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Abstract: We prove minimax bounds for estimating Gaussian location
mixtures on R

d under the squared L2 and the squared Hellinger loss func-
tions. Under the squared L2 loss, we prove that the minimax optimal rate
is upper and lower bounded by a constant multiple of n−1(log n)d/2. Un-
der the squared Hellinger loss, we consider two subclasses based on the
behavior of the tails of the mixing measure. When the mixing measure has
a sub-Gaussian tail, the minimax rate under the squared Hellinger loss is
bounded from below by (logn)d/n, which implies that the optimal mini-
max rate is between (logn)d/n and the upper bound (logn)d+1/n obtained
by [11]. On the other hand, when the mixing measure is only assumed to
have a bounded pth moment for a fixed p > 0, the minimax rate under the
squared Hellinger loss is bounded from below by n−p/(p+d)(logn)−3d/2.
This rate is minimax optimal up to logarithmic factors.
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1. Introduction

Let φ be the standard univariate normal density and let Fd denote the class of
densities on R

d of the form:

(x1, . . . , xd) �→
∫

φ(x1 − u1)φ(x2 − u2) . . . φ(xd − ud)dG(u1, . . . , ud), (1.1)

where G is a probability measure on R
d. Fd is precisely the class of all Gaus-

sian location mixture densities on R
d. We study minimax rates in the problem

of estimating an unknown density f∗ ∈ Fd from i.i.d observations X1, . . . , Xn

(throughout the paper, we assume that n ≥ 2). Mixture models are useful in
modeling situations involving the presence of subpopulations within an overall
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population and Gaussian location mixtures form the simplest and most com-
monly used mixture model.

The minimax rate crucially depends on the choice of the loss function. We
study two different loss functions in this paper. The first is the squared L2

distance:

L2(f, g) :=

∫
(f(x)− g(x))

2
dx. (1.2)

The minimax risk of estimation over Fd under the L2 loss function is

Rn

(
Fd, L

2
)
:= inf

f̂n

sup
f∗∈Fd

Ef∗L2
(
f̂n, f

∗
)
.

In Theorem 2.1, we prove that Rn

(
Fd, L

2
)
is of the order n−1(log n)d/2. This

result is known for d = 1. Indeed, when d = 1, the upper bound follows from
the results proved in Ibragimov [5] for estimation of smooth functions (also see
Kim [7, Section 3]) and the lower bound was proved by Kim [7]. To the best
of our knowledge the result for d ≥ 2 is novel. It is interesting that the rate
n−1(log n)d/2 has a relatively mild dependence on the dimension d and thus
the usual curse of dimensionality is largely avoided for estimating multivariate
Gaussian location mixtures under the L2 loss function.

The second loss function we investigate is the squared Hellinger distance:

h2(f, g) :=

∫ (√
f(x)−

√
g(x)

)2
dx. (1.3)

Unlike the squared L2 distance, the squared Hellinger distance does not depend
on the choice of dominating measure and can thus be viewed as a discrepancy
measure between the underlying probability measures. Compared to the squared
L2 distance, the squared Hellinger distance is much more sensitive to estima-
tion errors in the small-density regions. Further, estimation accuracy under the
squared Hellinger distance is connected to the squared error accuracy of certain
empirical Bayes estimates of normal means [6, 11].

In order to obtain meaningful rates under the squared Hellinger distance,
it is necessary to impose additional conditions on the probability measure G
underlying the density (1.1). The most common assumption in the literature is
to assume that G is discrete with a known upper bound on the number of atoms.
The Hellinger accuracy (as well as accuracy in the total variation distance)
of estimating discrete Gaussian location mixtures has been investigated, for
example, in [1, 4, 8, 12, 14]. In particular, it was proved by Doss, Wu, Yang
and Zhou [1] (and Wu and Yang [14] for d = 1) that the minimax rate is n−1

when the dimension d and the number of atoms of G are bounded from above
by constants.

In contrast to the discrete mixture situation, minimax rates using squared
Hellinger distance under broader assumptions on G are not fully understood.
Given a subclass G of probability measures on R

d, let FG denote the class of all
densities of the form (1.1) where G is constrained to be in G. We shall denote
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the minimax risk over FG in the squared Hellinger distance by

Rn(FG , h
2) := inf

f̂n

sup
f∗∈FG

Ef∗h2(f̂n, f
∗).

We study Rn(FG , h
2) for the following two natural subclasses G:

1. G = G1(Γ): the class of all probability measures G satisfying G{u : ‖u‖ >
t} ≤ C exp(−t2/2Γ) for some constant C and all t > 0 and a constant Γ.
Every probability measure in G1(Γ) has sub-Gaussian tails.

2. G = G2(p,K): the class of all probability measures G satisfying

(∫
‖u‖pdG(u)

)1/p

≤ K

for a fixed p > 0 and constant K > 0.

The problem of estimation of densities belonging to the classes FG1(Γ) and
FG2(p,K) has been studied in [2, 15, 7] for d = 1 and in [11] for d ≥ 1. Ex-
tending the results of Zhang [15] to d ≥ 1, Saha and Guntuboyina [11] analyzed
the performance of the nonparametric maximum likelihood estimator over Fd

leading to the following upper bounds on Rn(FG1(Γ), h
2) and Rn(FG2(p,K), h

2):

Rn(FG1(Γ), h
2) ≤ Cd,Γ

(logn)d+1

n
, (1.4)

and
Rn(FG2(p,K), h

2) ≤ Cd,K,pn
− p

p+d (logn)
2d+2p+dp

2p+2d . (1.5)

To the best of our knowledge, the corresponding lower bounds do not currently
exist in the literature (except for the case of Rn(FG1(Γ), h

2) for d = 1) and we
establish these in this paper. Specifically, we prove that

Rn(FG1(Γ), h
2) ≥ cd,Γ

(logn)d

n
(1.6)

and
Rn(FG2(p,K), h

2) ≥ cd,K,pn
− p

p+d (log n)−
3d
2 (1.7)

in Theorem 2.2 and Theorem 2.3 respectively.
(1.6) implies that there is a logarithmic price to be paid for dimensionality

under the sub-Gaussianity assumption. (1.7) implies that the rate of convergence
becomes much slower (than the parametric rate) if we only assume boundedness
of the pth moment of G for a fixed p > 0. It is usually believed that Gaussian
location mixtures are arbitrarily smooth leading to nearly parametric rates of
estimation. While this is true for the L2 loss function, our results reveal that the
story is more complicated for the squared Hellinger loss function. Specifically,
inequality (1.7) shows that, under the squared Hellinger distance, the rates can
be arbitrarily slow if the mixing measure is allowed to have heavy tails. This fact
(which can also be understood by considering n-component mixture densities
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with well-separated centers) does not seem to have been emphasized previously
in the literature even for d = 1. Furthermore, for each fixed p, the rate becomes
exponentially slow in d revealing the usual curse of dimensionality. Note that
our lower bounds also imply that the upper bounds (1.4) and (1.5) cannot be
substantially improved.

The rest of the paper is organized as follows. Our main results are all stated
in the next section. Theorem 2.1 proves the minimax rate of (logn)d/2/n for Fd

under the L2 loss. Theorem 2.2 and Theorem 2.3 deal with the squared Hellinger
loss function: Theorem 2.2 proves the minimax lower bound of (log n)d/n under
the subgaussianity assumption on the mixing measure and Theorem 2.3 proves
the n−p/(p+d)(log n)−3d/2 lower bound under the bounded pth moment assump-
tion on the mixing measure. The proofs of these results are given in Section
3. We also recall in this section (see Subsection 3.1) some basic facts about
Fourier transforms, Hermite polynomials and Assouad’s lemma that are used in
our proofs.

2. Main results

We state all our main results in this section. Our first result shows that the
minimax risk Rn(Fd, L

2) is of the order n−1(log n)d/2.

Theorem 2.1. Let d ∈ N. There exist positive constants cd and Cd depending
only on d such that

cd
(log n)d/2

n
≤ Rn(Fd, L

2) ≤ Cd
(logn)d/2

n
. (2.1)

The proof of the upper bound on Rn(Fd, L
2) in (2.1) is based on an extension

of the ideas of [5] to d ≥ 1 (a simple exposition of these ideas can be found in
Kim [7, Theorem 4.1]). It involves considering the estimator

f̂n(x) :=
1

nhd

n∑
i=1

K

(
Xi − x

h

)
(2.2)

where K(y) := K(y1) . . .K(yd) with K(y) := (sin y)/(πy) and the bandwidth h

is taken to be h := (2 log n)−1/2. Controlling the variance of f̂n(x) is straightfor-
ward while bounding the bias is non-trivial and we do this via Fourier analysis.

The proof of the lower bound on Rn(Fd, L
2) in (2.1) is based on an extension

of the ideas of Kim [7, Proof of Theorem 1.1]. It involves applying Assouad’s
Lemma (recalled in Lemma 3.1) to a carefully chosen subset of Fd whose ele-
ments are indexed by a hypercube. This subset of Fd is constructed by taking
mixing measures that are additive perturbations of a Gaussian mixing measure.
The additive perturbations are created using Hermite polynomials.

Our next result proves a lower bound of order (logn)d/n for Rn(FG1(Γ), h
2).

A comparison with the upper bound (1.4) of Saha and Guntuboyina [11] reveals
that this lower bound is possibly off by at most a factor of logn and is thus
minimax rate optimal up to the single log n multiplicative factor.
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Theorem 2.2. Let d ∈ N and Γ > 0. There exists a positive constant cd,Γ
depending only on d and Γ such that

Rn(FG1(Γ), h
2) ≥ cd,Γ

(logn)d

n
.

For a recent related result, please see [9] as well. The proof of Theorem 2.2 is
based on an extension of the ideas of Kim [7, Proof of Theorem 1.3]. Assouad’s
lemma is applied to a subset of FG1(Γ) which is constructed by taking mixing
measures that are additive perturbations of a Gaussian mixing measure. The
perturbations are different from those used in the proof of Theorem 2.1 although
they are also based on Hermite polynomials. It is not easy to directly work with
the squared Hellinger loss function while dealing with mixture densities so we
crucially use the fact that the squared Hellinger loss is bounded from below by
a constant multiple of the chi-squared divergence for the constructed subset of
Fd.

Our final result proves a lower bound of the order n−p/(p+d) (up to a logarith-
mic factor) for Rn(FG2(p,K), h

2). As we mentioned previously, this result reveals
that rates strictly slower than n−1 are possible for estimating Gaussian location
mixtures and that the rate can also be affected by the usual curse of dimen-
sionality. A comparison with the upper bound (1.5) of Saha and Guntuboyina
[11] reveals that this lower bound is optimal up to logarithmic factors possibly
depending on d.

Theorem 2.3. Let d ∈ N and K > 0. For every p > 0, there exists a positive
constant cd,K,p depending only on d,K and p such that

Rn(FG2(p,K), h
2) ≥ cd,K,pn

− p
p+d (log n)−

3d
2 .

For the proof of Theorem 2.3, we first construct a normal mixture den-
sity whose mixing measure is a discrete distribution that is supported on a
d-dimensional product set (lattice) and has a Pareto type tail behavior. We
then construct a hypercube of normal mixture densities by perturbing this sup-
port set. For each point in the support set, we use either the original point
or a nearby point whose distance to the non-perturbed point is determined by
the probability value at the original support point of the mixing distribution.
We finally apply Assouad’s lemma to the constructed hypercube of densities in
FG2(p,K).

The proofs of our results are given in the next section.

3. Proofs

3.1. Preliminaries

We shall recall here some standard facts about the Fourier transform and Her-
mite polynomials that we shall use in our main proofs.
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We use the notation T for the Fourier transform. It is defined as

T (f)(t) = (2π)−d/2

∫
e−it1x1−it2x2−···−itdxdf(x)dx

for functions f ∈ L1(R
d). The Fourier inversion theorem gives

f(x) = (2π)−d/2

∫
eix1t1+···+ixdtdT (f)(t)dt.

Plancherel’s theorem states that∫
|f(x)|2dx =

∫
|T (f)(t)|2dt

for functions f ∈ L1(R
d) ∩ L2(R

d). The convolution-product property of the
Fourier transform states that

T (h)(t) = T (f)(t)T (g)(t) for all t where h(x) :=

∫
f(x− u)g(u)du.

Our upper bound on Rn(Fd, L
2) is based on the sinc kernel K with K(y) :=

K(y1) . . .K(yd) where

K(y) :=
sin y

πy
.

It is well-known that

K(y) = K(−y), T (K)(t) =
1√
2π

1{|t|≤1}, and

T (K2)(t) =
1

π
√
2π

(
1− |t|

2

)
+

(3.1)

where x+ := max(x, 0).
Our lower bound constructions involve Hermite polynomials. These are de-

fined for d = 1 as

Hj(x) := (−1)jex
2/2 dj

dxj
e−x2/2 =

(−1)j

φ(x)

djφ(x)

dxj
. (3.2)

Note that Hj(·) is an odd function when j is odd (and even when j is even).
The Hermite polynomials are orthogonal with respect to the weight function
φ(x) := (2π)−1/2 exp(−x2/2). Specifically for all j ≥ 0 and k ≥ 0, we have

∫
φ(x)Hj(x)Hk(x)dx =

{
0 for j �= k

j! for j = k.
(3.3)

We shall use the bound

|Hj(x)| ≤ κ
√

j! exp(x2/4) (3.4)
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for a constant κ ∼ 1.086 < 21/4 (see e.g. Equation 8.954 of [3]).
For d ≥ 1, we take

Hj(x) :=
(−1)|j|

φ(x)

(
∂

∂x

)j

φ(x) = Hj1(x1) . . . Hjd(xd)

where φ(x) = φ(x1) . . . φ(xd), (∂/∂x)
j
:= ∂j1+...+jd/∂xj1

1 . . . ∂xjd
d and |j| =

j1 + . . .+ jd.
We next recall Assouad’s lemma (see e.g., [13, Lemma 24.3]) which will be

our main tool for proving minimax lower bounds.

Lemma 3.1 (Assouad). Let d2 be either (1.2) or (1.3) and define the minimax
risk

Rn(Fd, d
2) := inf

f̂n

sup
f∗∈Fd

Ef∗d2
(
f̂n, f

∗
)
.

For some N ≥ 1, let {fτ , τ ∈ {0, 1}N} be a subset of Fd. Then

Rn(Fd, d
2) ≥ N

8
min
τ �=τ ′

d2(fτ , fτ ′)

Υ(τ , τ ′)
min

Υ(τ ,τ ′)=1

(
1−
√

n

2
χ2(fτ‖fτ ′)

)
(3.5)

where Υ(τ , τ ′) :=
∑N

j=1 1{τj �=τ ′
j} is the Hamming distance between τ and τ ′

and χ2(f‖g) :=
∫
(f − g)2/g is the χ2-divergence between densities f and g.

3.2. Proof of Theorem 2.1

We break this proof into two parts: the upper bound on Rn(Fd, L
2) and the

lower bound on Rn(Fd, L
2). Let us first prove the upper bound.

We consider the kernel estimator (2.2) with bandwidth h = (2 logn)−1/2. We
need to control its variance and squared bias. We first bound the variance as

Ef

∫
(f̂n(y)− Ef̂n(y))

2dy =
1

nh2d

∫
varf

(
K

(
X1 − y

h

))
dy (3.6)

≤ 1

nh2d

∫
EfK

2

(
X1 − y

h

)
dy

=
1

nh2d

∫ ∫ d∏
i=1

K2

(
xi − yi

h

)
f(x)dxdy

≤ (2π)−d/2

nhd

(∫
K2(z)dz

)d

≤ 1

nhd
, (3.7)

where the penultimate inequality uses

f(x) =

∫
φ(x1 − u1)φ(x2 − u2) . . . φ(xd − ud)dG(u1, . . . , ud) ≤ (2π)−d/2

and the last inequality uses
∫
K2(z)dx =

∫
|T (K)(z)|2dz = 1/π.
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For the bias, note that y �→ Ef∗ f̂n(y) has Fourier transform

t �→ (2π)d/2T (f)(t)

d∏
i=1

T (K)(hti).

This is because

Ef f̂n(y) =
1

hd

∫ d∏
i=1

K

(
xi − yi

h

)
f(x)dx

and

T (Ef f̂n)(t) =
1

(2π)dhd

∫
e−itTy

[
d∏

i=1

K

(
xi − yi

h

)
f(x)dx

]
dy

=
1

(2π)d/2hd

∫ d∏
i=1

(∫
e−itiyiK

(
−xi − yi

h

)
dyi

)
f(x)dx

=
1

(2π)d/2hd

∫ d∏
i=1

(∫
e−iti(yi−xi)K

(
yi − xi

h

)
dyi

)
e−itTxf(x)dx

=

d∏
i=1

(∫
1√
2π

e−i(hti)ziK(zi)dzi

)∫
e−itTxf(x)dx

=

d∏
i=1

T (K)(hti)(2π)
d/2T (f)(t).

Thus by Plancherel theorem (and (3.1))

bias2 =

∫
(Ef f̂n(y)− f(y))2 =

∫ ∣∣∣T (Ef f̂n)(t)− T (f)(t)
∣∣∣2 dt

=

∫
|T (f)(t)|2

∣∣∣∣∣(2π)d/2
d∏

i=1

T (K)(hti)− 1

∣∣∣∣∣
2

dt

=

∫
|T (f)(t)|2|1{|t1|≤1/h,...,|td|≤1/h} − 1|2dt

≤
d∑

i=1

∫
|ti|≥1/h

|T (f)(t)|2dt,

where the last inequality follows since

|1{|t1|≤1/h,...,|td|≤1/h} − 1|2 ≤
d∑

i=1

1{|ti|≥1/h}.

Consider the first term in the above sum. We split the integral over |t1| ≥ 1/h
into over t1 ≤ −1/h and t1 ≥ 1/h and observe∫

t1≤−1/h

|T (f)(t)|2dt ≤ e−w/h

∫
e−wt1 |T (f)(t)|2dt
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= e−w/h lim
M→∞

∫
e−wt1 |T (f)(t)|2

d∏
i=1

[(
1− |ti|

M

)
+

]
dt.

for every w ≥ 0. The last integral above can be written as

∫
e−wt1 |T (f)(t)|2

d∏
i=1

[(
1− |ti|

M

)
+

]
dt =

∫
T (f)(t)e−wt1T (ϑ)(t)dt (3.8)

where

T (ϑ)(t) = T (f)(t)

d∏
i=1

[(
1− |ti|

M

)
+

]
,

which is the Fourier transform of the following nonnegative function

ϑ(y) =

(
Mπ2

√
2π

)d ∫
f(u)

d∏
i=1

K2

(
M

2
(yi − ui)

)
du.

The function K2 shows up in the right hand side above essentially because of
the third fact in (3.1).

Continuing from (3.8), we get

∫
e−wt1 |T (f)(t)|2

d∏
i=1

[(
1− |ti|

M

)
+

]
dt =

∫
T (f)(t)e−wt1T (ϑ)(t)dt

=

∫
T (f)(t)e−wt1T (ϑ)(−t)dt

=

∫
T (f)(−t)ewt1T (ϑ)(t)dt

=

∫
(2π)−d/2

(∫
e
∑

j itjyjf(y)dy

)
ewt1T (ϑ)(t)dt

=

∫
(2π)−d/2

(∫
ei
∑

j tjyjewt1T (ϑ)(t)dt

)
f(y)dy

=

∫
(2π)−d/2

(∫
eit1(y1−iw)+i

∑
j≥2 tjyjT (ϑ)(t)dt

)
f(y)dy

=

∫
ϑ(y1 − iw, y2, . . . , yd)f(y)dy

=

∫
f(y1 + iw, y2, . . . , yd)ϑ(y)dy

≤ sup
y

|f(y1 + iw, y2, . . . , yd)|
∫

ϑ(y)dy.

Note now that

sup
y

|f(y1 + iw, y2, . . . , yd)| ≤
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1√
2π

sup
y

∫ ∣∣∣∣exp
(
− (y1 + iw − u1)

2

2

)∣∣∣∣
d∏

i=2

φ(yi − ui)dG(u)

≤ 1√
2π

exp

(
w2

2

)∫
(2π)−

(d−1)
2 dG(u) ≤ (2π)−d/2 exp

(
w2

2

)
,

Note also that∫
ϑ(y)dy = (2π)d/2T (ϑ)(0) = (2π)d/2T (f)(0) = 1.

We have thus proved

∫
t1≤−1/h

|T (f)(t)|2dt ≤ e−w/h

∫
e−wt1 |T (f)(t)|2

d∏
i=1

[(
1− |ti|

M

)
+

]
dt

≤ (2π)−d/2 exp

(
−w

h
+

w2

2

)
.

By an entirely analogous argument, it follows that the same bound also holds
for the integral over t1 ≥ 1/h. This gives∫

|t1|≥1/h

|T (f)(t)|2dt ≤ 2(2π)−d/2 exp

(
−w

h
+

w2

2

)
.

We can analogously prove the same bound for every i = 1, . . . , d leading to

bias2 ≤
d∑

i=1

∫
|ti|≥1/h

|T (f)(t)|2dt ≤ 2d(2π)−d/2 exp

(
−w

h
+

w2

2

)

for every w ≥ 0. The choice w = 1/h now leads to

bias2 ≤ 2d(2π)−d/2 exp

(
−1

2h2

)
.

Combining this with (3.7), we get

Rn(Fd, L
2) ≤ inf

h>0

(
1

nhd
+ 2d(2π)−d/2 exp

(
−1

2h2

))
.

The choice h := (2 log n)−1/2 then clearly leads to Rn(Fd, L
2) ≤ Cd(logn)

d/2/n
which proves the upper bound.

We now prove the lower bound on Rn(Fd, L
2). The idea is to construct a

subset of Fd indexed by a hypercube {0, 1}N for some N and then use Assouad’s
lemma (Lemma 3.1). Our construction is a natural extension to d ≥ 1 of the
one-dimensional construction in [7] and is described below. Let m be the largest
integer such that

m5d/48d3dm√
n

≤ 1. (3.9)
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We can assume without loss of generality that n is large enough so thatm defined
as above satisfies m ≥ 3. It is also easy to check (because m5d/48d3dm ≥ em)
that the above condition for m implies that

m ≤ 1

2
logn.

Below we denote by φσ2(·), the univariate normal density with mean zero and
variance σ2 i.e., φσ2(x) := (

√
2πσ)−1 exp(−x2/(2σ2)). We construct densities

(for the application of Assouad’s lemma) via perturbations of the density:

f0(x) :=

∫
φ(x1 − u1) . . . φ(xd − ud)γ(u)du where γ(u) := φm(u1) . . . φm(ud).

Note also that
f0(x) = φ1+m(x1) . . . φ1+m(xd).

Now let
J := {1, 3, . . . , 2m− 1}d

and note that cardinality of J is |J | = md. We shall apply Assouad’s lemma
(Lemma 3.1) with N := md and we index binary vectors in {0, 1}N by elements
j := (j1, . . . , jd) of J . For α = (αj , j ∈ J ), let

fα(x) =

∫
φ(x1 − u1) . . . φ(xd − ud)

⎡
⎣γ(u) + ε

∑
j∈J

αjγj(u)

⎤
⎦ du

where ε is given by

ε = cn−1/2m−d/4 (3.10)

for a constant c ∈ (0, 1) that will be determined later and

γj(u) := γj1(u1) . . . γjd(ud)

with γji(ui) := 21/2(2π)3/4

√
3ji

ji!
φ(ui)Hji

(
2√
3
ui

)
.

Here Hji(·) denotes the Hermite polynomial (see (3.2)). Let us first argue that
fα ∈ Fd. To see this, it is enough to show that

u �→ γ(u) + ε
∑
j∈J

αjγj(u) (3.11)

integrates to 1 over u ∈ R
d and is nonnegative. Integration to 1 is justified by

the fact that γji(ui) is an odd function of ui for each i = 1, . . . , d and the fact
that

∫
γ(u)du = 1. For nonnegativity of (3.11), note first that the inequality

(3.4) implies that, for each i = 1, . . . , d,

|γji(ui)| =
√
2(2π)3/4

√
3ji

ji!
φ(ui)

∣∣∣Hji(2ui/
√
3)
∣∣∣
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≤
√
2(2π)1/421/43ji/2 exp

(
−u2

i

6

)
. (3.12)

Because we have assumed that n is large enough so that m ≥ 3, we have
exp(−u2

i /6) ≤ exp(−u2
i /(2m)) which gives

|γji(ui)| ≤ 8 · 3ji/2
√
mφm(ui) for every i = 1, . . . , d

and consequently

|γj(u)| ≤ 8d3|j|/2md/2
d∏

i=1

φm(ui)

= 8d3|j|/2md/2γ(u) where |j| := j1 + · · ·+ jd.

Thus

γ(u)+ε
∑
j∈J

αjγj(u) ≥ γ(u)

⎡
⎣1− ε8dmd/2

∑
j∈J

3|j|/2

⎤
⎦

≥ γ(u)
[
1− ε8dmd/23d(2m−1)/2|J |

]
= γ(u)

[
1− ε8dm3d/23dm

]
because the maximum value of any ji is 2m − 1 ≤ 2m for every j ∈ J and
the cardinality of J is md. Plugging in our value of ε (from (3.10)) and using
condition (3.9), we get

γ(u) + ε
∑
j∈J

αjγj(u) ≥ γ(u)
(
1− cn−1/2m5d/48d3dm

)
≥ (1− c) γ(u) (3.13)

which implies nonnegativity of (3.11) as long as c < 1.

We now lower bound minα �=β
L2(fα,fβ)
Υ(α,β) (where Υ(α,β) :=

∑
j∈J 1{αj �=βj} is

the Hamming distance between α and β). Observe first that

fα(x)− fβ(x) = ε

∫
φ(x1 − u1) . . . φ(xd − ud)

⎧⎨
⎩
∑
j∈J

(αj − βj) γj(u)

⎫⎬
⎭ du

= ε
∑
j∈J

(αj − βj) Γj(x)

where

Γj(x) :=

∫
φ(x1 − u1) . . . φ(xd − ud)γj(u)du.

As a result

∫
(fα(x)− fβ(x))

2
dx = ε2

∫ ⎛⎝∑
j∈J

(αj − βj)Γj(x)

⎞
⎠

2

dx
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= ε2
∫ ⎛⎝∑

j∈J
(αj − βj)T (Γj)(t)

⎞
⎠

2

dt.

Because Γj is defined as the product over i = 1, . . . , d of the convolution of φ
and γji , we have

T (Γj)(t) =

d∏
i=1

21/2(2π)3/4

[√
3ji

ji!
T (φ)(ti)T

(
φ(·)Hji(

2√
3
·)
)
(ti)

]
.

By Kim [7, Lemma 2.1], we have

T
(
φ(·)Hk(

2√
3
·)
)
(t) = (−i)k3−k/2φ(t)Hk(2t) for odd k.

This gives (note that
√
2(2π)3/4φ2(t) =

√
2φ(2t))

T (Γj)(t) =

d∏
i=1

(−i)ji
√

2φ(2ti)
Hji(2ti)√

ji!

and thus ∫
(fα(x)− fβ(x))

2
dx

= ε2
∫ ⎛⎝∑

j∈J
(αj − βj)

d∏
i=1

(−i)ji
√
2φ(2ti)

Hji(2ti)√
ji!

⎞
⎠

2

dt.

The orthogonality of the Hermite polynomials with respect to the weight func-
tion φ (see Equation (3.3)) implies∫

(fα(x)− fβ(x))
2
dx = ε2

∑
j∈J

(αj − βj)
2 = ε2Υ(α,β).

We thus have

min
α �=β

L2(fα, fβ)

Υ(α,β)
≥ ε2.

Now we bound the χ2 distance between fα and fβ for α and β with Υ(α,β) = 1.
Note first that, as a result of (3.13), we have

fβ(x) ≥ (1− c)f0(x) for all β

so that

χ2 (fα‖fβ) ≤
1

1− c

∫
(fα − fβ)

2

f0
.
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We now split the integral above into R(x) := {|x1| ≤ Mm1/2, . . . , |xd| ≤
Mm1/2} and R(x)c where M is a dimensional constant larger than 8d log 3.
Then using f0(x){x ∈ R(x)} ≥ m−d/2/Cd (for some dimensional constant Cd),
we have

(1− c)χ2(fα‖fβ) ≤
∫

(fα(x)− fβ(x))
2

f0(x)

≤ Cdm
d/2

∫
(fα(x)− fβ(x))

2 +

∫
R(x)c

(fα(x)− fβ(x))
2

f0(x)
dx

= Cdm
d/2ε2 +

∫
R(x)c

(fα(x)− fβ(x))
2

f0(x)
dx ≤ 1

2n
+

∫
R(x)c

(fα(x)− fβ(x))
2

f0(x)
dx

provided c is chosen above so that c2Cd ≤ 1/2 (recall that ε2 = c2n−1m−d/2).
The second term above is bounded as follows. Denoting j∗ by the index where
α and β differ so that αj∗ �= βj∗ (recall that Υ(α,β) = 1), we get by (3.12),∫

R(x)c

(fα(x)− fβ(x))
2

f0(x)
dx

≤ ε23d/2(4π)3/43|j
∗|
∫
R(x)c

( ∫
φ(x1 − u1) . . . φ(xd − ud)φ3(u)du

)2
f0(x)

dx

≤ dε23d/2(4π)3/43|j
∗|
∫
{|x1|>M

√
m}

φ2
4(x)

φ1+m(x)
dx

≤ 2dc2n−13d/2(4π)3/43|j
∗|
∫
{x1>M

√
m}

φ4(x1)dx1 ≤ 1

2n
,

where the second inequality follows by bounding the maximum by the sum with
symmetry, the penultimate inequality follows first by plugging (3.10) in ε2 and
then since φ1+m(x) ≥ m−d/2φ4(x) and 3|j

∗| ∫
{x1>Mm1/2} φ4(x1)dx1 ≤ 1 by

taking M larger than 8d log 3, and the last inequality follows by choosing c to
be a small enough dimensional constant such that c2 ≤ (4π)−3/43−d/2/(2d).

By Assouad’s lemma 3.1, we have

Rn(Fd, L
2) ≥ md

8
ε2

(
1−
√

1

2(1− c)

)

Of course c can be taken to be small enough so that the right hand side above
is larger than a constant (depending on d alone) multiple of (logn)d/2/n. The
proof is thus complete.

3.3. Proof of Theorem 2.2

The idea for the lower bound on Rn(FG1(Γ), h
2) is to again construct a subset of

FG1(Γ) indexed by a hypercube and then use Assouad’s lemma. Our construction
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is a natural extension to d ≥ 1 of the one-dimensional construction in [7]. Let
σ2 = min(Γ, 1). Let m be the largest integer such that

md4d
(

9
σ2

)dm
√
n

≤ 1.

The above condition implies m ≤ logn
2d log(9/σ2) and m ≥ logn

4d log(9/σ2) . In order to

use Assouad’s lemma, we construct densities via perturbations of the density

f0(x) = φ1+σ2(x1) . . . φ1+σ2(xd)

where, it may be recalled, φσ2(·) denotes the univariate normal density with
mean zero and variance σ2. Note that f0 can also be written as

f0(x) =

∫
φ(x1 −u1) . . . φ(xd −ud)v(u)du where v(u) := φσ2(u1) . . . φσ2(ud).

Again we let

J := {1, 3, . . . , 2m− 1}d

with N := md and we consider index binary vectors in {0, 1}N by elements
j := (j1, . . . , jd) of J . For α = (αj , j ∈ J ), we let

fα(x) =

∫
φ(x1 − u1) . . . φ(xd − ud)

⎡
⎣v(u) + ε

∑
j∈J

αjvj(u)

⎤
⎦ du

where ε is given by

ε =
1

2
n−1/2 (3.14)

and

vj(u) := vj1(u1) . . . vjd(ud) with vji(ui) =
Cji√
ji!

φ(ρui)Hji(γui)

where we define

ϕ = 1 +
1

1 + 2σ2

ρ =

(
ϕ− 1 +

(1 + σ2ϕ)1/2 + 1

σ2

)1/2

γ =
√
2
(1 + σ2ϕ)1/4

σ

Cji = (2π)−1/4ϕ1/2(1 + σ2ϕ)1/4

(
(1+σ2ϕ)1/2+1
(1+σ2ϕ)1/2−1

)ji/2
(
(1 + σ2ϕ)1/2 − 1

)1/2 .
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By an analogous argument in the proof of Theorem 2.1, we can show fα ∈
FG1(Γ). First, integration of fα(x) to 1 is guaranteed since vji(ui) is an odd func-
tion of ui for each i = 1, . . . , d and the fact that

∫
v(u)du = 1. For nonnegativity

of v(u) + ε
∑

j∈J αjvj(u), note that using (3.4) we have

|vji(ui)| ≤
κCji√
2π

exp

(
−1

2
u2
i (ρ

2 − 1

2
γ2)

)

where

ρ2 − 1

2
γ2 =

1

1 + 2σ2
+

1

σ2
≥ 1

σ2
.

Hence

|vji(ui)| ≤ κCjiσφσ2(ui)

for every i = 1, . . . , d. Thus

|vj(u)| ≤ (σκ)d

(
d∏

i=1

Cji

)
v(u) ≤ 4d

(
3

σ

)|j|
v(u)

where the last inequality follows by

(
(1 + σ2ϕ)1/2 + 1

(1 + σ2ϕ)1/2 − 1

)1/2

=
(1 + σ2ϕ)1/2 + 1

σϕ1/2
≤ 3

σ

and

σ ≤ 2((1 + σ2ϕ)1/2 − 1)1/2,

which gives

v(u) + ε
∑
j∈J

αjvj(u) ≥ v(u)

⎡
⎣1− ε4d

∑
j∈J

(
3

σ

)|j|
⎤
⎦

≥ v(u)

[
1− ε4dmd

(
9

σ2

)dm
]
.

Plugging in ε = n−1/2/2 from (3.14),

v(u) + ε
∑
j∈J

αjvj(u) ≥ v(u)

(
1− 1

2
n−1/24dmd

(
9

σ2

)dm
)

≥ 1

2
v(u) > 0.

In the same way, we have

v(u) + ε
∑
j∈J

αjvj(u) ≤
3

2
v(u).
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To claim fα ∈ FG1(Γ), we need to show v(u) + ε
∑

j∈J αjvj(u) is sub-gaussian.
Indeed,∫

‖u‖>t

v(u) + ε
∑
j∈J

αjvj(u)du ≤ 3

2

∫
‖u‖>t

φσ2(u1) . . . φσ2(ud)du

≤ C exp(−t2/2σ2) ≤ C exp(−t2/2Γ)

where C is a constant depending on d and the last inequality follows by the
choice of σ2 = min(Γ, 1).

The fact that all these constructed mixing densities are between (1/2)v(u)
and (3/2)v(u) gives

1

2
f0(x) ≤ fα(x) ≤

3

2
f0(x). (3.15)

Inequality (3.15) implies that

h2(fα, fβ) ≥
1

6

∫
(fα − fβ)

2

f0
and χ2(fα‖fβ) ≤ 2

∫
(fα − fβ)

2

f0
(3.16)

because, respectively,

h2(fα, fβ) =

∫
(fα − fβ)

2

(
√
fα +

√
fβ)2

≥ 1

6

∫
(fα − fβ)

2

f0

and

χ2(fα‖fβ) =
∫

(fα − fβ)
2

fα
≤ 2

∫
(fα − fβ)

2

f0
.

By inequality (3.16), it is clear that for the application of Assouad’s Lemma 3.1,

it is enough to focus on the quantity
∫ (fα−fβ)2

f0
. Let us write

Λj :=

∫
φ(x1 − u1) . . . φ(xd − ud)vj(u)du,

and we consider

∫
(fα − fβ)

2

f0
= ε2

∫ ⎛⎝∑
j∈J

(αj − βj)
Λj√
f0

⎞
⎠

2

= ε2
∫ ⎛⎝∑

j∈J
(αj − βj)T

( Λj√
f0

)⎞⎠
2

. (3.17)

Because Λj/
√
f0 is defined as the product over i = 1, . . . , d, of∫

φ(xi − ui)vji(ui)dui√∫
φ(xi − ui)φσ2(ui)dui
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=
Cji(4π)

1/4

√
ji!ϕ

∫
φϕ(xi − ui)φ

(√
ρ2 + 1− ϕ

ϕ
ui

)
Hji

(
γ

ϕ
ui

)
,

where the above equality follows by Kim [7, Lemma 2.2], we have

T
( Λj√

f0

)
(ti) =

d∏
i=1

Cji(4π)
1/4

√
ji!ϕ

T (φϕ)(ti)T
(
φ(

√
ρ2 + 1− ϕ

ϕ
·)Hji(

γ

ϕ
·)
)
(ti).

By Kim [7, Lemma 2.1], we have by denoting � =
√
2(1 + σ2ϕ)1/4ϕ1/2,

T
(
φ(

√
ρ2 + 1− ϕ

ϕ
·)Hji(

γ

ϕ
·)
)
(ti)

= (−i)ji
σϕ

((1 + σ2ϕ)1/2 + 1)1/2

(
(1 + σ2ϕ)1/2 − 1

(1 + σ2ϕ)1/2 + 1

)ji/2

×

φ

(
σϕ

((1 + σ2ϕ)1/2 + 1)1/2
ti

)
Hji(�ti).

Using

T (φϕ)(ti) =
1√
2π

exp
(
−ϕ

2
t2i

)
,

we have

T
( Λj√

f0

)
=

d∏
i=1

(−i)ji
√
�φ(�ti)

Hji(�ti)√
ji!

.

Consequently, ∫
(fα − fβ)

2

f0
= ε2Υ(α,β).

This (and (3.16)) gives

min
α �=β

h2(fα, fβ)

Υ(α,β)
≥ 1

6
ε2 and χ2(fα, fβ) ≤ 2ε2.

By Lemma 3.1, we have

Rn(FG1(Γ), h
2) ≥ md

8

(1/2)2

6n

(
1

2

)
≥ cd,Γ

(log n)d

n
,

where cd,Γ = 1
384

(
1

4d log(9/min(1,Γ2))

)d
.

3.4. Proof of Theorem 2.3

The idea for the lower bound on Rn(FG2(p,K), h
2) is again to construct a subset

of FG2(p,K) indexed by a hypercube and then we use Assouad’s lemma. Let

a0 = min{(K/d)7−1/p, 1} and

S := {a0 + (�− 1)M log(�e), 1 ≤ � ≤ k0}
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where

M = Cd,p

√
log n with Cd,p =

√
8

(
2d

p+ d
+ 1

)

and k0 the largest integer less than or equal to k′0 where

k′0 = cn1/(p+d)(logn)−3/2 with c = 40−1/2a
1+2/(p+d)
0 .

Let k = kd0 and let a1, . . . ,ak be an enumeration of the points in Sd = S ×
· · ·×S. We can take a1 = (a0, a0, . . . , a0) ∈ R

d, a2 = (a0+M log(2e), 1, . . . , 1) ∈
R

d, . . . ,ak = (a0 + (k0 − 1)M log(k0e), . . . , a0 + (k0 − 1)M log(k0e)) ∈ R
d. Let

G be the discrete probability distribution supported on Sd that is given by

G{ai} = Cn,d,p (〈ai,1〉 − da0 + a0)
−(p+d)

for i = 1, . . . , k (3.18)

where 1 is the d-dimensional vector of ones and

Cn,d,p :=
1∑k0

�1=1 · · ·
∑k0

�d=1

(
a0 +

∑d
j=1

(
(�j − 1)M log(�je)

))−(p+d)
(3.19)

is the normalizing constant. We assume n is sufficiently large so that log log k0 ≤
M and Mp ≥ 2d. We claim that

ap+d
0 /2 < Cn,d,p < ap+d

0 and G ∈ G2(p, 6
1/pda0). (3.20)

Let us assume the above claim for now and proceed with the proof. The claim
will be proved later. For i = 1, . . . , k, let bi = ai + (δi/

√
d)1 where

δi =
1√

2nG(ai)
.

The choice of k0 means that 〈ai,1〉 ≤ da0 − dM log(k0e) + dk0M log(k0e) ≤
da0 − a0 + n1/(p+d)a

1+2/(p+d)
0 , which implies that G(ai) > a−2

0 (2n)−1 for every
i = 1, . . . , k. Hence 0 < δi < a0 (thus 0 < δi < 1).

Note that ‖bi−ai‖ = δi for all i. Define, for every α = (α1, . . . , αk) ∈ {0, 1}k,

fα(x) =

k∑
i=1

G(ai)φd(x− ai(1− αi)− biαi)

where φd is the standard normal density on R
d. Since G ∈ G2(p, 6

1/pda0) and
‖bi − ai‖p = δpi d

1−p/2 for every i = 1, . . . , k,

k∑
i=1

‖ai + αi(bi − ai)‖pG{ai} ≤ 2p−1

∫ (
‖u‖p + d1−p/2ap0

)
dG ≤ 7(da0)

p ≤ Kp

by definition of a0. This shows fα ∈ FG2(p,K).
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We shall use Assouad’s lemma for the class fα,α ∈ {0, 1}k. For fixed α =
(α1, . . . , αk) and β = (β1, . . . , βk) in {0, 1}k, we can write (with fi(x) := φd(x−
ai(1− αi)− biαi) and gj(x) := φd(x− aj(1− βj)− bjβj))

h2(fα, fβ) = 2

(
1−
∫ √

fα(x)fβ(x)dx

)

= 2

⎛
⎝1−

∫ √∑
i,j

G(ai)G(aj)fi(x)gj(x)dx

⎞
⎠

≥ 2

⎛
⎝1−

∑
i,j

√
G(ai)G(aj)

∫ √
fi(x)gj(x)dx

⎞
⎠

where the last inequality follows from
√∑

i xi ≤
∑

i

√
xi for xi ≥ 0. Saha and

Guntuboyina [11, Equation (A.18)] now gives

1

2
h2(fα, fβ)

=

⎛
⎝1−

∑
i

G(ai)

∫ √
fi(x)gi(x)dx−

∑
i �=j

√
G(ai)G(aj)

∫ √
fi(x)gj(x)dx

⎞
⎠

≥
k∑

i=1

G(ai)|αi − βi|(1− e−δ2i /8)−
∑
i �=j

√
G(ai)G(aj)e

−M2/8

≥
k∑

i=1

G(ai)
δ2i
10

|αi − βi| −
1

40n
,

where the last inequality follows since 1 − e−a2/8 ≥ a2/10 for every 0 < a < 1,
and ∑

i �=j

√
G(ai)G(aj)e

−M2/8 ≤ k2e−M2/8 = k2d0 e−C2
d,p logn/8

≤ (1/
√
40)2dn

2d
p+d−

C2
d,p
8 ≤ 1

40n

by the choice of k0 and Cd,p. This implies, by the choice of δ2i = 1/(2nG(ai)),
that

h2(fα, fβ) ≥
∑k

i=1 |αi − βi|
20n

− 1

40n
≥ Υ(α,β)

40n
.

Now suppose that Υ(α,β) = 1 and let l be the unique index such that αl �= βl.
Then for δ2l ≤ 1,

χ2(fα‖fβ) =
∫

(fα(x)− fβ(x))
2

fα(x)
dx
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=

∫ (∑k
i=1 G(ai)fi(x)−

∑k
i=1 G(ai)gi(x)

)2
∑k

i=1 G(ai)fi(x)
dx

≤
∫

G(al)
2 (fl(x)− gl(x))

2

G(al)fl(x)
dx = G(al)

(∫
g2l (x)

fl(x)
dx− 1

)

≤ G(al)
(
eδ

2
l − 1

)
≤ 2G(al)δ

2
l =

1

n
,

where the penultimate inequality follows since∫
g2l (x)

fl(x)
dx =

∫
φ2

d(x− al(1− βl)− blβl)

φd(x− al(1− αl)− blαl)
dx ≤ exp

(
‖al − bl‖2

)
= exp(δ2l ),

and the last inequality follows since ea ≤ 2a+ 1 when 0 ≤ a ≤ 1.
By Lemma 3.1, we have

Rn(FG2(p,K), h
2) ≥ k

8

1

40n

(
1−
√

1

2

)
≥ cd,p,Kn−p/(p+d)(logn)−3d/2

where cd,p,K = 1
320 (1 −

√
1/2)40−d/2

{
min((K/d)7−1/p, 1)

}d+2d/(p+d)
, a con-

stant only depending on d, p and K (but not a function of n).

It remains to prove the claim (3.20). Let us first show that ap+d
0 /2 < Cn,d,p <

ap+d
0 . The definition (3.19) immediately gives Cn,d,p < ap+d

0 so we only need to

show that Cn,d,p > ap+d
0 /2. For this, let us bound the denominator of Cn,d,p

using the inequality

k0∑
�1=1

· · ·
k0∑

�d=1

(
a0 +

d∑
j=1

(�j − 1)M
)−(p+d)

≤
k0∑

�1=1

(a0 + (�1 − 1)M)−(p+1)
d∏

j=2

(
a−1
0 +

1

(p+ j − 1)M

)
. (3.21)

The above inequality will be proved at the end of the proof. The above inequality,
along with the inequality

k0∑
�=1

(a0+(�− 1)M)−(p+1) ≤ a
−(p+1)
0 +

∫ k0

1

(a0 + (x− 1)M)−(p+1)dx

= a−p
0

(
a−1
0 +

1

pM

(
1−
( a0
a0 + (k0 − 1)M

)p))
≤ a−p

0

(
a−1
0 +

1

pM

)
,

imply that the denominator in the definition (3.19) of Cn,d,p is bounded from
above by

a−p
0

(
a−1
0 +

1

pM

)d

≤ 2a
−(p+d)
0
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where n is large enough such that

pM ≥ a0
21/d − 1

.

This proves a
−(p+d)
0 /2 < Cn,d,p.

We shall next prove that
∫
‖u‖pdG ≤ K. By definition of G,

∫
‖u‖pdG = Cn,d,p

∑
u1,...,ud∈S

⎧⎨
⎩(u2

1 + . . .+ u2
d)

p/2
( d∑

j=1

uj − da0 + a0

)−(p+d)

⎫⎬
⎭

≤ a
(d+p)
0 dp

∑
u1,...,ud∈S

⎧⎨
⎩up

1

( d∑
j=1

uj − da0 + a0

)−(p+d)

⎫⎬
⎭

= a
(d+p)
0 dp

∑
u1∈S

up
1

⎧⎨
⎩
∑

�2,...,�d

(
a0 +

d∑
j=1

(�j − 1)M
)−(p+d)

⎫⎬
⎭

≤ a
(d+p)
0 dp

∑
u1∈S

u−1
1

d∏
j=2

(
a−1
0 +

1

M(p+ j − 1)

)
.

It suffices to show
∑

u1∈S u−1
1 is bounded above by a constant. Indeed,

∑
u1∈S

u−1
1 =

k0∑
�=1

(a0 + (�− 1)M log(�e))
−1

≤ a−1
0 +

k0∑
�=2

(a0 + (�− 1)M log(�e))−1

≤ a−1
0 +

k0−1∑
�=1

(a0 + �M log(�e))−1

≤ a−1
0 + (a0 +M)−1 +

∫ k0

1

(xM log x)−1

≤ 2a−1
0 +

log log(k0)

M
≤ 3a−1

0 ,

where the last inequality follows by assuming n large enough so that

log log(k0)

M
≤ a−1

0 .

This gives

∫
‖u‖pdG ≤ a

(d+p)
0 dp3a−1

0

(
a−1
0 +

1

Mp

)d−1

≤ 6dpap0.
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The only remaining thing is to prove (3.21). For convenience, for the index

j′ ∈ {1, . . . , d}, we let Aj′ = Aj′(�1, . . . , �j′) := a0 +
∑j′

j=1(�j − 1)M . Note that
Aj′ ≥ a0 for all j′ = 1, . . . , d. We need to show that for j′ ≥ 2,

k0∑
�2

· · ·
k0∑
�j′

A
−(p+j′)
j′ ≤ A

−(p+1)
1

j′∏
j=2

(
a−1
0 +

1

M(p+ j − 1)

)
(3.22)

For the above, we use the idea of mathematical induction on j′. When j′ = 2,

k0∑
�2=1

A
−(p+2)
2 =

k0∑
�2=1

(a0 + (�1 − 1)M + (�2 − 1)M)
−(p+2)

=

k0∑
�2=1

(A1 + (�2 − 1)M)
−(p+2)

≤ A
−(p+2)
1 +

∫ k0

1

(A1 + (x− 1)M)−(p+2)dx

≤ A
−(p+1)
1

(
a−1
0 +

1

(p+ 1)M

)

where the last inequality follows since A1 ≥ a0. Let the above claim (3.22) is
true for j′ = j0(≥ 2). Then, we consider the case j′ = j0 + 1.

k0∑
�1=2

· · ·
k0∑

�j0=1

k0∑
�j0+1=1

A
−(p+j0+1)
j0+1 =

k0∑
�2=1

· · ·
k0∑

�j0=1

k0∑
�j′=1

(Aj0 + (�j′ − 1)M)
−(p+j0+1)

=

k0∑
�2=1

· · ·
k0∑

�j0=1

(
A

−(p+j0+1)
j0

+

∫ k0

1

(
Aj0 + (x− 1)M

)−(p+j0+1)
dx

)

≤
k0∑

�2=1

· · ·
k0∑

�j0=1

{
A

−(p+j0)
j0

(
a−1
0 +

1

M(p+ j0)

)}

≤ A
−(p+1)
1

j0∏
j=2

(
a−1
0 +

1

M(p+ j − 1)

)(
a−1
0 +

1

M(p+ j0)

)

= A
−(p+1)
1

j0+1∏
j=2

(
a−1
0 +

1

M(p+ j − 1)

)
,

where the last inequality follows by the induction hypothesis.
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