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Abstract: We define a moment-based estimator that maximizes the em-
pirical saddlepoint (ESP) approximation of the distribution of solutions
to empirical moment conditions. We call it the ESP estimator. We prove
its existence, consistency and asymptotic normality, and we propose novel
test statistics. We also show that the ESP estimator corresponds to the
MM (method of moments) estimator shrunk toward parameter values with
lower implied estimated variance, so it reduces the documented instability
of existing moment-based estimators. In the case of just-identified moment
conditions, which is the case we focus on, the ESP estimator is different
from the MM estimator, unlike the more recent alternatives, such as the
empirical-likelihood-type estimators.
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1. Introduction

The saddlepoint (SP) approximation has been developed to approximate dis-
tributions. Because of its accuracy, it is regularly used in several fields, such as
numerical analysis (e.g., [57]’s algorithm to approximate binomial distributions,
and which is notably used in the statistical software R) and actuarial sciences
(e.g., [21]’s approximation for distributions tails). In statistics and economet-
rics, the SP approximation and its empirical version —the empirical saddlepoint
(ESP) approximation— have been used to approximate finite-sample distribu-
tions [e.g., 15, 42, 16]. Standard monographs and introductions about the ESP
and the SP approximation for statistics include [28], [52], [47], [30] and [8].

In the present paper, we propose to use the ESP approximation to define
a point estimator θ̂T . We call it the ESP estimator, and denote it with θ̂T . It
maximizes the [72]’s ESP approximation of the distribution of solutions to the
empirical moment conditions

1

T

T∑
t=1

ψ (Xt, θ) = 0 (1)

where ψ(., .) denotes the moment function s.t. E[ψ(X1, θ0)] = 0m×1 an m-
dimensional vector of zeros, (Xt)

T
t=1 i.i.d. data, θ0 ∈ Θ ⊂ Rm the unknown

parameter of interest, and T the sample size. In the present paper, for clarity
and simplicity, in line with most of the SP literature, we consider the so-called
just-identified case, in which the number of parameters is the same as the num-
ber of moment conditions.

The ESP estimator is a moment-based estimator. Since [63, 64]’s method of
moment (MM), moment-based estimators have been found useful in a variety of
applications (e.g., covariance structure analysis in psychology, and asset pricing
in economics). Their two main advantages are (i) they do not require a para-
metric family of probability distributions for the data so they are less prone
to model misspecification, and (ii) they allow complex models for which the
likelihood function is intractable.

Nevertheless, the increase use of the MM and its extensions has revealed
that they can be unstable and perform poorly in finite samples (e.g., July 1996
special issue of Journal of Business & Economics Statistics). The idea of the

ESP estimator θ̂T is to improve on the MM estimator θ∗T as follows — note the

difference between θ̂T , which denotes the ESP estimator, and θ∗T , which denotes
the MM estimator or, equivalently, a solution to the empirical moment condi-
tions (1). By definition, the MM estimate θ∗T (ω) solves the empirical moment
conditions (1) evaluated for a given sample (Xt(ω))

T
t=1, but it typically does
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not solve the empirical moment condition for another sample (Xt(ω̇))
T
t=1 where

ω̇ �= ω. Thus, we might want an estimate that not only takes into account the
empirical moment conditions evaluated for the given sample (Xt(ω))

T
t=1, but

also for other potential samples. More precisely, we want an estimate that ac-
counts for all possible evaluations of the empirical moment conditions according
to their probability of occurrence. This is what the ESP estimate does: The ESP
estimate maximizes the ESP approximation to the distribution of the solutions
to the empirical moment conditions [72]. If the empirical moment conditions (1)
have a unique solution with a continuous distribution, the ESP estimator max-
imizes the ESP approximation of a probability density function of the solution
θ∗T . We rely on the ESP approximation because simulation and theoretical evi-
dence shows the ESP approximation can be very accurate in small sample [e.g.,
16, 72].

We also show that the ESP estimator corresponds to an MM estimator shrunk
toward parameter values with lower implied estimated variance of the solution
to the corresponding finite-sample moment conditions. More precisely, we de-
compose the logarithm of the ESP approximation as the sum of a term, which
is maximized at the MM estimator, and a variance penalty, which discounts any
parameter value θ̇ ∈ Θ that implies a high estimated variance for the corre-
sponding MM estimator. Under assumptions adapted from the entropy litera-
ture, we establish the ESP estimator has the same good asymptotic properties
as the MM estimator, so the variance penalization is a finite-sample correction.
We also derive the ESP counterparts of the Wald, Lagrange multiplier (LM),
analogue likelihood-ratio (ALR) test statistics, as well as another test statistic.
Then, we investigate the ESP estimator through Monte-Carlo simulations. We
compare its performance with the exponential tilting (ET) estimator, which is
equal to the MM estimator in the just-identified case. Results show that the
variance penalization of the ESP estimator reduces the finite-sample instabil-
ity of the ET estimator (or equivalently, of the MM estimator). An empirical
application illustrates the gain from this greater stability in terms of inference.

The ESP estimator is not the first proposal to improve on the MM and its
extensions. Alternative moment-based approaches have been proposed such as
the empirical likelihood approach of Owen [67], the continuously updating ap-
proach [37], the already-mentioned exponential tilting (ET) approach [51, 44],
and combinations of the aforementioned approaches [e.g., 73]. All these ap-
proaches yield an estimator closely related to the empirical likelihood estimator,
so we call them empirical-likelihood-type estimators. In the just-identified case,
when well-defined, all of these empirical-likelihood-type estimators are numeri-
cally equal to the original Pearson’s MM estimator θ∗T . Because we focus on the
just-identified case, it is sufficient for us to compare the ESP estimator with the
MM estimator, or with one of any of these more recent estimators.

In addition to the already cited papers, the present paper, which supersedes
the unpublished manuscript [78], is related to many other ones. We clarify these
relations in Section 5 (p. 3687). To the best of our knowledge, none of the prior
papers use the SP or the ESP to propose a novel moment-based point estimator.
Overall, the present paper (i) brings together the literature on the saddlepoint
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approximation and the literature on moment-based estimation, and (ii) points
out the untapped potential of the ESP to tackle issues faced in moment-based
estimation.

Remark 1. Another motivation for the ESP estimator is decision theoretic.
The ESP estimator follows from the minimization of the expectation of a loss
“function” that equals zero when θ solves the empirical moment conditions
and one otherwise by normalization. This motivation is similar to the decision-
theoretic justification for the Bayesian maximum a posteriori estimator [69]. As
in Bayesian analysis, the choice of other loss functions is possible. The investi-
gation of different loss functions is left for future research.

2. Finite-sample analysis

In the present section, we remind the formula for the ESP approximation, and
analyze its finite-sample structure. Then, we decompose the log-ESP into two
terms and show that the ESP estimator is a MM estimator shrunk toward pa-
rameter values with lower implied estimated variance, so the estimation stability
is improved.

2.1. The ESP approximation

Formalizing and generalizing prior works [16, 26, 85, 86], [72] propose the fol-
lowing ESP approximation to estimate the distribution of a solution to the
empirical moment conditions (1)

f̂θ∗
T
(θ) := exp

{
T ln

[
1

T

T∑
t=1

eτT (θ)′ψt(θ)

]}(
T

2π

)m/2

|ΣT (θ)|
− 1

2

det (2)

where |.|det denotes the determinant function, θ∗T a solution to (1), ψt(.) :=
ψ(Xt, .), and

ΣT (θ) :=

[
T∑

t=1

wt,θ
∂ψt(θ)

∂θ′

]−1 [ T∑
t=1

wt,θψt(θ)ψt(θ)
′

]

×
[

T∑
t=1

wt,θ
∂ψt(θ)

′

∂θ

]−1

, (3)

wt,θ :=
exp [τT (θ)

′ψt(θ)]∑T
i=1 exp [τT (θ)

′ψi(θ)]
, (4)

τT (θ) such that

T∑
t=1

ψt(θ)
exp [τT (θ)

′ψt(θ)]∑T
i=1 exp [τT (θ)

′ψi(θ)]
× 1

T
= 0. (5)

The ESP estimator maximizes the ESP approximation (2), or equivalently, its
logarithm, which is given in the upcoming formula (7) apart for terms constant
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w.r.t. (with respect to) θ. The ESP approximation (2) is the empirical coun-
terpart of the SP approximation of [27]. From a computational point of view,
the ESP approximation (2) is not complicated. See Section 4.1 and the Ap-
pendix section 10 in [41] for more details. The only implicit quantity is τT (θ),
which solves the tilting equation (5), which, in turn, is just the FOC (first-

order condition) of the unconstrained convex problem minτ∈Rm

∑T
t=1 e

τ ′ψt(θ).
A full understanding of the ESP approximation (2) arguably requires to work
through higher-order asymptotic expansions along the lines of [27]. However,
direct inspection of the ESP approximation (2) also provides insight for how it
incorporates information from the data through two channels.

The first channel is the ET (exponential tilting) term exp

{
T ln

[
1
T∑T

t=1 e
τT (θ)′ψt(θ)

]}
. In equation (5), for any θ ∈ Θ, the terms

exp[τT (θ)′ψt(θ)]∑T
i=1 exp[τT (θ)′ψi(θ)]

tilt the empirical probability 1/T , so the finite-sample moment conditions (5)
hold. This tilting determines, through equation (4), the multinomial distribu-
tion (wt,θ)

T
t=1 that is the closest to the empirical distribution —in the sense of

the Kullback-Leibler divergence criterion— s.t. the finite-sample moment con-
ditions (5) holds: The tilting equation (5) is the FOC w.r.t. (with respect to) τ
of the Lagrangian dual problem of the minimization problem

min
(w1,θ,w2,θ,··· ,wT,θ)∈]0,1]T

T∑
t=1

wt,θ log

(
wt,θ

1/T

)

s.t.

T∑
t=1

wt,θψt(θ) = 0 and

T∑
t=1

wt,θ = 1, (6)

where
∑T

t=1 wt,θ log[wt,θ/(1/T )] is the Kullback-Leibler divergence criterion be-
tween the empirical distribution and the multinomial distribution (wt,θ)

T
t=1 with

the same support [e.g., 13, 19]. Then, for the given θ ∈ Θ, in the ESP approxima-

tion 2, the ET term exp
{
T ln

[
1
T

∑T
t=1 e

τT (θ)′ψt(θ)
]}

indicates the extent of the

tilting needed to set the finite-sample moment conditions (6) (or equivalently,
equation (5)) to zero. The bigger is the tilting of the empirical distribution, the
less compatible are the data with θ solving the empirical moment conditions,

and the smaller should be the ET term exp
{
T ln

[
1
T

∑T
t=1 e

τT (θ)′ψt(θ)
]}

. It can

be easily seen that 1
T

∑T
t=1 e

τT (θ)′ψt(θ) reaches its maximum when θ is a solution
θ∗T of the empirical moment conditions (1), i.e., when τT (θ

∗
T ) = 0m×1 and no

tilting is needed —For a formal proof, one can follow the same reasoning as in
the proof of Lemma 10 (Appendix) with the empirical distribution in lieu of P.

In the ESP approximation on equation (2), the second term
(

T
2π

)m/2
comes

from the multivariate Gaussian distribution that is the leading term of the Edge-
worth’s asymptotic expansions underlying ESP approximations. However, be-
cause it is constant w.r.t. θ, it does not affect the maximization of the ESP
approximation, so it is not an information channel for the ESP estimator.
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The remaining term |ΣT (θ)|
− 1

2

det , which we call the variance term, is the sec-
ond channel through which the ESP approximation incorporates information
from data. The variance term discounts the ET term according to the tilted
estimated variance of the solution to the finite-sample moment conditions. Un-
der standard assumptions, a consistent estimator of the asymptotic variance of
√
T (θ∗T − θ0) is ΣT (θ

∗
T ) :=

[∑T
t=1 wt,θ∗

T

∂ψt(θ
∗
T )

∂θ

]−1 [∑T
t=1 wt,θ∗

T
ψt(θ

∗
T )ψt(θ

∗
T )

′
]

×
[∑T

t=1 wt,θ∗
T

∂ψt(θ
∗
T )′

∂θ

]−1

. The bigger the variance term is, the less plausible

a solution takes exactly this value, and the smaller is |ΣT (θ)|
− 1

2

det —note the
negative power. Therefore, overall, for a given θ ∈ Θ, the bigger the tilting or
the estimated variance, the smaller the ESP approximation, i.e., the estimated
probability weight f̂θ∗

T
(θ) that θ solves the empirical moment conditions (1).

2.2. The ESP estimator as a shrinkage estimator

As explained in the introduction, the more recent moment-based estimators are
numerically equal to the Pearson’s MM estimator in the just-identified case.
Thus, it is sufficient to compare the ESP estimator with one of them in order to
understand the difference between the former and the other proposed moment-
based estimators. The ET estimator of [51] and [44] is particularly convenient
for this purpose. Taking the logarithm of the ESP approximation (2), removing
the terms constant w.r.t. θ, and dividing by the sample size T , it can be seen
that the ESP estimator θ̂T maximizes the objective function

ln

[
1

T

T∑
t=1

eτT (θ)′ψt(θ)

]
− 1

2T
ln |ΣT (θ)|det, (7)

where ln
[
1
T

∑T
t=1 e

τT (θ)′ψt(θ)
]
is a strictly increasing transformation of the ob-

jective function of the ET estimator. Thus, the difference between the ESP
estimator and the ET estimators comes only from the log-variance term − 1

2T
ln |ΣT (θ)|det. As explained in Section 2.1, the variance term incorporates ad-
ditional information, which penalizes parameter values with higher implied es-
timated variance. More precisely, the variance term discounts any parameter
value θ̇ ∈ Θ that implies a high estimated variance for the ET —or equivalently,
MM— estimator of θ̇ based on the tilted moment condition

∫
Ω
ψ(X1(ω), θ̇)Pθ̇

(dω) = 0m×1, where
dPθ̇

dP := eτ(θ̇)′ψ(X1,θ̇)

E[eτ(θ̇)′ψ(X1,θ̇)]
with P the physical probability mea-

sure. Thus, the ESP estimator is an ET estimator shrunk toward parameter
values with lower implied estimated variance. As the following Proposition 1
shows, it immediately implies a smaller estimated variance for the ESP estima-
tor.

Proposition 1 (Shrunk estimated variance of the ESP estimator). Assume the

existence of an ESP estimator θ̂T and an ET estimator θ∗T s.t. θ̂T is different
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from any ET estimator i.e., θ̂T /∈ argmaxθ∈Θ ln
[
1
T

∑T
t=1 e

τT (θ)′ψt(θ)
]
. Then

|ΣT (θ̂T )|det < |ΣT (θ
∗
T )|det.

For more details about Proposition 1, see the Appendix section 9. The vari-
ance shrinkage is desirable because of the documented instability of existing
nonlinear moment-based estimators.

3. Asymptotic properties

In the present section, we investigate the asymptotic properties of the ESP esti-
mator. Good asymptotic properties can be regarded as a minimal requirement
for the ESP estimator, which is based on a small-sample asymptotic approxima-
tion. While the asymptotic properties of the ESP estimator are standard, their
complete proofs, which are in the Appendix, require the development of some
nonstandard arguments.

3.1. Existence, consistency and asymptotic normality

We require the following assumption to prove the existence and the consistency
of the ESP estimator.

Assumption 1. (a) The data (Xt)
∞
t=1 are a sequence of i.i.d. random vectors

of dimension p on the complete probability sample space (Ω, E ,P). (b) Let the
moment function ψ : Rp × Θε �→ Rm be s.t. θ �→ ψ(X1, θ) is continuously
differentiable P-a.s., and ∀θ ∈ Θε, x �→ ψ(x, θ) is B(Rp)/B(Rm)-measurable,
where, for ε > 0, Θε denotes the ε-neighborhood of Θ, and B(Rp) the Borel
σ-algebra on Rp. (c) In the parameter space Θ, there exists a unique θ0 ∈
int(Θ) s.t. E [ψ(X1, θ0)] = 0m×1. (d) Let the parameter space Θ ⊂ Rm be a
compact set, s.t., for all θ ∈ Θ, there exists τ(θ) ∈ Rm that solves the equation

E

[
eτ

′ψ(X1,θ)ψ(X1, θ)
]
= 0 for τ . (e) E

[
sup(θ,τ)∈Sε e2τ

′ψ(X1,θ)
]
< ∞ where

S := {(θ, τ) : θ ∈ Θ & τ ∈ T(θ)} and T(θ) := BεT(τ(θ)) with BεT(τ(θ)) the

closed ball of radius εT > 0 and center τ(θ). (f) E

[
supθ∈Θ |∂ψ(X1,θ)

∂θ′ |2
]
< ∞,

where |.| denotes the Euclidean norm. (g) E
[
supθ∈Θε |ψ(X1, θ)ψ(X1, θ)

′|2
]
<

∞. (h) For all θ ∈ Θ, Σ(θ) :=
[
Eeτ(θ)

′ψ(X1,θ) ∂ψ(X1,θ)
∂θ′

]−1

E

[
eτ(θ)

′ψ(X1,θ)ψ(X1,

θ)ψ(X1, θ)
′
] [

Eeτ(θ)
′ψ(X1,θ) ∂ψ(X1,θ)

′

∂θ

]−1

is invertible.

We require the following additional assumption to prove the asymptotic nor-
mality of the ESP estimator.

Assumption 2. (a) The function θ �→ ψ(X1, θ) is three times continuously dif-
ferentiable in a neighborhood N of θ0 in Θ P-a.s. (b) There exists a B(Rp)/B(R)-

measurable function b(.) satisfying E

[
supθ∈N supτ∈T(θ) e

k1τ
′ψ(X1,θ)b(X1)

k2

]
<
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∞ for k1 ∈ �1, 2� and k2 ∈ �1, 4� s.t., for all j ∈ �0, 3�, supθ∈N |∇jψ(X1, θ)| �
b(X1) where ∇jψ(X1, θ) denotes a vector of all partial derivatives of θ �→
ψ(X1, θ) of order j, and �a, b� := [a, b] ∩ Z for all (a, b) ∈ R2.

Assumptions 1 and 2 are stronger than the usual assumptions in the MM
literature, but are similar to assumptions used in the entropy literature and
related literatures. Assumptions 1 and 2 are essentially adapted from [33, 51],
and [73]. See also [12] for similar assumptions. Section 7.1 of the Appendix
contains a detailed discussion of Assumptions 1 and 2. Under Assumptions 1
and 2, the following theorem establishes the existence, the strong consistency,
and the asymptotic normality of the ESP estimator θ̂T .

Theorem 1 (Existence, consistency and asymptotic normality). Under As-

sumption 1, P-a.s. for T big enough, there exists θ̂T s.t.

(i) P-a.s. as T → ∞, θ̂T → θ0; and

(ii) under the additional Assumption 2, asT →∞,
√
T (θ̂T−θ0)

D−→N (0,Σ(θ0)).

where Σ(θ0) :=
[
E

∂ψ(X1,θ0)
∂θ′

]−1

E [ψ(X1, θ0)ψ(X1, θ0)
′]
[
E

∂ψ(X1,θ0)
′

∂θ

]−1

,
D→ denotes

the convergence in distribution.

Theorem 1 shows the variance penalization − 1
2T ln |ΣT (θ)|det vanishes suffi-

ciently quickly asymptotically, so it does not distort the first-order asymptotic
of the estimator. In particular, Theorem 1(ii) shows that the ESP estimator
reaches the same semiparametric efficiency bound as the MM and the more
recent moment-based estimators [11, 10]. Parts of the proofs of Theorem 1 are
involved, although the proofs strategies follow traditional approaches. The proof
of existence follows the Schmetterer and Jennrich approach ([74] Chap. 5; [45]),
with an additional complication coming from the implicit nature of the function
θ �→ τT (θ). The proof of Theorem 1(i) (i.e., consistency) follows Wald’s approach
to consistency [84]. The usual consistency approach for empirical-likelihood-type
estimators [62, 77] cannot be easily followed here because of the variance term.
Moreover, the later consistency approach does not articulate well with an exis-
tence proof. The basic idea of our consistency proof is to show that, P-a.s. for
T big enough, the ESP estimator maximizes the LogESP function (7), where,
P-a.s. as T → ∞,

sup
θ∈Θ

∣∣∣∣∣ln
[
1

T

T∑
t=1

eτT (θ)′ψt(θ)

]
− lnE[eτ(θ)

′ψ(X1,θ)]

∣∣∣∣∣ = o(1) , and

sup
θ∈Θ

∣∣∣∣ 1

2T
ln |ΣT (θ)|det

∣∣∣∣ = O(T−1). (8)

The two main complications w.r.t. the proofs available in the entropy litera-
ture are the following. First, the need to ensure that, for T big enough, for all
θ ∈ Θ, |ΣT (θ)|det is bounded away from zero, so that the LogESP function (7)
does not diverge on parts of the parameter space. Second, we establish that
the joint parameter space for θ and τ (i.e., S) is a compact set. For the latter
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purpose, we appropriately modify assumptions from the entropy literature and
develop a proof based on set-valued analysis. The proof of Theorem 1(ii) (i.e.,
asymptotic normality) follows the traditional approach of expanding the FOCs.
The two main complications w.r.t. the proofs in the entropy literature are the

following. First, instead of expanding the exact FOC
∂ ln[f̂θ∗

T
(θ)]

∂θ

∣∣∣
θ=θ̂T

, we ex-

pand an approximate FOC combined with the FOC (5) for τ . This is technical
because it involves differentiation of the log variance term. Second, we control
the asymptotic behaviour of the derivatives that come from the log-variance
term ln |ΣT (θ)|det. Another shorter proof approach based on an approximate
FOC of the first term of the log-ESP is possible. We do not follow it because it
would complicate and lengthen the presentation and the proof of the upcoming
Theorem 2.

3.2. More on inference: The trinity+1

The ESP estimator provides different ways to test parameter restrictions

H0 : r(θ0) = 0q×1 (9)

where r : Θ → Rq with q ∈ �1,∞�. More precisely, within the ESP framework,
there exist the usual trinity of Wald, LM and ALR tests statistics, plus another
test statistic, which we call the Tilt test statistic.

In addition to Assumptions 1 and 2, we require the following standard and
mild assumption to establish the asymptotic distribution of the Wald, LM, ALR,
and Tilt statistics.

Assumption 3 (For the trinity+1). (a) The function r : Θ → Rq in the null

hypothesis (9) is continuously differentiable. (b) The derivative R(θ) := ∂r(θ)
∂θ′

is full rank at θ0.

Under Assumptions 1, 2 and 3, the following theorem shows that the Wald,
LM ALR, and Tilt statistics asymptotically follow a chi-squared distribution
with q degrees of freedom.

Theorem 2 (The trinity+1: Wald, LM, ALR and Tilt tests). Define R(θ) :=
∂r(θ)
∂θ′ , and the following Wald, LM, ALR and Tilt test statistics

WaldT := Tr(θ̂T )
′[R(θ̂T )Σ̂(θ0)TR(θ̂T )

′]−1r(θ̂T )

LMT := T γ̌′
T [R(θ̌T )Σ̂(θ0)TR(θ̌T )

′]γ̌T =
1

T

∂ ln[f̂θ∗
T
(θ̌T )]

∂θ′
Σ̂(θ0)T

∂ ln[f̂θ∗
T
(θ̌T )]

∂θ

ALRT := 2{ln[f̂θ∗
T
(θ̂T )]− ln[f̂θ∗

T
(θ̌T )]}

TiltT := TτT (θ̌T )
′V̂T τT (θ̌T )

where Σ̂(θ0)T and V̂T are symmetric matrices that converge in probability to
Σ(θ0) and E[ψ(X1, θ0)ψ(X1, θ0)

′], respectively; and where γ̌T and θ̌T respectively
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denote the Lagrange multiplier and a solution to the maximization of f̂θ∗
T
(θ)

w.r.t. θ ∈ Θ under the constraint that r(θ) = 0q×1, i.e., θ̌T ∈ argmaxθ∈Θ̌ f̂θ∗
T
(θ)

with Θ̌ := {θ ∈ Θ : r(θ) = 0q×1} and γ̌T s.t. 1
T

∂ ln[f̂θ∗
T
(θ̌T )]

∂θ + ∂r(θ̌T )′

∂θ γ̌T = 0m×1.
Under Assumptions 1, 2 and 3, if the test hypothesis (9) holds, as T → ∞,

WaldT ,LMT ,ALRT ,TiltT
D→ χ2

q .

Theorem 2 can also be used to obtain valid confidence regions by the in-
version of the test statistics with θ̌T = θ0. Our Wald, LM, ALR and Tilt test
statistics share some similarity with the test statistics proposed in [51], [44],
and [70]. As explained in Section 2, the difference between our test statistic
and aforementioned test statistics come from the variance term, which affects
both the objective function and the (possibly constrained) estimator. Thus, an
inspection of the formulas for the test statistics shows the LM and ALR test
statistics are the most different from their ET counterpart, and that the ALR
test statistic exploits more the variance term than the LM test statistic—a
derivative of a function contains less information than the function. Moreover,
as usual, LM test statistics should be avoided in non linear setting because of
local extrema. The proof of Theorem 2 follows the traditional proof strategy for
deriving the trinity. The main complications w.r.t. the proofs available in the
entropy literature are the same as for the proof of Theorem 1(ii). Note that the
uniform convergences (8) of the two parts of the ESP objective function com-
bined with results from the entropy literature do not imply Theorem 2 because
the trinity+1 test statistics are scaled by T , and T 1

2T ln |ΣT (θ)|det �= o(1), P-a.s.
as T → ∞.

Remark 2. As a referee noted, among [51], [44], and [70], the latter is unique
to establish a relative error of order O(T−1) for the SP approximation. A rel-
ative error of lower magnitude is especially useful for improving accuracy in
distributions tails, which are of particular interest for testing.

4. Examples

In the present section, we further investigate and illustrate the finite-sample
properties of the ESP estimator. We focus on the comparison with the ET
estimator, as previously noted, (i) in the just-identified case, which is the case
addressed in the present paper, the MM estimator and the more recent moment-
based estimators are equal to the ET estimator so there is no loss of generality
in terms of point estimation, and (ii) the ESP objective function nests the ET
objective function, so that the source of the difference between the two is easily
understood —it necessarily comes from the variance term (see Section 2.2). In
order to provide some finite-sample evidence for the test statistics, we also report
their actual rejection probabilities. More information and simulation results are
presented in the Appendix section 10.
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Remark 3. In addition to our finite-sample analysis of the ESP objective func-
tion (Section 2), our derivation of the first-order asymptotic properties (Sec-
tion 3), our Monte-Carlo simulations and empirical application (present section),
another way to shed light on the finite-sample properties of the ESP estimator
would be to derive its higher-order asymptotic properties such as its second-
order bias [e.g., 68]. However, higher-order asymptotic properties of shrinkage
estimators are typically complex to study, and have often remained an open
problem. The ESP estimator appears to be no exception among shrinkage esti-
mators. Our preliminary derivations yield a long and complicated structure for
the second-order bias, from which we struggle to gain insight. The length and
the complexity of the second-order bias mainly comes from (i) the derivatives

of the variance |ΣT (θ)|−1/2
det ; and (ii) the reliance on the exact FOCs instead of

approximate FOCs. A mild preview of this complexity can be seen in the proof
of asymptotic normality.

4.1. Numerical example: Monte-Carlo simulations

4.1.1. ET and ESP estimators for the two-parameter Hall and Horowitz model

We simulate a two-parameter just-identified version of the [35] model, which has
become a standard benchmark to compare the performance of moment-based
estimators in statistics [e.g., 73, 56] and econometrics [e.g., 44, 50]. This model
can be interpreted as a simplified consumption-based asset pricing model where
β is the relative risk aversion (RRA) parameter [31]. In the simulations, we
estimate the two parameters (μ, β) with the moment function

ψt(β, μ) =

[
exp {μ− β (Xt + Yt) + 3Yt} − 1

Yt (exp {μ− β (Xt + Yt) + 3Yt} − 1)

]
where μ0 = −.72, β0 = 3, and Xt and Yt are jointly i.i.d. random variables
with distribution N (0, .16). The parameters are set to the usual values in the
literature, see e.g., [35], [31], [73] and [56]. The [35] model is known to be chal-
lenging to estimate because it induces some instability for usual moment-based
estimators in small samples. This kind of instability has been observed in several
empirical applications.

Table 1 reports the mean-squarred error (MSE), bias and variance of the ESP
and ET estimators for different sample sizes. The MSE of the ESP estimator is
always smaller than for the ET estimator, and the differences are notable for
small sample sizes. The decomposition of the MSE as the sum of the variance and
the squared bias indicates that the variance contributes more than the bias to the
reduction of the MSE for the ESP estimator. Note also that Table 1 understates
the improvement delivered by the variance penalization of the ESP objective
function. We helped the ET estimator (or equivalently, the MM estimator), by
restricting its parameter space to β < 15. Without this parameter restriction,
the behaviour of the ET estimator is very unstable for sample sizes below 100.
An analysis of the typical shape of the objective functions for small sample
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Table 1

ESP vs. ET estimator for the two-parameter Hall and Horowitz model.

T β μ
ET ESP ET ESP

MSE 3.6729 0.6644 1.5633 0.2356
25 Bias 0.4761 −0.0127 −0.1955 0.1042

Var. 3.4462 0.6642 1.5250 0.2247
MSE 1.5685 0.3359 0.8974 0.1234

50 Bias 0.2602 −0.0128 −0.1232 0.0638
Var. 1.5008 0.3358 0.8822 0.1193
MSE 0.6653 0.1589 0.4375 0.0611

100 Bias 0.1490 −0.0085 −0.0770 0.0355
Var. 0.6431 0.1589 0.4316 0.0599
MSE 0.2361 0.0823 0.1744 0.0312

200 Bias 0.0633 −0.0158 −0.0314 0.0250
Var. 0.2321 0.0821 0.1734 0.0305
MSE 0.0435 0.0322 0.0198 0.0134

500 Bias 0.0229 −0.0096 −0.0102 0.0115
Var. 0.0430 0.0322 0.0197 0.0133
MSE 0.0243 0.0184 0.0115 0.0071

1000 Bias 0.0137 −0.0038 −0.0060 0.0060
Var. 0.0241 0.0184 0.0115 0.0071
MSE 0.0040 0.0038 0.0016 0.0015

5000 Bias 0.0016 −0.0021 −0.0005 0.0021
Var. 0.0040 0.0038 0.0016 0.0015

Note: The reported statistics are based on 10,000 simulated samples of sample size equal to the indicated T . For
ET, the parameter space is restricted to β < 15 in order to limit the erratic behaviour of the estimator at sample
sizes T = 25 and 50. No such parameter restriction is imposed for ESP.

size explains this phenomenon. The typical ET objective function has a ridge
that follows from around the population parameter values (β0 = 3, μ0 = −.72)
towards (1000,−600). The ridgeline is not totally flat, and it often has a gentle
downward slope as we move away from the area near the population parameter
values. However, regularly, for some simulated samples, the very top of the ridge
is extremely far from the population parameter values, so that ET estimates are
very far from the population parameter values. This does not happen for the
ESP estimator. The variance term of the ESP objective function ensures that
the ridge drops sufficiently as we move away from the maximum that is near the
population parameter value. Thus, in line with our finite-sample analysis of the
ESP objective function (Section 2.2), the ESP estimator is much more stable.

4.1.2. ET and ESP estimators for a stochastic volatility model

The stochastic lognormal volatility model has been a competitor for the GARCH
model. The system evolves as

ln
(
σ2
t

)
= w + β ln

(
σ2
t

)
+ σuUt

and
Yt = σtZt
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where Ut and Zt are jointly i.i.d. random variables with distribution N (0, 1).
The model has been used to compare moment-based estimators [e.g., 3, 56].

Table 2

ESP vs. ET estimator for the two-parameter stochastic volatility model.

T w σu

ET ESP ET ESP
MSE 0.0015 0.0016 0.0615 0.0187

25 Bias −0.0048 −0.0069 −0.1549 −0.0798
Var. 0.0015 0.0015 0.0375 0.0123
MSE 0.0010 0.0010 0.0420 0.0158

50 Bias −0.0009 −0.0022 −0.1214 −0.0709
Var. 0.0010 0.0010 0.0272 0.0108
MSE 0.0006 0.0006 0.0226 0.0113

100 Bias 0.0001 −0.0005 −0.0814 −0.0558
Var. 0.0006 0.0006 0.0160 0.0082
MSE 3e-04 3e-04 1e-02 7e-03

200 Bias 0.0005 0.0003 −0.0471 −0.0384
Var. 0.0003 0.0003 0.0078 0.0055

Note: The reported statistics are based on 10,000 simulated samples of sample size equal to the indicated T .

As documented in [3], the joint estimation of β, w and σu yield numerical
convergence problem. Thus, we fix β = .95 and estimate the two parameters
(w, σu) with the moment function

ψt(w, σu) =

⎡⎣ |Yt| −
√

2
π exp

{
w

2(1−.95) +
σ2
u

8(1−.952)

}
Y 2
t − exp

{
w

(1−.95) +
σ2
u

2(1−.952)

} ⎤⎦ .

We simulate the model for (w0, σu,0) = (−0.368, 0.260) in order to match the
middle case considered in [3].

Table 2 shows that the ESP MSE are either similar to, or smaller than, the ET
MSE. For the w parameter, beyond the similarity in terms of MSE, the biases
are slightly different : The ESP bias is slightly bigger. For the σu parameter, the
ESP MSE, bias and variance are always smaller, although the difference is never
big. Overall, the results indicate that the ET and the ESP estimators perform
similarly, when the first one already performs well.

4.1.3. Test statistics for the two-parameter Hall and Horowitz model

In the present section we investigate the finite-sample behavior of the trinity+1.
We simulate again the two-parameter Hall and Horowitz model, and study the
actual rejection probabilities of the test statistics for the null hypothesis H0 : β =
3 and μ = −.72, i.e., one minus the actual coverage probability. We do not report
the actual rejection probability for the LM test, for which the asymptotic results
of Theorem 2 provide poor finite sample guidance. As previously mentioned, LM
tests are typically unreliable in nonlinear setting because of local extrema. For
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comparison, we also report the actual rejection probabilities for the ET ALR
test statistic.

Table 3 presents the results. The performances of the different test statistics
are comparable in terms of actual rejection probabilities, although the ESP
ALRT and the ESP TiltT seem to perform slightly better. The closer is the
actual rejection probabilities to the nominal size α = .05 the more accurate is
the asymptotic approximation provided by Theorem 2.

Table 3

Actual rejection probabilities for the two-parameter Hall and Horowitz model.

T ESP ALRT ET ALRT ESP WaldT ESP TiltT
50 0.1996 0.1964 0.2332 0.2016
100 0.1608 0.1622 0.1831 0.1722
200 0.1265 0.1278 0.1419 0.1361
1000 0.0765 0.0783 0.0839 0.0821
2000 0.0669 0.0681 0.0688 0.0676

Note: Under the null hypothesis H0 : θ = 3 and μ = −.72, asymptotically the test statistics follows a chi-square
distribution with two degree of freedom. The tests used the critical value with size of α = .05. The probabilities
are based on 10,000 simulated samples of sample size equal to the indicated T .

4.2. Empirical example

In this section, we present an empirical example from asset pricing. In empirical
consumption-based asset pricing, the literature has found little common ground
about the value of the RRA of the representative agent: In most studies, point
estimates from economically similar moment conditions are generally outside of
each other’s confidence intervals. The present section revisits the estimation of
the RRA, which goes back to [38]. The popularity of moment-based estimation
in consumption-based asset pricing, and more generally in economics is due to
the fact that moment-based estimation does not necessarily require the speci-
fication of a family of distributions for the data [e.g. 36, sec. 3]. Typically, an
economic model does not imply such family of distributions, except for tractabil-
ity reasons. Imposing a family of distributions makes it difficult to disentangle
the part of the inference results due to the empirical relevance of the economic
model from the part due to these additional restrictions. Under regularity con-
ditions, assuming a distribution corresponds to imposing an infinite number of
extra moment restrictions [e.g., 25, chap. VII, sec. 3].

In order to estimate the RRA θ, we rely on the following moment condition

E

[(
Ct

Ct−1

)−θ

(Rm,t −Rf,t)

]
= 0, (10)

where Ct

Ct−1
is the growth consumption and (Rm,t − Rf,t) the market return in

excess of the risk-free rate. The moment condition condition (10) and the data,
which correspond to standard US data at yearly frequency from Shiller’s website
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Fig 1. ET vs. ESP inference (1890–2009)

spanning from 1890 to 2009, are similar to [49]. The moment condition (10) has
several advantages. Firstly, it is as consistent with [58] as with more recent
consumption-based asset-pricing models, such as [4] or [29]. In other words,
despite its simplicity it also correspond to sophisticated models, and it allows us
to obtain estimates that are robust to different variations of consumption-based
asset pricing theory. Secondly, without loss of generality, it does not require to
estimate the time discount rate, about which there is little debate: The time
discount rate of the representative agent is consistently found to be between .9
and 1.

In some of the more recent literature, it has been common to use other mo-
ment conditions with a separate parameter for the so-called intertemporal elas-
ticity of substitution, i.e., use Epstein-Zin-Weil preferences [e.g. 20]. However,
[5, 6] show that such a specification makes the economic interpretation of the
parameters difficult. In particular, they show that an increase of the so-called
RRA parameter does not yield a behaviour that would be considered more risk
averse [5] E.g., All other things being equal, savings can be a decreasing function
of the so-called RRA parameter for an agent with Epstein-Zin-Weil preferences
[e.g., 6, sec. 6]. This difficulty of interpretation comes from a violation of the
monotonicity axiom according to which an agent does not choose an action if
another available action is preferable in every state of the world.

In light of Section 2, we report ET and ESP estimates as well as confidence
regions based on the inversion of the ALR test statistics of Theorem 2 (p. 3680)
with θ̌T = θ0. The latter have the advantage to better take into account the
whole shape of the objective function than the other confidence regions such as
the Wald-based (i.e., t-statistics-based) confidence regions, which only account
for the shape of the objective function in a neighborhood of the estimate through
its standard errors.

In Figure 1, (A) and (B) respectively displays the ET term and the ESP
approximation. For ease of comparison, the scale is the same, and we normalize
both of them so they integrate to one. The normalized ET term is much flatter
around its maximum than the normalized ESP approximation. Flatness of the
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objective function around the estimate has been documented for other existing
moment-based estimators, and it has often been regarded as one of the main
sources of the instability of the RRA estimates [e.g., 34, p. 60-64]. Figure (B)
shows that the normalized ESP is sharp around the ESP estimator. The relative
sharpness of the ESP yields sharper confidence regions : The ESP confidence
region is less than half its ET counterpart. In light of the variance penalization
term in the ESP objective function (Section 2.2 on p. 3677) and the shrinkage-
like behavior of the ESP estimator in the Monte-Carlo simulations (Section 4.1),
the relative sharpness of the ESP inference is not surprising. In the Appendix
section 11, additional empirical evidences corroborate the increased stability
and precision of the ESP estimator w.r.t. the ET estimator (or equivalently,
MM estimator).

5. Connection to the literature and further research directions

The present paper demonstrates a previously unknown connection between the
SP approximation and moment-based estimation, and hence it is related to
many papers in these literatures on top of the ones already cited. Following
[15], the literature in statistics [e.g., 18, 79, 46, 83, 7, 24] and econometrics [e.g.,
65, 42, 66, 55, 1] has used the SP (saddlepoint) and ESP approximations to ob-
tain accurate approximations of distributions, especially in the tails. The strand
of the SP literature that is closest to our paper derives SP approximations to
the distribution of statistics that correspond to solutions of nonlinear estimat-
ing equations. The latter strand of literature started with [27] and continued
with [76, 60, 43, 48, 2, 70], and [71], among others. More recently, [14], [59],
and [56, 53, 54] propose more accurate tests for indirect inference, functional
measurement error models, moment condition models, nonlinear estimators and
GEL (generalized empirical likelihood) estimators, respectively. To the best of
our knowledge, unlike the present paper, none of the prior papers use the SP
or the ESP to develop an estimation method that yields a novel moment-based
estimator. In ongoing work, we generalize the ESP approximation to the over-
identified case and time-dependent data.

The present paper is also related to a large and growing literature on shrink-
age estimators. Following [80]’s example, shrinkage has emerged as a powerful
idea to develop more stable estimation methods. Examples include the ridge
regression [39], the LASSO regression [82], the SCAD penalization [22, 23], and
the elastic net penalization [87]. Some of the latter have been adapted and
extended to moment-based estimation [e.g., 9]. While the ESP estimator can
be regarded as a shrinkage estimator (Section 2.2), it has several particulari-
ties. Firstly, unlike the aforementioned shrinkage estimators, the ESP estimator
does not require the calibration of tuning parameters, which is often delicate
[e.g., 75]. Secondly, the ESP estimator does not require the user to choose a
parameter value. The ESP estimator is not shrunk toward a user-chosen shrink-
age value, but toward parameter values with lower estimated implied variance.
Such a data-driven determination of the shrinkage value is particularly con-
venient for nonlinear moment-based estimation: While in regression models the
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choice of a shrinkage value is often easy to justify —e.g., zero, which corresponds
to a more parsimonious model—, the choice is often more difficult for nonlinear
moment-based estimation. E.g., in the numerical and the empirical example, it
is unclear why one would like to shrink the risk-aversion parameter toward zero.
Thirdly, the shrinkage nature of the ESP estimator is a consequence of defining
an estimator that maximizes the ESP approximation of the finite-sample distri-
bution of solutions to empirical moment conditions. It is not the consequence
of the addition of an ad hoc penalization as is sometimes the case for shrinkage
estimators.

As hinted in Remark 1 (p. 3675), the present paper is additionally related
to Bayesian inference. Like several widely-used shrinkage estimators (e.g., 39,
sec. 6; 82, sec. 5), the ESP estimator has connections to Bayesian inference. For
example, the variance term of the ESP approximation share some similarities
with the Jeffreys’ prior used in parametric Bayesian inference. The investigation
of these connections are left for future research. In a companion paper, we inves-
tigate the asymptotic connection between the ESP approximation and Bayesian
posterior distributions.

Finally, the present paper is related to the econometric weak instrument
literature, which is also motivated by the poor finite-sample stability and per-
formance of usual moment-based estimators [e.g., see Introduction in 81, which
is the seminal paper of the literature]. Despite a common motivation, there are
major differences with respect to the present paper. Firstly, by definition, the
weak instrument approach requires to assume that the moment conditions de-
pend on the sample size T [81, Assumption C]. In several applications (e.g.,
the empirical example in Section 4.2), this definitional assumption is incom-
patible with the model of interest. As [34] explains in his standard textbook
on moment-based estimation, this definitional assumption is “artificial” in the
sense that nobody seems to believe that economic and financial data induce
moment conditions depending on the sample size T in this way: This is just a
“mathematical device” that is used to derive an asymptotic theory that aims
at providing good approximations to finite sample behaviours. See also [81] for
a similar justification of the definitional assumption. In contrast, no modifica-
tion of the moment conditions is required for the ESP estimator. The idea is
simply to define an estimator that maximizes an accurate approximation of the
finite-sample distribution of the solutions to the empirical moment conditions.
The relative stability and sharpness of the ESP objective function in both the
numerical and the empirical examples illustrate the usefulness of the idea. Sec-
ondly, unlike the present paper, the weak instrument literature does not provide
new estimators, but only novel test statistics. Actually, moment-based estima-
tors are generally inconsistent for weakly identified parameters (81, Theorem
1; 32, Theorem 2). Thirdly, test statistics derived under the weak instrument
assumption induce confidence regions that can be empty [e.g., 81, Table IV-
VI], and that have infinite length with positive probability [17], so they can be
“unreasonable” [61]. In contrast to Anderson-Rubin-type statistics used in the
weak instrument literature [81], the test statistics of the present paper enjoy
the same properties as the traditional trinity statistics, and thus do not yield
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empty confidence regions. Finally, note that, when, in applications, general test
statistics robust to weak instrument appear necessary, it should be possible to
extend the present paper for this purpose.
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Supplementary Material

Appendix: The Empirical Saddlepoint Estimator
(doi: 10.1214/21-EJS1976SUPP; .pdf). The Appendix mainly consists of a de-
tailed proof of the first part of Theorem 1(i), i.e., existence and consistency of
the ESP estimator. The proof relies on set-valued analysis. The high level of
details should make the proof more transparent, ease the use of the interme-
diary results in further research, and make clear that the assumptions and the
proofs available in the current literature are mathematically insufficient. The
proofs of the other results (i.e., asymptotic normality of the ESP estimator,
and Theorem 2, asymptotic distributions of the Trintiy+1 test statistics) are
skipped because, while technical, they rely on extensions of more standard ar-
guments, so the indications in the main text should be sufficient. Nevertheless,
the latter proofs are available in [41]. The appendix contains a formalization of
the variance shrinkage, an additional numerical example, and complementary
information regarding the numerical and empirical examples.
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