibler functional Î and the estimated Hellinger func-
tional Ĥ is of order O(n−1/2). This is, of course, the
same as for the standard deviation of a parametric esti-
mate in a parametric estimation problem. In that situa-
tion, the next term of the Edgeworth expansion is of order
O(n−1), and for moderately large values of n the first-
order term n−1/2 will dominate. However, for the func-
tionals considered above, using density estimates and due
to the presence of an n-dependent bandwidth, the next
terms in the Edgeworth expansion are much closer, be-
ing of order O(n−1/2b) and O({nb}−1), and since typi-
cally b = O(n−1/6) or O(n−1/5), n must be very large
indeed to have the first term dominate in the asymptotic
expansion. As a consequence, first-order asymptotics in
terms of the normal approximation cannot be expected to
work well unless n is exceedingly large. In this sense, the
situation is quite different from the empirical functionals
treated in the previous sections, where there is no band-
width parameter involved. All of this suggests the use of
the bootstrap or permutations as an alternative for con-
structing the null distribution.
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4.6 Global Test Functionals Generated by Local
Dependence Relationships

If one has bivariate normal data with standard normal
marginals and ρ = 0, one gets observations scattered in
a disc-like region around zero, and most test functionals
will easily recognize this as a situation of independence.
However, as pointed out by Heller, Heller and Gorfine
(2013), if data are generated along a circle with radius r ,
for example, X2 + Y 2 = r2 + ε for some stochastic noise
variable ε, then X and Y are dependent, but as reported by
Heller, Heller and Gorfine (2013), in practice, the dcov,
and some other nonlinear global test functionals, do not
work well. Heller, Heller and Gorfine (2013) point a way
out of this difficulty, namely by looking at dependence
locally (along the circle) and then aggregate the depen-
dence by integrating, or by other means, over the local
regions. There are, of course, several ways of measuring
local dependence and we will approach this problem more
fundamentally in Section 5.

Another paper in this category, Reshef et al. (2011), is
published in Science. The idea behind their MIC (Maxi-
mal Information Coefficient) statistic consists in comput-
ing the mutual information I as defined in (4.14) locally
over a grid in the data set and then take as statistic the
maximum value of these local information measures as
obtained by maximizing over a suitable choice of grid.
Some limitations of the method are identified in a later ar-
ticle by Reshef et al. (2013) and it should also be pointed
out that Kinney and Atwal (2014) find serious problems
with the paper. See also Gorfine, Heller and Heller (2012).

Finally, the so-called BDS test named after its origina-
tors Brock et al. (1996) should be mentioned. This test has
a local flavor at its basis, but the philosophy is a bit dif-
ferent from the other tests presented here. The BDS test
attracted much attention among econometricians in the
1990s, and it has since been improved by Genest, Ghoudi
and Rémillard (2007).

5. BEYOND PEARSON’S ρ: LOCAL DEPENDENCE

The test functionals treated in Section 4 deal with the
second aspect of modeling dependence stated in the be-
ginning of that section, namely that of testing of inde-
pendence. These functionals all do so by the computation
of one nonnegative number, which is derived from local
properties in Section 4.5. This number properly scaled
may possibly be said to deal with the first aspect stated,
namely that of measuring the strength of the dependence.
But, as such, it may be faulted in several ways. Unlike the
Pearson ρ, these functionals do not distinguish between
positive and negative dependence, and they are not local.

A local dependence measure between two stochastic
variables X and Y can be defined as a measure based on
the joint cumulative distribution function (or the joint den-
sity function in case it exists) for X and Y restricted to a

local region R. In finance, it is of special interest to look at
the local dependence when R is the tail region. If the joint
cumulative distribution FX,Y is very different from the
product FXFY of the marginals in R, this can be taken as
an indication of strong local dependence between X and
Y in R. As is the case for a global dependence measure,
there are many ways of defining a local dependence mea-
sure. The local Gaussian correlation defined in the next
section is just one possibility. The local region R can be
determined by a bandwidth parameter or by some other
regional distance measure. Accumulating a local measure
over the entire space leads to a global measure as in, for
example, (4.3) and (4.4), or as in the distance function-
als of Section 4.5. It is also possible to shrink the region
R to a point (x, y), and get a local value of the measure
at that point, as is done for the local Gaussian correlation
ρX,Y (x, y) in Section 6.1 or implicitly as in, for example,
(4.3) and (4.4).

In Section 6, the main story will be the treatment of a
local Gaussian correlation which in a sense returns to the
Pearson ρ, but a local version of ρ, which satisfies many
of the Rényi (1959) requirements, and which is signed.
But first, in the present section, we go back to some earlier
attempts. We start with a remarkable paper by Lehmann
(1966), who manages to define positive and negative de-
pendence in quite a general nonlinear situation.

5.1 Quadrant Dependence

Lehmann’s theory is based on the concept of quad-
rant dependence. Consider two random variables X and Y

with cumulative distribution FX,Y . Then the pair (X,Y )

or its distribution function FX,Y is said to be positively
quadrant dependent if

(5.1)
P(X ≤ x,Y ≤ y)

≥ P(X ≤ x)P (Y ≤ y) for all (x, y).

Similarly, (X,Y ) or FX,Y is said to be negatively quadrant
dependent if (5.1) holds with the central inequality sign
reversed.

The connection between quadrant dependence and
Pearson’s ρ is secured through a lemma of Hoeffding
(1940). The lemma is a general result and resembles the
result by Székely (2002) in his treatment of the so-called
Cramér functional, a forerunner of the Cramér–von Mises
functional. If FX,Y denotes the joint and FX and FY the
marginals, then assuming that the necessary moments ex-
ist,

E(XY) − E(X)E(Y )

=
∫ ∞
−∞

∫ ∞
−∞

(
FXY (x, y) − FX(x)FY (y)

)
dx dy.

It follows immediately from definitions that if (X,Y ) is
positively quadrant dependent (negatively quadrant de-
pendent), then for Pearson’s ρ, ρ ≥ 0 (ρ ≤ 0). Similarly,
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it is shown by Lehmann that if FX,Y is positively quad-
rant dependent, then Kendall’s τ , Spearman’s ρS and the
quadrant measure q defined by Blomqvist (1950) are all
nonnegative. An analogous result holds in the negatively
quadrant dependent case.

Lehmann (1966) introduced two additional and stronger
concepts of dependence, namely regression dependence
and likelihood ratio dependence; see his paper for details.

5.2 Local Measures of Dependence

As mentioned already, econometricians have long
looked for a formal statistical way of describing the shift-
ing region-like dependence structure of financial markets.
It is obvious that when the market is going down there
is a stronger dependence between financial objects, and
very strong in case of a panic. Similar effects, but per-
haps not quite so strong, appear when the market is going
up. But how should it be quantified and measured? This
is important in finance, not the least in portfolio theory,
where it is well known (see, e.g., Taleb, 2007), that or-
dinary Gaussian description does not work, and if used,
may lead to catastrophic results. Mainly two approaches
have been used among econometricians. The first is non-
local and consists simply in using copula theory, but it
may not always be so easy to implement in a time series
and portfolio context. The other approach is local and is to
use “conditional correlation” as in Silvapulle and Granger
(2001) and Forbes and Rigobon (2002). One then com-
putes an estimate as in (1.1) of Pearson’s ρ but in various
regions of the sample space, for example, in the tail of the
distribution of two variables.

However, this estimate suffers from a serious bias,
which is obvious by using the ergodic theorem or the law
of large numbers, in the sense that for a Gaussian distri-
bution it does not converge to ρ. This is unfortunate be-
cause if the data happen to be Gaussian, one would like
estimated correlations to be close or identical to ρ in or-
der to approximate the classic Gaussian portfolio theory
of Markowitz (1952). This requirement is consistent with
Rényi’s property (vii).

Statisticians have also tried various other ways of de-
scribing local dependence. Bjerve and Doksum (1993)
suggested a local measure of dependence, the correla-
tion curve, based on localizing ρ by conditioning on X

in a nonlinear regression model. The resulting correlation
curve inherits many of the properties of ρ, and it succeeds
in several of the cases where ρ fails to detect dependence,
such as the parabola (2.2) in Section 2.3. However, unlike
ρ, it is not symmetric in (X,Y ). Conditioning and regres-
sion on Y would in general produce a different result. This
brings out the difference between regression analysis and
multivariate analysis, where ρ is a concept of the latter,
which happens to enter into the first. Bjerve and Doksum
do propose a solution to this dilemma, but it is an ad hoc
one.

Heller, Heller and Gorfine (2013) used local contin-
gency type arguments to construct a global test functional.
Such reasoning goes further back in time. Holland and
Wang (1987) used such arguments to obtain a local de-
pendence function

γ (x, y) = ∂2

∂x∂y
lnf (x, y),

where f is the density function of (X,Y ). Implicitly it is
assumed here that both mixed second-order partial deriva-
tives exist and are continuous. For an alternative deriva-
tion based on limiting arguments of local covariance func-
tions and for properties and extensions, we refer to Jones
(1996), Jones and Koch (2003) and Inci, Li and McCarthy
(2011).

The local dependence function γ does not take values
between −1 and 1, and it does not reduce to ρ in the Gaus-
sian bivariate case. Actually, in that case

γ (x, y) = ρ

1 − ρ2

1

σXσY

.

6. BEYOND PEARSON’S ρ: LOCAL GAUSSIAN
CORRELATION

The Pearson ρ gives a complete characterization of
dependence in a bivariate Gaussian distribution but, as
has been seen, not for a general density f (x, y) for
two random variables X and Y . The idea of the Lo-
cal Gaussian Correlation (LGC), introduced in Tjøstheim
and Hufthammer (2013) is to approximate f locally in
a neighborhood of a point (x, y) by a bivariate Gaus-
sian distribution ψx,y(u, v), where (u, v) are running vari-
ables. In this neighborhood, one gets close to a complete
local characterization of dependence using the local cor-
relation ρ(x, y), which is the Pearson’s ρ of the bivariate
Gaussian ψx,y(u, v). Its precision depends on the size of
the neighborhood and, of course, on the properties of the
density at the point (x, y). In practice, it has to be reason-
ably smooth. This section and the online supplement give
a survey of some of the results obtained so far.

6.1 Definition and Examples

For notational convenience in this section, we write
(x1, x2) instead of (x, y), and, by a slight inconsis-
tency of notation, x = (x1, x2). Similarly, (u, v) is re-
placed by v = (v1, v2). Then, in this notation, letting
μ(x) = (μ1(x),μ2(x)) be the mean vector of ψ , σ(x) =
(σ1(x), σ2(x)) the vector of standard deviations and ρ(x)

the correlation of ψ , the approximating density ψ is given
by

ψ
(
v,μ1(x),μ2(x), σ 2

1 (x), σ 2
2 (x), ρ(x)

)
= 1

2πσ1(x)σ2(x)

√
1 − ρ2(x)
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× exp
[
−1

2

1

1 − ρ2(x)

(
(v1 − μ1(x))2

σ 2
1 (x)

− 2ρ(x)
(v1 − μ1(x))(v2 − μ2(x))

σ1(x)σ2(x)

+ (v2 − μ2(x))2

σ 2
2 (x)

)]
.

Moving to another point y = (y1, y2) in general gives
another approximating normal distribution ψy depending
on a new set of parameters {μ1(y),μ2(y), σ1(y), σ2(y),

ρ(y)}. An exception is the case where f itself is Gaus-
sian with parameters {μ1,μ2, σ1, σ2, ρ}, in which case
{μ1(x),μ2(x), σ1(x), σ2(x), ρ(x)} ≡ {μ1,μ2, σ1, σ2, ρ}.
This means that the bias of the conditional correlation de-
scribed in Section 5 is avoided and it means that the prop-
erty (vii) in Rényi (1959)’s scheme is satisfied (and indeed
(vii′) as well).

To make this into a construction that can be used in
practice, it is convenient to define the vector population
parameter θ(x)

.= {μ1(x),μ2(x), σ1(x), σ2(x), ρ(x)} and
estimate it. Fortunately, this is a problem that has been
treated in larger generality by Hjort and Jones (1996) and
Loader (1996). They looked at the problem of approxi-
mating f (x) with a general parametric family of densi-
ties, the Gaussian being one such family. Here, x in prin-
ciple can have a dimension ranging from 1 to p, but with
p = 1 mostly covered in those publications. They were
concerned with estimating f rather than the local parame-
ters, one of which is the local Gaussian correlation (LGC)
ρ(x).

But first we need a more precise definition of θ(x). This
can be done in two stages using a neighborhood defined
by bandwidths b = (b1, b2) in the (x1, x2) direction, and
then letting b → 0 componentwise.

A suitable function measuring the difference between
f and ψ is defined by

(6.1)
q =

∫
Kb(v − x)

[
ψ

(
v, θ(x)

)
− ln

{
ψ

(
v, θ(x)

)}
f (v)

]
dv,

where Kb(v − x) = (b1b2)
−1K1(b

−1
1 (v1 − x1)) ×

K2(b
−1
2 (v2 − x2)) is a product kernel. As is seen in Hjort

and Jones (1996), pages 1623–1624, the expression in
(6.1) can be interpreted as a locally weighted Kullback–
Leibler distance from f to ψ(·, θ(x)). We then obtain that
the minimizer θb(x) (also depending on K) should satisfy

(6.2)

∫
Kb(v − x)

∂

∂θj

[
ln

{
ψ

(
v, θ(x)

)}
f (v)

− ψ
(
v, θ(x)

)]
dv = 0, j = 1, . . . ,5.

In the first stage, we define the population value θb(x) as
the minimizer of (6.1), assuming that there is a unique

solution to (6.2). The definition of θb(x) and the assump-
tion of uniqueness are essentially identical to those used in
Hjort and Jones (1996) for more general parametric fam-
ilies of densities.

In the next stage, we let b → 0 and consider the limit-
ing value θ(x) = limb→0 θb(x). This is in fact considered
indirectly by Hjort and Jones (1996) on pages 1627–1630
and more directly in Tjøstheim and Hufthammer (2013),
both using Taylor expansion arguments. In the following,
we will assume that a limiting value θ(x) independent of
b and K exists. (It is possible to avoid the problem of a
population value altogether if one takes the view of some
of the publications cited in Section 4.6 by just estimating
a suitable dependence function.)

In estimating θ(x) and θb(x), a neighborhood with a
finite bandwidth has to be used in analogy with nonpara-
metric density estimation. The estimate θ̂ (x) = θ̂b(x) is
obtained from maximizing a local likelihood. Given ob-
servations X1, . . . ,Xn, the local log likelihood is deter-
mined by

L
(
X1, . . . ,Xn, θ(x)

)
= n−1

n∑
i=1

Kb(Xi − x) lnψ
(
Xi, θ(x)

)
−

∫
Kb(v − x)ψ

(
v, θ(x)

)
dv.

The last (and perhaps somewhat unexpected) term is es-
sential, as it implies that ψ(x, θb(x)) is not allowed to
stray far away from f (x) as b → 0. It is also discussed at
length in Hjort and Jones (1996). (When b → ∞, the last
term has 1 as its limiting value and the likelihood reduces
to the ordinary global log-likelihood.) Using the notation,

uj (·, θ)
.= ∂

∂θj

lnψ(·, θ),

by the law of large numbers, or by the ergodic the-
orem in the time series case, assuming E{Kb(Xi −
x) lnψ(Xi, θb(x))} < ∞, we have almost surely

∂L

∂θj

= n−1
∑
i

Kb(Xi − x)uj

(
Xi, θb(x)

)
−

∫
Kb(v − x)uj

(
v, θb(x)

)
ψ

(
v, θb(x)

)
dv

→
∫

Kb(v − x)uj

(
v, θb(x)

)
× [

f (v) − ψ
(
v, θb(x)

)]
dv.

(6.3)

Putting the expression in the first line of (6.3) equal to zero
yields the local maximum likelihood estimate θ̂b(x) =
θ̂ (x) of the population value θb(x), which satisfies (6.2).

We see the importance of the additional last term in the
local likelihood by letting b → 0, Taylor expanding and
requiring ∂L/∂θj = 0, which leads to

uj

(
x, θb(x)

)[
f (x) − ψ

(
x, θb(x)

)] + O
(
bT b

) = 0,
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where bT is the transposed of b. It is seen that ignoring
solutions that yield uj (x, θb(x)) = 0 requires ψ(x, θb(x))

to be close to f (x).
An asymptotic theory has been developed in Tjøstheim

and Hufthammer (2013) for θ̂b(x) for the case that b is
fixed and for θ̂ (x) in the case that b → 0. The first case is
much easier to treat than the second one. In fact, for the
first case the theory of Hjort and Jones (1996) can be taken
over almost directly, although it is extended to the ergodic
time series case in Tjøstheim and Hufthammer (2013). In
the case that b → 0, this leads to a slow convergence rate
of (n(b1b2)

3)−1/2, which is the same convergence rate as
for the the estimated dependence function treated in Jones
(1996).

The local correlation is clearly dependent on the mar-
ginal distributions of X1 and X2 as is Pearson’s ρ. This
marginal dependence can be removed by scaling the ob-
servations to a standard normal scale. As mentioned in
Section 3 about the copula, the dependence structure is
disentangled from the marginals by Sklar’s theorem. For
the purpose of measuring local dependence in terms of the
local Gaussian correlation, at least for a number of pur-
poses it is advantageous to replace a scaling with uniform
variables Ui = Fi(Xi) by standard normal variables

(6.4) Z = (Z1,Z2) = (
�−1(

F1(X1)
)
,�−1(

F2(X2)
))

,

where � is the cumulative distribution of the standard
normal distribution. The local Gaussian correlation on the
Z-scale will be denoted by ρZ(z). Of course, the vari-
able Z cannot be computed via the transformation (6.4)
without knowledge of the margins F1 and F2, but these
can be estimated by the empirical distribution function.
Extensive use has been made of ρZ(z1, z2), or rather
ρẐ(z1, z2) with Ẑi = �−1(F̂i). Under certain regular-
ity conditions, as in the copula case, the difference be-
tween Z and Ẑ can be ignored in limit theorems. Us-
ing the sample of pairs of Gaussian pseudo observations
{�−1(F̂1(X1i ),�

−1(F̂2(X2i )}, i = 1, . . . , n, one can es-
timate ρZ(z1, z2) by local log likelihood as described
above. Under regularity conditions, the asymptotic theory
will be the same as in Tjøstheim and Hufthammer (2013).
In Otneim and Tjøstheim (2017, 2018), a further simpli-
fication is made by taking μZi

(z) ≡ 0 and σZi
(z) ≡ 1, in

which case the asymptotic theory simplifies and one ob-
tains the familiar nonparametric rate of O((nb1b2)

−1/2)

for ρ̂Ẑ(z).
The choice of Gaussian margins in the transformation

(6.4) is not made without a purpose. It is natural since
we are dealing with local Gaussian approximations. This
leads to a more fundamental question: Why is a local
Gaussian approximation and an associated local Gaussian
correlation measure particularly useful?

6.2 Why Local Gaussian Approximation and Local
Gaussian Correlation?

In principle, another parametric family could be used
as a local approximation (as has been done by Hjort and
Jones, 1996) in their consideration of locally parametric
density estimation. The advantage of using the Gaussian
distribution as an approximating family is its powerful
and unique properties. Among them is the fact that the
entire dependence structure of a multivariate Gaussian is
determined by its set of pairwise correlations, and the fact
that for a multivariate Gaussian the conditional distribu-
tion of one set of variables given another set of variables is
again Gaussian. The idea, or the statistical modeling phi-
losophy, of the local Gaussian approximation is that the
unique properties of the Gaussian can be extended to non-
Gaussian distributions, but locally. This can be shown to
be useful in a number of different situations as follows.

Description of dependence and corresponding tests of
independence have been given for pairs of i.i.d. vari-
ables, for single time series, and for pairs of time series,
including the use of local Gaussian autocorrelation, in
Berentsen and Tjøstheim (2014), and in Lacal and Tjøs-
theim (2017, 2019)

Applications to econometric data are given in Støve,
Tjøstheim and Hufthammer (2014) and Støve and Tjøs-
theim (2014). In particular, for multivariate financial data,
one can measure the increasing values of pairwise local
Gaussian correlations in a market during an economic
downturn. This describes quantitatively the well-known
fact that financial objects perform similarly (stronger mu-
tual positive dependence) in such a situation. In the ex-
treme scenario of a panic, the local Gaussian correlations
would approach 1; see also Nguyen et al. (2020).

A local Gaussian conditional distribution allows the in-
troduction of a local Gaussian partial correlation, and
density and conditional density estimation, as well as tests
of conditional independence treated by Otneim and Tjøs-
theim (2017, 2018, 2021).

Locally Gaussian spectral estimation is contained in
Jordanger and Tjøstheim (2020). They have shown that
nonlinear and local oscillatory behavior can be detected
in cases where it is missed in ordinary spectral analysis.

Finally, relationships to the copula concept have been
investigated in Berentsen et al. (2014), and applications to
discrimination using a local Fisher discriminant have been
explored in Otneim, Jullum and Tjøstheim (2020). There
are three R-packages; Berentsen, Kleppe and Tjøstheim
(2014), Jordanger (2020) and Otneim (2019). All of these
developments are being collected in a forthcoming book,
Tjøstheim, Otneim and Støve (2021).

Due to lack of space, these developments cannot be de-
scribed in more detail in the main part of this paper, but for
the reader’s convenience, we give a brief summary in the
online supplementary material. Further, there are plots of
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the local Gaussian correlation in simulation experiments,
and for the financial return data of Figure 2. Finally, point-
ers are given to where the local Gaussian correlation is
compared in testing situations with the dcov statistic from
Section 4.3 and with the ordinary global Pearson’s ρ.
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Section 1 of the supplementary material we give some
more details of Section 4.2 of the main article concerning
the measuring and tests based on the distribution function
in the time series case. Section 2 gives more details for
the local Gaussian correlation in the time series and cop-
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a real data example. Section 3 gives some additional sym-
metry properties of the local Gaussian correlation and a
discussion of the Rényi criteria relative to this measure of
dependence. Finally, Section 4 contains a brief overview
of the use of the local Gaussian correlation in testing of
independence.
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