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Abstract: Let Z := {Zt, t ≥ 0} be a stationary Gaussian process. We

study two estimators of E[Z2
0 ], namely f̂T (Z) := 1

T

∫ T
0 Z2

t dt, and f̃n(Z) :=
1
n

∑n
i=1 Z

2
ti
, where ti = iΔn, i = 0, 1, . . . , n, Δn → 0 and Tn := nΔn →

∞. We prove that the two estimators are strongly consistent and estab-
lish Berry-Esseen bounds for a central limit theorem involving f̂T (Z) and

f̃n(Z). We apply these results to asymptotically stationary Gaussian pro-
cesses and estimate the drift parameter for Gaussian Ornstein-Uhlenbeck
processes.
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1. Introduction

Statistical inference for stochastic processes is of great importance for theoreti-
cians and practitioners alike. While for some processes like Itô-type diffusions
and semimartingales, there is extensive literature, the statistical analysis for
fractional Gaussian processes is relatively recent.

In this paper, we are interested in the parametric estimation of the variance
of stationary Gaussian process which is not necessarily a semimartingale. Let
Z = {Zt, t ≥ 0} be a continuous centered stationary Gaussian process and
fZ := E(Z2

0 ) > 0. We consider the following estimators of fZ :

• When a complete path of the process over a large finite interval is observ-
able, we use the estimator:

f̂T (Z) :=
1

T

∫ T

0

Z2
t dt, T > 0. (1.1)

• A more practical assumption is that the process Z is observed at discrete
time instants ti = iΔn, where i = 0, . . . , n and Δn is the step size. Then we
consider the following estimator over the observation window Tn := nΔn:

f̃n(Z) :=
1

n

n∑
i=1

Z2
ti , n ≥ 1. (1.2)

These estimators are unbiased and we show that they are strongly consistent
and admit a central limit theorem. Moreover, we bound the rate of convergence
to the normal distribution in terms of total variation distance and Wasserstein
distance. Recall that, for two random variables X and Y , the former metrics
are respectively given by

dTV (X,Y ) := sup
A∈B(R)

|P [X ∈ A]− P [Y ∈ A]| , (1.3)

where the supremum is over all Borel sets, and

dW (X,Y ) := sup
f∈Lip(1)

|E[f(X)]− E[f(Y )]| , (1.4)
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where Lip(1) is the set of all Lipschitz functions with Lipschitz constant � 1.

Let ρ(t) = ρ(−t) := E[Z0Zt] for t ≥ 0. The central result for f̂T (Z), whose
proof follows the lines of the approach developed in [28, Chapter 7], is the
following.

Theorem 1.1. Assume
∫
R
ρ2(r)dr < ∞. Let N ∼ N (0, 1) be the standard

normal random variable. Then for all T > 0,

dTV

⎛⎝ f̂T (Z)− fZ√
V ar(f̂T (Z)− fZ)

,N

⎞⎠ ≤ ϕT (Z), (1.5)

where

ϕT (Z) = Cmax

⎧⎨⎩ 8√
T

(∫ T

−T

|ρ(t)|3/2dt
)2

,
48

T

(∫ T

−T

|ρ(t)|4/3dt
)3

⎫⎬⎭ , (1.6)

for some absolute constant C > 0. The same result holds for the Wasserstein
distance.

For the discrete estimator f̃n(Z) we have that:

Theorem 1.2. Assume
∫
R
ρ2(r)dr < ∞ and that

E[|Zt − Zs|2] ≤ c|t− s|2α

for some c > 0 and α ∈ (0, 1) and when |t−s| is small enough. Let N ∼ N (0, 1)
be the standard normal random variable. If Δn → 0 and nΔn → ∞ as n → ∞,
then there is C > 0 such that, for every n ≥ 1,

dTV

⎛⎝ f̃n(Z)− fZ√
V ar(f̃n(Z)− fZ)

,N

⎞⎠
≤ ϕTn(Z) + 2

∣∣∣∣∣1− V ar(f̂Tn(Z)− fZ)

V ar(f̃n(Z)− fZ)

∣∣∣∣∣+ C
[
nΔ2α+1

n

]1/4
,

where ϕTn(Z) satisfies (1.6). The same result holds for the Wasserstein distance.

Thanks to the robustness of our approach, we can extend Theorem 1.1 and
Theorem 1.2 to the case when the process is only an asymptotically stationary
Gaussian process. In particular we prove the rate of convergence of the second
moment estimators for X := Z+Y , where Z is the stationary Gaussian process
as above and Y is a stochastic process with ‖Yt‖L1 = O(t−γ) for some absolute

γ > 1. The bounds will be the same up to an extra term CT (1−γ)/2 (or CT
(1−γ)/2
n

for the discrete case).
Moreover, we explore applications to drift estimation for the Ornstein-Uhlen-

beck process. Let Xθ = (Xθ
t )t≥0 be an ergodic type Gaussian Ornstein-Uhlen-

beck process given by the differential equation

dXθ
t = −θXθ

t dt+ dGt, Xθ
0 = 0,



Berry-Esseen bounds for Gaussian process estimators 639

where θ is the drift parameter and (Gt)t≥0 is an arbitrary mean-zero Gaussian
process. One can show that Xθ is asymptotically stationary and write Xθ =
Zθ + Y θ where Zθ is a stationary Gaussian process and ‖Yt‖L1 = O(t−γ) for

any γ > 1. Then we provide Berry-Esseen bounds for the estimators θ̂T :=

gZθ

(
f̂T (X

θ)
)
and θ̃n := gZθ

(
f̃n(X

θ)
)
. The function gZθ is given via g−1

Zθ (θ) =

E[(Zθ
0 )

2] and f̂T , f̃n are as in (1.1) and (1.2). Concrete bounds are computed for
the cases when the process Xθ is of the first and second kind, i.e., when (Gt)t≥0

is a particular Gaussian process, following the terminology in [22].

Parameter estimation for stationary Gaussian process is usually done via the
Maximum likelihood estimator because of its asymptotic optimality, see [35]
and [34]. For instance, the MLE estimator of a stationary ARMA process is
strongly consistent and asymptotically efficient [5, Section 10.8]. The method
of moments is more computationally tractable especially when one considers
discrete estimators. Some recent studies include [11, 17, 21] where the mesh
in time Δn = 1 in (1.2), which is akin to the discretization of a least-squares
method for fractional Gaussian processes using fixed-time-step observations. See
also [8] for an application of the second moment method to an AR(1) model.

In the last few years the estimators (1.1) and (1.2) have been used, in a num-
ber of instance, to study parameter estimation problems in various fractional
Gaussian models. Some of these results can be summarized below.

• The case of continuous-time observations for ergodic-type Gaussian pro-
cesses, using (1.1): The work [36] derived a central limit theorem and a
Berry-Esseen bound in Kolmogorov distance for the second moment esti-
mator (1.1) of the limiting variance of an Ornstein-Uhlenbeck (OU) pro-
cess driven by stationary-increment Gaussian noise. In [20], the authors
considered the estimator (1.1) (called “Alternative estimator” there) to es-
timate the drift parameter of an OU process driven by fBm with Hurst pa-
rameterH ∈ (0, 1). They proved a central limit theorem whenH ∈ (0, 3/4]
and a noncentral limit theorem for H ∈ (3/4, 1). However, they did not
give speed of convergence for these limit theorems. Their approach used
a least squares estimator (LSE) to study the second moment estimator.
Berry-Esseen bounds for a central limit theorem with the Kolmogorov dis-
tance were given first in [14] and then further improved upon in [18] when
H ∈ (1/2, 3/4].
Moreover, drift parameter estimation using (1.1) was employed for an OU
process driven by a Hermite process in [30] and driven by an α-stable
Lévy motion in [7]. On the other hand, the consistency and speed of con-
vergence in the TV and Wasserstein norms for the estimator (1.1) of the
drift parameter in infinite dimensional linear stochastic equations driven
by a fBm are studied by [26].

• The case of discrete-time observations for ergodic-type Gaussian processes,
using (1.2): In the case when the mesh in time Δn = 1, the consistency
and speed of convergence in the TV and Wasserstein distance for the
estimator (1.2) of the limiting variance of of general Gaussian sequences
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were recently developed in the papers [17, 11]. Also, the drift parameter in
linear stochastic evolution equation driven by a fBm is considered in [26].
On the other hand, in the case of high frequency data corresponding to
Δn → 0 in (1.2), the statistical inference for several ergodic-type fractional
Ornstein-Uhlenbeck (fOU) models, using the estimator (1.2), was recently
studied in the papers in [13, 20, 36]. However, these papers did not provide
speed of convergence for the asymptotic distribution of (1.2).

For the drift parameter estimation for non-ergodic fractional-noise-driven Orn-
stein-Uhlenbeck processes we refer the interested readers to [12, 15, 1, 16] and
references therein.

For our proofs we employ tools from the analysis on Wiener space, includ-
ing Wiener chaos calculus and Malliavin calculus. The main theorem regarding
normal approximations is the so-called Optimal Fourth Moment Theorem due
to Nourdin and Peccati [29]. A review of these tools and results can be found
in Section 2. Then the proofs for the stationary and asymptotically stationary
Gaussian case are outlined in Sections 3 and 4 respectively. The application to
drift estimation for Ornstein-Uhlenbeck processes is carried out in Section 5.
Some of our more technical calculations can be seen in Section 6; note that
some of results in this section, for instance Proposition 6.3, are of independent
interest and use novel techniques.

2. Elements of Malliavin calculus on Wiener space

This section gives a brief overview of some useful facts from the Malliavin cal-
culus on Wiener space. Some of the results presented here are essential for the
proofs in the present paper. For our purposes we focus on special cases that are
relevant for our setting and omit the general high-level theory. We direct the
interested reader to [32, Chapter 1]and [28, Chapter 2].

Fix (Ω,F ,P) for the Wiener space of a standard Wiener processW =(Wt)t≥0.
The first step is to identify the general centered Gaussian process (Zt)≥0 with
an isonormal Gaussian process X = {X(h), h ∈ H} for some Hilbert space H.
Recall that for such processesX, for every h1, h2 ∈ H, one has E[X(h1)X(h2)] =
〈h1, h2〉H.

One can define H as the closure of real-valued step functions on [0,∞) with
respect to the inner product 〈1[0,t],1[0,s]〉H = E[ZtZs]. Then the isonormal
process X is given by Wiener integral X(h) :=

∫
R+ h(s)dWs. Note, that, in

particular X(1[0,t])
d
= Zt.

The next step involves the multiple Wiener-Itô integrals. The formal defini-
tion involves the concepts of Malliavin derivative and divergence. We refer the
reader to [32, Chapter 1]and [28, Chapter 2]. For our purposes we define the
multiple Wiener-Itô integral Ip via the Hermite polynomials Hp. In particular,
for h ∈ H with ‖h‖H = 1, and any p ≥ 1,

Hp(X(h)) = Ip(h
⊗p).
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For p = 1 and p = 2 we have the following:

H1(X(1[0,t])) =X(1[0,t]) = I1(1[0,t]) = Zt (2.1)

H2(X(1[0,t])) =X(1[0,t])
2 − E[X(1[0,t])

2] = I2(1
⊗2
[0,t]) = Z2

t − E[Zt]
2. (2.2)

Note also that I0 can be taken to be the identity operator.

Remark 2.1. Some notation for Hilbert spaces. Let H be a Hilbert space. Given
an integer q ≥ 2 the Hilbert spaces H⊗q and H�q correspond to the qth tensor
product and qth symmetric tensor product of H. If f ∈ H⊗q is given by f =∑

j1,...,jq
a(j1, . . . , jq)ej1 ⊗· · · ejq , where (eji)i∈[1,q] form an orthonormal basis of

H⊗q, then the symmetrization f̃ is given by

f̃ =
1

q!

∑
σ

∑
j1,...,jq

a(j1, . . . , jq)eσ(j1) ⊗ · · · eσ(jq),

where the first sum runs over all permutations σ of {1, . . . , q}. Then f̃ is an
element of H�q. We also make use of the concept of contraction. The rth con-
traction of two tensor products ej1 ⊗ · · · ⊗ ejp and ek1 ⊗ · · · ekq is an element of

H⊗(p+q−2r) given by

(ej1 ⊗ · · · ⊗ ejp)⊗r (ek1 ⊗ · · · ⊗ ekq )

=

[
r∏

�=1

〈ej� , ek�
〉
]
ejr+1 ⊗ · · · ⊗ ejq ⊗ ekr+1 ⊗ · · · ⊗ ekq . (2.3)

The main motivation for introducing the multiple integrals comes from the
following properties:

• Isometry property of integrals [28, Proposition 2.7.5]. Fix integers p, q ≥ 1
as well as f ∈ H�p and g ∈ H�q.

E[Iq(f)Iq(g)] =

{
p!〈f, g〉H⊗p if p = q
0 otherwise.

(2.4)

• Product formula [28, Proposition 2.7.10]. Let p, q ≥ 1. If f ∈ H�p and
g ∈ H�q then

Ip(f)Iq(g) =

p∧q∑
r=0

r!

(
p

r

)(
q

r

)
Ip+q−2r(f⊗̃rg). (2.5)

• Hypercontractivity in Wiener Chaos. For every q ≥ 1, Hq denotes the
qth Wiener chaos of W , defined as the closed linear subspace of L2(Ω)
generated by the random variables {Hq(W (h)), h ∈ H, ‖h‖H = 1} where
Hq is the qth Hermite polynomial. For any F ∈ ⊕q

l=1Hl (i.e. in a fixed
sum of Wiener chaoses), we have(

E
[
|F |p

])1/p � cp,q
(
E
[
|F |2

])1/2
for any p ≥ 2. (2.6)
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It should be noted that the constants cp,q above are known with some
precision when F is a single chaos term: indeed, by [28, Corollary 2.8.14],

cp,q = (p− 1)
q/2

.

The second part of important results we borrow from Malliavin calculus con-
cerns estimates on the distance between random variables. There are two key
estimates linking total variation distance and the Malliavin calculus, which were
both obtained by Nourdin and Peccati. The first one is an observation relating
an integration-by-parts formula on Wiener space with a classical result of Ch.
Stein. The second is a quantitatively sharp version of the famous fourth moment
theorem of Nualart and Peccati.

Let N denote the standard normal law. For each integer n, let Fn ∈ Hq.
Assume V ar [Fn] = 1 and (Fn)n converges in distribution to a normal law. It is
known (the fourth moment theorem in [33]) that this convergence is equivalent
to limn E

[
F 4
n

]
= 3. The following optimal estimate for dTV (Fn,N ), known as

the optimal fourth moment theorem, was proved in [29]: with the sequence F
as above, assuming convergence, there exist two constants c, C > 0 depending
only on the type of the process F but not on n, such that

cmax
{
E
[
F 4
n

]
− 3,

∣∣E [
F 3
n

]∣∣} � dTV (Fn,N ) � Cmax
{
E
[
F 4
n

]
− 3,

∣∣E [
F 3
n

]∣∣} .
(2.7)

Recall that for a standardized random variable F , i.e., with E[F ] = 0 and
E[F 2] = 1, the third and fourth cumulants are respectively

κ3(F ) :=E[F 3],

κ4 (F ) :=E
[
F 4

]
− 3.

Throughout the paper we use the notation N ∼ N (0, 1). We also use the no-
tation C for any positive real constant, independently of its value which may
change from line to line when this does not lead to ambiguity.

Remark 2.2. We note that the optimal bound (2.7) holds with dTV replaced by
dW . Indeed, by [28, Theorem 3.5.2]:

dW (F,N ) ≤ sup
ϕ∈F

|E[ϕ′(F )]− E[Fϕ(F )]|

where F is the set of C1 functions ϕ such that |ϕ′|∞ ≤
√

2/π. Now using the
concepts of the Malliavin derivative operator D and Ornstein-Uhlenbeck gener-
ator L, see [27, Theorem 4.15], one has |E[ϕ′(F )]−E[Fϕ(F )]| = |E[ϕ′(F )E[(1−
〈DF,−DL−1F 〉)|F ]]|, and thus:

dW (F,N ) ≤
√

2/πE|E[1− 〈DF,−DL−1F 〉|F ]|.

However, this is the same bound one has (up to the constant
√
2/π) in the proof

of the optimal fourth moment theorem [29, Proof of Theorem 1.2].
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3. Parameter estimation for stationary Gaussian processes

In this section we present a general framework for the parameter estimation of
the variance of a stationary Gaussian process. We prove the consistency and
provide upper bounds in the total variation and Wasserstein distances for the
rate of normal convergence of the MC estimators (1.1) and (1.2).

Let Z := {Zt, t ≥ 0} be a continuous centered stationary Gaussian process
that can be represented as a Wiener-Itô (multiple) integral Zt = I1(1[0,t]) for
every t ≥ 0, as in (2.1). Let ρ(r) = E(ZrZ0) denote the covariance of Z for every
r ≥ 0, and let ρ(r) = ρ(−r) for all r < 0. Our main assumption throughout the
paper is that

σ2
Z := 4

∫
R

ρ2(r)dr < ∞.

3.1. Continuous-time observations

We estimate the variance fZ := E(Z2
0 ), when the whole trajectory of Z is

observed up to time T > 0. We consider the estimator (1.1) given by

f̂T (Z) =
1

T

∫ T

0

Z2
t dt, T > 0

as a statistic to estimate fZ , based on the continuous-time observation of Z.
Our goal is to establish Theorem 1.1, i.e., a Berry-Esseen bound on the the
convergence of f̂T (Z)− fZ . First we show some simpler properties of f̂T (Z).

Lemma 3.1. The estimator f̂T (Z) is unbiased and strongly consistent. In par-
ticular,

√
T
∥∥∥f̂T (Z)− fZ

∥∥∥
L2

↑ σZ as T → ∞. (3.1)

Proof. By stationarity, E[Z2
0 ] = E[Z2

s ] for every s ≥ 0 and thus E[f̂T (Z)] = fZ ,

so the estimator f̂T (Z) is unbiased.

The next step is to show that the estimator f̂T (Z) is strongly consistent, i.e.,

f̂T (Z) → fZ almost surely as T → ∞.

Let

VT (Z) :=
√
T
(
f̂T (Z)− fZ

)
=

1√
T

∫ T

0

(
Z2
t − E[Z2

t ]
)
dt =

1√
T

∫ T

0

I2(1
⊗2
[0,t])dt,

(3.2)
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where we have used (2.2). Then

E[VT (Z)2] =
1

T
E

⎡⎣(∫ T

0

I2(1
⊗2
[0,t])dt

)2
⎤⎦ =

1

T

∫
[0,T ]2

E

[
I2(1

⊗2
[0,t])I2(1

⊗2
[0,s])

]
dtds.

(3.3)

By (2.4),

E

[
I2(1

⊗2
[0,t])I2(1

⊗2
[0,s])

]
= 2!〈1⊗2

[0,t],1
⊗2
[0,s]〉H⊗2 = 2 (E[ZtZs])

2
= 2ρ(t− s)2.

Therefore,

E[VT (Z)2] =
2

T

∫
[0,T ]2

ρ(t− s)2dtds =
4

T

∫ T

0

∫ T

u

ρ(u)2dtdu

= 4

∫ ∞

0

(
1− u

T

)
+
ρ(u)2 ≤ 4

∫ T

0

ρ(u)2du < ∞, (3.4)

where (x)+ = max{x, 0}. Note that the above also implies that E[VT (Z)2] ↑ σ2
Z ,

establishing (3.1). Alternatively,
∥∥∥f̂T (Z)− fZ

∥∥∥
L2

≤ σZ/
√
T . In particular, this

shows that f̂T (Z) converges to fZ in L2. At this point we recall [25, Lemma
2.1]):

Lemma 3.2. Let γ > 0. Let (Zn)n∈N be a sequence of random variables. If for
every p ≥ 1 there exists a constant cp > 0 such that for all n ∈ N,

‖Zn‖Lp(Ω) � cp · n−γ ,

then for all ε > 0 there exists a random variable αε which is almost surely finite
such that

|Zn| � αε · n−γ+ε almost surely

for all n ∈ N. Moreover, E|αε|p < ∞ for all p ≥ 1.

We can apply Lemma 3.2 as soon as
∥∥∥f̂T (Z)− fZ

∥∥∥
Lp

≤ Cp/
√
T for every

p ≥ 1. We have shown that for p = 2. However, using the inequality between Lp

norms and Lq norms, one has that the same bound holds for p ∈ [1, 2). Finally,
one can apply the hypercontractivity property (2.6) in Wiener chaos to get the
result for all p ≥ 2.

Therefore, f̂n(Z) converges almost surely to fZ as n → ∞ (and n ∈ N). We
now use the following more technical result. While it is of course not new, we
could not find a reference where it was stated exactly as we needed it to be.
This is why we give its proof in Section 6 for the sake of completeness.

Lemma 3.3. Let {ut, t ≥ 0} be a continuous stochastic process such that for
any p ≥ 1, there is a positive constant Cp > 0 such that supt≥0 E[|ut|p] < Cp.
In addition, we assume

1

n

∫ n

0

utdt −→ 0 almost surely as n → ∞.
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Then,

1

T

∫ T

0

utdt −→ 0 almost surely as T → ∞.

Note that by stationarity supt≥0 E[|Zt|p] = E[|Z0|p < Cp for some Cp > 0.

Therefore, by Lemma 3.3, f̂T (Z) converges almost surely to fZ as T → ∞ (and
T ∈ R+).

Now, we turn to the proof of Theorem 1.1.

3.2. Proof of Theorem 1.1.

The random variable

f̂T (Z)− fZ√
V ar(f̂T (Z)− fZ)

=
VT (Z)√
E[VT (Z)2]

is centered and normalized. Then the fourth moment theorem (2.7) applies and
then

dTV

⎛⎝ f̂T (Z)− fZ√
V ar(f̂T (Z)− fZ)

,N

⎞⎠ = dTV

(
VT (Z)√
E[VT (Z)2]

,N
)

≤ Cmax

{
κ3(VT (Z))

E[VT (Z)2]3/2
,
κ4(VT (Z))

E[VT (Z)2]2

}
.

(3.5)

We are left to study the third and fourth cumulants of VT (Z). The following
technical result is a slight modification of [4, Propositions 6.3, 6.4]:

Lemma 3.4. For every T > 0,

|κ3(VT (Z))| ≤ 8√
T

(∫ T

−T

|ρ(t)|3/2 dt
)2

, (3.6)

|κ4(VT (Z))| ≤ 48

T

(∫ T

−T

|ρ(t)|4/3 dt
)3

. (3.7)

Proof. The proof follows the same approach as in [4] and is included in Section 6.
We note that our proof is more detailed than the one in [4].

The corresponding bound for the Wasserstein distance follows from Remark
2.2. Thus Theorem 1.1 is established. At this point we present two corollaries.
First, we study the asymptotic behavior of the bound (1.6) under the additional
assumption of the decay of correlations of Zt. We have the following:
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Corollary 3.5. Assume there exists 0 < β < 3
4 such that, |ρ(t)| = O(t2β−2).

Then,

dTV

⎛⎝ f̂T (Z)− fZ√
V ar(f̂T (Z)− fZ)

,N

⎞⎠ ≤ C

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
T−1/2 if 0 < β < 2

3 ,

log2(T )T−1/2 if β = 2
3 ,

T 6β− 9
2 if 2

3 < β < 3
4 .

(3.8)

Proof. Note that there is a constant C > 0 such that |ρ(s)| < C for s ∈ [−1, 1].
Then, since ∫ T

−T

|ρ(t)|pdt ≤ Cp

(
1 +

∫ T

1

|ρ(t)|pdt
)
,

for p = 3/2 and p = 4/3, one can establish the following bounds on κ3(VT (Z))
and κ4(VT (Z)):

|κ3(VT (Z))| ≤ C

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
T−1/2 if 0 < β < 2

3 ,

log2(T )T−1/2 if β = 2
3 ,

T 6β− 9
2 if 2

3 < β < 3
4 ,

(3.9)

and

|κ4(VT (Z))| ≤ C

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
T−1 if 0 < β < 5

8 ,

log3(T )T−1 if β = 5
8 ,

T 8β−6 if 5
8 < β < 3

4 .

(3.10)

The result follows by a direct application of Theorem 1.1.

Next, using the convergence of E[VT (Z)2], one can also establish the following
corollary to Theorem 1.1.

Corollary 3.6. There exists a constant C > 0 such that, for all T > 0,

dTV

(√
T

σZ
(f̂T (Z)− fZ),N

)
≤ ϕT (Z) + 2

∣∣∣∣1− σ2
Z

E(VT (Z)2)

∣∣∣∣
where ϕT (Z) is as in Theorem 1.1. Moreover, if there exists 0 < β < 3

4 such
that, |ρ(t)| = O(t2β−2),

dTV

(√
T

σZ
(f̂T (Z)− fZ),N

)
≤ C

⎧⎨⎩ T−1/2 if 0 < β ≤ 5
8 ,

T 4β−3 if 5
8 < β < 3

4 .
(3.11)

The same result holds for the Wasserstein distance.
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Proof. The first part follows from the following technical result:

Lemma 3.7 ([11, Lemma 5.1]). Let μ ∈ R and σ > 0. Then, for every integrable
real-valued random variable F ,

dTV (μ+ σF,N ) ≤ dTV (F,N ) +

√
π

2
|μ|+ 2

∣∣∣∣1− 1

σ2

∣∣∣∣ .
Therefore,

dTV

(√
T

σZ
(f̂T (Z)− fZ),N

)

≤ dTV

⎛⎝ f̂T (Z)− fZ√
V ar(f̂T (Z)− fZ)

,N

⎞⎠+ 2

∣∣∣∣1− σ2
Z

E[VT (Z)2]

∣∣∣∣ ,
by the definition of VT (Z) and the fact that E[f̂T (Z)]=fZ . Recall that E[VT (Z)2]
↑ σ2

Z . Then the second term on the right-hand side above is bounded by
C|E[VT (Z)2 − σ2

Z | for some C > 0.
Next, since |ρ(t)| = O(t2β−2), and using the representation (3.4),

|E[VT (Z)2 − σ2
Z | = 4

∫ ∞

T

ρ(u)2du+ 4

∫ T

0

u

T
ρ(u)2du

≤ 4C

(∫ ∞

T

u4β−4du+
1

T

∫ 1

0

ρ(u)2du+
1

T

∫ T

1

u4β−3du

)
.

A direct computation yields that,

|E[VT (Z)2 − σ2
Z | ≤ C

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
T−1 if 0 < β < 1

2 ,

log(T )T−1 if β = 1
2 ,

T 4β−3 if 1
2 < β < 3

4 .

(3.12)

Finally, the bound (3.11) follows from (3.8) and (3.12).

3.3. Discrete-time observations

In this section we estimate the limiting variance fZ based on discrete high-
frequency data in time of Z, by considering the discrete version f̃n(Z) of the

estimator f̂T (Z):

f̃n(Z) :=
1

n

n∑
i=1

Z2
ti ,

where ti = iΔn, i = 0, . . . , n, Δn → 0 and Tn := nΔn → ∞.
We will assume an additional property of the process Z. It would allow us to

compare quantitatively the two estimators f̂T (Z) and f̃n(Z):
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Assumption 1. For all s, t ∈ R+ such that |s− t| is small enough,

E[|Zt − Zs|2] ≤ C|t− s|2α, (3.13)

for some constant 0 < α < 1.

Similarly to the continuous alternative f̂T (Z), we first show the following:

Lemma 3.8. The estimator f̃n(Z) is unbiased. Assume that Assumption 1
holds. Then,

E|f̂T (Z)− f̃n(Z)|2 ≤ CαΔ
2α
n , (3.14)

where Cα > 0 is a constant that depends only on α. Moreover, if nΔη
n →

0, as n → ∞ for some η > 1, then f̃n(Z) is strongly consistent.

Proof. The first property follows from the fact that the process Z is stationary.
To show strong consistency define, similarly to (3.2),

Un(Z) :=
√

Tn

(
f̃n(Z)− fZ

)
=

Δn√
Tn

n∑
i=1

(Z2
ti − EZ2

ti). (3.15)

Then

f̃n(Z)− fZ =
Un(Z)√

Tn

=
VTn(Z)√

Tn

+
Un(Z)− VTn(Z)√

Tn

. (3.16)

We know from (3.1) and Lemma 3.2 that VTn/
√
Tn converges almost surely to 0.

Let δn(Z) := Un(Z)− VTn(Z) =
√
Tn(f̃n(Z)− f̂T (Z)). We estimate the second

moment of δn(Z):

E[δn(Z)2] ≤ E

⎡⎣( 1√
Tn

n∑
i=1

∫ ti

ti−1

|Z2
ti − Z2

t |dt
)2

⎤⎦
≤ n

Tn

n∑
i=1

E

⎡⎣(∫ ti

ti−1

|Z2
ti − Z2

t |dt
)2

⎤⎦ ,

where we have applied the inequality between arithmetic mean and quadratic
mean. Next, by the Cauchy-Schwarz inequality, for s, t ∈ [ti−1, ti],

E[|Z2
ti − Z2

t ||Z2
ti − Z2

s |]

≤
(
E[(Z2

ti − Z2
t )

2]E[(Zti − Zs)
2]
)1/2

≤
(
E[(Zti − Zt)

4]E[(Zti − Zs)
4]E[(Zti + Zt)

4]E[(Zti + Zs)
4]
)1/4

.

Now, by the hypercontractivity property (2.6) and (3.13)

E[(Zti − Zt)
4]1/4 ≤ CE[(Zti − Zt)

2]1/2 ≤ C|ti − t|α.
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Next, using stationarity

E[(Zti + Zt)
4] ≤ 4E[(Z2

ti + Zt)
2] ≤ 16E[Z4

0 ].

Therefore, for some constant C > 0 depending on the fourth moments of Z0,

E[δn(Z)2] ≤ n

Tn

n∑
i=1

∫ ti

ti−1

∫ ti

ti−1

C|ti − t|α|ti − s|αdsdt

=
CΔ2α+2

n

Tn

n∑
i=1

∫ 1

0

∫ 1

0

(uv)αdudv

≤ CnΔ2α+1
n ,

with u = t−ti−1

Δn
, v =

s−tj−1

Δn
. Thus, (3.14) is established.

Now, using that nΔη
n → 0 for some η > 1,

E

[(
δn(Z)√

Tn

)2
]
≤ CΔ2α

n ≤ Cn−2α/η (nΔη
n)

2α/η ≤ Cn−2α/η. (3.17)

By the hypercontractivity property (2.6) and Lemma 3.2, we obtain δn(Z)√
Tn

→ 0,

and thus f̂Tn(Z)− f̃n(Z) → 0 almost surely. By Lemma 3.1 f̂Tn −fZ → 0 almost

surely. Therefore, f̃n(Z) − fZ → 0 almost surely and the discrete estimator is
strongly consistent.

We now turn to the proof of Theorem 1.2.

3.4. Proof of Theorem 1.2.

The discrete estimator f̃n(Z) is unbiased, so V ar(f̃n(Z) − fZ) = E[(f̃n(Z) −
fZ)

2]. Next, by the triangle inequality one has,

dTV

⎛⎝ f̃n(Z)− fZ√
E[(f̃n(Z)− fZ)2]

,N

⎞⎠
≤ dTV

⎛⎝ f̃n(Z)− fZ√
E[(f̃n(Z)− fZ)2]

,
f̂Tn(Z)− fZ√
E[(f̃n(Z)− fZ)2]

⎞⎠
+dTV

⎛⎝ f̂n(Z)− fZ√
E[(f̃Tn(Z)− fZ)2]

,N

⎞⎠ . (3.18)

By Lemma 3.7,

dTV

⎛⎝ f̂n(Z)− fZ√
E[(f̃Tn(Z)− fZ)2]

,N

⎞⎠
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≤ dTV

⎛⎝ f̂n(Z)− fZ√
E[(f̂Tn(Z)− fZ)2]

,N

⎞⎠+ 2

∣∣∣∣∣1− V ar(f̂Tn(Z)− fZ)

V ar(f̃n(Z)− fZ)

∣∣∣∣∣ .
Then, by Theorem 1.1 the first term on the right-hand side is further bounded
by ϕ(Tn) as defined in (1.6).

Thus, we are left to bound the first term in (3.18). By the definition of total
variation distance one has

dTV

⎛⎝ f̃n(Z)− fZ√
E[(f̃n(Z)− fZ)2]

,
f̂Tn(Z)− fZ√
E[(f̃n(Z)− fZ)2]

⎞⎠ = dTV (Un(Z), VTn(Z)),

with the two quantities given in (3.2) and (3.15). We recall the following tech-
nical result:

Lemma 3.9 ([24, Theorem 3.5]). There is a positive constant C > 0 such that,
for all multiple integrals F and G of order 2,

dTV (F,G) ≤ C

(
E[(F −G)2]

E[F 2]

)1/4

.

Therefore, there is a positive constant C > 0 such that, for every n ≥ 1

dTV (Un(Z), VTn(Z)) ≤ C

(
E[δn(Z)2]

E[VTn(Z)2]

)1/4

≤ C(nΔ2α+1
n )1/4, (3.19)

where we have used (3.1) and (3.14). The corresponding bound for the Wasser-
stein distance follows from Remark 2.2. Thus, the proof of Theorem 1.2 is com-
pleted.

Remark 3.10. Let us present an example where the bounds on total variation in
Theorem 1.2 decrease to 0 and thus a central limit theorem holds. Let Δn = 1/nλ

with 1
2α+1 < λ < 1. Then, nΔn → ∞ and nΔ2α+1

n → 0. Moreover,

2

∣∣∣∣∣1− V ar(f̂Tn(Z)− fZ)

V ar(f̃n(Z)− fZ)

∣∣∣∣∣ = 2

∣∣∣∣E[Un(Z)2]− E[VTn(Z)2]

E[Un(Z)2]

∣∣∣∣ ≤ 2
E[δn(Z)2]

E[Un(Z)2]
.

Now, if E[δn(Z)2] → 0 and E[VTn(Z)] ↑ σ2
Z , then E[Un(Z)2] ↑ σ2

Z . Thus,

dTV

⎛⎝ f̃n(Z)− fZ√
E[(f̃n(Z)− fZ)2]

,N

⎞⎠ ≤ ϕTn(Z) + CnΔ2α+1
n .

Further bounds on ϕTn(Z) are presented, for instance, in Corollary 3.5 when
|ρ(t)| = O(t2β−2) for some β ∈ (0, 3/4).

Finally, note that our approach for the proof of Theorem 1.2 can be applied
directly to Corollary 3.6 and then the following holds:
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Corollary 3.11. Let σ2
Z = 4

∫∞
0

ρ(u)2du. Under the same assumptions as in
Theorem 1.2, for all n ≥ 1,

dTV

(√
T

σZ
(f̃n(Z)− fZ),N

)
≤ϕTn(Z)+2

∣∣∣∣1− σ2
Z

E(VTn(Z)2)

∣∣∣∣+C(nΔ2α+1
n )1/4,

where ϕTn(Z) is as in Theorem 1.1 and C > 0 is an absolute constant depending
on E[Z4

0 ]. The same result holds for the Wasserstein distance.

4. Parameter estimation for non-stationary Gaussian processes

In practical applications, the data rarely comes from a stationary process. This
is reflected on the modeling side by for instance studying stochastic systems
started at a point mass rather than the system’s stationary distribution. Some
more specific examples are included in Section 5.

The present section is devoted to the general treatment of a process that is
asymptotically stationary. In particular, let Z be a centered stationary Gaus-
sian process (as in Section 3), and let Y be a stochastic process satisfying the
following: there exists a constant γ > 1 such that for every p ≥ 1 and for all
T > 0,

‖YT ‖Lp = O
(
T−γ

)
. (4.1)

Then we consider second moment estimators for the process X := Z + Y . Our
goal is to estimate the limiting variance fX := limT→∞ E[X2

T ]. The limit exists
and in fact fX = fZ . Indeed,

E[X2
T ] = E[(ZT + YT )

2] = E[Z2
T ] + 2E[ZTYT ] + E[Y 2

T ] → fZ ,

since E[Z2
T ] = fZ , E[Y

2
T ] = O(T−2γ) and by the Cauchy-Schwarz inequality

|E[ZTYT ]| = O(T−γ). As in Section 3 we consider the second moment estimators

f̂T (X) and f̃n(X), based on continuous-time and discrete-time observations of
X:

f̂T (X) :=
1

T

∫ T

0

X2
t dt, T > 0, (4.2)

f̃n(X) :=
1

n

n∑
i=1

X2
ti , n ≥ 1, (4.3)

where ti = iΔn, i = 0, . . . , n, Δn → 0 and Tn := nΔn → ∞. We establish some
basic properties of the two estimators.

Proposition 4.1. The estimators f̂T (X) and f̃n(X) are asymptotically unbi-
ased. Moreover, there is a constant C > 0, such that for all T > 0,

|E[f̂T (X)− fX ]| ≤ CT−γ , and |E[f̃T (X)− fX ]| ≤ CT−γ . (4.4)
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Proof. We established that for all T > 0, E[X2
T ] = fX + err(t), where the error

term satisfies |err(t)| = O(t−γ). Therefore, for the continuous estimator,

|E[f̂T (X)− fX ]| ≤ 1

T

∫ T

0

|err(t)|dt ≤ CT−γ → 0 as T → ∞,

and thus f̂T (X) is asymptotically unbiased. A similar computation yields the

same for f̃n(Z).

We next show strong consistency.

Proposition 4.2. If
∫
R
ρ2(r)dr < ∞ and the condition (4.1) holds, then∥∥∥f̂T (X)− fX

∥∥∥
L2

≤ CT−1/2. (4.5)

Moreover,

f̂T (X) −→ fX almost surely as T → ∞. (4.6)

In addition, if Z satisfies the helix property (3.13), and nΔ2α+1
n → 0, as n → ∞,

then

f̃n(X) −→ fX almost surely as T → ∞. (4.7)

Proof. The first step, as before, is to establish a bound on
∥∥∥f̂T (X)− fX

∥∥∥
L2
. We

have that∥∥∥f̂T (X)− fX

∥∥∥
L2

≤
∥∥∥f̂T (X)− f̂T (Z)

∥∥∥
L2

+
∥∥∥f̂T (Z)− fX

∥∥∥
L2

.

Note, that by the triangle inequality and the Cauchy-Schwarz inequality,

∥∥∥f̂T (X)−f̂T (Z)
∥∥∥
L2

≤

√√√√
E

∣∣∣∣∣ 1T
∫ T

0

Ytdt

∣∣∣∣∣
2

≤ 1

T

(∫
[0,T ]2

(
E[Y 2

t ]E[Y
2
s ]

)1/2
dsdt

)1/2

.

(4.8)

Therefore, using ‖Yt‖Lp = O(t−γ),∥∥∥f̂T (X)− fX

∥∥∥
L2

≤ C(T−γ + T−1/2) ≤ CT−1/2,

where we have applied (3.1).
By hypercontractivity (2.6) we can extend the bound to Lp norms for p ≥

1. Then applying Lemma 3.2 and Lemma 3.3 consecutively establishes strong
consistency for f̂T (X).

The proof for f̃n(X) is similar and a main ingredient is the bound from (3.14).
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We now turn to the alternative formulations for our main results Theorem 1.1
and Theorem 1.2 when the stochastic process is asymptotically stationary. Recall
that ρ(t) = ρ(−t) := E[Z0Zt] for t ≥ 0.

Theorem 4.3. Assume that
∫
R
ρ2(r)dr < ∞ and that the condition (4.1) holds.

Let N ∼ N (0, 1) be the standard normal random variable. Then, there exists a
constant C > 0 such that, for all T > 0,

dTV

⎛⎝ f̂T (X)− fX − E[f̂T (X)− fX ]√
V ar(f̂T (X)− fX)

,N

⎞⎠ ≤ ϕT (Z) + CT
1−γ
4 , (4.9)

where ϕT (Z) is defined in (1.6). The same result holds for the Wasserstein
distance.

Proof. By the triangle inequality and Lemma (3.7):

dTV

⎛⎝ f̂T (X)− fX − E[f̂T (X)− fX ]√
V ar(f̂T (X)− fX)

,N

⎞⎠
≤ dTV

⎛⎝ f̂T (Z)− fZ√
V ar(f̂T (Z)− fZ)

,N

⎞⎠
+dTV

⎛⎝ f̂T (X)− fZ√
V ar(f̂T (Z)− fZ)

,
f̂T (Z)− fZ√

V ar(f̂T (Z)− fZ)

⎞⎠
+

√
π

2

∣∣∣∣∣∣ E[f̂T (X)− fX ]√
V ar(f̂T (X)− fX)

∣∣∣∣∣∣+ 2

∣∣∣∣∣1− V ar(f̂T (X)− fX)

V ar(f̂T (Z)− fZ)

∣∣∣∣∣ . (4.10)

We analyze each term on the right hand side of (4.10). First, by Theorem 1.1,

dTV

⎛⎝ f̂T (Z)− fZ√
V ar(f̂T (Z)− fZ)

,N

⎞⎠ ≤ ϕT (Z),

with ϕT (Z) as defined in (1.6).
Then, using standard properties of the total variation distance and Lemma

3.9:

dTV

⎛⎝ f̂T (X)− fZ√
V ar(f̂T (Z)− fZ)

,
f̂T (Z)− fZ√

V ar(f̂T (Z)− fZ)

⎞⎠
= dTV

(
f̂T (X)− fZ , f̂T (Z)− fZ

)
≤ C

(
E|f̂T (X)− f̂T (Z)|2

E|f̂T (Z)− fZ |2

)1/4
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≤CT (1−γ)/4.

Indeed, E|f̂T (X) − f̂T (Z)|2 = O(T−γ) and TE|f̂T (Z) − fZ |2 → σ2
Z < ∞,

see (3.1). Moreover since |E[f̂T (X)− fX ]| = O(T−γ), one has∣∣∣V ar(f̂T (X)− fX)− V ar(f̂T (Z)− fZ)
∣∣∣ = O(T−γ). (4.11)

Then, there exists a constant C > 0 such that for all T > 0,√
π

2

∣∣∣∣∣∣ E[f̂T (X)− fX ]√
V ar(f̂T (X)− fX)

∣∣∣∣∣∣ ≤ CT 1/2−γ

and

2

∣∣∣∣∣1− V ar(f̂T (X)− fX)

V ar(f̂T (Z)− fZ)

∣∣∣∣∣ ≤ CT 1−γ .

Therefore,

dTV

⎛⎝ f̂T (X)− fX − E[f̂T (X)− fX ]√
V ar(f̂T (X)− fX)

,N

⎞⎠ ≤ ϕT (Z) + CT
1−γ
4 ,

as desired. The corresponding bound for the Wasserstein distance follows from
Remark 2.2.

We now turn to the discrete version of the previous result.

Theorem 4.4. Assume
∫
R
ρ2(r)dr < ∞, Z verifies (3.13), and the condition

(4.1) holds. Let N ∼ N (0, 1). Then, there is C > 0 such that, for every n ≥ 1,

dTV

(√
Tn

σZ
(f̃n(X)− fX), N

)
≤ ϕTn(Z) + C

[
nΔ2α+1

n

]1/4
+ CT

1−γ
4

n .

Proof. We follows the same steps as in the proof of Theorem 4.4. The extra
term Cn[Δ2α+1

n ]1/4 comes from the bound in Theorem 1.2.

5. Applications to Gaussian Ornstein-Uhlenbeck processes

In this section we consider the Gaussian Ornstein-Uhlenbeck process Xθ :=
{Xθ

t , t ≥ 0} defined via the following linear stochastic differential equation

dXθ
t = −θXθ

t dt+ dGt, Xθ
0 = 0. (5.1)

Here θ > 0 is an unknown parameter and G is an arbitrary mean-zero Gaussian
process such that Zθ

t :=
∫ t

−∞ e−θ(t−s)dGs, for t ≥ 0, is a stationary Gaussian
process. The equation (5.1) has the following explicit solution (see [10])

Xθ
t = e−θt

∫ t

0

eθsdGs, t ≥ 0,
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where the integral can be understood in the Wiener sense. Then Xθ
t = Zθ

t +
e−θtZθ

0 thus satisfies (4.1) with Y := e−θtZθ
0 . Moreover, ‖YT ‖Lp = O(T−γ) is

satisfied for every p ≥ 1 and for every constant γ > 1.
As in the previous sections our goal is to establish a Berry-Esseen theorem

involving estimators of the parameters of the process. Here we want to estimate
θ. Our approach is based on writing

θ = gZθ (E[(Zθ
0 )

2]),

for some invertible function gZθ : R
+ → R

+. There are certain cases when
there is an explicit expression for gZθ (or its inverse). We explore those in the
coming sections. For now, we describe the general treatment and make only one
assumption for gZθ :

Assumption 2. The function gZθ is a diffeomorphism, and is twice continuously
differentiable.

We estimate θ based the continuous and discrete observations of X:

θ̂T :=gZθ

(
1

T

∫ T

0

(Xθ
t )

2dt

)
= gZθ

(
f̂T (X

θ)
)
, T > 0, (5.2)

θ̃n :=gZθ

(
1

n

n∑
i=1

(Xθ
ti)

2

)
= gZθ

(
f̃n(X

θ)
)
, n ≥ 1, (5.3)

where ti = iΔn, i = 0, . . . , n, Δn → 0 and Tn = nΔn → ∞, whereas f̂T (X
θ)

and f̃n(X
θ) are given by (4.2) and (4.3), respectively.

The following holds for the continuous estimator θ̂T .

Theorem 5.1. Assume that
∫
R
ρ2(r)dr < ∞ and that Assumption 2 holds.

Then for every γ > 1, and p ≥ 1,

dW

⎛⎝ θ̂T − θ − E[θ̂T − θ]

g′
Zθ (fXθ )

√
V ar(f̂T (Xθ)− fXθ )

,N

⎞⎠
≤ C

(E|g′′(ζT )|p)1/p√
T

+ ϕT (Z
θ) + CT−1/2, (5.4)

where ζT is a random variable in [f̂T (X
θ), fXθ ] and for some absolute constant

C > 0.

Proof. Recall that by definition θ = gZθ (fXθ ). Under Assumption 2(
θ̂T − θ

)
= g′Zθ (fXθ )

(
f̂T (X

θ)− fXθ

)
+

1

2
g′′Zθ (ζT )

(
f̂T (X

θ)− fXθ

)2

for some random point ζT between f̂T (X
θ) and fXθ . Denote V 2

f := V ar(f̂T (X
θ)

− fXθ ). Then,

dW

(
θ̂T − θ − E[θ̂T − θ]

g′
Zθ (fXθ )Vf

,N
)

≤
|E[θ̂T − θ]|+ 1

2E

∣∣∣(f̂T (Xθ)− fXθ )2g′′Zθ (ζT )
∣∣∣

|g′
Zθ (fXθ )Vf |



656 S. Douissi et al.

+ dW

(
1

Vf
(f̂T (X

θ)− fXθ ),N
)
,

where we have used that dW (x1 + x2, y) ≤ E[|x2|] + dW (x1, y) for any random
variables x1, x2, y. This property of the Wasserstein distance is the main reason
our results in Section 5 concern dW and not dTV .

The second term in the inequality above is bounded in Theorem 4.3. By
Hölder’s inequality, and the hypercontractivity property, for p, q > 1 with 1/p+
1/q = 1,

E

∣∣∣(f̂T (Xθ)− fXθ )2g′′Zθ (ζT )
∣∣∣ ≤ (E|g′′(ζT )|p)1/p

(
E

∣∣∣f̂T (Xθ)− fXθ

∣∣∣2q)1/q

≤ C (E|g′′(ζT )|p)1/p E
∣∣∣f̂T (Xθ)− fXθ

∣∣∣2 ,
for some constant C > 0 depending on p. Moreover,

|E[θ̃n − θ]| ≤ |g′Zθ (fXθ )|
∣∣∣E[f̂T (Xθ)− fXθ ]

∣∣∣+ E

∣∣∣(f̂T (Xθ)− fXθ )2g′′Zθ (ζT )
∣∣∣ .

Recall, that by (4.5), E|f̂T (Xθ)−fXθ |2 ≤ C/T , and by (4.4) |E[f̂T (Xθ)−fXθ ]| ≤
CT−γ . Therefore,

E|θ̂T − θ|+ 1

2
E

∣∣∣(f̂T (Xθ)− fXθ )2g′′Zθ (ζT )
∣∣∣

≤ C

(
|g′Zθ (fXθ )|+ 3

2
(E|g′′(ζT )|p)1/p

)
T−1.

Now, by (3.1) and (4.11), TV 2
f → σ2

z . The bound (5.4) follows.

Similarly, we obtain the rate of convergence in law of
√
Tn(θ̃n− θ) as follows.

Theorem 5.2. Suppose that the conditions of Theorem 4.4 hold. If g′′(ξn), with

ξn ∈ [|f̃n(Xθ), fXθ |], has a moment of order greater than 1 which is bounded in
n,

dW

( √
Tn

σZθg′
Zθ (fXθ )

(θ̃n − θ),N
)

≤ C√
Tn

+ ϕTn(Z
θ) + C

[
nΔ2α+1

n

]1/4
.

5.1. Fractional Ornstein-Uhlenbeck process of the first kind

Here we consider the Ornstein-Uhlenbeck process Xθ :=
{
Xθ

t , t ≥ 0
}
driven by

a fractional Brownian motion
{
BH

t , t ≥ 0
}
of Hurst index H ∈ (0, 1). More pre-

cisely, Xθ is the solution of the following linear stochastic differential equation

Xθ
0 = 0; dXθ

t = −θXθ
t dt+ dBH

t , t ≥ 0, (5.5)
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where θ > 0 is an unknown parameter. The process Xθ is called a fractional
Ornstein-Uhlenbeck process of the first kind, following the notation in [22]. As
in the general case described above there is an explicit solution to (5.5):

Xθ
t =

∫ t

0

e−θ(t−s)dBH
s . (5.6)

Moreover,

Zθ
t =

∫ t

−∞
e−θ(t−s)dBH

s (5.7)

is a stationary Gaussian process, see [10, 17]. The process Zθ is also the sta-
tionary solution of equation (5.5) when Xθ

0 = Zθ
0 . We are thus in the setup of

Section 4 with Xθ = Zθ + Y θ, where Y θ
t = −e−θtZθ

0 . Again, ‖Yt‖Lp = O(t−γ)
for every p ≥ 1 and any γ > 1. Note that by integration by parts and the
formula for covariance for fractional Brownian motion

E[(Zθ
0 )

2] =E

(∫ 0

−∞
eθsdBH

s

)2

= E

∫ 0

−∞

∫ 0

−∞
BH

s BH
r eθ(s+r)dsdr

=θ2
∫ 0

−∞

∫ 0

−∞

1

2
eθ(s+r)(|r|2H + |s|2H − |r − s|2H)drds

=θ−2HHΓ(2H).

Therefore, θ = gZθ (E[(Zθ
0 )

2] where the invertible function gZθ : R+ → R
+ is

given by

gZθ (x) =

(
HΓ(2H)

x

) 1
2H

, x > 0. (5.8)

The estimators θ̂T and θ̃T given by (5.2) and (5.3) were carefully studied in [20].
In particular, due to [20, Theorem 9] and [20, Theorem 11] the following holds:

Proposition 5.3. Let H ∈ (0, 3/4). The estimators θ̂T and θ̃n are strongly
consistent. Denote

δ2H :=
θ

(2H)2
×

{
(4H − 1) + 2Γ(2−4H)Γ(4H)

Γ(2H)Γ(1−2H) if H ∈
(
0, 1

2

)
,

(4H − 1)
(
1 + Γ(3−4H)Γ(4H−1)

Γ(2−2H)Γ(2H)

)
if H ∈

[
1
2 ,

3
4

)
.

(5.9)

The following limit theorems hold:

1.
√
T (θ̂T − θ)

L→ N (0, δ2H) as T → ∞.
2. Assume there is p ∈ (1, 3+2H

1+2H ∧ (1 + 2H)) such that nΔp
n → 0. Then

√
Tn(θ̃n − θ)

L→ N (0, δ2H) as n → ∞.

We can extend these results and obtain Berry-Esseen bounds using Theo-
rems 5.1 and 5.2.
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Theorem 5.4. Let H ∈ (0, 3
4 ), and δH be given by (5.9). Then

dW

(√
T

δH
(θ̂T − θ),N

)
≤ C

⎧⎨⎩
1√
T

if 0 < H ≤ 5
8 ,

1
T 3−4H if 5

8 < H < 3
4 .

(5.10)

Moreover,

dW

(√
Tn

δH
(θ̃n − θ),N

)
≤ C

[
nΔ2H+1

n

]1/2
+ C

⎧⎨⎩
1√
nΔn

if 0 < H ≤ 5
8 ,

1
(nΔn)3−4H if 5

8 < H < 3
4 .

(5.11)

Proof. Recall that E[Z0Zr] = O(r2H−2) and H ∈ (0, 3/4), see [11, Proposition
4.2]. Thus we are in the setting of Corollary 3.6. Then ϕT (Z) and ϕTn(Z) are
respectively bounded via (3.11) with β = H.

To establish (5.10) and (5.11) it is left to show that E|g′′(ζT )|p < ∞ for some

p ≥ 1. Using the monotonocity of g′′ and the fact that ζT ∈ [|f̂T (Xθ), fXθ |],
it is enough to show that E|f̂T (Xθ)|p < ∞ for some p ≥ 1. This follows as
an application of the technical Proposition 6.3 in Section 6.2. Indeed, since
Xθ

t = Zθ
t − eθtZθ

0 for a centered stationary Gaussian process (Zθ
t )t≥0, one needs

only to check that Zθ satisfies the condition (6.4), i.e,

lim
t→0

E[(Zθ
t − Zθ

0 )
2] = 0, and

⋂
t∈R

sp{Zθ
s : −∞ < s ≤ t} = {0}, (5.12)

where sp denotes the L2-closure of the linear span of a set of square-integrable
random variables. Note, that by (5.7), and integration by parts,

E[(Zθ
t − Zθ

0 )
2] = E

∫ t

0

∫ t

0

BH
s BH

r eθ(s+r)dsdr

=

∫ t

0

∫ t

0

θ2

2
eθ(s+r)(r2H + s2H − |r − s|2Hdsdr,

which in turn approaches 0 as t → 0 and the first part of (5.12) is satisfied. For
the second part, note that {Zθ

s : −∞ < s ≤ t} ⊂ σ(BH
s : −∞ < s ≤ t) and the

intersection of the sigma algebras is empty.

5.2. Fractional Ornstein-Uhlenbeck process of the second kind

The last example we consider is the so-called fractional Ornstein-Uhlenbeck
process of the second kind, defined via the stochastic differential equation

Sμ
0 = 0, and dSμ

t = −μSμ
t dt+ dY

(1)
t , t ≥ 0, (5.13)

where Y
(1)
t =

∫ t

0
e−sdBH

as
with as = He

s
H and

{
BH

t , t ≥ 0
}

is a fractional

Brownian motion with Hurst parameter H ∈
(
1
2 , 1

)
, and where μ > 0 is the
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unknown real parameter which we would like to estimate. The equation (5.13)
admits an explicit solution, see [22, Equation 3.9]:

Sμ
t =e−μt

∫ t

0

eμsdY (1)
s =e−μt

∫ t

0

e(μ−1)sdBH
as
=H(1−μ)He−μt

∫ at

a0

r(μ−1)HdBH
r .

Hence we can also write
Sμ
t = Zμ

t − e−μtZμ
0 ,

where

Zμ
t = e−μt

∫ t

−∞
e(μ−1)sdBH

as
= H(1−μ)He−μt

∫ at

0

r(μ−1)HdBH
r .

From [17, Lemma 37], for every H ∈ (12 , 1),

g−1
Zμ(μ) = fXμ = fZμ = E

[
(Zμ

0 )
2
]
=

(2H − 1)H2H

μ
B(1−H + μH, 2H − 1),

where here B(·) is the usual beta function. The function μ �→ g−1
Zμ(μ) is monotone

(decreasing) and convex from R+ to R+. Now, the following Berry-Esseen result
holds:

Theorem 5.5. Assume H ∈ ( 12 , 1). Then

dW

( √
T

σZμg′Zμ(fXμ)
(μ̂T − μ),N

)
≤ C/

√
T .

Also,

dW

( √
Tn

σZμg′Zμ(fXμ)
(μ̃n − μ),N

)
≤ C

[
nΔ2H+1

n

]1/2
+ C/

√
nΔn.

Proof. From [22], there exist c, C > 0 such that for all large |t|,

ρZμ(t) = E [Zμ
0 Z

μ
t ] ≤ Ce−c|t|.

Thus, by a straightforward calculation,

ϕT (Z
μ) ≤ C/

√
T .

Moreover, according to [3, Lemma 4], for all H ∈ (0, 1), and |t−s| small enough,

E

∣∣∣Y (1)
t − Y

(1)
s

∣∣∣2 = C|t− s|2H and we are in the setting of Corollary 3.6.

Finally, one needs to bound E|g′′(ζT )|p. As in the proof of Theorem 5.4 we
use the technical proposition Proposition 6.3 in Section 6.2. Indeed, since Sμ

t =
Zμ
t −e−μtZμ

0 for a centered stationary Gaussian process (Zμ
t )t≥0, one needs only

to check that Zμ satisfies the condition (6.4), i.e,

lim
t→0

E[(Zμ
t − Zμ

0 )
2] = 0, and

⋂
t∈R

sp{Zμ
s : −∞ < s ≤ t} = {0}, (5.14)
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where sp denotes the L2-closure of the linear span of a set of square-integrable
random variables. Recall [2, Lemma 2.1]. One has E[(Zμ

t − Zμ
0 )

2] ∼ Ht2H as
t → 0+. Thus the first part of (5.14) is satisfied. For the second part, note that
{Zθ

s : −∞ < s ≤ t} ⊂ σ(BH
Hes/H

: −∞ < s ≤ t) and the intersection of the
sigma algebras is empty.

6. Technical results

6.1. Two technical lemmas

Proof of Lemma 3.3 . We employ similar arguments to [30, Proposition 4.1].
First, write

1

T

∫ T

0

utdt =
1

�T �

∫ �T�

0

utdt+
1

T

∫ T

�T�
utdt+

(
1

T
− 1

�T �

)∫ �T�

0

utdt.

Notice that∣∣∣∣∣
(
1

T
− 1

�T �

)∫ �T�

0

utdt

∣∣∣∣∣ =
(
1− �T �

T

) ∣∣∣∣∣ 1

�T �

∫ �T�

0

utdt

∣∣∣∣∣ ≤
∣∣∣∣∣ 1

�T �

∫ �T�

0

utdt

∣∣∣∣∣ .
We know that 1

�T�
∫ �T�
0

utdt → 0 almost surely as T → 0. Thus, we are left to

show that ∣∣∣∣∣ 1T
∫ T

�T�
utdt

∣∣∣∣∣ → 0, almost surely as T → ∞. (6.1)

Recall, that supt≥0 E|ut|p < Cp for any p ≥ 1. Thus, by Minkowski’s inequality(
E

∣∣∣∣∣ 1

�T �

∫ �T�+1

�T�
|ut| dt

∣∣∣∣∣
p)1/p

≤ 1

�T �

∫ �T�+1

�T�
(E|ut|p)1/p dt ≤

C
1/p
p

�T � .

Now, by Lemma 3.2,∣∣∣∣∣ 1

�T �

∫ �T�+1

�T�
|ut|dt

∣∣∣∣∣ → 0, almost surely as T → ∞,

and (6.1) follows.

Proof of Lemma 3.4. According to (3.2) and since E[VT (Z)] = 0, we have

κ3(VT (Z)) = E[VT (Z)3] = E

⎡⎣( 1√
T

∫ T

0

I2(1
⊗2
[0,t])

)3
⎤⎦

=
1

T 3/2

∫
[0,T ]3

E

[
I2(1

⊗2
[0,r])I2(1

⊗2
[0,s])I2(1

⊗2
[0,t])

]
drdsdt.
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Applying the product formula (2.5)

I2(1
⊗2
[0,s])I2(1

⊗2
[0,t]) = I4(1

⊗2
[0,s]⊗̃01

⊗2
[0,t]) + 4I2(1

⊗2
[0,s]⊗̃11

⊗2
[0,t]) + I0(1

⊗2
[0,s]⊗̃21

⊗2
[0,t]).

(6.2)

Now, by isometry (2.4)

E

[
I2(1

⊗2
[0,r])I2(1

⊗2
[0,s])I2(1

⊗2
[0,t])

]
= 4E

[
I2(1

⊗2
[0,r])I2(1

⊗2
[0,s]⊗̃11

⊗2
[0,t])

]
= 8〈1⊗2

[0,r], (1
⊗2
[0,s]⊗̃11

⊗2
[0,t]〉H⊗2 .

Recall the formula for contraction (2.3). Then,

1⊗2
[0,s] ⊗1 1

⊗2
[0,t] = 〈1[0,s],1[0,t]〉H1[0,s] ⊗ 1[0,t].

The symmetrization is then

1⊗2
[0,s]⊗̃11

⊗2
[0,t] =

1

2
〈1[0,s],1[0,t]〉H

(
1[0,s] ⊗ 1[0,t] + 1[0,t] ⊗ 1[0,s]

)
.

Therefore,

E

[
I2(1

⊗2
[0,r])I2(1

⊗2
[0,s])I2(1

⊗2
[0,t])

]
= 8〈1[0,r],1[0,s]〉H〈1[0,r],1[0,t]〉H〈1[0,s],1[0,t]〉H,

and then

κ3(VT (Z)) =
8

T 3/2

∫
[0,T ]3

〈1[0,r],1[0,s]〉H〈1[0,r],1[0,t]〉H〈1[0,s],1[0,t]〉Hdrdsdt

=
8

T 3/2

∫
[0,T ]3

E[ZrZs]E[ZrZt]E[ZsZt]drdsdt

=
8

T 3/2

∫
[0,T ]3

ρ(r − s)ρ(r − t)ρ(s− t)drdsdt

=
8

T 3/2

∫ T

0

∫ T−t

−t

∫ T−t

−t

ρ(x− y)ρ(x)ρ(y)dxdydt

=
8

T 3/2

∫ T

−T

∫ T

−T

ρ(x− y)ρ(x)ρ(y)dxdy

∫ (T−x)∧(T−y)∧T

(−x)∨(−y)∨0

dt.

Let ρT (x) := |ρ(x)|1|x|≤T . Then,

κ3(VT (Z)) ≤ 8√
T

∫
R

∫
R

ρT (x− y)ρ(x)ρ(y)dxdy

=
8√
T

∫
R

(ρT ∗ ρT )(y)ρT (y)dy

≤ 8√
T

‖ρT ∗ ρT ‖L3(R) ‖ρT ‖L3/2(R) ,
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where ρT ∗ ρT is the convolution of the two functions and we have applied
Hölder’s inequality in the last line. Now, recall Young’s inequality: If p, q, r ≥ 1,
f ∈ Lp(R), g ∈ Lq(R) and 1/p+ 1/q = 1/r + 1, then

‖f ∗ g‖Lr(R) ≤ ‖f‖Lp(R) ‖g‖Lq(R) .

Hence,

κ3(VT (Z)) ≤ ‖ρT ‖3L3/2(R) =

(∫ T

−T

|ρ(t)|3/2dt
)2

,

and (3.6) is established.
Similarly, we have

κ4(VT (Z))

= E[VT (Z)4]− 3E[VT (Z)2]2

=
1

T 2
E

⎡⎣(∫ T

0

I2(1
⊗2
[0,t])

)4
⎤⎦− 3

T 2
E

⎡⎣(∫ T

0

I2(1
⊗2
[0,t])

)2
⎤⎦2

=
1

T 2

∫
[0,T ]4

E

[
I2(1

⊗2
[0,s])I2(1

⊗2
[0,t])I2(1

⊗2
[0,u])I2(1

⊗2
[0,v])

]
dsdtdudv

− 3

T 2

(∫
[0,T ]2

E

[
I2(1

⊗2
[0,t])I2(1

⊗2
[0,s])

]
dtds

)2

.

By (6.2) and the isometry property

E

[
I2(1

⊗2
[0,s])I2(1

⊗2
[0,t])I2(1

⊗2
[0,s])I2(1

⊗2
[0,t])

]
= E

[
I4(1

⊗2
[0,s]⊗̃01

⊗2
[0,t])I4(1

⊗2
[0,u]⊗̃01

⊗2
[0,v])

]
+ 16E

[
I2(1

⊗2
[0,s]⊗̃11

⊗2
[0,t])I2(1

⊗2
[0,u]⊗̃11

⊗2
[0,v])

]
+ E

[
I0(1

⊗2
[0,s]⊗̃21

⊗2
[0,t])I0(1

⊗2
[0,u]⊗̃21

⊗2
[0,v])

]
.

For the contractions the following holds:

1⊗2
[0,s] ⊗0 1

⊗2
[0,t] =1[0,s] ⊗ 1[0,s] ⊗ 1[0,t] ⊗ 1[0,t],

1⊗2
[0,s] ⊗1 1

⊗2
[0,t] =〈1[0,s],1[0,t]〉H1[0,s] ⊗ 1[0,t],

1⊗2
[0,s] ⊗2 1

⊗2
[0,t] =〈1[0,s],1[0,t]〉H〈1[0,s],1[0,t]〉H.

After taking symmetrization into account and by the isometry formula (2.4),

E

[
I4(1

⊗2
[0,s]⊗̃01

⊗2
[0,t])I4(1

⊗2
[0,u]⊗̃01

⊗2
[0,v])

]
=4 (E[ZsZu]E[ZtZv])

2

+ 4 (E[ZsZu]E[ZtZv])
2
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+ 16E[ZsZu]E[ZsZv]E[ZtZu]E[ZtZv],

E

[
I2(1

⊗2
[0,s]⊗̃11

⊗2
[0,t])I2(1

⊗2
[0,u]⊗̃11

⊗2
[0,v])

]
=E[ZsZt]E[ZuZv]E[ZsZu]E[ZtZv]

+ E[ZsZt]E[ZuZv]E[ZsZv]E[ZtZu],

E

[
I0(1

⊗2
[0,s]⊗̃21

⊗2
[0,t])I0(1

⊗2
[0,u]⊗̃21

⊗2
[0,v])

]
=(E[ZsZt]E[ZuZv])

2.

Therefore by symmetry and (3.3),

κ4(VT (Z)) =
48

T 2

∫
[0,T ]4

E[ZsZu]E[ZsZv]E[ZtZu]E[ZtZv]dsdtdudv

+
4 + 4 + 1− 3 ∗ 4

T 2

∫
[0,T ]4

E[ZsZt]
2
E[ZuZv]

2dsdtdudv

≤ 48

T 2

∫
[0,T ]4

ρ(s− u)ρ(s− v)ρ(t− u)ρ(t− v)dsdtdudv

=
48

T 2

∫
[0,T ]2

∫
R2

ρT (u− s)ρT (v − s)ρT (t− u)ρT (t− v)dudvdsdt

=
48

T 2

∫
[0,T ]2

∫
R2

ρT (t− s− x)ρT (t− s− y)ρT (x)ρT (y)dxdydsdt

=
48

T 2

∫
[0,T ]2

((ρT ∗ ρT )(t− s))2dsdt ≤ 48

T
‖ρT ∗ ρT ‖2L2(R) ,

where we have also applied the change of variables x = t−u, y = t−v and used
the formula for convolution. Next, by Young’s inequality,

‖ρT ∗ ρT ‖2L2(R) ≤ ‖ρT ‖4L4/3(R) ,

and this establishes (3.7).

6.2. A bound on E|f̂T (X)|p

First, we recall an important representation for stationary Gaussian processes.

Definition 6.1. Let φS denote the set of functions ξ ∈ L2(R) such that ξ(t) = 0
for all t < 0. If ξ ∈ φS , we can define for all t ∈ R,

Zξ
t :=

∫
R

ξ(t− u)dWu, (6.3)

where (Wt)t≥0 is the Wiener process. The process (Zξ
t )t∈R is a stationary cen-

tered Gaussian process.

The following result is key for our approach.

Theorem 6.2 (Karhunen [23]). Let {Zt, t ∈ R} be a stationary centered Gaus-
sian process such that

lim
t→0

E[(Zt − Z0)
2] = 0,

⋂
t∈R

sp{Zs : −∞ < s ≤ t} = {0}, (6.4)
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where sp denotes the L2-closure of the linear span of a set of square-integrable
random variables. Then there exists ξ ∈ φS such that

{Zt, t ∈ R} (d)
= {Zξ

t , t ∈ R}, (6.5)

where (d) denotes equality of all finite-dimensional distributions, and {Zξ
t , t ∈

R} is the stationary centered Gaussian process defined in (6.3).

The following proposition asserts that, for Z a stationary centered Gaussian
process satisfying (6.4), the estimator f̂T (Z) given by (1.1) admits uniformly
bounded negative moments of all order. To prove it, we mainly rely on the
equality in law (6.5), that allows us to make use of conditional expectations with
respect to the filtration generated by the Wiener process W of (6.3). Another
more classic approach could have been to use a Laplace transform argument
instead, but we have not figured out how to do it.

Proposition 6.3. Let {Zt, t ≥ 0} be a stationary centered Gaussian process
satisfying (6.4), and E[Z2

0 ] = 1. Then, for every p > 0, there is T0 > 0 such that

sup
T≥T0

E

⎡⎣( 1

T

∫ T

0

Z2
t dt

)−p
⎤⎦ < ∞ (6.6)

and sup
T≥T0

E

⎡⎣( 1

T

∫ T

0

(Zt − eθtZ0)
2dt

)−p
⎤⎦ < ∞.

Moreover, for every p > 0, there is n0 ≥ 1 such that

sup
n≥n0

E

⎡⎣( 1

n

n∑
i=1

Z2
ti

)−p
⎤⎦ < ∞ (6.7)

and sup
n≥n0

E

⎡⎣( 1

n

n∑
i=1

(Zti − eθtiZ0)
2

)−p
⎤⎦ < ∞,

where ti = iΔn, for i = 1, . . . , n, with nΔn → ∞ and Δn → 0, as n → ∞.

Remark 6.4. We note the main idea for the proof is inspired by the approach
in [31, Theorem 1.1], which provides a bound on the some negative moments of
the Malliavin derivative.

Proof. Let p > 0. Condition (6.4) is satisfied and thus Theorem 6.2 implies that

{Zt, t ∈ R+}
(d)
= {Zξ

t , t ∈ R+} where ξ ∈ L2(R) with ξ(t) = 0, for t ≤ 0, and Zξ
t

is given by (6.3). Then, for a positive integer m > 2p,

E

⎡⎣( 1

T

∫ T

0

Z2
t dt

)−p
⎤⎦ = E

⎡⎣( 1

T

∫ T

0

(Zξ
t )

2dt

)−p
⎤⎦
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= E

⎡⎣( m∑
k=1

1

T

∫ kT/m

(k−1)T/m

(Zξ
t )

2dt

)−p
⎤⎦ .

Recall, that by the inequality between arithmetic and geometric means, for any

positive reals x1, . . . , xm,
∑m

k=1 xk ≥ m
∏m

k=1 x
1/m
k . Then,

E

⎡⎣( 1

T

∫ T

0

Z2
t dt

)−p
⎤⎦ ≤ m−p

E

⎡⎣ m∏
k=1

(
1

T

∫ kT/m

(k−1)T/m

(Zξ
t )

2dt

)−p/m
⎤⎦ . (6.8)

We proceed by conditioning. Let Ft := σ(Wu, u ≤ t). By definition, Zξ
t is Ft-

measurable. Thus,

E

⎡⎣( 1

T

∫ T

0

Z2
t dt

)−p
⎤⎦

≤ m−p
E

⎡⎣ m∏
k=1

E

⎡⎣( 1

T

∫ kT/m

(k−1)T/m

(Zξ
t )

2dt

)−p/m ∣∣∣F(k−1)T/m

⎤⎦⎤⎦ .

Next, note that

E

⎡⎣( 1

T

∫ kT/m

(k−1)T/m

(Zξ
t )

2dt

)−p/m ∣∣∣FW
(k−1)T/m

⎤⎦
=

∫ ∞

0

P

(
1

T

∫ kT/m

(k−1)T/m

(Zξ
t )

2dt ≤ x−m/p
∣∣∣FW

(k−1)T/m

)
dx

≤ 1 +

∫ ∞

1

P

(
1

T

∫ kT/m

(k−1)T/m

(Zξ
t )

2dt ≤ x−m/p
∣∣∣FW

(k−1)T/m

)
dx. (6.9)

Applying the Carbery-Wright Inequality [6], there is a universal constant c > 0
such that, for any ε > 0 we can write

P

(
1

T

∫ kT/m

(k−1)T/m

(Zξ
t )

2dt ≤ ε
∣∣∣FW

(k−1)T/m

)

≤ c
√
ε

E

[
1
T

∫ kT/m

(k−1)T/m
(Zξ

t )
2dt | FW

(k−1)T/m

] . (6.10)

Next, note that for any 0 ≤ a < b,

E

[∫ b

a

(Zξ
t )

2dt
∣∣∣Fa

]
=

∫ b

a

E

[
(Zξ

t )
2|Fa

]
dt

≥
∫ b

a

2Zξ
aE[Z

ξ
t − Zξ

a|Fa] + E[(Zξ
t − Zξ

a)
2|Fa]dt
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≥
∫ b

a

∫ t

a

ξ2(t− u)dudt =

∫ b−a

0

(b− a− v)ξ2(v)dv, (6.11)

where we have used Itô isometry and the fact that Zξ
t − Zξ

a is independent of
Fa.

By isometry,
∫∞
0

ξ2(v)dv = E[Z2
0 ] = 1. As a result, there is T0 > 0 such that∫ T0

2m

0
ξ2(v)dv ≥ 1

2 . Thus, by (6.11), for every T ≥ T0,

E

[
1

T

∫ kT/m

(k−1)T/m

(Zξ
t )

2dt | F(k−1)T/m

]
≥ 1

2m

∫ T
2m

0

ξ2(v)dv ≥ 1

4m
. (6.12)

Therefore, combining (6.9), (6.10) and (6.12), we obtain for every T ≥ T0,

E

⎡⎣( 1

T

∫ kT/m

(k−1)T/m

Z2
t dt

)−p/m ∣∣∣F(k−1)T/m

⎤⎦ ≤ 1 + 4cm

∫ ∞

1

x− m
2p dx.

(6.13)

Hence,

γm,T0 := sup
T≥T0

1≤k≤m

E

⎡⎣( 1

T

∫ kT/m

(k−1)T/m

Z2
t dt

)−p/m ∣∣∣F(k−1)T/m

⎤⎦ < ∞. (6.14)

Consequently, it follows from (6.8) and (6.14) that, for all T ≥ T0,

E

⎡⎣( 1

T

∫ T

0

Z2
t dt

)−p
⎤⎦ ≤ m−p(γm,T0)

m < ∞,

which completes the proof of the first part of (6.6). To establish the second part
of (6.6) one need only replace Zt by Zt − eθtZ0 in the proof above. Indeed, the

key inequalities (6.8), (6.9) and (6.10) are the same (with the change Zξ
t →

Zξ
t − eθtZξ

0) and the equivalent of (6.11) is

E

[∫ b

a

(Zξ
t − eθtZξ

0)
2dt

∣∣∣Fa

]

≥
∫ b

a

2(Zξ
a − eθtZξ

0)E[Z
ξ
t − Zξ

a|Fa] + E[(Zξ
t − Zξ

a)
2|Fa]dt

≥
∫ b

a

∫ t

a

ξ2(t− u)dudt =

∫ b−a

0

(b− a− v)ξ2(v)dv. (6.15)

Now, let us prove the discrete version (6.8). First we prove it for the case
n = m2. Define, for every m ≥ 1, Tm := m2Δm such that Δm → 0, and
T
m = mΔm → ∞ as m → ∞. Fix p > 0, and let m0 be a positive integer such
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that, for every m ≥ m0, m > 2p and
∫ Tm

m

0
ξ2(v)dv ≥ 1

2 . We have ti = iΔm for
i = 1, . . . ,m. Write

1

m2

m2∑
i=1

Z2
ti =

1

Tm

∫ Tm

0

Ytdt,

where Yt :=
∑m2

i=1 Zti1(ti−1,ti](t). Also, denote Y ξ
t :=

∑m2

i=1 Z
ξ
ti1(ti−1,ti](t).

We follow the same techniques as in the proof of (6.6). Notice that the in-

equalities (6.8)-(6.11) hold with Y ξ
t instead of Zξ

t .
Thus, it suffices to prove the following equivalent of (6.12): for every m ≥ m0,

E

[
1

Tm

∫ kTm/m

(k−1)Tm/m

(Y ξ
t )

2dt
∣∣∣F(k−1)Tm/m

]
≥ 1

2m2
.

Notice that for every k = 1, . . . ,m,

1

Tm

∫ kT/m

(k−1)Tm/m

(Y ξ
t )

2dt =
1

m2

m∑
j=1

(Zξ
t(k−1)m+j

)2.

Moreover,

E

[
(Zξ

t(k−1)m+j
)2
∣∣∣Ft(k−1)m

]
≥

∫ t(k−1)m+j

t(k−1)m

ξ2(t(k−1)m+j − u)du =

∫ tj

0

ξ2(v)dv.

Therefore, for every m ≥ m0,

E

[
1

Tm

∫ kTm/m

(k−1)Tm/m

(Y ξ
t )

2dt | F(k−1)Tm/m

]

≥ 1

m2

m∑
j=1

∫ tj

0

ξ2(v)dv ≥ 1

m2

∫ tm

0

ξ2(v)dv

=
1

m2

∫ T
m

0

ξ2(v)dv ≥ 1

2m2
,

which yields the proof of (6.8) for n = m2.
For general n a simple computation yields

1

n

n∑
i=1

Z2
ti ≥

1

n

�√n�2∑
i=1

Z2
ti ≥ C

1

�√n�2
�√n�2∑
i=1

Z2
ti , (6.16)

for some absolute constant C > 0, and thus the first part of (6.8) is established.
The second part follows using the same techniques as above and (6.15).
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