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1. Introduction

In this paper, we study nonparametric tests for change-points in time series
that are based on weighted two-sample U -statistics. By a suitable choice of the
weights, we obtain tests that are able to detect changes that occur very early
or very late during the observation period. Our results cover both the CUSUM
test and the Wilcoxon change-point test, as well as many other robust and non-
robust tests. We investigate the large-sample behavior of our tests in the case of
short-range dependent data under mild conditions that cover, e.g. ARMA and
ARCH processes. By means of a simulation study, we analyze the small sample
behavior of our tests, e.g. regarding robustness and the ability to detect early
and late changes. As an application, we analyze a data set of daily stock returns
of Wirecard during the weeks prior to the detection of accounting fraud in June
2020.

There is a vast body of literature on change-point tests using U-statistics.
Gombay [14], and Kirch and Stoehr [16] investigate sequential change-point tests
based on U-statistics. Wang, Volgushev and Shao [27] apply certain U-statistics
for change-point detection in high-dimensional time series. Zhang, Wang, and
Shao [29] propose an adaptive change-point test based on U-statistics. Račkauskas
and Wendler [20] apply U-statistics for the detection of epidemic changes.

We assume that the data are generated by a stochastic process (Xi)i≥1 which
follows the model

Xi = μi + ξi, i ≥ 1,

where (μi)i≥1 is an unknown signal, and where (ξi)i≥1 is a short-range dependent
stationary stochastic process. Given the observations X1, . . . , Xn, we want to
test the hypothesis that the signal is constant, i.e.

H0 : μ1 = . . . = μn

against the alternative of a change in the mean at an unknown point k∗ in time,
i.e.

H1 : μ1 = . . . = μk∗ �= μk∗+1 = . . . = μn, for some k∗ ∈ {1, . . . , n− 1}.

If the change-point k∗ was known, we would have a two-sample problem with the
samples X1, . . . , Xk∗ and Xk∗+1, . . . , Xn, respectively, and we could apply stan-
dard tests such as the two-sample Student t-test or the Wilcoxon two-sample test
for a change in mean. Up to normalization, both are special cases of two-sample

U -statistics
∑k∗

i=1

∑n
j=k∗+1 h(Xi, Xj), with a suitably chosen kernel function

h : R2 → R.
In the change-point setting, where a change occurs at an unknown point in

time, we have a family of two-sample problems, indexed by the potential change-
point k, and thus we are naturally led to the two-sample U -statistic process

k∑
i=1

n∑
j=k+1

h(Xi, Xj), 0 ≤ k ≤ n.
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A variety of change-point tests can be derived from this process by taking suit-
able functionals such as weighted maxima

max
1≤k≤n−1

1(
k
n (1−

k
n )

)γ 1

n3/2

∣∣∣ k∑
i=1

n∑
j=k+1

h(Xi, Xj)
∣∣∣,

where 0 ≤ γ ≤ 1
2 is some parameter to be chosen.

For γ = 0, we obtain non-weighted tests, which have been widely studied in
the literature, starting with Darkhovskh [5] and Pettitt [19], who studied the
special case of a Wilcoxon-type test statistic. Csörgő and Horvath [2] investi-
gated U-statistics with general kernels, in the case of independent data. They
could show that the asymptotic distribution under the null hypothesis is the
Kolmogorov-Smirnov distribution, which is the distribution of the supremum
of a Brownian bridge. Dehling, Fried, Garcia and Wendler [7] extended these
results to weakly dependent data. Under long-range dependence, the limiting
distribution is given by the supremum of a linear combination of Hermite pro-
cesses; see Dehling, Rooch and Taqqu [10] for the Wilcoxon test, and Dehling,
Rooch and Wendler [11] for arbitrary kernels. For 0 < γ < 1

2 , the limit dis-
tribution under independence is the supremum of the appropriately weighted
Brownian bridge, see e.g. the seminal monograph by Csörgő and Horváth [3].
The moment conditions for such a limit theorem have been relaxed by Csörgő,
Szyszkowicz, and Wang [4].

In the present paper, we focus on the extreme case γ = 1
2 , where we obtain

the test statistic

Tn := max
1≤k≤n−1

1√
k(n− k)n

∣∣∣ k∑
i=1

n∑
j=k+1

h(Xi, Xj)
∣∣∣ (1)

Under the null hypothesis, after some suitable normalization and centering, Tn

converges in distribution to the Gumbel extreme value distribution. This has
been derived by Csörgő and Horváth [2] under independence. We will show that
the same holds in the case of short-range dependent data. Antoch, Hušková
und Prášková [1] have studied the large-sample behavior of weighted versions of
the CUSUM test for dependent observations, in particular for linear processes.
We also show that the test is consistent against a wide class of alternatives.
For independent data, the behavior under the alternative has been studied by
Ferger [13] and Gombay [14]. We have conducted an extensive simulation study
comparing this test with the corresponding non-weighted test. Our simulations
confirm the intuition that the weighted tests have more power against very early
and very late changes, while the non-weighted tests are more powerful against
changes in the middle of the observation period.

By the choice of the kernel function h, the weighted two-sample U-statistics
lead to a flexible class of change-point tests. As special examples, we obtain the
CUSUM test for h(x, y) = y−x, and the Wilcoxon test for h(x, y) = 1{x≤y}− 1

2 .
More generally, one can take the kernels h(x, y) = ψ(y − x) for some anti-
symmetric function ψ : R −→ R. Depending on the choice of ψ, one obtains
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tests with specific properties, such as robustness against outliers, and tests that
are powerful for certain alternatives.

The rest of the paper is organized as follows. In the next section, we present
the detailed technical assumptions, and we give the main theoretical results of
our paper. In section 3, we present the outcomes of a major simulation study
comparing weighted and non-weighted tests as well as the robust Wilcoxon test
and the non-robust CUSUM test. Full details of the proofs are presented in the
final section.

2. Main theoretical results

In this section, we analyze the large sample behavior of the suitably normalized
and centered test statistic Tn under the hypothesis, and under a wide class of
alternatives. A major ingredient in the proof is a new Darling-Erdős type limit
theorem for the tied-down random walk of dependent random variables, which
might also be of independent interest. Before we present our results, we give
some definitions. Throughout this paper, the stochastic process (Xi)i≥1 will be
assumed to be α-mixing in the sense of Rosenblatt [23].

Definition 2.1. The stochastic process (Xi)i≥1 is said to be α-mixing if

α(k) := sup
n≥1

sup
{
|P (A ∩B)− P (A)P (B)| : A ∈ Fn

1 , B ∈ F∞
n+k

}
−→ 0,

as k −→ ∞, where Fb
a denotes the σ-field generated by the random variables

Xa, . . . , Xb. We define the generalized inverse α−1 : [0, 1] −→ N by

α−1(u) := min
{
k ∈ N : α(k) ≤ u

}
=

∞∑
i=0

1{α(i)>u}.

Our theoretical results require assumptions on the rate of decay of the mixing
coefficients (α(k))k≥1. We formulate these assumptions using a concept intro-
duced by Rio [21] that is based on the quantile function which we define below.

Definition 2.2. For a random variable X, the upper quantile function QX :
[0, 1] −→ R is defined by

QX(u) = inf
{
t ∈ R : P (X > t) ≤ u

}
Finally, we will assume that the kernel function h : R2 → R satisfies the

variation condition, which is a continuity assumption introduced by Denker and
Keller [12], and that the kernel has uniform (2 + δ)-moments.

Definition 2.3. A kernel h : R2 → R satisfies the variation condition if there
exist constants L > 0 and ε0 > 0 such that for all ε ∈ (0, ε0)

E
(

sup
{(x,y):‖(x,y)−(X,Y )‖≤ε}

|h(x, y)− h(X,Y )|
)
≤ Lε, (2)

where X,Y are independent random variables with the same distribution as X1,
and where ‖ · ‖ denotes the Euclidean norm on R

2.
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Definition 2.4. Let (Xi)i≥1 be a stationary process. A kernel h has uniform
(2 + δ)-moments if for all k ∈ N0

E|h(X1, Xk)|(2+δ) ≤ M,

E|h(X,Y )|(2+δ) ≤ M,

where X,Y are independent copies of X1, and where M is a constant.

The following theorem is the main theoretical result of this paper. Through-
out, Q|X| will denote the common quantile function of the Xk’s.

Theorem 1. Let (Xi)i≥1 be an α-mixing strictly stationary process. Let h(x, y)
be a bounded anti-symmetric kernel with uniform (2+δ)-moments and satisfying
the variation condition (2). Moreover, assume that there exist constants p > 2
and ε > 6/δ such that ∫ 1

0

(α−1(u))4+εQp
|X|(u)du < ∞. (3)

Then, under the null hypothesis H0, as n → ∞,

√
2 log logn

σh
Tn − bn

D−→ G2,

where G2 is the Gumbel extreme value distribution with distribution function

G2(x) = exp(−2 exp(−x)), (4)

and where the centering constants bn and the long-run variance σ2
h are defined

by

bn = 2 log logn+
1

2
log log logn− 1

2
log π (5)

σ2
h = Var(h1(X1) + 2

∞∑
k=2

Cov(h1(X1), h1(Xk)). (6)

Here, h1(x) denotes the first order term in the Hoeffding decomposition of h, as
defined below.

The idea of the proof is to apply the Hoeffding decomposition, which was
introduced by Hoeffding [15], and to show that the degenerate part is asymp-
totically negligible. Thus, it will remain to show that the linear part converges to
the extreme value distribution G2. For a two-sample U-statistic, the Hoeffding
decomposition of the kernel h is given by

h(x, y) = θ + h1(x) + h2(y) + Ψ(x, y), (7)

where the terms on the right hand side are defined by

θ = Eh(X,Y )
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h1(x) = Eh(x, Y )− θ

h2(y) = Eh(X, y)− θ

Ψ(x, y) = h(x, y)− h1(x)− h2(y)− θ,

and where X,Y are two independent random variables with the same distri-
bution as X1. Note that in our case, since h is assumed to be anti-symmetric,
θ = 0 and h2(x) = −h1(x). Applying the Hoeffding decomposition of the kernel
h to the test statistic Tn, we obtain

1√
k(n− k)n

∣∣∣ k∑
i=1

n∑
j=k+1

h(Xi, Xj)
∣∣∣ (8)

=
1√

k(n− k)n

∣∣∣ k∑
i=1

n∑
j=k+1

(
h1(Xi)− h1(Xj) + Ψ(Xi, Xj)

)∣∣∣
=

1√
k(n− k)n

∣∣∣(n− k)
k∑

i=1

h1(Xi)− k
n∑

j=k+1

h1(Xj) +
k∑

i=1

n∑
j=k+1

Ψ(Xi, Xj)
∣∣∣

=
∣∣∣√ n

k(n− k)

( k∑
i=1

h1(Xi)−
k

n

n∑
j=1

h1(Xj)
)
+

1√
k(n− k)n

k∑
i=1

n∑
j=k+1

Ψ(Xi, Xj)
∣∣∣

In order to show that
√
log logn
σh

Tn − bn
D−→ G2, it thus suffices to show that

√
log logn max

1≤k≤n−1

1√
k(n− k)n

∣∣∣ k∑
i=1

n∑
j=k+1

Ψ(Xi, Xj)
∣∣∣ P−→ 0, (9)

and that
√
2 log logn

σh
max

1≤k≤n−1

√
n

k(n− k)

( k∑
i=1

h1(Xi)−
k

n

n∑
j=1

h1(Xj)
)

D−→ G2. (10)

The asymptotic negligibility of the degenerate part, i.e. (9), will be established
in Proposition 5.1, while (10) will be a consequence of a suitable Darling-Erdős
theorem; see Theorem 3 below.

In the next theorem, we investigate the large sample behavior of Tn under
the alternative H1. We define

Δ = Δn := Eh(X1, X
′
n),

where X ′
n is independent of X1 and has the same distribution as Xn. Note that

Δn measures the size of the change in the distribution of Xi at the change point.

Theorem 2. Assume that the degenerate kernel h has uniform (2+δ)-moments
and that it satisfies the variation condition (2). Let

∞∑
k=1

k

(∫ α(k)

0

Q|X|(u)du

) δ
3+2δ

< ∞. (11)
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Moreover, assume that the alternative H1 holds, and that√
k∗n(n− k∗n)

n log logn
|Δn| −→ ∞, (12)

where k∗ = k∗n denotes the location of the change. Then

1√
log log n

Tn
P−→ ∞. (13)

Corollary 2.5. The test that rejects the null hypothesis H0 of no change when
√
2 log logn

σh
Tn − bn ≥ g2,α,

where g2,α denotes the upper α-th quantile of the Gumbel distribution G2, has
asymptotic level α. Moreover, the test is consistent against any alternatives H1

that satisfy (12).

Proof. Under the null hypothesis, the test statistic converges by Theorem 1 to
the Gumbel extreme value distribution G2, and thus the test that rejects the null
hypothesis when the statistic exceeds g2,α has asymptotically level α. Regarding
the behavior under the alternative, we will show that under the assumptions of
the corollary √

2 log logn

σh
Tn − bn

P−→ ∞. (14)

Let K > 0 be a given constant, then

P
(√2 log logn

σh
Tn − bn ≥ K

)
=P

(
Tn ≥ (bn +K)σh√

2 log logn

)
=P

( 1√
log logn

Tn ≥ (bn +K)σh/
√
2

log logn

)
≥P

( 1√
log logn

Tn ≥ 3σh/
√
2
)
,

for all n large enough, since (bn +K)/ log logn → 2 as n → ∞. Now, the right
hand side converges to 1 by Theorem 2.

Remark 1. The condition (12) puts restrictions on the time k∗n as well as the
magnitude Δn of the change, in order for our test to be consistent. For an early
change, i.e. when k∗n = o(n), the condition (12) is equivalent to

k∗nΔ
2
n

log logn
→ ∞,

stating that k∗n ·Δ2
n has to grow faster than log log n for the weighted test to be

consistent. Keeping the magnitude of the change Δn ≡ Δ constant, this means
that k∗n must grow faster than log logn.
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In the next theorem, we derive the asymptotic distribution of the weighted
tied-down random walk. This result will be used in the analysis of the asymptotic
distribution of the linear part of the test statistic Tn.

Theorem 3. Let (Xi)i≥1 be an α-mixing stationary process, let Sn :=
∑n

i=1 Xi

denote the partial sum process, and let

σ2 = Var(X1) + 2

∞∑
k=2

Cov(X1, Xk) (15)

denote the long-run variance. If there exists a 2 < p ≤ 3 such that∫ 1

0

(α−1(u))p−1Qp
|X|(u) du < ∞, (16)

then √
2 log logn

σ
max

1≤k≤n−1

√
n

k(n− k)

∣∣∣Sk − k

n
Sn

∣∣∣− bn
D−→ G2,

where G2(x) = exp(−2 exp(−x)), and where bn is defined as in (5).

The proof of the above theorem follows the ideas of Yao and Davis [28] who
showed that for i.i.d. standard normally distributed data the likelihood ratio
converges in distribution to a Gumbel extreme value distribution. An important
tool in the proof is the celebrated Darling-Erdős theorem on the asymptotic
distribution of max1≤k≤n

1√
k
|
∑k

i=1 Xi|. Theorem 4 below establishes such a

result for dependent data. Such theorems have been proved before, see e.g.
Shorack [25], but not under the conditions required in the present paper.

Theorem 4. Let (Xi)i≥1 be an α-mixing strictly stationary process satisfying
(16) for some 2 < p ≤ 3, and let Sn :=

∑n
i=1 Xi denote the partial sum process.

Then √
2 log log n

σ
max

1≤k≤n

|Sk|√
k

− bn
D−→ G, (17)

where G(x) = exp(− exp(−x)) denotes the Gumbel extreme value distribution
function, and where σ and bn is defined in (15) and (5), respectively.

The proof of Theorem 4, presented in Section 5.4 below, follows the ideas of
Shorack [25] who proved that an almost sure invariance principle together with
a suitable maximal inequality implies the Darling-Erdős theorem.

3. Simulations

In this section we present some simulation results for the weighted and the
unweighted test statistic. We compare the power, the empirical size and the
critical values, and consider the CUSUM and the Wilcoxon kernel, namely
h(x, y) = y − x and h(x, y) = 1{x<y} − 1

2 .
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Remark 2. It is easy to see that the Wilcoxon kernel satisfies the variation
condition. Let h(x, y) = 1{x≤y} − 1

2 . Then, for ε > 0,

sup
‖(x,y)−(X,Y )‖≤ε

|h(x, y)− h(x′, y′)|

= sup
‖(x,y)−(X,Y )‖≤ε

|1{x≤y} − 1{x′≤y′}|

=

{
1 for X − Y ∈ (−

√
2ε,

√
2ε],

0 else.

If the density of X − Y is bounded, then

E
(

sup
‖(x,y)−(X,Y )‖≤ε

|1{x≤y} − 1{x′≤y′}|
)

≤P (X − Y ∈ (−
√
2ε,

√
2ε]) ≤ Lε.

Let TC
n denote the CUSUM and TWC

n the weighted CUSUM test statistic and
let TW

n and TWW
n denote the Wilcoxon and the weighted Wilcoxon test statistic,

all properly centered and normalized, i.e.

TC

n =
1

n3/2σC

max
1≤k≤n−1

∣∣∣∣∣∣
k∑

i=1

n∑
j=k+1

(Xj −Xi)

∣∣∣∣∣∣ ,
TWC

n =

√
2 log logn

σC

max
1≤k≤n−1

1√
k(n− k)n

∣∣∣∣∣∣
k∑

i=1

n∑
j=k+1

(Xj −Xi)

∣∣∣∣∣∣− bn,

TW

n =
1

n3/2σW

max
1≤k≤n−1

∣∣∣∣∣∣
k∑

i=1

n∑
j=k+1

(
1{Xi<Xj} −

1

2

)∣∣∣∣∣∣ ,
TWW

n =

√
2 log logn

σW

max
1≤k≤n−1

1√
k(n− k)n

∣∣∣∣∣∣
k∑

i=1

n∑
j=k+1

(
1{Xi<Xj} −

1

2

)∣∣∣∣∣∣− bn.

For 0 < α < 1 we define ci(α), i ∈ {1, 2, 3, 4}, such that

P (TC

n > c1(α)) = α, P (TWC

n > c2(α)) = α,

P (TW

n > c3(α)) = α, P (TWW

n > c4(α)) = α.

Most of the simulation study is based on i.i.d. standard normally distributed
observations. In this case

σ2
C = 1 and σ2

W =
1

12
.

In Figure 3 we we will consider dependent observations. In this case the long
run variance has to be estimated. We use a subsampling estimator introduced
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by Dehling, Fried, Sharipov, Vogel and Wornowizki [8]. To achieve consistency
under the alternative, we split the data into three disjoint sub-sequences of
similar length and use the median of the resulting three separate estimations,
see Dehling, Fried and Wendler [9].

First, we have simulated the critical values ci(α) and compared them to the
asymptotic ones. The results are summarized in Table 1. For the unweighted
test statistics the simulated critical values are almost in agreement with the
asymptotic ones, whereas for the weighted test statistics the difference is larger.
An overview is also given in Figure 1, which shows the different empirical dis-
tribution functions compared to the asymptotic ones. On the left hand side the
empirical distribution function for the CUSUM and Wilcoxon test statistic is
compared to the distribution function of the Kolmogorov-Smirnov distribution,
and on the right hand side the distribution functions for the weighted CUSUM
and weighted Wilcoxon test statistics are compared to the distribution function
of the Gumbel distribution with location parameter log(2) and scale parameter
1.

Table 1

Empirical and asymptotic critical values for the CUSUM (C), weighted CUSUM (WC),
Wilcoxon (W) and weighted Wilcoxon (WW) test statistics. The empirical critical values
are based on i.i.d. standard normally distributed observations and 20000 simulation runs.

α = 0.05 α = 0.10

n 100 200 400 800 ∞ 100 200 400 800 ∞
C c1(α) 1.30 1.33 1.33 1.33 1.36 1.17 1.18 1.20 1.20 1.22

WC c2(α) 2.64 2.72 2.76 2.82 3.66 2.20 2.26 2.28 2.32 2.94
W c3(α) 1.30 1.32 1.33 1.33 1.36 1.17 1.19 1.20 1.21 1.22

WW c4(α) 2.47 2.56 2.60 2.65 3.66 2.05 2.13 2.18 2.18 2.94

Next, we evaluate the performance of the test statistics by computing the
empirical sizes and the power. Table 2 presents the empirical sizes for the un-
weighted and weighted CUSUM and Wilcoxon test statistics. The empirical sizes
are lower than the nominal size in all cases considered. For the unweighted test
statistics the size distortion shrinks to zero as the sample size increases, whereas
for the weighted test statistics the difference between the empirical size and the
nominal size is much larger for all considered sample sizes.

Figure 2 shows the size-corrected power of the CUSUM, weighted CUSUM
and the Wilcoxon and weighted Wilcoxon test statistic for all possible change-
point times with shift height Δ = 0.3. The simulations are based on i.i.d. stan-
dard normally distributed observations. It is clear that the power of all test
statistics improves as the change-point is more central. In the case of early and
late changes the weighted test statistics have better power than the unweighted
ones, whereas they have less power for changes in the middle of the time pe-
riod. For standard normally distributed data the power of the CUSUM and the
Wilcoxon test statistics differs only marginally. Considering data with heavier
tails, such as t(5) or t(3) distributed observations, one can see that the CUSUM
test statistics lose more power, especially the weighted CUSUM. In both cases,
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Fig 1. Empirical distribution functions under the hypothesis for the unweighted and weighted
CUSUM and Wilcoxon test statistics, compared to the distribution functions of the asymptotic
distributions. The simulations are based on 100 i.i.d. standard normally distributed observa-
tions and 20000 runs.

the Wilcoxon test statistics have better power.

Table 2

Empirical size based on n i.i.d. standard normally distributed observations and 5000
simulation runs.

n α TC
n TWC

n TW
n TWW

n

200 0.05 0.039 0.010 0.042 0.006
400 0.05 0.046 0.010 0.046 0.010
800 0.05 0.049 0.014 0.047 0.012
1600 0.05 0.045 0.015 0.045 0.015
200 0.10 0.085 0.035 0.088 0.023
400 0.10 0.085 0.039 0.085 0.039
800 0.10 0.095 0.043 0.091 0.034
1600 0.10 0.091 0.043 0.091 0.043
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Figure 3 shows analogous power plots, based on AR(1)-processes with t(3)-
distributed innovations and correlation coefficients ρ = 0.3, 0.5, 0.7. It is easy
to see that a higher correlation results in a lower power. Again, in the case of
early and late changes the weighted test statistics have better power than the
unweighted ones. Compared to the CUSUM test statistics, the Wilcoxon test
statistics always have greater power.

Fig 2. Size-corrected power depending on the change-point time τ = [k
∗
n
]. The simulations

are based on 800 i.i.d. standard normally distributed observations with shift height Δ = 0.3
and 20000 simulation runs.

4. Data example

As an application we analyze the daily absolute log returns of the closing Wire-
card stock prices (currency in EUR, downloaded from https://de.finance.

yahoo.com/quote/WDI.DU/history?p=WDI.DU on June 14, 2021). We consider

https://de.finance.yahoo.com/quote/WDI.DU/history?p=WDI.DU
https://de.finance.yahoo.com/quote/WDI.DU/history?p=WDI.DU
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Fig 3. Size-corrected power depending on the change-point time τ = [k
∗
n
]. The data is gen-

erated from an AR(1) process with t(3)-distributed innovations and correlation coefficients
ρ = 0.3, 0.5, 0.7. The simulations are based on 20000 runs with sample size n = 800 and shift
height Δ = 1.

the time period February 10, 2020, to June 26, 2020 , which is 19 weeks and 95
observations (trading time from monday to friday). The absolute log returns in
this time period are visualized in Figure 4.

As the focus of this paper is on robust tests, we apply the weighted and
non weighted Wilcoxon test to the data. The long run variance is estimated
by the same subsampling estimator used in the simulation study. Considering
a significance level of 5%, the weighted Wilcoxon test statistic rejects the null
hypothesis of a constant mean in the absolute log returns. In contrast, the un-
weighted Wilcoxon test doesn’t detect any significant change (c.f. Table 3). The
weighted Wilcoxon test detects a change at observation 88, which correspond
to June 18, 2020. On that day Wirecard reported that, following an audit by
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Fig 4. Absolute log returns of the Wirecard stock price (Febraury 10, 2020 – June 26, 2020).
Change-point detected by the weighted Wilcoxon test (vertical dashed line), and average be-
tween the detected change-point (horizontal black lines).

Ernst & Young, about 1.9 billion euro was missing in certain trust accounts.

Table 3

Unweigted and weighted Wilcoxon test statistics together with the corresponding asymptotic
critical values for the Wirecard stock price data, considering a significance level of 5%.

Wilcoxon weighted Wilcoxon

Test statistic 1.28 4.96
Critical value 1.36 3.66

5. Proofs

5.1. Proof of Theorem 1

First, we show in the following proposition that the degenerate part is asymp-
totically negligible.

Proposition 5.1. Let Ψ be the kernel given by Hoeffding’s decomposition of h
in (7), satisfying the variation condition. Moreover, we assume that (11) holds.
Then, under the null hypothesis H0, as n → ∞

max
1≤k≤n−1

√
log logn

k(n− k)n

∣∣∣∣∣∣
k∑

i=1

n∑
j=k+1

Ψ(Xi, Xj)

∣∣∣∣∣∣ P−→ 0.

Proof. We can split the maximum into the stretch up to
√
n, the stretch between√

n and n−√
n and the stretch after n−√

n, such that

max
1≤k≤n−1

√
log logn

k(n− k)n

∣∣∣∣∣∣
k∑

i=1

n∑
j=k+1

Ψ(Xi, Xj)

∣∣∣∣∣∣
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≤ 2 max√
n≤k<n−√

n

√
log logn

n5/2

∣∣∣∣∣∣
k∑

i=1

n∑
j=k+1

Ψ(Xi, Xj)

∣∣∣∣∣∣ (18)

+ max
k<

√
n

√
log logn

n2

∣∣∣∣∣∣
k∑

i=1

n∑
j=k+1

Ψ(Xi, Xj)

∣∣∣∣∣∣ (19)

+ max
k≥n−√

n

√
log log n

n2

∣∣∣∣∣∣
k∑

i=1

n∑
j=k+1

Ψ(Xi, Xj)

∣∣∣∣∣∣ . (20)

Now we can deal with every single maximum. To show that these maxima con-
verge in probability to 0, we use Theorem A of Serfling [24]. To apply that
theorem, we need a functional g(Fa,n) depending on the joint distribution of a
vector (Ya+1, . . . , Ya+n) of n random variables, and satisfying

g(Fa,k) + g(Fa+k,l) ≤ g(Fa,k+l), 1 ≤ k < k + l,

such that

E|Sa,l|2 ≤ g(Fa,l), for all l ≥ 1,

where

Sa,l =

a+l∑
i=a+1

Yi.

Then it follows

E

(
max
1≤i≤l

|Sa,i|
)2

≤
(
log(2l)

log(2)

)2

(g(Fa,l))
2
.

We set Vk =
∑k

i=1

∑n
j=k+1 Ψ(Xi, Xj). By Lemma A.3

E(Vm − Vk)
2 ≤ C1|m− k|n,

where C1 is a constant. Define Yi := Vi − Vi−1, i = 1, . . . , n and set V0 = 0.
Then one has Vm =

∑m
i=1 Yi and Vm − Vk =

∑m
i=k+1 Yi. As k ≤ m we can set

m := k + l, l ∈ N. Thus

E

(
k+l∑

i=k+1

Yi

)2

≤ C1ln.

With

g(Fa,l) = C1ln,

where C1 is a constant, the required conditions are satisfied. We have

g(Fa,k) + g(Fa+k,l) = C1kn+ C1ln = C1n(k + l) = g(Fa,k+l)
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and

E|Sa,l|2 = E

(
a+l∑

i=a+1

Yi

)
≤ C1ln = g(Fa,l).

Thus

E

(
max
1≤j≤l

∣∣∣∣∣
k+j∑

i=k+1

Yi

∣∣∣∣∣
)2

≤
(
log(2l)

log(2)

)2

C1ln.

For k = 0 and l =
√
n we get

E

(
max

1≤j≤√
n
|Vj |

)2

= E

(
max

1≤j≤√
n

∣∣∣∣∣
j∑

i=1

Yi

∣∣∣∣∣
)2

≤
(
log (2

√
n)

log(2)

)2

C1n
3/2.

Thus we have

E

(
max

1≤k≤√
n

√
log logn

n2
|Vk|

)2

≤ log log n√
n

(
log (2

√
n)

log(2)

)2

C1.

This goes to 0 for n → ∞. Applying Chebyshev’s inequality, we obtain that
(19) converges to 0 in probability as n → ∞. By stationarity, this also holds for
(20). An analogous procedure leads to

E

(
max

1≤k≤n−√
n

√
log logn

n5/2
|Vk|

)2

≤ (n−√
n) log logn

n3/2

(
log (2

√
n)

log(2)

)2

C1.

As this goes to zero for n → ∞ and as

max√
n≤k≤n−√

n

√
log logn

n5/2
|Vk| ≤ max

1≤k≤n−√
n

√
log logn

n5/2
|Vk|,

we obtain that (18) converges in probability to 0.

Proof of Theorem 1. In the same way as in (8), we apply Hoeffding’s decompo-
sition to the kernel h(x, y) and get

1√
k(n− k)n

k∑
i=1

n∑
j=k+1

h(Xi, Xj)

=

√
n

k(n− k)

(
k∑

i=1

h1(Xi)−
k

n

n∑
i=1

h1(Xi)

)
+

1√
k(n− k)n

k∑
i=1

n∑
j=k+1

Ψ(Xi, Xj).

As the variation condition holds for the kernel h, it also holds for Ψ. In order
to be able to apply Proposition 5.1, we need to verify assumption (11). From
(3), we obtain ∫ 1

0

(α−1(u))4+ε Q|X|(u)du < ∞,
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which is equivalent to

∞∑
k=1

k3+ε

∫ α(k)

0

Q|X|(u)du < ∞;

see Remark 2.2 in Merlevède and Rio [17] or Annex C in Rio [22]. Now, we
define

qk :=

∫ α(k)

0

Q|X|(u)du.

As qk is nonincreasing and by assumption, we obtain

n4+εqn ≤ c1

n∑
k=1

k3+εqn ≤ c1

n∑
k=1

k3+εqk ≤ c1

∞∑
k=1

k3+εqk < ∞,

where c1 is a constant. Hence n
(4+ε)δ
3+2δ q

δ
3+2δ
n is bounded by some constant c2, and

thus

nq
δ

3+2δ
n ≤ c2

1

n1+ εδ−6
3+2δ

,

which implies

∞∑
k=1

kq
δ

3+2δ

k < ∞.

Thus, all conditions of Proposition 5.1 are satisfied and we can conclude that

max
1≤k≤n−1

√
log logn

k(n− k)n

∣∣∣∣∣∣
k∑

i=1

n∑
j=k+1

Ψ(Xi, Xj)

∣∣∣∣∣∣ P−→ 0.

Hence, by Slutsky’s theorem, it remains to show that

max
1≤k≤n−1

√
n log logn

k(n− k)

∣∣∣∣∣
k∑

i=1

h1(Xi)−
k

n

n∑
i=1

h1(Xi)

∣∣∣∣∣− bn

converges in distribution to the desired extreme value distribution. This follows
from Theorem 3 with Sk =

∑k
i=1 h1(Xi).

5.2. Proof of Theorem 2

Without loss of generality, we assume that Δ > 0. Since

max
1≤k≤n−1

1√
k(n− k)n

∣∣∣ k∑
i=1

n∑
j=k+1

h(Xi, Xj)
∣∣∣≥ 1√

k∗(n− k∗)n

∣∣∣ k∗∑
i=1

n∑
j=k∗+1

h(Xi, Xj)
∣∣∣,
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it suffices to show that

1√
(log logn)k∗(n− k∗)n

∣∣∣∣∣∣
k∗∑
i=1

n∑
j=k∗+1

h(Xi, Xj)

∣∣∣∣∣∣ P−→ ∞.

We obtain the following Hoeffding decomposition

h(Xi, Xj) = Δ + h1(Xi) + h2(Xj) + Ψ(Xi, Xj), 1 ≤ i ≤ k∗ < j ≤ n,

where Δ is given as in Theorem 2, and where

h1(x) := Eh(x,Xn)−Δ,

h2(y) := Eh(X1, y)−Δ.

It holds

Tn√
log logn

≥ 1√
(log logn)k∗(n− k∗)n

k∗∑
i=1

n∑
j=k∗+1

(Δ+h1(Xi)+h2(Xj)+Ψ(Xi, Xj))

=Δ

√
k∗(n− k∗)

(log logn)n
+

√
n− k∗

(log logn)k∗n

k∗∑
i=1

h1(Xi)

+

√
k∗

(log logn)(n− k∗)n

n∑
j=k∗+1

h2(Xj)

+
1√

(log logn)k∗(n− k∗)n

k∗∑
i=1

n∑
j=k∗+1

Ψ(Xi, Xj).

By the law of iterated logarithm√
n− k∗

k∗n log logn

∣∣∣ k∗∑
i=1

h1(Xi)
∣∣∣ ≤ 1√

k∗ log logn

∣∣∣ k∗∑
i=1

h1(Xi)
∣∣∣ = O(1) a.s.,√

k∗

(n− k∗)n log logn

∣∣∣ n∑
j=k∗+1

h2(Xj)
∣∣∣ ≤ 1√

(n− k∗ log logn)

∣∣∣ n∑
j=k∗+1

h2(Xj)
∣∣∣

D
=

1√
(n− k∗) log logn

∣∣∣ n−k∗∑
j=1

h2(Xj+k∗)
∣∣∣

=Op(1).

It remains to show that

1√
(log logn)k∗(n− k∗)n

k∗∑
i=1

n∑
j=k∗+1

Ψ(Xi, Xj)
P−→ 0,
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as n → ∞. By Lemma A.3 we have

E

⎛⎝ k∗∑
i=1

n∑
j=k∗+1

Ψ(Xi, Xj)

⎞⎠2

≤ C(n− k∗)k∗,

for some constant C. We get

E

⎛⎝ 1√
(log logn)k∗(n− k∗)n

k∗∑
i=1

n∑
j=k∗+1

Ψ(Xi, Xj)

⎞⎠2

≤ C

(log log n)n
→ 0,

as n → ∞, which completes the proof.

5.3. Proof of Theorem 3

For the proof of Theorem 3, we need the following lemmas, which all hold under
the assumptions of Theorem 3.

Lemma 5.2.

max
1≤k≤[ n

log n ]

√
n

k(n− k)

∣∣∣∣Sk − k

n
Sn

∣∣∣∣− max
1≤k≤[ n

log n ]

∣∣∣∣ Sk√
k

∣∣∣∣ = op

(
1√

2 log log n

)
Proof. For n large, we have∣∣∣∣∣ max

1≤k≤[ n
log n ]

√
n

k(n− k)

∣∣∣∣Sk − k

n
Sn

∣∣∣∣− max
1≤k≤[ n

log n ]

∣∣∣∣ Sk√
k

∣∣∣∣
∣∣∣∣∣

≤ max
1≤k≤[ n

log n ]

∣∣∣∣√ n

k(n− k)

∣∣∣∣Sk − k

n
Sn

∣∣∣∣− ∣∣∣∣ Sk√
k

∣∣∣∣∣∣∣∣
≤ max

1≤k≤[ n
log n ]

∣∣∣∣√ n

k(n− k)

(
Sk − k

n
Sn

)
− Sk√

k

∣∣∣∣
= max

1≤k≤[ n
log n ]

∣∣∣∣∣
(√

n

(n− k)
− 1

)
Sk√
k
−

√
k

n− k

Sn√
n

∣∣∣∣∣
≤ max

1≤k≤[ n
log n ]

(∣∣∣∣(√
n

(n− k)
− 1

)
Sk√
k

∣∣∣∣+
∣∣∣∣∣
√

k

n− k

Sn√
n

∣∣∣∣∣
)

(21)

For large n and 1 ≤ k ≤
[

n
logn

]
the inequalities√

n

n− k
− 1 ≤ k

n
and

√
k

n− k
≤ 2

√
k

n

are satisfied. So we have that (21) is less or equal to

max
1≤k≤[ n

log n ]

(∣∣∣∣kn Sk√
k

∣∣∣∣+
∣∣∣∣∣2
√

k

n

Sn√
n

∣∣∣∣∣
)
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= max
1≤k≤[ n

log n ]

√
k

n

(∣∣∣∣ Sk√
n

∣∣∣∣+ 2

∣∣∣∣ Sn√
n

∣∣∣∣)
≤ 1√

logn
max

1≤k≤[ n
log n ]

(∣∣∣∣ Sk√
n

∣∣∣∣+ 2

∣∣∣∣ Sn√
n

∣∣∣∣)
=Op

(
1√
logn

)
,

where the last equality holds, as

max
1≤k≤[ n

log n ]

(∣∣∣∣ Sk√
n

∣∣∣∣+ 2

∣∣∣∣ Sn√
n

∣∣∣∣) = Op(1),

since max1≤k≤[ n
log n ]

∣∣∣ Sk√
n

∣∣∣ and ∣∣∣ Sn√
n

∣∣∣ converge in distribution. Now the claim fol-

lows, as ( 1√
logn

)/( 1√
2 log logn

) → 0, for n → ∞.

Lemma 5.3.

max
[ n
log n ]≤k≤[n2 ]

√
n

k(n− k)

∣∣∣∣Sk − k

n
Sn

∣∣∣∣ = Op

(√
log log logn

)
Proof. Since

max
[ n
log n ]≤k≤[n2 ]

√
n

k(n− k)

∣∣∣∣Sk − k

n
Sn

∣∣∣∣
≤ max
[ n
log n ]≤k≤[n2 ]

2

∣∣∣∣ Sk√
k

∣∣∣∣+ max
[ n
log n ]≤k≤[n2 ]

∣∣∣∣ Sn√
n

∣∣∣∣
and the second summand is Op(1), it suffices to show that

max
[ n
log n ]≤k≤[n2 ]

∣∣∣∣ Sk√
k

∣∣∣∣ = Op

(√
log log logn

)
.

By the almost sure invariance principle of Merlevède and Rio (2012), one can
find a Brownian motion (Wt)t≥0 such that

|St −Wt|√
t

= O
(
t−λ

)
a.s.,

for some λ > 0. Hence

max
[ n
log n ]≤k≤[n2 ]

∣∣∣∣Sk −Wk√
k

∣∣∣∣ = O

((
logn

n

)λ
)

a.s.,

and thus

max
[ n
log n ]≤k≤[n2 ]

∣∣∣∣ Sk√
k

∣∣∣∣ ≤ max
[ n
log n ]≤k≤[n2 ]

∣∣∣∣Wk√
k

∣∣∣∣+ max
[ n
log n ]≤k≤[n2 ]

∣∣∣∣Sk −Wk√
k

∣∣∣∣ . (22)
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Set k = nr, r ∈ (0, 1) and consider the first summand of the right-hand side of
(22). We have

max
[ n
log n ]≤nr≤[n2 ]

∣∣∣∣Wnr√
nr

∣∣∣∣ D
= max

[ n
log n ]≤nr≤[n2 ]

∣∣∣∣Wr√
r

∣∣∣∣ ≤ max
1

log n≤r≤ 1
2

∣∣∣∣Wr√
r

∣∣∣∣ .
By the law of the iterated logarithm, it holds for r → 0

|Wr| = Op

(√
2r log log r−1

)
.

It follows that

max
1

log n≤r≤ 1
2

∣∣∣∣Wr√
r

∣∣∣∣ = Op

(√
log log logn

)
,

which completes the proof.

For abbreviation, we define an :=
√
2 log log n. Recall the definition of bn (5).

Lemma 5.4.

lim
n→∞

P

(
an
σ

max
1≤k≤[ n

log n ]

∣∣∣∣ Sk√
k

∣∣∣∣− bn ≤ x

)
= exp(− exp(−x))

Proof. By Theorem 4, one has

a[ n
log n ]

σ
max

1≤k≤[ n
log n ]

|Sk|√
k

− b[ n
log n ]

D−→ G.

Since

an
a[ n

log n ]
→ 1, b[ n

log n ]
an

a[ n
log n ]

− bn → 0,

as n → ∞, we obtain with Slutsky’s Theorem

an
σ

max
1≤k≤[ n

log n ]

|Sk|√
k

− bn

=
an

a[ n
log n ]

(
a[ n

log n ]

σ
max

1≤k≤[ n
log n ]

|Sk|√
k

− b[ n
log n ]

)
+ b[ n

log n ]
an

a[ n
log n ]

− bn
D−→ G.

Lemma 5.5.

max
1≤k≤[n2 ]

√
n

k(n− k)

∣∣∣∣Sk − k

n
Sn

∣∣∣∣− max
1≤k≤[ n

log n ]

∣∣∣∣ Sk√
k

∣∣∣∣ = op

(
1√

2 log logn

)
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Proof. Since 1
a2
n
→ 0, we can conclude from Lemma 5.4 and Slutsky’s Theorem

1

a2n

(
an max

1≤k≤[ n
log n ]

|Sk|√
k

− bn

)
P−→ 0.

As bn
a2
n
→ 1, we get

1

an
max

1≤k≤[ n
log n ]

|Sk|√
k

P−→ 1.

By Lemma 5.2, this implies

1

an
max

1≤k≤[ n
log n ]

√
n

k(n− k)

∣∣∣∣Sk − k

n
Sn

∣∣∣∣ P−→ 1.

By Lemma 5.3, we have

1

an
max

[ n
log n ]≤k≤[n2 ]

√
n

k(n− k)

∣∣∣∣Sk − k

n
Sn

∣∣∣∣ P−→ 0.

Thus

P

(
max

[ n
log n ]≤k≤[n2 ]

√
n

k(n− k)

∣∣∣∣Sk − k

n
Sn

∣∣∣∣ ≥ max
1≤k≤[ n

log n ]

√
n

k(n− k)

∣∣∣∣Sk − k

n
Sn

∣∣∣∣
)

−→ 0,

as n → ∞, and hence the lemma follows from Lemma 5.2.

Lemma 5.6.

max
1≤n−k≤[n2 ]

√
n

k(n− k)

∣∣∣∣Sk−
k

n
Sn

∣∣∣∣− max
1≤n−k≤[ n

log n ]

∣∣∣∣Sn−Sk√
n− k

∣∣∣∣ = op

(
1√

2 log logn

)
Proof. Follows from Lemma 5.5 and the stationarity under the hypothesis.

Applying the above lemmas, we can now prove Theorem 3.

Proof of Theorem 3. We have

P

(
an
σ

max
1≤k≤n−1

√
n

k(n− k)

∣∣∣∣Sk − k

n
Sn

∣∣∣∣− bn ≤ x

)
= P

(
max

1≤k≤[n2 ]

√
n

k(n− k)

∣∣∣∣Sk − k

n
Sn

∣∣∣∣ ≤ (x+ bn)σ

an
,

max
1≤n−k≤[n2 ]

√
n

k(n− k)

∣∣∣∣Sk − k

n
Sn

∣∣∣∣ ≤ (x+ bn)σ

an

)
.
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From Lemma 5.5 and Lemma 5.6 we get

an
σ

max
1≤k≤[n2 ]

√
n

k(n− k)

∣∣∣∣Sk − k

n
Sn

∣∣∣∣− an
σ

max
1≤k≤[ n

log n ]

∣∣∣∣ Sk√
k

∣∣∣∣ P−→ 0

and

an
σ

max
1≤n−k≤[n2 ]

√
n

k(n− k)

∣∣∣∣Sk − k

n
Sn

∣∣∣∣− an
σ

max
1≤n−k≤[ n

log n ]

∣∣∣∣Sn − Sk√
n− k

∣∣∣∣ P−→ 0.

Applying Lemma 5.4 we get

lim
n→∞

P

(
max

1≤k<[ n
log n ]

∣∣∣∣ Sk√
k

∣∣∣∣ ≤ (x+ bn)σ

an

)
= exp(− exp(−x)).

And again applying Lemma 5.4 to the reversed time series, we get

lim
n→∞

P

(
max

1≤n−k≤[ n
log n ]

∣∣∣∣Sn − Sk√
n− k

∣∣∣∣ ≤ (x+ bn)σ

an

)
= exp(− exp(−x)).

Due to the underlying α−mixing process it holds∣∣∣∣∣P
(

max
1≤k≤[ n

log n ]

∣∣∣∣ Sk√
k

∣∣∣∣ ≤ (x+ bn)σ

an
, max
1≤n−k≤[ n

log n ]

∣∣∣∣Sn − Sk√
n− k

∣∣∣∣ ≤ (x+ bn)σ

an

)

−P

(
max

1≤k≤[ n
log n ]

∣∣∣∣Sk√
k

∣∣∣∣≤ (x+bn)σ

an

)
P

(
max

1≤n−k≤[ n
log n ]

∣∣∣∣Sn − Sk√
n− k

∣∣∣∣≤ (x+bn)σ

an

)∣∣∣∣∣ −→ 0.

All in all we get the desired result

lim
n→∞

P

(
an
σ

max
1≤k≤n−1

√
n

k(n− k)

∣∣∣∣Sk − k

n
Sn

∣∣∣∣− bn ≤ x

)
= exp(−2 exp(−x)).

5.4. Proof of Theorem 4

First, we state two lemmas, both valid under the assumptions of Theorem 4.
We define the random variables Yn and Zn by

Yn = max
1≤k≤(log logn)γ

|Sk|√
k
,

Zn = max
(log log n)γ≤k≤n

|Sk|√
k
,

for some γ > 1
2 .
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Lemma 5.7. √
2 log lognYn − 2 log logn

P−→ −∞

Proof. We apply the following maximal inequality for α-mixing processes, due
to Rio [22] Theorem 3.1

E

⎛⎝ max
1≤k≤n

∣∣∣∣∣∣
k∑

j=1

ξj

∣∣∣∣∣∣
⎞⎠2

≤ 16

n∑
k=1

∫ 1

0

α−1(u)Q2
k(u) du, (23)

where Qk denotes the quantile function of ξk, to the random variables ξk = Xk√
k
.

Note that

Qk(u) =
QX(u)√

k
.

Furthermore, we use the inequality in Lemma A.1, i.e.

max
1≤k≤n

|Sk|√
k

≤ 2 max
1≤k≤n

∣∣∣∣∣∣
k∑

j=1

ξj

∣∣∣∣∣∣ .
Then, for K > 0, we obtain for all n ≥ nK

P
(√

2 log lognYn − 2 log log n ≥ −K
)

≤P
(
Yn ≥

√
log logn

)
≤P

⎛⎝2 max
1≤k≤(log logn)γ

∣∣∣∣∣∣
k∑

j=1

ξj

∣∣∣∣∣∣ ≥ √
log logn

⎞⎠
≤ 4

log log n
E

⎛⎝ max
1≤k≤(log log n)γ

∣∣∣∣∣∣
k∑

j=1

ξj

∣∣∣∣∣∣
⎞⎠2

≤ 4

log log n
16

(log logn)γ∑
k=1

∫ 1

0

α−1(u)Q2
k(u) du

=
4

log log n
16

(log logn)γ∑
k=1

∫ 1

0

α−1(u)
Q2

X(u)

k
du

≤ 4

log log n
16

(log logn)γ∑
k=1

∫ 1

0

α−1(u)
Q2

|X|(u)

k
du

≤C
1

log logn

(log logn)γ∑
k=1

1

k
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≤C
γ log log logn

log logn
−→ 0.

Lemma 5.8. Let Un and Vn be real-valued random variables satisfying Un
P−→

−∞. Then Vn
D−→ G if and only if max(Un, Vn)

D−→ G.

Proof. We have the following chain of inequalities

P (Vn > x) ≤ P (max(Un, Vn) > x) ≤ P (Un > x) + P (Vn > x),

and hence |P (max(Un, Vn) > x)− P (Vn > x)| ≤ P (Un > x) → 0.

Proof of Theorem 4. Let (W )t≥0 be a Brownian motion with Var(W1) = σ2.
Define analogues of the random variables Yn and Zn, replacing the partial sum
process by Brownian motion

Ỹn = max
1≤k≤(log logn)γ

|Wk|√
k
,

Z̃n = max
(log logn)γ≤k≤n

|Wk|√
k
.

Note that M̃n := max(Ỹn, Z̃n) = max1≤k≤n
|Wk|√

k
. By the Darling-Erdős theorem

for Brownian motion, see Darling-Erdős [6], we know that

√
2 log logn

σ
M̃n − bn

D−→ G.

Applying Lemma 5.7 to Ỹn, and Lemma 5.8, we obtain that

√
2 log log n

σ
Z̃n − bn

D−→ G.

In the final step, we employ an almost sure invariance principle which is stated
as Theorem 1 in Merlevède and Rio [17] under a weaker strong mixing condition
than we have. We can conclude that, under the assumptions of Theorem 4, there
exists a Brownian motion (Wt)t≥0 with Var(W1) = σ2, such that

|Sk −Wk| = O
(
k

1
2−λ

)
a.s. for λ > 0.

Hence, we obtain∣∣∣∣ max
(log logn)γ≤k≤n

|Sk|√
k

− max
(log logn)γ≤k≤n

|Wk|√
k

∣∣∣∣ ≤ max
(log logn)γ≤k≤n

|Sk −Wk|√
k

≤ C max
(log log n)γ≤k≤n

k
1
2−λ

√
k

≤ C(log logn)−λγ .



Weighted change-point tests 887

Since λγ > 1
2 , this implies that

√
log logn

σ (Z̃n − Zn)
P−→ 0. Hence, we obtain

using Slutsky’s lemma that

√
2 log logn

σ
Zn − bn

D−→ G.

Now, the statement of Theorem 4 follows from Lemma 5.7 and Lemma 5.8.

Appendix A: Auxiliary results

Lemma A.1. For all a1, . . . , ak ∈ R, the following inequality holds

max
1≤k≤n

1√
k

∣∣∣∣∣∣
k∑

j=1

aj
√

j

∣∣∣∣∣∣ ≤ 2 max
1≤k≤n

∣∣∣∣∣∣
k∑

j=1

aj

∣∣∣∣∣∣
Proof. Define the partial sums Aj :=

∑j
i=1 ai and set A0 = 0. Then aj =

Aj −Aj−1, and thus∣∣∣∣∣∣
k∑

j=1

aj
√
j

∣∣∣∣∣∣ =
∣∣∣∣∣∣

k∑
j=1

(Aj −Aj−1)
√

j

∣∣∣∣∣∣
=

∣∣∣∣∣∣
k−1∑
j=1

Aj

(√
j −

√
j + 1

)
+Ak

√
k

∣∣∣∣∣∣
≤ max

1≤j≤k
|Aj |

k−1∑
j=1

(√
j + 1−

√
j
)
+ |Ak|

√
k

= max
1≤j≤k

|Aj |
√
k + |Ak|

√
k

≤ 2
√
k max

1≤j≤k
|Aj |.

Remark 3. This is a special case of an inequality stated as Lemma 1 in Shorack
and Smythe [26].

Lemma A.2. Assume that the kernel g is degenerated and that it satisfies the
variation condition. Let m = max{i(2) − i(1), i(4) − i(3)}, where {i1, i2, i3, i4} =
{i(1), i(2), i(3), i(4)} and i(1) ≤ i(2) ≤ i(3) ≤ i(4). If g is a kernel with uniform
(2 + δ)-moments for a δ > 0, then there exists a constant C such that

|E (g(Xi1 , Xi2)g(Xi3 , Xi4))| ≤ C

(∫ α(m)

0

Q|X|(u)du

) δ
3+2δ

.
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Proof. Let ε > 0, K > 0 and define

gK(x, y) =

⎧⎪⎨⎪⎩
g(x, y) if |g(x, y)| ≤

√
K√

K if g(x, y) >
√
K

−
√
K if g(x, y) < −

√
K.

Let g satisfy the variation condition with constant L. Then, gK satisfies also the
variation condition with the same constant L. Assume, without loss of generality,
that m = i2 − i1. Moreover, we can assume that there exists a uniform on [0, 1]
random variable that is independent of (Xi)i≥1. With Theorem 1 of Peligrad
[18], choose a random variable X ′

i1
independent of Xi2 , Xi3 , Xi4 with the same

distribution as Xi1 and

P
(
|Xi1 −X ′

i1 | ≥ ε
)
≤

4
∫ α(m)

0
Q|X|(u)du

ε
.

As g is a degenerate kernel, we have

E
(
g(X ′

i1 , Xi2)g(Xi3 , Xi4)
)
= 0.

We get

|E (g(Xi1 , Xi2)g(Xi3 , Xi4))|
=

∣∣E (g(Xi1 , Xi2)g(Xi3 , Xi4))− E
(
g(X ′

i1 , Xi2)g(Xi3 , Xi4)
)∣∣

=E
(∣∣(gK(Xi1 , Xi2)− gK(X ′

i1 , Xi2))gK(Xi3,Xi4
)
∣∣1{|Xi1−X′

i1
|<ε}

)
(24)

+ E
(∣∣(gK(Xi1 , Xi2)− gK(X ′

i1 , Xi2))gK(Xi3,Xi4
)
∣∣1{|Xi1−X′

i1
|≥ε}

)
(25)

+ E
(∣∣gK(Xi1 , Xi2)gK(Xi3 , Xi4)− g(Xi1 , Xi2)g(Xi3 , Xi4)

∣∣) (26)

+ E
(∣∣gK(X ′

i1 , Xi2)gK(Xi3 , Xi4)− g(X ′
i1 , Xi2)g(Xi3 , Xi4)

∣∣) . (27)

Due to the variation condition and |gK(Xi3 , Xi4)| ≤
√
K, which holds by defi-

nition, we have that (24) is smaller than Lε
√
K. The second summand (25) is

bounded by

2KP (|Xi1 −X ′
i1 | ≥ ε) ≤

8
∫ α(m)

0
Q|X|(u)du

ε
K.

Let M be the bound of the (2+ δ)-moments of g. For the third term of the sum
(26) we get the following chain of inequalities.

E
(∣∣gK(Xi1 , Xi2)gK(Xi3 , Xi4)− g(Xi1 , Xi2)g(Xi3 , Xi4)

∣∣)
≤E

(∣∣g(Xi1 , Xi2)
√
K−g(Xi1 , Xi2)g(Xi3 , Xi4)

∣∣1{|g(Xi1 ,Xi2 )|≤
√
K,g(Xi3 ,Xi4 )>

√
K}

)
+E

(∣∣g(Xi1,Xi2)(−
√
K)−g(Xi1,Xi2)g(Xi3,Xi4)

∣∣1{|g(Xi1,Xi2 )|≤
√
K,g(Xi3,Xi4 )<−

√
K}
)

+E
(∣∣√Kg(Xi3 , Xi4)−g(Xi1 , Xi2)g(Xi3 , Xi4)

∣∣1{g(Xi1 ,Xi2 )>
√
K,|g(Xi3 ,Xi4 )|≤

√
K}
)



Weighted change-point tests 889

+E
(∣∣−√

Kg(Xi3,Xi4)−g(Xi1,Xi2)g(Xi3,Xi4)
∣∣1{g(Xi1 ,Xi2 )<−

√
K,|g(Xi3 ,Xi4 )|≤

√
K}
)

+E
(∣∣√K

√
K − g(Xi1 , Xi2)g(Xi3 , Xi4)

∣∣1{g(Xi1 ,Xi2 )>
√
K,g(Xi3 ,Xi4 )>

√
K}

)
+E

(∣∣(−√K)(−
√
K)−g(Xi1,Xi2)g(Xi3,Xi4)

∣∣1{g(Xi1 ,Xi2 )<−
√
K,g(Xi3 ,Xi4 )<−

√
K}
)

+E
(∣∣√K(−

√
K)− g(Xi1 , Xi2)g(Xi3 , Xi4)

∣∣1{g(Xi1 ,Xi2 )>
√
K,g(Xi3 ,Xi4 )<−

√
K}

)
+E

(∣∣(−√
K)

√
K − g(Xi1 , Xi2)g(Xi3 , Xi4)

∣∣1{g(Xi1 ,Xi2 )<−
√
K,g(Xi3 ,Xi4 )>

√
K}

)
.

Considering the first term of the sum, we have

E
(∣∣g(Xi1 , Xi2)

√
K−g(Xi1 , Xi2)g(Xi3 , Xi4)

∣∣1{|g(Xi1 ,Xi2 )|≤
√
K,g(Xi3 ,Xi4 )>

√
K}

)
=E

(∣∣(√(K)− g(Xi3 , Xi4))g(Xi1 , Xi2

∣∣1{g(Xi3 ,Xi4 )>
√
K}

)
≤
√
KE

(∣∣√(K)− g(Xi3 , Xi4)
∣∣1{g(Xi3 ,Xi4 )>

√
K}

)
≤
√
KE

(
(|g(Xi3 , Xi4)| −

√
K)1{|g(Xi3 ,Xi4 )|>

√
K}

)
≤
√
K

E|g(Xi3 , Xi4)|2+δ

(
√
K)1+δ

=
E|g(Xi3 , Xi4)|2+δ

Kδ/2
≤ M

Kδ/2
.

The next three terms can be treated analogously. For the fifth summand we get
the following inequality

E
(∣∣√K

√
K − g(Xi1 , Xi2)g(Xi3 , Xi4)

∣∣1{g(Xi1 ,Xi2 )>
√
K,g(Xi3 ,Xi4 )>

√
K}

)
≤E

((
|g(Xi1 , Xi2)||g(Xi3 , Xi4)| −K

)
1{|g(Xi1 ,Xi2 )|>

√
K,|g(Xi3 ,Xi4 )|>

√
K}

)
≤
(
E
(
|g(Xi1 , Xi2)|21{|g(Xi1 ,Xi2 )|>

√
K}

))1/2(
E
(
|g(Xi3 , Xi4)|21{|g(Xi3 ,Xi4 )|>

√
K}

))1/2
≤
(
E|g(Xi1 , Xi2)|2+δ

(
√
K)δ

)1/2 (
E|g(Xi3 , Xi4)|2+δ

(
√
K)δ

)1/2

≤ M

Kδ/2
.

Analogously, we get for the last three terms that they are also bounded by M
Kδ/2 .

Altogether, we have

E
(∣∣gK(Xi1 , Xi2)gK(Xi3 , Xi4)− g(Xi1 , Xi2)g(Xi3 , Xi4)

∣∣) ≤ 8
M

Kδ/2
.

Similarly, we obtain for (27)

E
(∣∣gK(X ′

i1 , Xi2)gK(Xi3 , Xi4)− g(X ′
i1 , Xi2)g(Xi3 , Xi4)

∣∣) ≤ 8
M

Kδ/2
.

Altogether, we get∣∣E(
g(Xi1 , Xi2)g(Xi3 , Xi4)

)∣∣ ≤ Lε
√
K +

8
∫ α(m)

0
Q|X|(u)du

ε
K + 16

M

Kδ/2
.

Choosing ε =

√∫ α(m)

0
Q|X|(u)duK

1/4 and K = (
∫ α(m)

0
Q|X|(u)du)

− 1
3/2+δ , we

obtain

∣∣E(
g(Xi1 , Xi2)g(Xi3 , Xi4)

)∣∣ ≤ (L+ 8 + 16M)

(∫ α(m)

0

Q|X|(u)du

) δ
3+2δ

.
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Lemma A.3. In addition to the conditions of Lemma A.2, let (11) be satisfied.
Then there exists a constant C such that

E

⎛⎝ k∑
i=1

n∑
j=k+1

g(Xi, Xj)

⎞⎠2

≤ Ck(n− k).

Proof. This was proved for functionals of absolutely regular processes by Dehling
et al. [7] in Lemma 1. They make use of an upper bound for the expectations
|E(g(Xi1 , Xi2)g(Xi3 , Xi4))|. Such a bound for an α-mixing process is stated in
Lemma A.2. The rest of the proof is analogous.
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