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Abstract: In this paper, we provide a general methodology to draw sta-
tistical inferences on individual signal coordinates or linear combinations of
them in sparse phase retrieval. Given an initial estimator of the targeting
parameter, which is generated by some existing algorithm, we can modify it
in a way that the modified version is asymptotically normal and unbiased.
Then confidence intervals and hypothesis testing can be constructed based
on this asymptotic normality. For conciseness, we focus on confidence inter-
vals in this work, while a similar procedure can be adopted for hypothesis
testing. Under some mild assumptions on the signal and sample size, we
establish theoretical guarantees for the proposed method. These assump-
tions are generally weak in the sense that the dimension could exceed the
sample size and many non-zero small coordinates are allowed. Furthermore,
theoretical analysis reveals that the modified estimators for individual coor-
dinates have uniformly bounded variance, and hence simultaneous inference
is possible. Numerical simulations in a wide range of settings are supportive
of our theoretical results.
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1. Introduction

The problem of recovering a signal from its transformed measurements, referred
to as phase retrieval, is fundamental in various applications, including optical
imaging, X-ray crystallography, speech recognition, and so on [28]. It can be
formulated into model (1.1).

yj = |x∗
jβ|2 + εj , j = 1, · · · , n, (1.1)

where εj is a random noise with mean zero, xj ,β ∈ Cp or Rp, and x∗
j denotes

the conjugate transpose of xj . Given the noise-contaminated magnitudes yj ’s
and the design vectors xj ’s, we need to recover the signal β. The xj ’s could
be Fourier basis, Gaussian vectors, or other sensing vectors, depending on the
specific scenario. Phase retrieval is difficult because the phase information is
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totally lost in the data-acquisition process. Extensive literature is available on
the theory and algorithms for estimating β.

The early-stage algorithms pioneered by Gerchberg and Saxton [15] and ex-
tended by Fienup [14] start with an arbitrary guess, then refine it by transform-
ing back and forth between the signal domain and Fourier domain until all the
constraints are satisfied. Since the violation between the iterate and the a priori
knowledge is monotonically non-increasing, this type of algorithms get the name
error reduction algorithms [13]. Such scheme is equivalent to alternating projec-
tions onto nonconvex sets [21, 1], but its convergence nature remains unknown.
Besides, error reduction algorithms rely heavily on the prior information about
the signal. Following the spirit of Gerchberg-Saxton algorithm, the alternating
minimization is recently proposed [24]. It divides the data into a number of
independent parts and uses a new part in each minimization step. Nevertheless,
this strategy is of little practical value.

In most literature, phase retrieval is translated into a nonconvex minimization
problem with various objective functions, for example:

minimize
b∈Cp/Rp

f(b) =
1

4n

n∑
j=1

(|x∗
jb|2 − yj)

2, (1.2)

minimize
b∈Cp/Rp

f(b) =
1

4n

n∑
j=1

(|x∗
jb| − φj)

2, φj = |x∗
jβ|+ εj , (1.3)

minimize
b∈Cp/Rp

f(b) =
1

4n

n∑
j=1

∣∣∣|x∗
jb|2 − yj

∣∣∣. (1.4)

Existing methods for solving (1.2)-(1.4) can be categorized into convex opti-
mization type and gradient descent type. The former is based on Shor’s convex
relaxation [3]. It relaxes (1.2) to a convex minimization problem and solves this
convex problem via semidefinite programming (SDP) [8, 7, 30]:

minimize
B

trace(B),

subject to B � 0,

yj = trace(xjx
∗
jB), j = 1, · · · , n,

where B = bb∗. Under noiseless Gaussian designs, SDP achieves exact recovery
with sample size O(p) [7]. Later, a modified version of SDP is proposed with
the trace norm replaced by a reweighted trace norm, which is equivalent to
minimizing a log-det function [5, 12]. Despite its reasonable performance and
theoretical guarantees, SDP is computationally expensive because it optimizes
over p2 variables.

The second category are various types of gradient descent methods. The
“Wirtinger flow” algorithm [6] targets the objective function (1.2). It obtains
the starting point by spectral initialization, and refines the iterates via Wirtinger
derivatives. A sample size O(p log p) is claimed to guarantee reasonable accu-
racy. The “truncated Wirtinger flow” [9] eliminates those abnormal data points
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generated during the process to obtain a more reliable starting point as well as
control the search direction. It exhibits more stable performance than the plain
Wirtinger flow algorithm while advances the sample complexity to O(p). The
“truncated amplitude flow” algorithm [31] is targeting the objective function
(1.3). It is also a two-stage procedure with orthogonality-promoting initializa-
tion followed by regularized gradient descent [31]. During its gradient descent
stage, the signs of the components x∗

jb are scrutinized to ensure a correct search
direction. In a recent paper [11], the objective function (1.4) is transformed into
the composition of a convex function and a smooth function, and the smooth
function is further approximated by a linear function. The resulting objective
function is convex and amenable to gradient descent. This method has slightly
broader applications than other methods because it works on certain complex
design vectors besides Gaussian designs. We do not give a complete bibliography
here due to the vast amount of literature on this topic.

In many real-world applications, the signal has few nonzero coordinates, and
far less measurements than the dimension of the signal are available. Phase
retrieval in such context is referred to as sparse phase retrieval. The commu-
nity has showed extensive interest on sparse phase retrieval during the past two
decades [10]. Many of the algorithms for sparse phase retrieval are obtained
by modifying the existing algorithms for non-sparse case. For example, certain
norm regularization is added to the trace function in SDPs to promote sparsity
[25, 22, 26], and a thresholding step is incorporated into each iteration of the
gradient-descent-type algorithms [4, 32]. These modifications do not work for
Fourier phase retrieval due to the ambiguity of translation and conjugate reflec-
tion. A novel method is proposed in [18] and demonstrated good performance in
sparse Fourier phase retrieval. It first estimates the support via autocorrelation
functions, and then solves an SDP over the support. Another recent algorithm is
based on greedy local search [27]. It updates the signal support by interchanging
the coordinate on support with the smallest gradient value with the coordinate
off support with the largest gradient value. The objective function is also up-
dated accordingly in each iteration. There are some other established methods
for (sparse) phase retrieval [19, 16, 17], which we will not elaborate here to avoid
unnecessary details.

Despite such intensive study on the algorithms for solving phase retrieval and
sparse phase retrieval, statistical inferences about the signal is rarely touched.
All the foregoing methods merely generate a point estimator for β and establish
its convergence rate. No statistical inferences can be drawn on β or a function
of β based on these point estimators. While in many real life applications,
statistical inferences on the sparse signal are very much desired. For example,
researchers might seek the 95% confidence interval of a certain coordinate βk

in order to adjust the receiver bandwidth. One major obstacle that thwarts
statistical inferences on sparse phase retrieval is that the estimators generated
by these algorithms cannot be written as an explicit function of the data. Thus,
its sampling distribution or asymptotic distribution is in general not tractable.

In this paper, we propose a general method to construct confidence inter-
vals for some simple function of the signals θ(β), e.g., βk. We also show that
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the resulting confidence interval approximately attains the preassigned coverage
probability when the sample size satisfies n � (log p)2/s with s being the spar-
sity level of the true signal. Suppose we have an estimator for θ(β) available,
which is asymptotically normal with mean θ(β). Then confidence intervals can
be built based on this estimator and its asymptotic normality. Therefore, the key
is to construct such an estimator, which we shall obtain as follows. First we pick
an initial estimator output from some existing phase retrieval algorithm; second
we modify the initial estimator in a way that the resulting estimator possesses
all desired properties (asymptotically normal and centered at the true θ(β)).
The choice for the initial estimator will be discussed in Section 2. This method
is inspired by the “debiased LASSO” in the literature of high-dimensional linear
regressions [34, 29, 20, 2]. The LASSO is a shrinkage/thresholded estimator and
hence biased. By adding a bias-correction term to the initial LASSO estimator,
the authors obtain an asymptotically unbiased and normally distributed estima-
tor, the debiased LASSO. Similarly in the case of sparse phase retrieval, existing
algorithms always generate biased estimators because they are designed to pro-
mote sparsity. We will try to reduce the bias of the chosen initial estimator by
adding a correction term that is distinct from the one in debiased LASSO. This
correction term is the key to our method, and will be derived in Section 2. To
reiterate the goal of this paper, given the measurements y and the design ma-
trix X, we aim to construct confidence intervals with approximately preassigned
coverage probabilities for a one-dimensional parameter, e.g., θ = θ(β) = βk, a
particular coordinate of the signal. To the best of our knowledge, this is the first
study on statistical inference in the realm of sparse phase retrieval.

We organize the rest of this paper as follows. Section 2 elaborates our method-
ology and explains the rationale behind it. Section 3 presents the main theo-
retical guarantees for our method. Section 4 displays its empirical performance.
Further discussions and perspectives are left to Section 5. And we leave all the
proofs and technicality to Section 6.

Notation: Throughout the rest of the paper, we carry out the discussion
based on model (1.1) and objective function (1.2). Wherever f(·) appears, it
refers to the function in (1.2). However, the idea extends naturally to other
phase retrieval models and objective functions. For conciseness, we just focus
on the real case and consider model (1.1) with β ∈ Rp, ‖β‖0 ≤ s, x1, · · · ,xn

i.i.d . N(0, Ip), and ε1, · · · , εn i.i.d. Gaussian noise N(0, σ2).

2. Methodology

This work is motivated by the celebrated debiasing techniques [33, 34, 29, 20, 2]
for the high-dimensional linear regression problem and the emerging algorithms
targeting sparse phase retrieval. Provided an initial estimator for βk, which is
biased and whose sampling distribution is intractable, we modify it so that the
resulting estimator has approximately normal distribution centered at βk in
asymptotics. And confidence intervals can be constructed based on this asymp-
totic normality. Although we restrict our discussion to the sparse phase retrieval
problem, the method is applicable to any M-estimating problem where
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1. the Hessian matrix exits in a big enough neighborhood of the global max-
imizer and is invertible;

2. θ(β) is differentiable almost everywhere;
3. a good enough initial estimator is available.

2.1. Choice of the initial estimator

Thresholded Wirtinger Flow (TWF) is recently proposed for sparse phase re-
trieval [4]. It first generates a starting point by spectral initialization and then
apply thresholded gradient descent to refine it. We choose the TWF output as
our initial estimator because it is shown to achieve optimal minimax rate of con-
vergence in the sparse phase retrieval setting [4]. More specifically, the authors

proved that with high probability the TWF estimator of t-th iteration, β̃
(t)
,

falls within a tiny ball centered at β (Theorem A.1). Written in mathematical
formula,

inf
‖β‖0=s

P(X,y|β)

{
min
i=0,1

‖β̃(t) − (−1)iβ‖2 ≤ 1

6
(1− μ

16
)t‖β‖2 + C

σ

‖β‖2

√
s log p

n

}

> 1− 46

n
− 10e−s − t

np2
(2.1)

for some absolute constant C > 0, provided the sample size satisfies n ≥
K(1 + σ

‖β‖2
2
)2s2 log(np) for some absolute constant K > 0 and the tuning pa-

rameters in the TWF algorithm are properly chosen. Here μ is the step size of
gradient descent, which can be regarded as absolute constant once it is decided.

If t 	 log

(
‖β‖2

2

√
n

σ
√
s log p

)
, one can obtain from the preceding result that with high

probability

min
i=0,1

‖β̃(t) − (−1)iβ‖2 � σ

‖β‖22

√
s log p

n
. (2.2)

This error rate is crucial for our bias-correction scheme to work, as will be
revealed later in the proof part.

2.2. Bias-correction strategy

In this subsection, we will explain the bias-correction procedure in details. Sup-
pose we are interested in a scalar parameter θ = θ(β), which is a continuously
differentiable function of β. In our particular case, θ = eTk β = βk, 1 ≤ k ≤ p.

The TWF solution, denoted by β̃, is biased due to the shrinkage nature of TWF.
And so is θ(β). To correct the bias of θ(β̃), we adopt the idea of Low-Dimensional
Projection Estimator (LDPE) proposed in [33]. The author considers a more
general semi-low-dimensional (LD) approach where a high-dimensional (HD)
model is decomposed as

HD model = LD component + HD component.
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Such decomposition is to accommodate certain scenarios where people are only
interested in some LD component instead of the whole model. The LD compo-
nent can be one-dimensional, e.g., a fixed direction in the model space. The HD
component largely explains the model, but might not be related to or might
be orthogonal to the LD component of interest. In such cases, it is natural to
restrict the analysis on the LD component and leave aside the nuisance HD
component.

In our problem, we have an HD model represented by the true parameter β.
We are interested in a scalar parameter θ(β) instead of the whole β. Given a
good initial estimator θ(β̃) (computed based on β̃), we would search its vicin-

ity for a θ̂ that is probably closer to the true θ. The key question is in which
directions should we proceed to search for θ̂. Consider the one-dimensional sub-
models {β̃ + d · u, d ∈ R, |d| is small}, which start at β̃ and vary only in one
direction u ∈ Rp. The direction u is chosen to be the one that minimizes the
Fisher information for estimating θ, and it is named the least favorable direc-
tion [33]. We pick the least favorable direction in order to guarantee reasonable
performance in the worst case. The formula for u(β̃) is given by

u(β̃) = argmin
u

{u�I(β̃)u : ∇θ(β̃)Tu(β̃) = 1} =
I(β̃)−1∇θ(β̃)

∇θ(β̃)TI(β̃)−1∇θ(β̃)
,

where

I(β̃) = −Eβ̃

[
∂2�(X,y|b)

∂b∂bT

]
b=β̃

=
2

σ2

n∑
j=1

2(x�
j β̃)

2xjx
�
j

is the Fisher information at β̃. We normalize u with ∇θ(β̃)Tu(β̃) = 1 so that
θ(β̃+ d ·u)− θ(β̃) ≈ d. In view of the above, the decomposition for our specific
problem can be written as

β − β̃ = d · u(β̃) + ν, (2.3)

where d = ∇θ(β̃)�(β − β̃), and ν = (β − β̃) − ∇θ(β̃)�(β − β̃) · u(β̃) is a
nuisance component (with respect to θ) satisfying ∇θ(β̃)�ν = 0. When both
d and ν are small, which is the case given β ≈ β̃, the maximum likelihood
estimator (MLE) in the least favorable direction is a natural candidate for d.
An intuitive interpretation of (2.3) is as follows. The variation in β can be
decomposed as the variation in direction u and the variation in direction ν.
The magnitude of the variation in u equals that in θ. Variations in ν would not
change the value of θ. If β changes only in direction u, it is difficult to detect
the corresponding change in θ based on the likelihood function.

To simplify the notation, let ũ = u(β̃). The LDPE searches, in the least
favorable direction ũ, a parameter value that maximizes the likelihood of the
occurring data sample, i.e.,

θ̂ = θ(β̃) + argmax
d

n∑
j=1

l(xj , yj |β̃ + ũd) = θ(β̃) + argmin
d

f(β̃ + ũd). (2.4)
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The second equality above is because under model (1.1) and Gaussian noises,

n∑
j=1

�(xj , yj |b) ∝ − 1

2σ2

n∑
j=1

(yj − |xT
j b|2)2 = −2n

σ2
f(b).

The score equation for the minimization problem in (2.4) is

ũT∇f(β̃ + ũd̂) = 0,

where d̂ = argmind f(β̃ + ũd). By Taylor expansion,

∇f(β̃ + ũd̂)−∇f(β̃) ≈ d̂

[
∂2f(b)

∂b∂bT

]
b=β̃

ũ

≈ σ2

2n
d̂I(β̃)ũ

=
σ2

2n

d̂∇θ(β̃)

∇θ(β̃)TI(β̃)−1∇θ(β̃)
.

Thus we have

0 = ũT∇f(β̃ + ũd̂) ≈ ũT∇f(β̃) +
σ2

2n

d̂

∇θ(β̃)TI(β̃)−1∇θ(β̃)
,

which solves

d̂ ≈ − 2

σ2
∇θ(β̃)T [I(β̃)/n]−1∇f(β̃). (2.5)

Plug (2.5) into (2.4), our corrected estimator is given by

θ̂ = θ(β̃)− 2

σ2
∇θ(β̃)T [I(β̃)/n]−1∇f(β̃). (2.6)

Later we will implement the bias-corrected estimator (2.6) to the case where
θ(β) = eTk β = βk, and demonstrate some nice properties of this estimator. For

consistency, hereinafter we will denote the corrected estimator as β̂ and the
initial estimator as β̃.

Before elaborating the analysis, let us acknowledge one fact. The exact sign
of an individual βk cannot be recovered because the measurements only provide
magnitude information (|xT

j β|2 contaminated with noise). If β̃ is a solution to

the minimization problem (1.2), −β̃ is also a solution. The signal β can be
recovered only up to a global sign. Given an initial estimator β̃, we define β∗

to be whichever in {β,−β} is closer to β̃.

β∗ :=

{
β if ‖β − β̃‖22 ≤ ‖ − β − β̃‖22,
−β otherwise.

We are only interested in gaining information about β∗. This is the best we can
do under model (1.1) in a sense that the global sign can never be retrieved.
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To prepare the proofs in Section 6, we derive formulae to simplify a few
notations here. The average Fisher information matrices at β∗ and β̃ can be
approximated by

I(β∗)/n ≈ 2

σ2
EX,ε

[
2(xT

j β
∗)2xjx

T
j

]
=

4

σ2

(
‖β∗‖22I + 2β∗β∗T ),

I(β̃)/n ≈ 2

σ2
EX,ε

[
2(xT

j β̃)
2xjx

T
j

]
=

4

σ2

(
‖β̃‖22I + 2β̃β̃

T )
. (2.7)

In our specific context, θ(β) = eTk β and ∇θ(β) = ek. If we define

wk = − 2

σ2
[I(β)/n]−1∇θ(β) = −1

2

(
‖β∗‖22I + 2β∗β∗T )−1

ek

= − 1

2‖β∗‖22

(
I − 2β∗β∗T

3‖β∗‖22

)
ek (2.8)

and

w̃k = − 2

σ2
[I(β̃)/n]−1∇θ(β̃) = −1

2

(
‖β̃‖22I + 2β̃β̃

T )−1
ek

= − 1

2‖β̃‖22

(
I − 2β̃β̃

T

3‖β̃‖22

)
ek, (2.9)

the estimator (2.6) can adopt a simpler formula

β̂k = β̃k + w̃T
k ∇f(β̃). (2.10)

Remark 2.1. Equation (2.7) is derived under the assumption that β̃ is in-
dependent from the design vectors {xj}j=1,··· ,n. This assumption is realistic in
certain specially designed procedures. For example, we can randomly split the
i.i.d. data (xj , yj)j=1,··· ,n into two parts. We use the first part to obtain β̃ and
the second part to construct the bias-correction term. The detailed procedure will
be addressed in Section 2.3.

2.3. Data split and swap

In the analysis so far, we implicitly assumed that β̃ is independent from the
design vectors xj ’s and the noises εj ’s, which especially ease the derivation

of (2.7). However, this assumption fails if β̃ is obtained from the same set of
design vectors xj ’s and measurements yj ’s by TWF iterations. To ensure the

independence between β̃ and ({xj}j , {εj}j), we design the three-step procedure.
First, splitting the whole data set randomly into two parts, using the first part
of data (X1,y1) to obtain β̃1 via TWF and using the second part of data
(X2,y2) to debias β̃1; second, swapping the two parts of data, using the second
part to generate β̃2 and the first part to debias β̃2; finally, combining the two
debiased estimators. Theoretically, the required sample size to obtain a good
initial estimator β̃ is different from the required sample size for efficient bias-
correction. But we set the two parts to be of equal size n since the two parts
will be swapped for both purposes.
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3. Theoretical result

In this section, we will establish the asymptotic normality of the bias-corrected
estimator (2.10). And the confidence interval based on this asymptotic distribu-
tion is shown to achieve roughly the preassigned coverage probability. Further-
more, theoretical analysis reveals that the confidence interval has sharp width
and attains approximately the coverage probability simultaneously for all βk.
Note we assume σ is known because in many applications people have a prior
knowledge about the noise level. Even if the noise level is unknown, there are
efficient ways to estimate it, for example, the method proposed in [4]. In the
following, Theorem 3.1 and Theorem 3.2 present some theoretical guarantees
for the data-splitting scheme and the data-swapping scheme, respectively.

Before stating the theorems, we introduce some global assumptions. Suppose
the design matrix and the true signal satisfy (3.1)-(3.3).

n ≥ K(1 +
σ

‖β∗‖22
)2s2 log(np), K is an absolute constant. (3.1)

log p√
ns

= o(1). (3.2)

‖β∗‖2 = O(
√
s). (3.3)

If s � log p, assumptions (3.2) and (3.3) imply assumption (3.1). However,
we do not impose here any restrictions on s. Our method could work in cases
where the signal sparsity is not strong, i.e., there could be many non-zero small
coordinates.

Throughout the rest of the paper, let

ε′n = C1
(log p)

3
2

sn
+ C2

(log p)2

(sn)
3
2

+ C3
log p

(sn)
1
2

+ C4
n

1
2

p2
(3.4)

for some absolute constants C1, C2, C3, C4, and let

ε′′n =
50

n
+ 10e−s +

M logn

np2
(3.5)

for some absolute constant M. It is easy to see that ε′n, ε
′′
n → 0 under assumption

(3.2).

Theorem 3.1 essentially states that under global assumptions (3.1)-(3.2) the

estimator β̂k generated by the data-splitting scheme is approximately asymp-
totic normal centered at the true parameter. The i.i.d. data generated from
model (1.1) are randomly split into two halves, (X1,y1) and (X2,y2). Each half
has a sample size n. We use (X1,y1) to obtain the initial estimator and (X2,y2)
to correct the bias.

Theorem 3.1. Under the data-splitting scheme and assumption (3.3), if the
initial estimator β̃ satisfies the two conditions in (3.6) with probability at least
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1− ε0 for some ε0 = o(1),

supp(β̃) ⊂ S := supp(β∗), ‖β̃ − β∗‖2 ≤ C0σ

‖β∗‖2

√
s log p

n
, (3.6)

we have

P

{∣∣∣√n(β̂k − β∗
k)− Zk

∣∣∣ ≤ ε′n

}
≥ 1− ε0 −

4

n
,

where

Zk = − 1√
n

n∑
j=1

εj(x
T
j β̃)(x

T
j w̃k), (3.7)

and β̂k, w̃k, ε
′
n are given by (2.10), (2.9), (3.4), respectively.

Remark 3.1. In particular, it has been established in [4] that under assumption

(3.1) and with iteration number t 	 log

(
‖β∗‖2

2

√
n

σ
√
s log p

)
, the TWF estimator satisfies

(3.6) with ε0 = 46
n + 10e−s + M log n

np2 . If we choose the TWF estimator as β̃,

under assumptions (3.1) and (3.3), β̂k would achieve

P

{∣∣∣√n(β̂k − β∗
k)− Zk

∣∣∣ ≤ ε′n

}
≥ 1− ε′′n. (3.8)

The assumption (3.2) further implies that both ε′n and ε′′n go to zero as n → ∞.

Therefore, β̂k is approximately normal centered at β∗
k in asymptotics. It is clear

that β̃ is independent from xj’s in our data-splitting regime. Zk has limiting
distribution N(0, σ2τ2k ), where

τ2k = ‖β̃‖22‖w̃k‖22 + 2(β̃
T
w̃k)

2 = ‖β̃‖22‖w̃k‖22 + 2

(
− β̃k

2‖β̃‖22
+

β̃k

3‖β̃‖22

)2

= ‖β̃‖22‖w̃k‖22 +
β̃2
k

18‖β̃‖42

≤
(
‖β∗‖2 + ‖β̃ − β∗‖2

)2[
5

6‖β∗‖22
+O(

‖β̃ − β∗‖2
‖β∗‖32

)

]2
+

1

18‖β̃‖22

	 3

4s
+O(

√
log p

ns3
)

by (3.3), (2.9), (2.2). Such sharp width is uniformly achievable for all coordi-
nates, which allows the possibility of constructing simultaneous confidence in-
tervals. More importantly, the bias term ε′n is of smaller order compared with
τk.

To fully extract information contained in the data, we further apply the
data-swapping scheme and present the corresponding theoretical results in The-
orem 3.2. After randomly splitting the data into two halves, we go through
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two rounds of constructions. In the first round, we obtain the initial estima-
tor β̃1 from (X1,y1), and correct its bias using (X2,y2), resulting in β̂1k =
β̃1k+ w̃T

1k∇f2(β̃1); in the second round, we obtain the initial estimator β̃2 from

(X2,y2) and correct its bias using (X1,y1), resulting in β̂2k = β̃2k+w̃T
2k∇f1(β̃2).

Finally we combine the two estimators in a way that the resulting estimator has
the smallest asymptotic variance. Here

w̃1k := w(β̃1, θ = βk) = −1

2

(
‖β̃1‖22I + 2β̃1β̃

T

1

)−1

ek,

w̃2k := w(β̃2, θ = βk) = −1

2

(
‖β̃2‖22I + 2β̃2β̃

T

2

)−1

ek,

∇f2(β̃1) =
1

n

n∑
j=1

[
(xT

2jβ̃1)
2 − y2j

]
(xT

2jβ̃1)x2j ,

∇f1(β̃2) =
1

n

n∑
j=1

[
(xT

1jβ̃2)
2 − y1j

]
(xT

1jβ̃2)x1j .

Finally we linearly combine β̂1k and β̂2k in a way that the resulting estimator
β̂swap
k has the smallest asymptotic variance. β̂swap

k contains more information of

the data than β̂1k or β̂2k alone.

Theorem 3.2. (i) Under the global assumptions (3.1)-(3.3), the estimator

β̂swap
k =

τ22k
τ21k + τ22k

·
(
β̃1k + w̃T

1k∇f2(β̃1)

)
+

τ21k
τ21k + τ22k

·
(
β̃2k + w̃T

2k∇f1(β̃2)

)

(3.9)
achieves the smallest asymptotic variance among all asymptotically unbiased
estimators that are convex combinations of β̂1k and β̂2k. Furthermore,

P

{∣∣∣∣√n(β̂swap
k − β∗

k)−
(

τ22k
τ21k + τ22k

Z1k +
τ21k

τ21k + τ22k
Z2k

)∣∣∣∣ ≤ ε′n

}
≥ 1− 2ε′′n,

(3.10)

where

Z1k =
1√
n

n∑
j=1

ε2j(x
T
2jβ̃1)(x

T
2jw̃1k),

Z2k =
1√
n

n∑
j=1

ε1j(x
T
1jβ̃2)(x

T
1jw̃2k),

τ21k = ‖β̃1‖22‖w̃1k‖22 + 2(β̃
T

1 w̃1k)
2,

τ22k = ‖β̃2‖22‖w̃2k‖22 + 2(β̃
T

2 w̃2k)
2.
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(ii)

P

{∣∣∣β̂swap
k − β∗

k

∣∣∣ ≤ σr√
n

√
τ21kτ

2
2k

τ21k + τ22k
+O(

1

p2
) +

ε′n√
n

}
≥ 2Φ(r)− 1− 2ε′′n − 2

n
.

(3.11)

(iii)

lim inf
n→∞

P

{
max
k∈[p]

∣∣∣√n(β̂swap
k − β∗

k)
∣∣∣ ≤

√
3

8s
σΦ−1(1− α

2
)

}
≥ 1− α. (3.12)

Remark 3.2. Note, asymptotically, τ21k, τ22k 	 3
4s for all k = 1, · · · , p by Re-

mark 3.1. Hence
τ2
1kτ

2
2k

τ2
1k+τ2

2k
≤ 1

2 max{τ21k, τ22k} ≤ 3
8s . The asymptotic variance of

β̂swap
k is shrunken by a factor of 2 compared to that of β̂1k or β̂2k. The uniformly

bounded variance for all
√
n(β̂swap

k −β∗
k) in (3.12) allows Bonferroni adjustment

to control familywise error rate in simultaneous interval estimation.

We are also able to establish the theoretical guarantee for constructing Scheffe’s
simultaneous confidence intervals using β̂swap

k , which is stated in the following
corollary.

Corollary 3.1. Under the global assumptions (3.1)-(3.3), for ∀h �= 0,h ∈ Rp,
the estimator in (3.9) enjoys the property below.

lim inf
n→∞

P

{∣∣∣hT (β̂
swap − β∗)

∣∣∣ ≤
√

σ2

n
χ2
p,αh

TVh

}
≥ 1− α, (3.13)

where

Vkl =akal

[
‖β̃1‖22(w̃T

1kw̃1l) + 2(β̃
T

1 w̃1k)(β̃
T

1 w̃1l)

]
+

(1− ak)(1− al)

[
‖β̃2‖22(w̃T

2kw̃2l) + 2(β̃
T

2 w̃2k)(β̃
T

2 w̃2l)

]

with ak =
τ2
2k

τ2
1k+τ2

2k
and al =

τ2
2l

τ2
1l+τ2

2l
.

A key point to the success of β̂swap
k is that its bias is of smaller order than the

corresponding standard deviation. And hence β̂swap
k would center at β∗

k with an
approximately normal distribution in asymptotics. To avoid redundancy, we will
not go through the case where the targeting parameter is a linear combination
of the signal coordinates, θ(β) = a�β. The construction procedure is almost
identical to what aforementioned except that ek is replaced by a ∈ RP .

4. Numerical simulation

In this section, we implement our method in a variety of settings to assess
its empirical performance. Moreover, by comparing the simulation results in
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different combinations of sparsity (s), sample size (2n), and noise-to-signal ratio
(NSR) σ2/‖β‖22, we get a general idea about how on those factors affect the
performance.

Throughout our simulation, we set the signal dimension p = 1000. All the
tuning parameters in the TWF algorithm are chosen according to [4] and kept
fixed. In each choice of (n, s, NSR), we generate the signal β by randomly picking
the support and assigning i.i.d. N(0, 1) to the coordinates on support. Among
these nonzero coordinates, there are a few large coordinates (βk ≈ 3), some
median coordinates ((βk ≈ 1), and some small coordinates (βk ≈ 0.1). Later
we will differentiate the performances of our method in cases of large, median,
and small coordinates, respectively. Given this β, the following procedure is
repeated independently for 100 times: first, generating 2n random vectors xj ’s
i.i.d. N(0, I), 2n noises εj ’s i.i.d. N(0, σ2), and the measurements y by (1.1);
second, obtaining the TWF estimator using the whole dataset (X,y) and record
the errors β̃k − β∗

k of four large coordinates (|β∗
k | ≈ 3), four median coordinates

(|β∗
k | ≈ 1), and four small coordinates (|β∗

k | ≈ 0.1); third, implementing the

data-swap scheme, obtaining the debiased TWF β̂
swap

, and recording the errors
β̂swap
k − β∗

k of the four large/median/small coordinates, respectively. Therefore,
every summary statistic in Table 1 comes from a pool of 400 errors (100 times
× 4 coordinates) and each histogram in Figure 1, Figure 2, Figure 3 represents
the distribution of a pool of 400 errors. While the average coverage probability
in Table 2 is calculated based on all coordinates.

The performance of our method is assessed in terms of several aspects, in-
cluding biasness (Table 1), variance (Table 1), asymptotic normality (Figure 1,
Figure 2, Figure 3), and coverage probability (Table 2).

Judging from Table 1 (“mae” stands for “median absolute error”), debiased
TWF achieves close-to-zero average bias at the cost of slightly larger variance
than TWF in all settings except when sparsity s is too large (s=200) or sample
size 2n is too small (n=2000). The reason behind such phenomenon could be as
follows. The bias-correction term with non-zero mean is supposed to neutralize
the bias of TWF. Though it brings extra variance, the amount of this extra
variance is negligible as long as n is large enough. Nevertheless, when n is small
or s is large, the bias-correction term does not concentrate tightly around its
mean. Instead of neutralizing the bias of TWF, it adds extra bias and much
larger variance. Table 1 also exhibits a parallel trend between TWF and debiased
TWF that their bias and variance get larger as s/NSR increases or n decreases.
This is because the performance of debiased TWF depends on the quality of
TWF while TWF gets worse as s/NSR increases or n decreases, which has been
demonstrated in the original paper [4]. Although there are two abnormal cases
(s=200 and n=2000) in Table 1 where the debiased TWF fails, our main theory
(Theorem 3.2) is not violated because the (s, n, p) in these cases are largely
deviated from assumption (3.1) and (3.2).

Figure 1, Figure 2, and Figure 3 demonstrate the unbiasedness and approx-
imate normality of the debiased TWF in all settings. Figure 1 explores the
relationship between the sparsity s and the quality of debiased TWF by fix-
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Fig 1. From left to right, plots correspond to simulation settings (n=3000, s=50, NSR=0.3),
(n=3000, s=100, NSR=0.3), (n=3000, s=150, NSR=0.3), (n=3000, s=200, NSR=0.3) with
p=1000 fixed.
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Fig 2. From left to right, plots correspond to simulation settings (n=2000, s=100, NSR=0.3),
(n=3000, s=100, NSR=0.3), (n=4000, s=100, NSR=0.3), (n=5000, s=100, NSR=0.3) with
p=1000 fixed.
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Fig 3. From left to right, plots correspond to simulation settings (n=3000, s=100, NSR=0.2),
(n=3000, s=100, NSR=0.3), (n=3000, s=100, NSR=0.4), (n=3000, s=100, NSR=0.5) with
p=1000 fixed.
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Table 1

Summary statistics of TWF errors and debiased TWF errors for large βk, median βk, and
small βk under various simulation settings.

large coordinates median coordinates small coordinates
n s NSR TWF de-TWF TWF de-TWF TWF de-TWF

3000 50 0.3 bias 0.0108 0.0016 0.0421 0.0017 -0.0607 0.0020
sd 0.0174 0.0203 0.0186 0.0216 0.0188 0.0226
mae 0.0144 0.0135 0.0415 0.0155 0.0604 0.0151

3000 100 0.3 bias 0.0367 -0.0061 0.0573 -0.0054 -0.0872 0.0054
sd 0.0295 0.0838 0.0291 0.0540 0.0173 0.0513
mae 0.0375 0.0316 0.0567 0.0311 0.0987 0.0353

3000 150 0.3 bias -0.0370 -0.0359 -0.0928 0.0475 0.0975 0.0025
sd 0.0483 0.1495 0.0498 0.1287 0.0084 0.1346
mae 0.0442 0.0838 0.0921 0.0992 0.1000 0.0939

3000 200 0.3 bias 0.1007 0.2577 0.1197 -0.0474 -0.0989 0.0153
sd 0.0679 0.3521 0.0681 0.2335 0.0068 0.2175
mae 0.0976 0.2857 0.1209 0.1630 0.1000 0.1523

2000 100 0.3 bias 0.0481 -0.0271 0.0844 -0.0128 -0.0972 -0.0143
sd 0.0457 0.4064 0.0475 0.2029 0.0091 0.1421
mae 0.0503 0.1264 0.0840 0.1179 0.1000 0.0986

4000 100 0.3 bias -0.0216 -0.0021 -0.0499 0.0027 0.0780 -0.0044
sd 0.0247 0.0311 0.0252 0.0331 0.0205 0.0350
mae 0.0255 0.0223 0.0498 0.0241 0.0798 0.0248

5000 100 0.3 bias 0.0288 0.0018 0.0362 -0.0017 -0.0625 0.0037
sd 0.0193 0.0227 0.0192 0.0233 0.0190 0.0236
mae 0.0282 0.0156 0.0362 0.0154 0.0624 0.0159

3000 100 0.2 bias -0.0229 0.0078 -0.0410 -0.0014 0.0662 -0.0050
sd 0.0196 0.0848 0.0210 0.0521 0.0209 0.0380
mae 0.0242 0.0221 0.0408 0.0251 0.0678 0.0243

3000 100 0.4 bias -0.0346 -0.0083 -0.0827 0.0140 0.0953 -0.0081
sd 0.0425 0.0594 0.0418 0.0585 0.0137 0.0634
mae 0.0380 0.0420 0.0841 0.0425 0.1000 0.0412

3000 100 0.5 bias -0.0462 -0.0076 -0.0980 0.0141 0.0972 -0.0082
sd 0.0480 0.0630 0.0507 0.0685 0.0097 0.0707
mae 0.0494 0.0445 0.0965 0.0438 0.1000 0.0487

ing p=1000, n=3000, NSR=0.3 while varying s=50, 100, 150, 200 from left to
right. The normality and unbiasedness hold better in small s. Besides, the dis-
tributions spread wider as s increases in every row. Such phenomenon is not
surprising because the asymptotic unbiasedness and normality of β̂swap

k rely on

that
√
n‖Δ‖2

2

‖β∗‖2
is asymptotically negligible. When s increases to an extend that

the assumption is violated, the quality of β̃ drops and ‖Δ‖2 = ‖β̃−β∗‖2 cannot
be controlled. Similarly, the errors of debiased TWF distribute more Gaussian
and spread narrower as n increases in Figure 2 or as NSR decreases in Figure 3.

When checking the accuracy of Theorem 3.2 (ii), we use the confidence inter-

val

(
β̂swap
k − σΦ−1(0.98)√

n

√
τ2
1kτ

2
2k

τ2
1k+τ2

2k
, β̂swap

k − σΦ−1(0.98)√
n

√
τ2
1kτ

2
2k

τ2
1k+τ2

2k

)
. For each set-

ting, a new β is generated, and we repeat constructing the confidence interval for
200 times with independently generated (X, ε,y). Note, the theoretic coverage
probability is 2× 0.98− 1− 102

n , in which we count the term ε′′n. In asymptotics
the term ε′′n is negligible, yet in our simulation 102

n ∈ (1.36%, 2%). Therefore, the
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Table 2

Mean coverage probabilities of the confidence interval in Theorem 3.2 under various settings.

n s σ all coor large coor median coor small coor
5000 40 5 92.86 92.50 94.75 93.25
6000 40 5 93.29 93.63 92.63 94.38
6000 50 5 92.78 93.00 92.63 94.25
7500 50 5 93.42 93.88 92.88 93.25
5000 40 10 92.91 92.38 94.13 92.38
6000 40 10 93.66 92.75 94.75 93.25
6000 50 10 92.59 92.25 92.25 91.63
7500 50 10 93.42 93.88 93.88 95.13

theoretic coverage probabilities are ranging from 94% to 94.64% depending on
the variation of n. Table 2 shows that most average coverage probabilities are
slightly below their theoretical values. The reason for this phenomenon lies in

the extra term
ε′n√
n
in Theorem 3.2 (ii). Again, in asymptotics

ε′n√
n
is negligible

compared to σr√
n

√
τ2
1kτ

2
2k

τ2
1k+τ2

2k
, but in our simulation these two terms are of the same

order. Thus, leaving the term
ε′n√
n
out has diminished the coverage probability to

certain extend. Despite this flaw, the results in Table 2 imply that Theorem 3.2
(ii) is informative of the actual performance of the debiased TWF. We can see
the general trends: the average coverage probabilities get better as n increases
or s decreases, and not sensitive to σ.

5. Discussion

We propose in this work a general approach for drawing statistical inferences on
the sparse signal in phase retrieval. A new estimator β̂swap

k for the individual
signal coordinate βk has been constructed by adding a bias-correction term
to the TWF estimator. Under mild assumptions on X and β and sample size
requirement (3.2), β̂swap

k has asymptotic Gaussian distribution centered at β∗
k .

This property allows construction of confidence intervals with approximately
preassigned probabilities as well as hypothesis testing on the signal of interest.
Our new estimator can also be used as a point estimator. Compared with the
plain TWF estimator, β̂swap

k achieves asymptotic unbiasness at the cost of a
slightly larger variance.

There remain some open problems. For instance, can we draw statistical
inferences on more complicated functions of β, such as a group of coordinates
(similar to that in [23]) or a multidimensional-valued function? Can this method
be extended to Fourier designs, which are more applicable? The former is diffi-
cult since it involves non-convex optimization over matrices. The later is even
more challenging since the Fourier phase retrieval problem is generally consid-
ered not solved. And hence we do not have an initial estimator available yet. In
summary, there is still long way to go before the Fourier phase retrieval problem
is solved and related statistical inferences can be drawn.
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6. Proofs

Proof of Theorem 3.1.

For the objective function (1.2), we have

∇f(β̃) =
1

n

n∑
j=1

[
(xT

j β̃)
2 − yj

]
(xT

j β̃)xj .

Let Δ = β̃ − β∗, and β̂k − β∗
k can be decomposed as

β̂k − β∗
k = β̃k − β∗

k + w̃T
k ∇f(β̃)

= eTkΔ+
1

n

n∑
j=1

[
(xT

j β̃)
2 − yj

]
(xT

j β̃)(x
T
j w̃k)

= eTkΔ+
1

n

n∑
j=1

(xT
j Δ)3(xT

j w̃k) +
3

n

n∑
j=1

(xT
j Δ)2(xT

j w̃k)(x
T
j β

∗)

+
2

n

n∑
j=1

(xT
j Δ)(xT

j w̃k)(x
T
j β

∗)2 − 1

n

n∑
j=1

εj(x
T
j β̃)(x

T
j w̃k)

= eTkΔ+
2

n

n∑
j=1

(xT
j Δ)(xT

j wk)(x
T
j β

∗)2 +
2

n

n∑
j=1

(xT
j Δ)

[
xT
j (w̃k −wk)

]
(xT

j β
∗)2

+
1

n

n∑
j=1

(xT
j Δ)3(xT

j w̃k) +
3

n

n∑
j=1

(xT
j Δ)2(xT

j w̃k)(x
T
j β

∗)

− 1

n

n∑
j=1

εj(x
T
j β̃)(x

T
j w̃k). (6.1)

We will bound these terms separately.
By (3.6), we have supp(Δ) ⊆ S with high probability. Since

wk = −1

2

(
‖β∗‖22I + 2β∗β∗T )−1

ek

= − 1

2‖β∗‖22
(
I − 2

3

β∗

‖β∗‖2
β∗T

‖β∗‖2
)
ek

= − 1

2‖β∗‖22
ek +

β∗
k

3‖β∗‖42
β∗,

supp(wk) ⊆ S ∪ {k}. Similarly, supp(w̃k) ⊆ S ∪ {k}. Let S̄ = S ∪ {k}.
The fact that the supports of Δ, wk and w̃k are inside S̄ grants the applicability
of Lemma A.1 here, which implies∣∣∣∣∣∣wT

k

(
1

n

n∑
j=1

(xT
j β

∗)2xjx
T
j − (‖β∗‖22I + 2β∗β∗T )

)
Δ

∣∣∣∣∣∣
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=

∣∣∣∣∣∣wT
k

(
1

n

n∑
j=1

(xT
j β

∗)2xj S̄xj
T
S̄ − (‖β∗‖22IS̄ + 2β∗β∗T )

)
Δ

∣∣∣∣∣∣ ≤ δ‖β∗‖22‖Δ‖2‖wk‖2

(6.2)

with probability at least 1− 1
n , provided n ≥ C(δ)(s+ 1) log(s+ 1). Here C(δ)

is constant only depending on δ, and IS̄ is a diagonal matrix with the diagonal
elements in S̄ equal to 1 and others equal to 0.
By (2.8) and simple algebra, we have

eTkΔ+ 2wT
k (‖β∗‖22IS̄ + 2β∗β∗T )Δ = 0.

Combining the above two formulae, the first two terms in (6.1) can be bounded
by ∣∣∣∣∣∣eTkΔ+

2

n

n∑
j=1

(xT
j Δ)(xT

j wk)(x
T
j β

∗)2

∣∣∣∣∣∣ ≤ δ‖β∗‖22‖Δ‖2‖wk‖2 (6.3)

with high probability if n ≥ C(δ)(s+ 1) log(s+ 1).
By similar argument, we have∣∣∣∣∣∣w̃T

k

(
1

n

n∑
j=1

(xT
j Δ)2xjx

T
j − (‖Δ‖22I + 2ΔΔT )

)
Δ

∣∣∣∣∣∣ ≤ δ‖Δ‖32‖w̃k‖2

with probability at least 1 − 1
n if n ≥ C(δ)(s + 1) log(s + 1). Thus, the fourth

term in (6.1) is bounded by∣∣∣∣∣∣
1

n

n∑
j=1

(xT
j Δ)3(xT

j w̃k)

∣∣∣∣∣∣ ≤ 3‖Δ‖22|ΔT w̃k|+ δ‖Δ‖32‖w̃k‖2

≤ 3‖Δ‖32‖w̃k‖2 + δ‖Δ‖32‖w̃k‖2 (6.4)

with high probability.
Again via similar reasoning, the fifth term in (6.1) falls within 3‖Δ‖22(w̃T

k β
∗)+

6(ΔT w̃k)(Δ
Tβ∗)±3δ‖Δ‖22‖w̃k‖2‖β∗‖2 with probability at least 1− 1

n provided
n ≥ C(δ)(s+ 1) log(s+ 1). And we bound it by∣∣∣∣∣∣

3

n

n∑
j=1

(xT
j Δ)2(xT

j w̃k)(x
T
j β

∗)

∣∣∣∣∣∣
≤3‖Δ‖22|w̃T

k β
∗|+ 6|ΔT w̃k||ΔTβ∗|+ 3δ‖Δ‖22‖w̃k‖2‖β∗‖2

≤9‖Δ‖22‖w̃k‖2‖β∗‖2 + 3δ‖Δ‖22‖w̃k‖2‖β∗‖2. (6.5)

The derivations of (6.3)-(6.5) require a common condition n ≥ C(δ)(s+1) log(s+
1) with exactly the same C(δ).



Constructing confidence intervals in sparse phase retrieval 805

Next, we deal with the third term in (6.1).

1

n

n∑
j=1

(xT
j Δ)

[
xT
j (w̃k −wk)

]
(xT

j β
∗)2

=ΔT

(
1

n

n∑
j=1

(xT
j β

∗)2xjx
T
j − (‖β∗‖22I + 2β∗β∗T )

)
(w̃k −wk)

+‖β∗‖22ΔT (w̃k −wk) + 2(β∗TΔ)

(
β∗T (w̃k −wk)

)
.

Applying Lemma A.1 one more time, the third term falls within

‖β∗‖22ΔT (w̃k −wk) + 2(β∗TΔ)

(
β∗T (w̃k −wk)

)
± δ‖β∗‖22‖Δ‖2‖w̃k −wk‖2

with probability at least 1− 1
n , given n ≥ C(δ)(s+1) log(s+1). The magnitude

of ‖w̃k −wk‖2 in terms of ‖β∗‖2 and ‖Δ‖2 can be estimated by

w̃k −wk =
1

2

(
1

‖β∗‖22
− 1

‖β̃‖22

)
ek +

β̃k

3‖β̃‖42
Δ+

1

3

(
β̃k

‖β̃‖42
− β∗

k

‖β∗‖42

)
β∗,

‖w̃k −wk‖2 ≤ 1

2

∣∣∣∣∣ 1

‖β∗‖22
− 1

‖β̃‖22

∣∣∣∣∣+ |β̃k|
3‖β̃‖42

‖Δ‖2 +
1

3

∣∣∣∣∣ β̃k

‖β̃‖42
− β∗

k

‖β∗‖42

∣∣∣∣∣ ‖β∗‖2

= O(
‖Δ‖2
‖β∗‖32

). (6.6)

The last equality is because∣∣∣∣∣ 1

‖β∗‖22
− 1

‖β̃‖22

∣∣∣∣∣ = ‖β∗ +Δ‖22 − ‖β∗‖22
‖β∗‖22‖β̃‖22

≤ 2‖β∗‖2‖Δ‖2 + ‖Δ‖22
‖β∗‖22‖β̃‖22

= O(
‖Δ‖2
‖β∗‖32

),

and ∣∣∣∣∣ β̃k

‖β̃‖42
− β∗

k

‖β∗‖42

∣∣∣∣∣ = 1

‖β∗‖42‖β̃‖42

∣∣∣‖β∗‖42β̃k − ‖β̃‖42β∗
k

∣∣∣

≤ ‖β∗‖42|β̃k − β∗
k |

‖β∗‖42‖β̃‖42
+

∣∣∣‖β̃‖42 − ‖β∗‖42
∣∣∣ |β∗

k |

‖β∗‖42‖β̃‖42

≤ ‖Δ‖2
‖β̃‖42

+

(
‖β∗‖2 + ‖Δ‖2

)4

− ‖β∗‖42

‖β∗‖32‖β̃‖42

≤ O(
‖Δ‖2
‖β∗‖32

).



806 Y. Yao

Therefore, we bound the third term in (6.1) by∣∣∣∣∣∣
2

n

n∑
j=1

(xT
j Δ)

[
xT
j (w̃k −wk)

]
(xT

j β
∗)2

∣∣∣∣∣∣
≤3‖β∗‖22‖Δ‖2‖w̃k −wk‖2 + δ‖β∗‖22‖Δ‖2‖w̃k −wk‖2

=3‖β∗‖22 ·O(
‖Δ‖22
‖β∗‖32

) + δ‖β∗‖22 ·O(
‖Δ‖22
‖β∗‖32

). (6.7)

The term ‖w̃k‖2 appears in (6.4) and (6.5), and needs to be bounded. By (2.8)
and (6.6),

‖wk‖2 ≤ 1

2‖β∗‖22
+

β∗
k

3‖β∗‖32
≤ 1

2‖β∗‖22
+

1

3‖β∗‖22
≤ 5

6‖β∗‖22
,

‖w̃k‖2 ≤ ‖wk‖2 +O(
‖Δ‖2
‖β∗‖32

)

≤ 5

6‖β∗‖22
+O(

‖Δ‖2
‖β∗‖32

).

So far, the terms that differ β̂k − β∗
k from − 1

n

∑n
j=1 εj(x

T
j β̃)(x

T
j w̃k) (an

asymptotically normal random variable) have been concentrated around their
means with the concentration errors associated with δ. We can set δ = 1

p2 so

that all concentration errors vanish in an order faster than
√
n

p2 . And we can
just ignore these terms. The only thing left to check is whether these mean
terms are negligible after multiplying by

√
n, i.e. to show that

√
n(β̂k − β∗

k) is
approximately normal as n → ∞. The goal is to show∣∣∣√n(β̂k − β∗

k)− Zk

∣∣∣ = op(1).

Under assumption (3.1), n ≥ C( 1
p2 )(s + 1) log(s + 1) holds. Thus, by (6.1),

(6.3)-(6.5), (6.7), and (3.7), we have with probability at least 1− 4
n ,∣∣∣√n(β̂k − β∗

k)− Zk

∣∣∣
≤
√
n

(
3‖Δ‖32‖w̃k‖2 + 9‖Δ‖22‖w̃k‖2‖β∗‖2 + 3‖β∗‖22 ·O(

‖Δ‖22
‖β∗‖32

)

)
+O(

√
n

p2
)

≤
√
n

(
5

2

‖Δ‖32
‖β∗‖22

+O(
‖Δ‖42
‖β∗‖32

) +
15

2

‖Δ‖22
‖β∗‖2

+O(
‖Δ‖32
‖β∗‖22

) +O(
‖Δ‖22
‖β∗‖2

)

)
+O(

√
n

p2
).

(6.8)

Here C( 1
p2 ) is a constant only depending on 1

p2 . Together with (3.6), we obtain∣∣∣√n(β̂k − β∗
k)− Zk

∣∣∣
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≤C1
σ3

‖β∗‖52
s log p

√
s log p

n
+ C2

σ4

‖β∗‖72
s2(log p)2

n
√
n

+ C3
σ2

‖β∗‖32
s log p√

n
+ C4

√
n

p2

(6.9)

with probability at least 1− ε0− 4
n . Plugging in ‖β∗‖2 = O(

√
s), the right hand

side of (6.9) becomes C ′
1
(log p)

3
2

sn + C ′
2
(log p)2

(sn)
3
2

+ C ′
3

log p

(sn)
1
2
+ C ′

4
n

1
2

p2 , which is equal

to ε′n.

Proof of Theorem 3.2.

(i) It is intuitive that a reasonable estimator would combine β̂1k and β̂2k

so as to integrate both pieces of information. We know that Z1k and Z2k have
asymptotic variances σ2τ21k and σ2τ22k, respectively. By Theorem 3.1 and Remark
3.1,

β̂1k := β∗
k +

Z1k√
n

+ op(
στ1k√

n
) = β∗

k +N(0,
σ2τ21k
n

) + op(
στ1k√

n
),

β̂2k := β∗
k +

Z2k√
n

+ op(
στ2k√

n
) = β∗

k +N(0,
σ2τ22k
n

) + op(
στ2k√

n
).

Judging from these two formulae, any convex combination of β̂1k and β̂2k re-
mains asymptotically unbiased (has asymptotic mean equal to β∗

k) and possibly
attain a smaller asymptotic variance. Suppose we have the final estimator given
by

β̂swap
k = aβ̂1k + (1− a)β̂2k for a ∈ (0, 1),

then
√
n(β̂swap

k − β∗
k) = a · Z1k + (1− a) · Z2k + op(1).

It is easy to verify that cov(Z1k, Z2k) = 0, and hence the asymptotic variance

of β̂swap
k is σ2

(
a2τ21k + (1 − a)2τ22k

)
, which is a quadratic form in a. When

a =
τ2
2k

τ2
1k+τ2

2k
, the asymptotic variance attains minimum, in which case β̂swap

k has

approximately asymptotic distribution N(0, σ2 τ2
1kτ

2
2k

τ2
1k+τ2

2k
).

(ii) Let a =
τ2
2k

τ2
1k+τ2

2k
. By Lemma A.1, for n satisfying (3.1),

P

{
a2

∣∣∣∣V ar(Z1k)

σ2
− τ21k

∣∣∣∣ ≤ a2

p2
‖β̃1‖22‖w̃1k‖22

}
≥ 1− 1

n
,

P

{
(1− a)2

∣∣∣∣V ar(Z2k)

σ2
− τ22k

∣∣∣∣ ≤ (1− a)2

p2
‖β̃2‖22‖w̃2k‖22

}
≥ 1− 1

n
.

Let Zswap
k = a · Z1k + (1− a) · Z2k, then

P

{∣∣∣∣V ar(Zswap
k )

σ2
− a2τ21k − (1− a)2τ22k

∣∣∣∣ ≤ U(a)

}
≥ 1− 2

n
, (6.10)
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where

U(a) =
1

p2

(
a2‖β̃1‖22‖w̃1k‖22 + (1− a)2‖β̃2‖22‖w̃2k‖22

)
.

Similar to the argument in Theorem 3.1,

‖β̃1‖22‖w̃1k‖22 ≤
(
‖β∗‖2 + 2‖Δ‖2

)2(
5

6‖β∗‖22
+O(

‖Δ‖2
‖β∗‖32

)

)2

	 25

36s
+O(

√
log p

ns3
). (6.11)

Plugging (6.11) into (6.10), together with the fact a2 + (1− a)2 ≤ 1
2 , we have

P

{∣∣∣∣V ar(Zswap
k )

σ2
− a2τ21k − (1− a)2τ22k

∣∣∣∣ ≤ 1

p2

(
25

72s
+O(

√
log p

ns3
)

)}
≥ 1− 2

n
.

Further plugging in the value of a,

P

{
V ar(Zswap

k ) ≤ σ2 τ21kτ
2
2k

τ21k + τ22k
+O(

1

p2
)

}
≥ 1− 2

n
.

By (3.9), we get

P

{∣∣∣β̂swap
k − β∗

k

∣∣∣ ≤ 1√
n
|Zswap

k |+ ε′n√
n

}
≥ 1− 2ε′′n.

Let Φ(·) be the cumulative distribution function of standard normal distribution,
for ∀r > 0,

P

{
1√
n
|Zswap

k | ≤ r
√
V ar(Zswap

k )√
n

}
= 2Φ(r)− 1.

The above three formulae imply (3.11), which means the interval

(
β̂swap
k −

σr√
n

√
τ2
1kτ

2
2k

τ2
1k+τ2

2k
+

ε′n√
n
, β̂swap

k − σr√
n

√
τ2
1kτ

2
2k

τ2
1k+τ2

2k
+

ε′n√
n

)
has asymptotic coverage prob-

ability at least 2Φ(r)− 1.

(iii) By Remark 3.1,
τ2
1kτ

2
2k

τ2
1k+τ2

2k
≤ 1

2 max{τ21k, τ22k} 	 3
8s + O(

√
log p
ns3 ) for all

k = 1, 2, · · · , p. Plus (3.11) holds uniformly over k, we obtain

lim inf
n→∞

P

{
max
k∈[p]

∣∣∣√n(β̂swap
k − β∗

k)
∣∣∣ ≤

√
3

8s
σr

}
≥ 2φ(r)− 1,

and then replace r by Φ(1− α
2 ).
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Proof of Corollary 3.1

It is easy to verify that the asymptotic distribution of β̂
swap

is multinormal

N(β∗, σ2

n V), where

Vkl =
1

σ2
Cov(Zswap

k , Z̃l) =
1

σ2
Cov

(
akZ1k + (1− ak)Z2k, alZ1l + (1− al)Z2l

)

=
1

σ2

[
akalCov(Z1k, Z1l) + (1− ak)(1− al)Cov(Z2k, Z2l)

]

= akal

[
‖β̃1‖22(w̃T

1kw̃1l) + 2(β̃
T

1 w̃1k)(β̃
T

1 w̃1l)

]

+ (1− ak)(1− al)

[
‖β̃2‖22(w̃T

2kw̃2l) + 2(β̃
T

2 w̃2k)(β̃
T

2 w̃2l)

]
.

By linear algebra,

sup
h
=0,h∈Rp

∣∣∣hT (β̂
swap − β∗)

∣∣∣2
hTVh

= (β̂
swap − β∗)TV−1(β̂

swap − β∗)
d−→ σ2

n
χ2
p.

Therefore, the coverage probability in the worst direction is bounded below,

lim inf
n→∞

P

{
sup

h
=0,h∈Rp

∣∣∣hT (β̂
swap − β∗)

∣∣∣2
hT (σ

2V
n )h

≤ χ2
p,α

}
≥ 1− α.

It further implies, for ∀h �= 0, h ∈ Rp,

lim inf
n→∞

P

{∣∣∣hT (β̂
swap − β∗)

∣∣∣ ≤
√

σ2

n
χ2
p,αh

TVh

}
≥ 1− α.

Appendix A: Appendix section

The theorem and lemma below are stated and proved in [4].

Theorem A.1. [4] Suppose the tuning parameters in the thresholded Wirtinger
algorithm are suitably chosen, and the sample size n ≥ K(1 + σ

‖β‖2
2
)2s2 log(np)

for some absolute constant K > 0, Let S = support(β), then

inf
‖β‖0=s

P(X,y|β)

{
supp(β̃

(t)
) ⊆ S and

min
i=0,1

‖β̃(t)−(−1)iβ‖2≤
1

6
(1− w

16
)t‖β∗‖2+C

σ

‖β∗‖2

√
s log p

n

}

> 1− 46

n
−10e−s− t

np2
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for some absolute constant C > 0, where w is the gradient descent step size.

When σ
‖β∗‖2

2
= o(

√
n

logn ) and is unknown, we can estimate ‖β∗‖22 by

φ2 := ‖̂β∗‖22 =
1

n

n∑
j=0

yj

and define

σ̂ =

√√√√(
1

n

n∑
j=0

y2j )− 3φ4.

Then with probability at least 1− 1
n , there holds σ̂

φ2 	 σ
‖β∗‖2

2
. If the sample size

n ≥ K(1 + σ̂
φ2 )

2s2 log(np), the the above claim holds with the first term on the

right hand side 46
n replaced by 47

n .

Lemma A.1. [4] Suppose xj are i.i.d. N(0, Ip×p). Then on an event with prob-
ability at least 1− 1

n , we have∥∥∥∥∥∥
1

n

n∑
j=1

(xT
j b)

2xj S̄xj
T
S̄ − (‖b‖22IS̄ + 2bbT )

∥∥∥∥∥∥ ≤ δ‖b‖22

provided n ≥ C(δ)s log s, where C(δ) is constant only depending on δ. Here, IS
is a diagonal matrix with the diagonal elements in S equal to 1, whereas others
equal to 0. And supp(b) ⊂ S.
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