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Abstract: In this paper we are concerned with a sequence of univariate
random variables with piecewise polynomial means and independent sub-
Gaussian noise. The underlying polynomials are allowed to be of arbitrary
but fixed degrees. All the other model parameters are allowed to vary de-
pending on the sample size.

We propose a two-step estimation procedure based on the �0-penalisation
and provide upper bounds on the localisation error. We complement these
results by deriving global information-theoretic lower bounds, which show
that our two-step estimators are nearly minimax rate-optimal. We also show
that our estimator enjoys near optimally adaptive performance by attaining
individual localisation errors depending on the level of smoothness at indi-
vidual change points of the underlying signal. In addition, under a special
smoothness constraint, we provide a minimax lower bound on the localisa-
tion errors. This lower bound is independent of the polynomial orders and
is sharper than the global minimax lower bound.
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1. Introduction

We are concerned with the data y = (y1, . . . , yn)
� ∈ R

n. For each i ∈ {1, . . . , n},

yi = f(i/n) + εi, (1)

where f : [0, 1] → R is an unknown piecewise-polynomial function and εi’s
are independent mean zero sub-Gaussian random variables. To be specific, as-
sociated with f(·), there is a sequence of strictly increasing integers {ηk}K+1

k=0 ,
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with η0 = 1 and ηK+1 = n + 1, such that f(·) restricted on each interval
[ηk/n, ηk+1/n), k = 0, . . . ,K, is a polynomial of degree at most r ∈ N. The
maximum degree r is assumed to be arbitrary but fixed, and the number of
change points K is allowed to diverge as the sample size n grows unbounded.
The goal of this paper is to estimate {ηk}Kk=1, called the change points of f(·),
accurately and to understand the fundamental limits in detecting and localising
these change points. More detailed model descriptions can be found in Sec-
tion 2.

The work in this paper falls within the general topic of change point analy-
sis, which has a long history and is being actively studied till date. In change
point analysis, one assumes that the underlying distributions change at a set
of unknown time points, called change points, and stay the same between two
consecutive change points. A closely related problem is change point detection
in piecewise constant signals. This is studied thoroughly in [6], [16], [12], [13],
[24], [22] and [39], among others. [14], [4], [8], [1], [18], [25] and [9] studied
change point analysis in piecewise linear signals. Our work in this paper can be
seen as a generalisation of the aforementioned results, allowing for polynomials
of arbitrary degrees, and the magnitudes of coefficients changes to vanish as
the sample size grows unbounded, although some of the aforementioned work
may contain more general assumptions on the noise structure. Detailed compar-
isons with some existing literature will be provided after we present our main
results.

Beyond univariate sequence, the existing work on change point analysis in-
cludes studies on high-dimensional models [e.g. 37, 11, 42], network models [e.g.
38, 10, 5], nonparametric models [e.g. 27, 28, 19] and regression models [e.g.
2, 3, 40, 41, 30].

To divert slightly, it is worth mentioning that instead of focusing on esti-
mating the locations of the change points, a complementary problem is to esti-
mate the whole of the underlying piecewise polynomial function itself. This is a
canonical problem in nonparametric regression and also has a long history. The
piecewise polynomial function is typically assumed to satisfy certain regular-
ity at the change points. The classical settings therein assume that the degrees
of the underlying polynomials are taken to be some particular values and the
change points, referred to as knots, are at fixed locations, see e.g. [20] and [36].
More recent regression methods have focussed on fitting piecewise polynomials
where the knots are not fixed beforehand and is estimated from the data [e.g.
26, 33, 32, 21].

In this paper, we focus on estimating the locations of the change points
accurately, allowing for general and different degrees of polynomials within f(·),
diverging number of change points, and different smoothness at different change
points. This framework, to the best of our knowledge, is the most flexible one in
both change point analysis and spline regression analysis areas. In the rest of this
paper, we first formalise the problem and introduce the algorithm in Section 1.1,
followed by a list of contributions in Section 1.2. The main results are collected
in Section 2, with more discussions in Section 3 and the proofs in the Appendices.
Extensive numerical experiments are presented in Section 4.
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1.1. The problem setup and the description of the estimator

In order to estimate the change points of f(·), we propose a two-step estimator.
The estimator is defined in this subsection, following introduction of necessary
notation used throughout this paper.

Let Π be any interval partition of {1, . . . , n}, i.e. a collection of |Π| ≥ 1
disjoint subsets of {1, . . . , n},

Π =
{
{1, . . . , s1 − 1}, {s1, . . . , s2 − 1}, . . . , {s|Π|−1, . . . , n}

}
,

for some integers 1 = s0 < s1 < . . . s|π|−1 ≤ n < s|Π| = n + 1, with | · |
denoting the cardinality of a set. For any such partition Π, we denote η(Π) =
{s1, . . . , s|Π|−1} to be its change points. Let Pn be the collection of all such
interval partitions of {1, . . . , n}.

For any fixed λ > 0 and given data y ∈ R
n, let the estimated partition be

Π̂ ∈ argmin
Π:Π∈Pn

G(Π, λ), (2)

where

G(Π, λ) =
∑
I∈Π

‖yI − PIyI‖2 + λ|Π| =
∑
I∈Π

H(y, I) + λ|Π|, (3)

the notation therein is introduced below.

• The norm ‖ · ‖ denotes the �2-norm of a vector.
• For any interval I = {s, . . . , e} ⊂ {1, . . . , n}, let yI = (yi, i ∈ I)� ∈ R

|I|

be the data vector on interval I and PI be the projection matrix

PI = UI,r(U
�
I,rUI,r)

−1U�
I,r, (4)

with

UI,r =

⎛⎜⎝ 1 s/n · · · (s/n)r

...
...

...
...

1 e/n · · · (e/n)r

⎞⎟⎠ ∈ R
(e−s+1)×(r+1). (5)

We can see that the loss function G(·, ·) is a penalised residual sum of squares.
The penalisation is imposed on the cardinality of the partition, which is in fact
an �0 penalisation. The residual sum of squares are the residuals after projecting

data onto the discrete polynomial space. The initial estimators {η̃k}K̂k=1 are

defined to be η(Π̂), the change points of Π̂.

With the estimated partition Π̂ and its associated change points η(Π̂), pro-

vided that |η(Π̂)| ≥ 1, we proceed to the second-step estimation. For any

k ∈ {1, . . . , K̂}, let

sk = η̃k−1/2 + η̃k/2, ek = η̃k/2 + η̃k+1/2 and Ik = [sk, ek), (6)
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with η̃0 = 1 and η̃K̂+1 = n+ 1. For any k ∈ {1, . . . , K̂}, we define

η̂k = argmin
t∈Ik\{sk}

{H(y, [sk, t)) +H(y, [t, ek))} , (7)

where H(·, ·) is defined in (3). The updated estimators {η̂k}K̂k=1 are our final
estimators.

As a summary, this two-step algorithm precedes with the optimisation prob-

lem (2), providing a set of initial estimators {η̃k}K̂k=1. With the initial esti-
mators, a parallelisable second step works on every triplet (η̃k−1, η̃k, η̃k+1),
k ∈ {1, . . . ,K}, to refine η̃k and yield η̂k. This update does not change the
number of estimated change points. Note that the choice of 1/2 in the defi-
nitions of sk’s and ek’s in (6) is arbitrary, and any constant c ∈ (0, 1) would
work.

To help further referring back to our two-step algorithm, we present the full
procedure in Algorithm 1.

Algorithm 1 Two-step estimation
INPUT: Data {yi}ni=1, tuning parameters λ > 0.

Π̂ ← argminΠ:Π∈Pn
G(Π, λ) � See (3)

B ← η(Π̂) � The initial estimators

if B �= ∅ then

{η̂k}K̂k=1 ← Update B based on (7) � The final estimators
end if

We conclude this subsection with two remarks, on the optimisation prob-
lem (2) and the computational aspect of the upper bound on the polynomial
degree r, respectively.

Remark 1 (The optimisation problem (2)). The uniqueness of the solution (2)
is not guaranteed in general, but the properties we are to present regarding
the change point estimators hold for any solutions. In fact, under some mild
conditions, for instance the existence of densities of the noise distribution, one
can show the minimiser of (2) is unique almost surely [e.g. Remark 4 in 39].

The optimisation problem (2), with a general loss function, is known as the
minimal partitioning problem [e.g. Algorithm 1 in 17], which is related with
the Schwarz Information Criterion [e.g. 43], and can be solved by a dynamic
programming approach in polynomial time. The computational cost is of order
O(n2Cost(n)), where Cost(n) is the computational cost of calculating G(Π, λ),
for any given Π and λ. To be specific, for (2), Cost(n) = O(n), where the hidden
constants depend on the polynomial degree r, therefore the total computationa
cost is O(n3). A reference where the computational cost and the dynamic pro-
gramming algorithm is explicitly mentioned is Lemma 1.1 in [7].

We would like to mention that the minimal partitioning problem has previ-
ously being used in change point analysis literature for other models, including
[15], [23], [39], [40] and [41], among others. In the spline regression analysis area,
the �0 penalisation is also exploited, for instance, [32] and [7], to name but a



Change points in piecewise polynomials 1859

few. We would like to reiterate that [32] and [7] studied the estimation risk of
the whole underlying functions. The results derived in this paper focus on the
change point localisation.

Remark 2 (The polynomial degree upper bound r). The degree r is in fact an
input of the algorithm. One needs to specify the degree r in (2) and (7). Usually,
when we define a degree-d polynomial, we let

g(x) =
d∑

l=0

clx
l, x ∈ R,

with {cl}dl=0 ⊂ R and cd �= 0. If cd = 0, then g(·) is regarded as a degenerate
degree-d polynomial. In this paper, we do not emphasis on the highest degree
coefficient being nonzero. With this flexibility, in practice, as long as the input
r is not smaller than the largest degree of the underlying polynomials, then
the performances of the algorithm are still guaranteed. However, the larger the
input r is, the more costly the optimisation is. More regarding this point will
be discussed after we present our main theorem.

1.2. Main contributions

To conclude this section, we summarise our contributions in this paper.

Firstly, to the best of our knowledge, this is the first paper studying the
change point localisation in piecewise polynomials with general degrees. The
model we are concerned in this paper enjoys great flexibility. We allow for the
number of change points and the variances of the noise sequence to diverge, and
the differences between two consecutive different polynomials to vanish, as the
sample size grows unbounded.

Secondly, we propose a two-step estimation procedure for the change points,
detailed in Algorithm 1. The first step is a version of the minimal partitioning
problem [e.g. 17], and the second step is a parallelisable update. The first step
can be done in O(n3) time and the second step in O(n) time.

Thirdly, we provide theoretical guarantees for the change point estimators
returned by Algorithm 1. To the best of our knowledge, it is the first time in the
literature, establishing the change point localisation rates for piecewise polyno-
mials with general degrees. Prior to this paper, the state-of-the-art results were
only on piecewise linear signals. In this paper, we allow the underlying contigu-
ous polynomials to pertain different smoothness at different change points. This
is reflected in our localisation error bound for each individual change point. In
short, we show that our change point estimator enjoys nearly optimal adaptive
localisation rates. In addition to the global minimax rates, we have also derived
minimax rates on the localisation errors when restricting to some special classes.
These results again, are the first time shown for the general polynomials.

Lastly, in a fully finite sample framework, we provide information-theoretic
lower bounds characterising the fundamental difficulties of the problem, showing
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that our estimators are nearly minimax rate-optimal. To the best of our knowl-
edge, even for the piecewise linear case, previous minimax lower bounds only
focused on the scaling in the sample size n whereas we derive a minimax lower
bound involving all the parameters of the problem. More detailed comparisons
with existing literature are in Section 3.

2. Main Result

In this section, we investigate the theoretical properties of the initial and the
final estimators returned by Algorithm 1.

2.1. Characterising differences between different polynomials

In the change point analysis literature, the difficulty of the change point esti-
mation task can be characterised by two key model parameters: the minimal
spacing between two consecutive change points and the minimal difference be-
tween two consecutive underlying distributions. In this paper, the underlying
distributions are determined by the polynomial coefficients. For two different
at-most-degree-r polynomials, the difference is nailed down to the difference be-
tween two (r+1)-dimensional vectors, consisting of the polynomial coefficients.
To characterise the difference, for any integers r,K ≥ 0, we adopt the following
reparameterising for any piecewise polynomial function f(·) ∈ Fr,K

n , where

Fr,K
n =

{
f(·) : [0, 1] → R : 1 = η0 < η1 < · · · < ηK = n < ηK+1 = n+ 1,

s.t. ∀k ∈ {0, 1, . . . ,K}, f[ηk/n,ηk+1/n) : [ηk/n, ηk+1/n) → R,

with f |[ηk/n,ηk+1/n)(x) = f(x),

is a right-continuous with left limit polynomial of degree at most r.
}
. (8)

Remark 3 (Uniqueness of the change points). Note that if two adjacent different
polynomials are continuous at the change point, then the definition of change
point is not necessarily unique and may differ by the degree of the polynomials.
In this case, either choice satisfying (8) can serve as a change point and will not
affect the theoretical results.

Definition 1. Let f(·) ∈ Fr,K
n , {ηk}K+1

k=0 ⊂ {1, . . . , n + 1} be the collection of
change points of f(·), with η0 = 0, ηK+1 = n + 1. For any k ∈ {1, . . . ,K},
let f[ηk−1/n,ηk+1/n)(·) : [ηk−1/n, ηk+1/n) → R be the restriction of f(·) on
[ηk−1/n, ηk+1/n). Define the reparameterisation of f[ηk−1/n,ηk+1/n)(·) as

f(x) =

{∑r
l=0 ak,l(x− ηk/n)

l, x ∈ [ηk−1/n, ηk/n),∑r
l=0 bk,l(x− ηk/n)

l, x ∈ [ηk/n, ηk+1/n),
(9)

where {ak,l, bk,l}rl=0 ⊂ R.
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Associated with the change point ηk, define the effective sample size as

Δk = min{ηk − ηk−1, ηk+1 − ηk}.

For l ∈ {0, 1, . . . , r}, define

κk,l = |ak,l − bk,l| and ρk,l = κ2
k,lΔ

2l+1
k n−2l.

Finally, define the signal strength associated with the change point ηk as

ρk = max
l=0,...,r

ρk,l.

We define the jump associated with each change point of f(·) ∈ Fr,K
n in Def-

inition 1. The definition is based on a reparameterisation of two consecutive
polynomials. Using the notation in Definition 1, due to the definition (8), f(·)
is an at-most-degree-r polynomial in each [ηk/n, ηk+1/n), k ∈ {0, . . . ,K}. This
enables the reparameterisation (9).

With the reparameterisation (9), it is easy to see, for any change point ηk,
there must exist at least one l ∈ {0, 1, . . . , r}, such that κk,l > 0, thus ρk > 0
for any change point. In addition, if f(·) at ηk/n is d-time differentiable but not
(d+ 1)-time differentiable, d ∈ {−1, . . . , r − 1}, then{

κk,l = 0, l ∈ {0, . . . , d},
κk,l > 0, l = d+ 1.

Here we use the convention that if f(·) is −1-time differentiable at x, then f(·)
at x is not continuous.

Based on the definition of ρk, we remark that for each individual change
point, the signal strength ρk is associated with a certain polynomial order lk
such that

lk ∈ argmax
l∈{0,...,r}

ρk,l = argmax
l∈{0,...,r}

κ2
k,lΔ

2l+1
k n−2l. (10)

We will come back to this after Theorem 1.
There are two key advantages of using Definition 1 to characterise the differ-

ence. Firstly, we allow for a full range of smoothness at the change points. Detect-
ing change points in piecewise linear models was studied in [14], but the continu-
ity at the change points is imposed. Our formulation covers this continuity but
also allows for discontinuity. Most importantly, we allow for each change point
to have its individual smoothness level, which is min{l = 0, . . . , r : κk,l > 0}.

Secondly, in addition to allowing for a full range of smoothness, we also take
into consideration the magnitude of coefficients change at different order. In the
piecewise linear change point detection literature, [8] considered both continuous
and discontinuous cases, but assuming all the changes are either zero or of order
O(1) and there is only one true change point. Our formulation allows the changes
and the locations of the change points to be functions of the sample size n, and
allows for the number of change points to diverge as the sample size grows
unbounded.



1862 Y. Yu et al.

2.2. Change point localisation errors

In this section, we present our main theorem providing theoretical guarantees
on the output of Algorithm 1, with assumptions collected in Assumption 1.

Assumption 1 (Model assumptions). Assume that the data {yi}ni=1 are gener-
ated from (1), where f(·) belongs to Fr,K

n defined in (8) and εi’s are independent
zero mean sub-Gaussian random variables1 with maxni=1 ‖εi‖ψ2 ≤ σ2.

We denote the collection of all change points of f(·) to be {η1, . . . , ηK},
satisfying

Δ = min
k∈{1,...,K+1}

(ηk − ηk−1) = min
k∈{1,...,K}

Δk > 0,

where η0 = 1, ηK+1 = n+ 1 and {Δk}Kk=1 are defined in Definition 1.
In addition, for any k ∈ {1, . . . ,K}, let the minimal signal strength parameter

be
ρ = min

k=1,...,K
ρk > 0,

where ρk is defined in Definition 1.

The problem now is completely characterised by the sample size n, the max-
imum degree r, the number of change points K, the upper bound of the fluc-
tuations σ, the effective sample sizes {Δk} and the signal strengths {ρk}. In
this paper, we allow the maximum degree r to be arbitrary but fixed, i.e. not
a function of the sample size n. We allow the number of change points K and
the fluctuation bound σ to diverge, the ratios of the effective sample size to
the total sample size {Δk/n} and the active jump sizes {κk} to vanish, as the
sample size grows unbounded.

Theorem 1. Let data {yi}ni=1 satisfy Assumption 1. Let {η̃k}K̂k=1 and {η̂k}K̂k=1

be the initial estimators and final estimators of Algorithm 1, with inputs {yi}ni=1

and tuning parameter λ. Assume that

λ = cnoiseKσ2 log(n) and ρ ≥ csignalλ. (11)

For each k ∈ {1, . . . ,K}, let

Sk = {l = 0, . . . , r : ρk,l ≥ csignalλ}. (12)

In addition, let

rk = min

{
argmin
l∈Sk

(
σ2 log(n)

ρk,l

)1/(2l+1)
}

and κk = κk,rk . (13)

We have that
P{E} ≥ 1− n−cprob ,

1We recall the definition of sub-Gaussian random variable [e.g. Definition 2.5.6 in 35]. We
denote ‖ · ‖ψ2

as the sub-Gaussian or Orlicz-ψ2 norm. For any random variable X, let

‖X‖ψ2
= inf

{
t > 0 : E

{
exp(X2/t2)

}
≤ 2

}
.
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where

E =

{
K̂ = K, |η̃k − ηk| ≤ cerror

{
Kn2rkσ2 log(n)

κ2
k

}1/(2rk+1)

,

and |η̂k − ηk| ≤ cerror

{
n2rkσ2 log(n)

κ2
k

}1/(2rk+1)

, ∀k ∈ {1, . . . ,K}
}
.

The constants cprob, cnoise, csignal and cerror > 0 are all absolute constants.

Remark 4 (Tracking constants). All the absolute constants cprob, cnoise, csignal,
cerror can be tracked in the proof, although we do not claim the optimality of
the constants thereof. The hierarchy of the constants are as follows.

We first determine the constant cprob > 0, which only depends on the max-
imum degree r. Given cprob, we can determine cnoise, which only depends on
cprob. With cprob and cnoise at hand, we can determine csignal > 0. Lastly, the
constant cerror > 0 depends on csignal, cnoise and cprob. We note that the larger
csignal is, the smaller cerror is.

Remark 5 (The choice of λ). The theoretical result relies on a choice of λ detailed
in (11), which is a function of unknown parameters K and σ, in addition to an
unknown quantity cnoise. In practice, we do not recommend to estimate K and
σ, separately, due to the involvement of cnoise. One can adopt a data-driven
method for tuning parameter selection [e.g. 30].

To understand Theorem 1, we conduct discussions in the following aspects: (1)
how to understand the localisation rates; (2) how to understand the definitions
of {rk}; and (3) how to understand the the signal strength condition in (11).
We conclude this discussion with piecewise linear models as examples.

The localisation rates. From Theorem 1 we can see that the final estimators
{η̂k}K̂k=1 improve upon the initial estimators {η̃k}K̂k=1, by getting rid of K, the
dependence on the number of change points, in their localisation error upper
bounds. It is possible that this K term is actually an artefact of our current
proof, and we might not need to update our initial estimators further. See Sec-
tion 3 for more on this issue. However, with our current proof technique we do
need the second step update to obtain the improved localisation error bound.

As for each individual change point ηk, k ∈ {1, . . . ,K}, the localisation errors
are

|η̂k − ηk| � |η̃k − ηk| �
{
Kn2rkσ2 log(n)

κ2
k

}1/(2rk+1)

. (14)

Due to the definition of rk and the condition (11), it holds that

(14) =

{
KΔ2rk+1σ2 log(n)

ρk,rk

}1/(2rk+1)

� Δ

{
Kσ2 log(n)

λ

}1/(2rk+1)

� Δ.

With properly chosen constants, we ensure that in the event E , we have that |η̃k−
ηk| < cΔ, 0 < c < 1/2. This guarantees that in the second step in Algorithm 1,
each interval [sk, ek) contains one and only one true change point.
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The definitions of rk. For each k ∈ {1, . . . ,K}, the final localisation rates are
functions of rk, which is one of the polynomial orders in the set Sk. As defined
in (13), the choice of rk minimises the term(

σ2 log(n)

ρk,l

)1/(2l+1)

, (15)

for any l ∈ Sk. In fact, it can be seen from the proofs, for l ∈ Sk as defined
in (12), the term (15) can serve as an upper bound in the localisation error rates.
Due to the definition of rk in (13), we see that our choice of rk ensures that the
localisation rate is the sharpest. If the minimiser is not unique, we choose rk to
be the smallest element to guarantee the uniqueness in definition. However, we
remark any choice would unveil the final rate.

Recall that in Section 2.1 after we present Definition 1, we mentioned that
the individual signal strength is associated with a certain polynomial order lk,
defined in (10). The choice of rk in (13) is not necessarily the same as lk, but it
holds that {rk, lk} ⊂ Sk. If there is only one polynomial order whose the signal
strength is large enough, i.e. |Sk| = 1, then rk = lk; otherwise they are not
necessarily the same.

The signal strength condition (11). Recalling the definition of ρ, the condi-
tion (11) requires that

min
k=1,...,K

max
l=0,...,r

ρk,l = min
k=1,...,K

max
l=0,...,r

κ2
k,lΔ

2l+1
k n−2l � Kσ2 log(n). (16)

This is to say, at any true change point, there is at least one polynomial or-
der, the jump associated with which has strength larger than Kσ2 log(n). The
signal strength ρk,l is a function of the coefficient change size, as well as the
corresponding order.

Piecewise linear models. Let us consider a concrete case where K = 1, r = 1
and the only change point is η. A question that can be asked now is as follows.

Is it easier to estimate the change point location when the underlying f(·) is
continuous at η or discontinuous at η?

This question is partially answered in [8], while assuming κ 
 σ 
 1, and
[8] argues that (in our terminology) the localisation errors for the continuous
and discontinuous cases are of order O(n2/3) and O(1), respectively. Theorem 1
unfolds a more comprehensive picture. We remark that [8] has also proposed
a super-efficient rate O(n1/2) for the continuous case. We will provide more
discussions with respect to that in Section 2.4.

For piecewise linear functions, at the change points, using the notation in Def-
inition 1, there are three situations: (a) κ1,0 = 0 �= κ1,1, i.e. f(·) is continuous
but not differentiable at the change point; (b) κ1,1 = 0 �= κ1,0, i.e. f(·) is dis-
continuous but the slope is unchanged at the change point; and (c) κ1,0κ1,1 �= 0,
i.e. f(·) is discontinuous and the slopes are different before and after the change
point.
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• In case (a), provided that κ2
1,1Δ

3
1n

2 � σ2 log(n), the localisation error rate
is

n2/3

{
σ2 log(n)

κ2
1,1

}1/3

. (17)

• In case (b), provided that κ2
1,0Δ1 � σ2 log(n), the localisation error rate

is
σ2 log(n)

κ2
1,0

.

• In case (c), there are further sub-cases. For readability, we assume Δ1 =
n/2, i.e. the change point is right at the middle.

– If
κ2
1,1n � σ2 log(n) � κ2

1,0n,

then the localisation error rate is

n2/3

{
σ2 log(n)

κ2
1,1

}1/3

.

– If
κ2
1,0n � σ2 log(n) � κ2

1,1n,

then the localisation error rate is

σ2 log(n)

κ2
1,0

.

– If
min{κ2

1,1n, κ
2
1,0n} � σ2 log(n),

then the localisation error rate is

min

⎧⎨⎩n2/3

{
σ2 log(n)

κ2
1,1

}1/3

,
σ2 log(n)

κ2
1,0

⎫⎬⎭ .

Back to the the question we asked above, there is no simple answer that
which case is simpler and one needs to carefully consider the different rates
we discussed above. But if one assume κ−2σ2 log(n) 
 1, the continuous and
discontinuous cases yield localisation rates as O(n2/3) and O(1), respectively.

2.3. Global lower bounds

In this section, we aim to provide global information-theoretic lower bounds
to characterise the fundamental difficulties of localisation change points in the
model defined in Assumption 1. By “global” we mean we do not assuming
knowing further continuity conditions, in contrast to Section 2.4 in the sequel.
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In the change point analysis literature, in terms of localising the change point
locations, there are two aspects we are interested in. One is the minimax lower
bound on the localisation error and the other is on the signal strength. For
simplicity, in this section, we assume that K = 1 and r1 = r, using the notation
defined in (13).

As for these two aspects, in Theorem 1, we show that provided

κ2Δ2r+1

n2r
� Kσ2 log(n), (18)

the output returned by Algorithm 1 have localisation error upper bounded by{
n2rσ2 log(n)

κ2

}1/(2r+1)

.

In this section, we will investigate the optimality of the above results.

Lemma 2. Under Assumption 1, assume that there exists one and only one
change point and r1 = r. Let Pκ,Δ,σ,r,n denote the joint distribution of the data.
Consider the class

Q =
{
Pκ,Δ,σ,r,n : Δ < n/2, κ2Δ2r+1 ≥ σ2n2rζn

}
,

for any diverging sequence {ζn}. Then for all n large enough, it holds

inf
η̂

sup
P∈Q

EP (|η̂ − η(P )|) ≥
[
cn2rσ2

κ2

]1/(2r+1)

,

where η(P ) is the location of the change point for distribution P , the minimum
is taken over all the measurable functions of the data, η̂ is the estimated change
point and 0 < c < 1 is an absolute constant.

Lemma 2 shows that the final estimators provided by Algorithm 1 are nearly
optimal, in terms of the localisation error, save for a logarithmic factor. We
remark that in Lemma 2, we consider the class of distributions with the signal
strength at order r satisfies the signal-to-noise ratio condition (16), and the order
r is used in the localisation error lower bounds. We leave the proof of Lemma 2
in the appendix, but we provide some explanations of the proofs here.

We adopt Le Cam’s lemma [e.g. 44] to show the lower bound, and consider
two explicit distributions when applying Le Cam’s lemma. One of these two
distributions is (r−1)-time differentiable but not r-time differentiable. The other
distribution is not continuous. This construction provides us a global minimax
lower bound when r1 = r. For example, in the piecewise linear models, this
includes both continuous and discontinuous cases, and the corresponding lower
bound is of order

n2/3

(
σ2

κ2

)1/3

.

Combining with (17), we know Theorem 1 is optimal saving a logarithmic factor.
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Lemma 3. Under Assumption 1, assume that there exists one and only one
change point and r1 = r. Let Pκ,Δ,σ,r,n denote the joint distribution of the data.
For a small enough ξ > 0, consider the class

P =

{
Pκ,Δ,σ,r,n : Δ = min

{⌊(
ξn2r

κ2σ−2

)1/(2r+1)
⌋
, n/3

}}
.

Then we have
inf
η̂

sup
P∈P

EP (|η̂ − η(P )|) ≥ cn,

where η(P ) is the location of the change point for distribution P , the minimum
is taken over all the measurable functions of the data, η̂ is the estimated change
point and 0 < c < 1 is an absolute constant depending on ξ.

Lemma 3 shows that, if κ2Δ2r+1n−2r � σ2, then no algorithm is guaranteed
to be consistent, in the sense that

inf
η̂

sup
P∈P

EP

(
|η̂ − η(P )|

n

)
� 1.

This means, besides the logarithmic factor, Lemma 3 and Theorem 1 leave a
gap in terms of K. To be specific, it remains unclear what results one would
obtain if

σ2 � κ2Δ2r+1n−2r � Kσ2. (19)

This gap only exists when we allow K to diverge. We will provide some conjec-
tures inline with this discussion in Section 3.1.

2.4. A special case

In Section 2.3 we have shown the global minimax lower bound on the localisation
error. In lemma 4 below, we provide a minimax lower bound in a smaller class.

Lemma 4. Under Assumption 1, assume that there exists one and only one
change point and r1 = r ≥ 1. Let Pκ,Δ,σ,r,n denote the joint distribution of the
data. Consider the class

Q1 =
{
Pκ,Δ,σ,r,n : Δ < n/2, κ2Δ2r+1 ≥ σ2n2rζn

and a1,l = b1,l, l = 0, . . . , r − 1
}
,

for any diverging sequence {ζn}. Then for all n large enough, it holds

inf
η̂

sup
P∈Q1

EP (|η̂ − η(P )|) ≥
[
cnσ2

κ2

]1/2
,

where η(P ) is the location of the change point for distribution P , the minimum
is taken over all the measurable functions of the data, η̂ is the estimated change
point and 0 < c < 1 is an absolute constant.
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Comparing Lemmas 2 and 4, we notice that Q1 the class of distributions
considered in Lemma 4 is strictly smaller than Q the class of distributions
considered in Lemma 2. In Q1, we enforce that the underlying polynomials are
(r − 1)-time differentiable. We leave the proof of Lemma 4 in the appendix,
but we highlight some key ingredients here. We again adopt Le Cam’s lemma
in deriving the lower bound, but different from the construction used in the
proof of Lemma 2, the two explicit functions we choose are both (r − 1)-time
differentiable.

Apparently, the localisation lower bound provided in Lemma 4 is sharper than
the one in Lemma 2. This is not surprising, since Q1 ⊂ Q. What is seemingly
surprising is that the lower bound is not a function of any polynomial order.
This is gained by knowing the fact that a1,l = b1,l, l ∈ {0, . . . , r − 1}.

In [8], similar results were obtained but only for the piecewise linear case. To
match this lower bound, [8] proposed a super-efficient estimator, which assumes
that it is known the piecewise linear models are continuous. The super-efficient
estimator is essentially a penalised estimator, which forces the intercept esti-
mators to equal, if their difference is not very large. One can straightforwardly
extend the idea there to the class ak,l = bk,l, l ∈ {0, . . . , rk−1}, but ak,rk �= bk,rk ,
for any k ∈ {1, . . . ,K}. Enforcing the corresponding polynomial coefficient es-
timators to equal before and after each change point estimator, knowing the
exact smoothness at every individual true change point, will prompt a local-
isation error of order detailed in Lemma 4. We would refrain from proposing
such an effort, since in our paper, we allow for multiple change points and allow
for individual smoothness levels. This will end up with

∑K
k=1 rk more tuning

parameters.

3. Discussions

In this paper, we investigate the change point localisation in piecewise polyno-
mial signals. We allow for a general framework and provide individual localisa-
tion error, associated with the individual smoothness at each change point. A
two-step algorithm consisting of solving a minimal partitioning problem and an
updating step is proposed. The outputs are shown to be nearly-optimal, sup-
ported by the information-theoretic lower bounds. To conclude this paper, we
discuss some unresolved aspects of our work while comparing our results to some
particularly relevant existing literature. Readers who are less familiar with the
change point literature may safely skip this section.

3.1. Comparisons with [39]

[39] studied change point localisation in piecewise constant signals. They studied
the �0-penalised least squares method and proved that it is nearly minimax
optimal in terms of both the signal strength condition and the localisation error.
In contrast, with our proof technique, we have been able to generalise this result
for higher degree polynomials up to a factor depending on K, the number of true



Change points in piecewise polynomials 1869

change points. This can be seen in our change point localisation error bound
of our initial estimators as provided in Theorem 1 and also in our required
signal strength condition in (16). In our paper, with general degree polynomials,
the localisation near-optimality is secured via an extra updating step, and a
gap remains in the upper and lower bounds for our required signal strength
condition. This gap is not present if K is assumed to be O(1) but is present if
it is allowed to diverge.

We explain why the proof in [39] could not be fully generalised to our setting.
Recall the definition of H(v, I) in (3) denoting a residual sums of squares term.
In our analysis, a crucial role is played by the term

Q{E(y); I1, I2} = H{E(y), I1 ∪ I2} −H{E(y), I1} −H{E(y), I2},

where I1, I2 are two contiguous intervals of {1, . . . , n}. Ideally, one needs to
be able to upper and lower bound Q{E(y); I1, I2} when y is defined in (1),
and its corresponding f(·) is a degree-r polynomial on I1 and another degree-r
polynomial on I2. In the case of r = 0, i.e. in the piecewise constant case, one
can write an exact expression

Q{E(y); I1, I2} =
|I1||I2|

|I1|+ |I2|

(
|I1|−1

∑
i∈I1

E(yi)− |I2|−1
∑
i∈I2

E(yi)

)2

.

In addition, it holds that

min{|I1|, |I2|}
2

=
|I1||I2|

2max{|I1|, |I2|}
≤ |I1||I2|

|I1|+ |I2|
≤ min{|I1|, |I2|}.

Therefore, it follows that

1

2
min{|I1|, |I2|}κ2 ≤ Q{E(y); I1, I2} ≤ min{|I1|, |I2|}κ2, (20)

where κ represents the absolute difference between the values of E(yi), i ∈ I1
and i ∈ I2.

For general r, by adopting an elegant result in [32], one can actually gener-
alise (20) to obtain that

C1
min{|I1|2r+1, |I2|2r+1}

n2r
κ2 ≤ Q{E(y); I1, I2} ≤ C2

min{|I1|2r+1, |I2|2r+1}
n2r

κ2,

(21)
where 0 < C1 < C2 are two absolute constants, and κ is the absolute difference
of the rth degree coefficients of E(y) on I1 and I2. However, the problem is that
the constants C1 and C2 are not explicit. We can only show the existence of such
constants. Even if we can track these two constants down, in order to be able
to generalise the argument of [39], we would still need to show that C1 and C2

are close enough. At this moment, it is not clear to us how to resolve this issue.
We can only conjecture that for all r ∈ N, the �0-penalised least squares method
would itself be nearly optimal in terms of both the signal strength condition and
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the localisation error, and our second step update would not be needed. From
a practical point of view, our second step can be done in O(n) time, which
is negligible compared to the O(n3) time required to solve the penalised least
squares. The computational overhead of our second step is thus minor.

3.2. Comparisons with [14]

[14] showed that penalised least squares method for change point localisation
works well for piecewise linear signals. This work inspired us to investigate piece-
wise polynomial signals of higher degrees. Even in the piecewise linear case, there
are some differences between our work and [14]. The algorithm provided in [14]
can be seen as solving a variant of the penalised least squares problem men-
tioned in this paper. In fact, the dynamic programming algorithm mentioned
in [14] appears to be more sophisticated than what would be required to solve
our problem. It is because the algorithm in [14] is tailored specifically for con-
tinuous piecewise linear functions. Maintaining continuity makes the dynamic
programming algorithm more involved. Translated to our notation, [14] assumes
rk = 1, for all k ∈ {1, . . . ,K}. Our formulation is more general than [14] as we
do not impose continuity or any kind of smoothness at the change points. Our
estimator adapts near-optimally to the level of smoothness at the change points.
The theoretical results studied in [14] are under the conditions K,σ 
 1. Un-
der these conditions, translated to our notation, their results read, provided
that (κ/n)2Δ3 � log(n), the localisation error is log1/3(n)(n/κ)2/3. Both are
consistent with the results we have obtained in this paper.

We would like to emphasis that when the underlying functions are indeed con-
tinuous at the change points, our estimators may be discontinuous, but our esti-
mators will be very close to continuous functions; in the sense that MSE(θ̂, θ∗) →
0, n → ∞, where θ̂ = (f̂(i/n), i = 1, . . . , n)� and θ∗ = (f∗(i/n), i = 1, . . . , n)�;
see [32].

3.3. Comparisons with [29]

[29] studied the minimax rates of change point localisation in a nonparamet-
ric setting. The main focus there is how the localisation errors’ minimax rates
change with α, the degree of discontinuity in a Hölder sense. Due to the non-
parametric essence, the class of functions considered in [29] is more general than
the piecewise polynomial class we discuss here. However, the measures of reg-
ularity rk’s we have defined in Definition 1 are similar as the parameter α in
[29], if we only consider polynomials. Having drawn this connection, translated
into our notation, [29] in fact shows that the localisation error’s minimax lower
bound is of order {

n2r logη(n)
}1/(2r+1)

, ∀η > 1.

This is a lower bound for a larger class of functions than ours, but the depen-
dence on n is the same as ours up to a poly-logarithmic factor. In general, the
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larger the class is, the smaller the minimax lower bound is. Since [29] assumes
all the other parameter to be of order O(1), our minimax lower bounds add
value as they are in terms of all the relevant problem parameters and not just
the sample size n.

3.4. Why not just differencing the sequences

In this paper, we are dealing with piecewise polynomials with general order r.
We noticed that in practice, some practitioners tend to difference the sequences
r times, wishing to obtain piecewise constant signals, and then conduct change
point detection methods on the resulting differenced sequence. This is in fact
not an effective method if the goal is to detect change points.

We use piecewise linear models as concrete examples, assuming we have

f(x) =

{
a0 + a1(x− η/n), x ∈ [0, η/n),

a0 + b1(x− η/n), x ∈ [η/n, 1),

where a0, a1, b1 ∈ R and a1 �= b1. As we have shown, the global and constrained
minimax lower bounds on this problem are(

σ2

(a1 − b1)2

)1/3

n2/3 and

(
σ2

(a1 − b1)2

)1/2

n1/2, (22)

respectively.

If we now take differences, then we work under a new model

g(x) =

{
a1/n, x ∈ [0, η/n),

b1/n, x ∈ [η/n, 1).

This is now a piecewise constant case, the localisation error lower bound is now
of order

σ2

(a1/n− b1/n)2
=

n2σ2

(a1 − b1)2
, (23)

provided that the signal strength is still strong enough. (The differenced se-
quence is no longer independent, but weakly dependent. Therefore the variance
parameter is inflated by a constant.)

Comparing the rates in (23) and (23), we show that it is not always a good
idea to difference the polynomial sequences.

4. Numerical experiments

In this section, we conduct extensive numerical experiments, based on piecewise
quadratic functions.
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Evaluation measurements. Letting {η̂k}K̂k=1 and {ηk}Kk=1 be estimated and

true change points, respectively, we evaluate the performances of {η̂k}K̂k=1 using

|K̂ −K| and the scaled Hausdorff distance, i.e.

dH =
1

n
max

{
max

j=0,...K̂+1
min

k=0,...,K+1
|η̂j − ηk|, max

k=0,...,K+1
min

j=0,...,K̂+1
|η̂j − ηk|

}
,

where η̂0 = η0 = 0 and η̂K̂+1 = ηK+1 = n.

Tuning parameter selection. The only tuning parameter λ is selected via
the cross-validation method [30]. To be specific, we first divide the sample into
training and validation sets according to odd and even indices. For each possible
values of λ considered, the initial estimator Π̂ is obtained based on the training
set. On the validation set, for each I ∈ Π̂, we obtain ŷI = PIyI and compute the
validation loss

∑
t mod 2≡0(ŷt − yt)

2. Finally, we select the λ which minimises
the validation loss.

General settings. With the notation in Definition 1, f(x) on the interval
[ηk/n, ηk+1/n), for k ∈ {1, . . . ,K − 1}, are represented by different polyno-
mials {(x − ηk/n)

l}rl=0 and {(x − ηk+1/n)
l}rl=0, with coefficients {bk,l}rl=0 and

{ak+1,l}rl=0 respectively. To be specific, for r = 2, we have⎛⎝ak+1,0

ak+1,1

ak+1,2

⎞⎠ =

⎛⎝1 ηk+1−ηk

n

(ηk+1−ηk

n

)2
0 1 2

ηk+1−ηk

n
0 0 1

⎞⎠⎛⎝bk,0
bk,1
bk,2

⎞⎠ ,

The piecewise polynomials f(x) can therefore be parameterised by the degree r,
the change points {ηk}Kk=1, the sample size n, the coefficients {a1,l}rl=0 for the
first segment, the jump sizes {κk,l}rl=0 for k = 1, . . . ,K, and σ2 which quantifies
the tail behavior of error terms.

For each setting below, we simulate 100 repetitions and fix K = 2. Fixing the
effects of K and σ2, the localisation errors shown in Theorem 1 can be regarded
as an interplay among Δ, rk, n and ρk,rk ; see (14).

4.1. Scenario 1: The effects of rk and n

In this scenario, we investigate the roles of rk and n, with equally-spaced change
points. We fix the polynomial coefficients for the first segment as {a1,l}2l=0 =
{−2, 2, 9}, and the jumps at the first change point as {κ1,l}2l=0 = {3, 9,−27}. We
thus have r1 = 0 and ρ1,r1/n = 3 fixed. We further let n ∈ {150, 300, 450}, and
for the second change point, let {κ2,l}2l=0 vary according to (a): {−3, 9,−27},
(b): {−3, 9, 0}, (c): {−3, 0,−27}, (d): {−3, 0, 0}, (e): {0, 9,−27}, (f): {0, 9, 0}
and (g): {0, 0,−27}. By varying n and {κ2,l}2l=0, the ratio ρ2,r2/n = 3 is fixed,
but r2 ∈ {0, 1, 2} varies. Under the above settings, we have the localisation
errors of η2 dominates that of η1, and (14) for η2 reduces to

|η̂2 − η2|
n

� 1

3

{
Kσ2 log(n)

ρ2,r2

}1/(2r2+1)

=
1

3

{
2 log(n)

3n

}1/(2r2+1)

,
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which suggests the following. First, fixing n, the localisation error increases as r2
increases; second, fixing r2, the localisation error decreases as n increases. This
is supported by the results collected in Table 1. For fixed n and Δ, our method
performs similarly for Cases (a)-(d) with the same r2 = 0, and the performances
deteriorate as r2 increases. In each case, the performances improve as n increases.
We would like to mention that, when r2 = 2, with a much larger signal strength,
we can show a similarly good performance as that in the case r2 = 0.

Table 1

Experiment results of Scenario 1. Each cell is in the form of mean (std. error) over 100
repetitions.

{κ2,l}2l=0 (a) (b) (c) (d) (e) (f) (g)
r2 0 0 0 0 1 1 2

n = 150

|K̂ −K| 0.42 0.40 0.44 0.42 0.96 0.99 1.02
(0.083) (0.083) (0.086) (0.085) (0.051) (0.044) (0.051)

dH of η̃ 0.057 0.049 0.055 0.049 0.274 0.289 0.292
(0.008) (0.006) (0.007) (0.006) (0.010) (0.009) (0.008)

dH of η̂ 0.049 0.042 0.048 0.041 0.270 0.289 0.290
(0.008) (0.006) (0.007) (0.006) (0.010) (0.008) (0.008)

n = 300

|K̂ −K| 0.20 0.20 0.20 0.20 0.72 0.95 0.82
(0.047) (0.047) (0.047) (0.047) (0.055) (0.069) (0.046)

dH of η̃ 0.025 0.025 0.025 0.025 0.252 0.296 0.281
(0.004) (0.004) (0.004) (0.004) (0.012) (0.008) (0.009)

dH of η̂ 0.022 0.022 0.022 0.022 0.248 0.290 0.274
(0.004) (0.004) (0.004) (0.004) (0.012) (0.009) (0.010)

n = 450

|K̂ −K| 0.13 0.13 0.13 0.13 0.72 0.88 0.73
(0.034) (0.034) (0.034) (0.034) (0.070) (0.033) (0.053)

dH of η̃ 0.017 0.017 0.017 0.017 0.230 0.313 0.257
(0.004) (0.004) (0.004) (0.004) (0.012) (0.006) (0.011)

dH of η̂ 0.014 0.014 0.014 0.014 0.231 0.310 0.256
(0.003) (0.003) (0.003) (0.003) (0.011) (0.006) (0.010)

4.2. Scenario 2: The effect of Δ

In this scenario, we vary the minimal spacing Δ and consider un-balanced
change points. We let n = 450, r = 2, the polynomial coefficients of the first
segment be {a1,l}2l=0 = {−2, 2, 9}, the jump sizes at the first change point
be {κ1,l}2l=0 = {3, 9,−27} and the jump sizes at the second change point be
{κ2,l}2l=0 = {−3, 9,−27}.

We consider the following six cases of the true change points {ηk}2k=1 as: (a):
{50, 100}, (b): {50, 150}, (c): {50, 400}, (d): {100, 350}, (e): {150, 300} and (f):
{200, 250}. The lengths of three intervals separated by true change points are
(a): (50, 50, 350), (b): (50, 100, 300), (c): (50, 350, 50), (d): (100, 250, 100), (e):
(150, 150, 150) and (f): (200, 50, 200). By fixing n and the jump sizes, we ensure
r1 = r2 = 0 is unchanged for all cases.

The results collected in Table 2 show that, keeping other factors unchanged,
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the more balanced the locations of change points are, the better the performance
of our estimator.

Table 2

Experiment results of Scenario 2. Each cell is in the form of mean (std. error) over 100
repetitions.

{ηk}2k=0 (a) (b) (c) (d) (e) (f)

|K̂ −K| 0.12 0.26 0.20 0.17 0.13 0.26
(0.038) (0.116) (0.055) (0.043) (0.034) (0.066)

dH of η̃ 0.025 0.022 0.030 0.019 0.017 0.030
(0.006) (0.005) (0.008) (0.004) (0.004) (0.005)

dH of η̂ 0.024 0.020 0.034 0.018 0.014 0.027
(0.007) (0.005) (0.008) (0.005) (0.004) (0.005)
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Appendix A: Summary

We include all the proofs in the Appendices. Some preparatory results are pro-
vided in Appendix B. Appendix C contains the proof of Theorem 1. The lower
bounds results Lemmas 2 and 3 are proved in Appendix D.

Appendix B: Preparatory Results

The following notation will be used throughout the proofs. For any
I = {s, . . . , e} ⊂ {1, . . . , n}, recall the projection matrix PI defined in (4) using
matrix UI,r defined in (5). We recall the notation

H(v, I) = ‖vI‖2 − ‖PIvI‖2 = ‖vI − PIvI‖2,

for any vector v ∈ R
n, where vI = (vi, i ∈ I)� ∈ R

|I|.
For any contiguous intervals I, J ⊂ {1, . . . , n} and for any vector v ∈ R

n,
define

Q(v; I, J) = H(v, I∪J)−H(v, I)−H(v, J) = ‖PIvI‖2+‖PJvJ‖2−‖PI∪JvI∪J‖2.

Lemma 5. Let I be any nonempty interval subset of {1, . . . , n}. For any k ∈
{1, . . . , |I|} and any partition of I, I = ∪k

l=1Il, satisfying Is ∩ Iu = ∅, for any
s, u ∈ {1, . . . , k}, s �= u. It holds for any vector v ∈ Rn that

H(v, I) ≥
k∑

l=1

H(v, Il).
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Proof. The claims holds due to that

H(v, I) = ‖vI − PIvI‖2 =

k∑
l=1

‖vIl − (PIvI)Il‖2 ≥
k∑

l=1

‖vIl − PIlvIl‖2.

Lemma 6. Let y ∈ R
n satisfy y = θ+ε and E(y) = θ. Let I, J be two contiguous

interval subsets of {1, . . . , n}. It holds that

Q(y; I, J) ≥
∣∣√Q(θ; I, J)−

√
Q(ε; I, J)

∣∣2.
Proof. First observe that Q(y; I, J) is a quadratic form in y. Moreover, it is a
positive semidefinite quadratic form asQ(y; I, J) ≥ 0 for all y ∈ R

n by Lemma 5.
Therefore, we can write Q(y; I, J) = y�Ay, for a positive semidefinite matrix
A ∈ R

n×n. Denoting A1/2 as the square root matrix of A, satisfying A1/2A1/2 =
A, we can write Q(y; I, J) = ‖A1/2y‖2. It then holds that√

Q(y; I, J) =‖A1/2(θ + ε)‖

≥max
{
‖A1/2θ‖ − ‖A1/2ε‖, ‖A1/2ε‖ − ‖A1/2θ‖

}
,

which leads to the final claim.

Lemma 7 (Lemma E.1 in [32]). There exists an absolute constant cpoly depend-
ing only on r such that for any integers

n ≥ 1, m ≥ r + 1, m ≤ n (24)

and any real sequence {a�}r�=0,

m∑
i=1

[
a0 + a1

(
i

n

)
+ · · ·+ ar

(
i

n

)r]2
≥ cpoly max

d=1,...,r

a2dm
2d+1

n2d
.

Lemma 7 is a direct consequence of Lemma E.1 in [32]. We omit its proof
here.

Proposition 8. Let I = {s, . . . , τ − 1}, J = {τ, . . . , e} be two contiguous in-
terval subsets of {1, . . . , n} such that min{|I|, |J |} ≥ r + 1. Let θ = (θi, i =
1, . . . , n)� ∈ Rn be a piecewise discretized polynomial, i.e. θi = f(i/n), where
f(·) is a polynomial of order at most r on [s/n, τ/n) and a polynomial of order
at most r on [τ/n, e/n).

Let θI∪J , θ restricted on I ∪ J , be reparametrised as

θi =

{∑r
l=0 al(i/n− τ/n)l, i ∈ I,∑r
l=0 bl(i/n− τ/n)l, i ∈ J.

Then there exists an absolute constant cpoly depending only on r such that for
any d ∈ {l = 0, . . . , r : al �= bl},

Q(θ; I, J) ≥ cpoly(ad − bd)
2min{|I|2d+1, |J |2d+1}

n2d
.
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Proof. For any fixed d ∈ {0, . . . , r} and any κ > 0, let

Ad =

{
v ∈ R

|I∪J| : there exist {c1,l, c2,l, l = 0, . . . , r} ⊂ R

s.t. v =

{∑r
l=0 c1,l(i/n− τ/n)l, i ∈ I,∑r
l=0 c2,l(i/n− τ/n)l, i ∈ J,

and |c1,d − c2,d| ≥ κ.

}
(25)

In words, Ad is the set of vectors which are discretised polynomials of order at
most r on the interval I/n and different polynomials of order at most r on the
interval J/n, with the dth order coefficients at least κ apart.

For v ∈ Ad, since v is a discretised polynomial on I/n and J/n, separately,
we have that Q(v; I, J) = ‖vI∪J − PI∪JvI∪J‖2. In addition, we claim that

min
v∈Ad

‖vI∪J − PI∪JvI∪J‖2 = min
v∈Ad

‖vI∪J‖2.

This is due to the following. Since orthogonal projections cannot increase the
�2 norm, we have the LHS ≤ RHS. As for the other direction, observe that the
vector vI∪J − PI∪JvI∪J also belongs to the set Ad.

It now suffices to lower bound minv∈Ad
‖vI∪J‖2. For any v ∈ Ad, it holds

that

‖vI∪J‖2 =‖vI‖2 + ‖vJ‖2 ≥ cpoly
n2d

(
c21,d|I|2d+1 + c22,d|J |2r+1

)
≥cpoly

n2d
κ2 min{|I|2d+1, |J |2d+1},

where c1,d and c2,d are the dth order coefficients of v as defined in (25), the first
inequality is due to Lemma 7, and the second inequality follows from the fact
that |c1,d − c2,d| ≥ κ.

Lemma 9 (High Probability Event). Under Assumption 1, there exists an ab-
solute constant cprob > 0 depending on r, and an absolute constant cnoise > 0
depending only on cprob, such that

P

⎧⎨⎩ max
I=[s,e]

1≤s<e≤n

‖PIεI‖2 ≥ cnoiseσ
2 log(n)

⎫⎬⎭ ≤ n−cprob .

Proof. For any interval I ⊂ {1, . . . , n}, there exists an absolute positive constant
c > 0 depending only on r such that for any t > 0,

P
{
ε�I PIεI − E

(
ε�I PIεI

)
≥ t
}
≤ 2 exp

[
−cmin

{
t2

σ4‖PI‖2F
,

t

σ2‖PI‖op

}]
,

which is due to the Hanson–Wright inequality [e.g. Theorem 1.1 in 31]. Since
PI is a rank r + 1 orthogonal projection matrix, we have ‖PI‖F = r + 1 and
‖PI‖op = 1. Then

P
{
ε�I PIεI − E

(
ε�I PIεI

)
≥ t
}
≤ 2 exp

[
−cmin

{
t2

σ4(r + 1)2
,

t

σ2

}]
.
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In addition, we have that

E
(
ε�I PIεI

)
≤ tr(PI) max

i=1,...,n
E(ε2i ) ≤ (r + 1)σ2.

For an absolute constant C > c/2, letting t = Cσ2 log(n) and applying a union
bound argument over all possible I, we obtain that

P

⎧⎨⎩ max
I=[s,e]

1≤s<e≤n

‖PIεI‖2 ≥ Cσ2 log(n) + (r + 1)σ2

⎫⎬⎭ ≤ 2n2−cC .

Finally, we choose cprob and cnoise such that

n−cprob > 2n2−cC and cnoise log(n) > C log(n) + (r + 1),

then we complete the proof.

Appendix C: Proof of Theorem 1

In this section, we provide the proof of Theorem 1. We will prove the result
by first proving that under an appropriate deterministic choice of the tuning
parameter λ and some deterministic conditions on other parameters, obtain-
ing the desired localisation error is possible. We will then conclude the proof
using Lemma 9, under which all these required conditions hold.

For any τ > 0, define

M(τ) =

⎧⎨⎩ max
I=[s,e]

1≤s<e≤n

‖PIεI‖2 ≤ τ

⎫⎬⎭ . (26)

Proof of Theorem 1. It follows from Lemma 9 that

P
[
M{cnoiseσ2 log(n)}

]
≥ 1− n−cprob ,

where M(·) is defined in (26).
On the event M{cnoiseσ2 log(n)}, it follows from Proposition 10 that

K̂ = K and |η̃k − ηk| ≤ cerror

{
Kn2rkσ2 log(n)

κ2
k

}1/(2rk+1)

, ∀k ∈ {1, . . . ,K}.

In addition, due to (11), it holds that

max
k=1,...,K

|η̃k − ηk| < Δ/5.

Then it follows from Lemma 16 that

|η̂k − ηk| ≤ cerror

{
n2rkσ2 log(n)

κ2
k

}1/(2rk+1)

, ∀k ∈ {1, . . . ,K}.

We complete the proof.
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C.1. The initial estimators {η̃k}K̂
k=1

The following proposition is our main intermediate result used to prove Theo-
rem 1.

Proposition 10. Let data {yi}ni=1 satisfy Assumption 1. Let {η̃k}K̂k=1 be the
initial estimators of Algorithm 1, with inputs {yi}ni=1 and tuning parameter λ.

On the event M(τ) defined in (26), for any τ > 0, let

λ > (4K + 5)τ. (27)

Assume that
ρ > 52r+1 max{6λ, r + 1}. (28)

We have that for any k ∈ {1, . . . ,K}, there exists an absolute constant 0 < c <
52r/(2r+1)/2, such that

|η̃k − ηk| ≤ c

(
n2rk max{6λ, r + 1}

κ2
k

)1/(2rk+1)

.

Remark 6. Note that Proposition 10 is a completely deterministic result. In
particular, no probabilistic assumption is needed on the noise variables. The
proposition is written with explicit constants but these constants are not opti-
mal in any sense. We have written out explicit constants just to emphasise the
deterministic nature of the result and in better understanding of the relative
choices of the different problem parameters.

Proof of Proposition 10. We will show that

(a) For any I = [s, e) ∈ Π̂, there are no more than two true change points.

(b) For any two consecutive intervals I, J ∈ Π̂, the interval I ∪ J contains at
least one true change point.

(c) For any I = [s, e) ∈ Π̂, if there are exactly two true change points con-
tained in I, i.e. ηk−1 < s ≤ ηk < ηk+1 < e ≤ ηk+2, then

ηk − s ≤ c

(
n2rk max{6λ, r + 1}

κ2
k

)1/(2rk+1)

and

e− ηk+1 ≤ c

(
n2rk+1 max{6λ, r + 1}

κ2
k+1

)1/(2rk+1+1)

.

(d) For any I = [s, e) ∈ Π̂, if there is exactly one true change point contained
in I, i.e. ηk−1 < s ≤ ηk < e ≤ ηk+1, then

min{e− ηk, ηk − s} ≤ c

(
n2rk max{6λ, r + 1}

κ2
k

)1/(2rk+1)

.

(e) If |Π| ≤ |Π̂| ≤ 3|Π|, then it holds that |Π̂| = |Π|.
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Parts (a)-(d) are shown in Lemmas 11, 12, 13, 14 and 15, respectively. Letting
η̃0 = 1 and η̃K̂+1 = n+ 1, it follows from part (b) that for every 3 consecutive

change point estimators in {η̃k}K̂+1
k=0 , there is at least one true change point

{ηk}Kk=0. This implies that |Π̂| ≤ 3|Π|.
In addition, by part (a), an interval I = [s, e) ∈ Π̂ can contain two, one or

zero true change point. If I contains exactly two true change points, then by
part (c), the smaller true change point is close to the left endpoint s, and the
larger true change point is close to the right endpoint e. The closeness is defined
by part (c). If I contains exactly one true change point, then by part (d), the
true change point is close to one of the endpoints. This shows that every true
change point can be mapped to an estimated change point, and the distance
between the true and the estimated is upper bounded by what is shown in (c)
and (d).

Recall the definition of ρ in Assumption 1 and the condition (28). We have
that

Δ > max
k=1,...,K

(
52r+1 max{6λ, r + 1}n2rk

κ2
k

)1/(2rk+1)

> 2c max
k=1,...,K

(
max{6λ, r + 1}n2rk

κ2
k

)1/(2rk+1)

.

This assures that the mapping of true change points to estimated change points
is one to one and implies that |Π̂| ≥ |Π|. Finally, part (e) is deployed to complete
the proof.

Lemma 11 (Part (a) in the proof of Proposition 10). Under all the assumptions

in Proposition 10, for any I ∈ Π̂, it holds that I does not contain more than
two true change points.

Proof. We prove by contradiction, assuming that there exists at least three true
change points in I = [s, e) ∈ Π̂, namely s ≤ ηk−1 < ηk < ηk+1 < e. This implies
that

min{ηk − s, e− ηk} > Δ.

Denote I1 = [s, ηk−Δ), I2 = [ηk−Δ, ηk), I3 = [ηk, ηk+Δ) and I4 = [ηk+Δ, e).

Let Π̃ be the interval partition such that

Π̃ = Π̂ ∪ {I1, I2, I3, I4} \ {I}.

It holds that

0 ≥ G(Π̂, λ)−G(Π̃, λ)

= −3λ+H(y, I)−H(y, I1)−H(y, I2)−H(y, I3)−H(y, I4)

≥ −3λ+H(y, I2 ∪ I3)−H(y, I2)−H(y, I3) = −3λ+Q(y; I2, I3)

≥ −3λ+
{√

Q(θ; I2, I3)−
√
Q(ε; I2, I3)

}2
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≥ −3λ+
Q(θ; I2, I3)

4
1{Q(θ; I2, I3) > 4Q(ε; I2, I3)},

where 1{·} is an indicator function, the first inequality follows the definition of

Π̂, the second is from Lemma 5 and the third follows from Lemma 6. As for
the final inequality, it follows from Proposition 8 and the fact that |I2|, |I3| = Δ
that Q(θ; I2, I3) ≥ ρ. Since our assumption implies that 2τ ≤ ρ, it holds that
12λ ≥ ρ which contradicts the second assumption in (27).

Lemma 12 (Part (b) in the proof of Proposition 10). Under all the assumptions

in Proposition 10, for any two consecutive intervals I1, I2 ∈ Π̂, there is at least
one true change point in I1 ∪ I2.

Proof. We prove by contradiction, assuming there is no true change point in
J = I1 ∪ I2. Let

Π̃ = Π̂ ∪ {J} \ {I1, I2}.
We have that

0 ≤ G(Π̃, λ)−G(Π̂, λ) = −λ+Q(y; I1, I2) = −λ+Q(ε; I1, I2) ≤ −λ+ 3τ,

where the first inequality is due to the definition of Π̂, the second identity follows
from the fact that θ is polynomial of order at most r on J , and the last inequality
holds on the event M. Therefore we reach a contradiction to (27).

Lemma 13 (Part (c) in the proof of Proposition 10). Under all the assumptions

in Proposition 10, for any I = [s, e) ∈ Π̂, if there are exactly two true change
points ηk, ηk+1 ∈ I, then it holds that

ηk − s ≤ c

(
n2rk max{2λ+ 12τ, r + 1}

κ2
k

)1/(2rk+1)

and

e− ηk+1 ≤ c

(
n2rk+1 max{2λ+ 12τ, r + 1}

κ2
k+1

)1/(2rk+1+1)

.

Proof. Let I1 = [s, ηk), I2 = [ηk, ηk+1), I3 = [ηk+1, e) and

Π̃ = Π̂ ∪ {I1, I2 ∪ I3} \ {I}.

It holds that

0 ≤ G(Π̃, λ)−G(Π̂, λ) ≤ λ−H(y, I) +H(y, I1) +H(y, I2 ∪ I3)

≤ λ−H(y, I2)−H(y, I3) +H(y, I2 ∪ I3) = λ−Q(y; I2, I3)

≤ λ− |
√
Q(θ; I2, I3)−

√
Q(ε; I2, I3)|2 ≤ λ−Q(θ; I2, I3)/2 + 2Q(ε; I2, I3)

≤ λ+ 6τ −Q(θ; I2, I3)/2,

where the first inequality follows from the definition of Π̂, the third inequality
follows from Lemma 5, the fourth inequality follows from Lemma 6, the fifth
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inequality follows from (a−b)2 > a2/−2b2, for any a, b ∈ R, and the last follows
from the definition of the event M(τ).

Applying Proposition 8, we conclude that

cpoly
κ2
k+1

n2rk+1
min{Δ2rk+1+1, |I3|2rk+1+1} ≤ max{12τ + 2λ, r + 1}.

It follows from (28), we have that

e− ηk+1 ≤ c

(
n2rk+1 max{2λ+ 12τ, r + 1}

κ2
k+1

)1/(2rk+1+1)

.

The same arguments can lead to the corresponding result on ηk−s and complete
the proof.

Lemma 14 (Part (d) in the proof of Proposition 10). Under all the assumptions

in Proposition 10, for any I = [s, e) ∈ Π̂, if there is exactly one true change
point ηk ∈ I, then

min{e− ηk, ηk − s} ≤ c

(
n2rk max{12τ + 2λ, r + 1}

κ2
k

)1/(2rk+1)

.

Proof. Let I1 = [s, ηk), I2 = [ηk, e) and

Π̃ = Π̂ ∪ {I1, I2} \ {I}.

It holds that

0 ≤ G(Π̃, λ)−G(Π̂, λ) = λ−H(y, I) +H(y, I1) +H(y, I2) = λ−Q(y; I1, I2)

≤ λ− |
√

Q(θ; I1, I2)−
√
Q(ε; I1, I2)|2 ≤ λ−Q(θ; I2, I3)/2 + 2Q(ε; I2, I3)

≤ λ+ 6τ −Q(θ; I2, I3)/2,

where the first inequality follows from the definition of Π̂, the second inequality
follows from Lemma 6, the third inequality follows from (a − b)2 > a2/ − 2b2,
for any a, b ∈ R, and the last follows from the definition of the event M(τ).

Applying Proposition 8, we conclude that

cpoly
κ2
k

n2rk
min{|I1|2rk+1, |I2|2rk+1} ≤ max{12τ + 2λ, r + 1}.

Lemma 15 (Part (e) in the proof of Proposition 10). Under all the assumptions

in Proposition 10, assuming that |Π| ≤ |Π̂| ≤ 3|Π|, it holds that |Π̂| = |Π|.

Proof. To ease notation, for any interval partition P of {1, . . . , n} and any v ∈
R

n, we let

S(v,P) =
∑
I∈P

H(v, I).
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Using this notation, we first note that

‖ε‖2 ≥ S(y,Π),

since for any I ∈ Π, H(y, I) = H(ε, I) ≤ ‖εI‖2.
Let Π̂ ∩Π be the intersection of the partitions Π̂ and Π. It then holds that

‖ε‖2 + (K + 1)λ ≥S(y,Π) + (K + 1)λ ≥ S(y, Π̂) + (K̂ + 1)λ

≥S(y, Π̂ ∩Π) + (K̂ + 1)λ, (29)

where the second inequality follows from the definition of Π̂ and the last in-
equality is due to Lemma 5.

On the other hand, we have that

‖ε‖2 − S(y, Π̂ ∩Π) = ‖ε‖2 − S(ε, Π̂ ∩Π) ≤
(
K̂ +K + 2

)
τ, (30)

where the identity is due to the fact that θ is a polynomial of order at most r
on every member of Π̂∩Π, and the second inequality holds on the event M(τ),

noticing that |Π̂ ∩Π| ≤ K̂ +K + 2.
Combining (29) and (30), we have that(

K̂ −K
)
λ ≤

(
K̂ +K + 2

)
τ ≤

(
4K + 5

)
τ,

where the last inequality is due to |Π̂| ≤ 3|Π|. Since we also have |Π̂| ≥ |Π|, the
last display implies that |K̂| = K, otherwise it contradicts with (27).

C.2. The final estimators {η̂k}K̂
k=1

The following lemma shows that our update step in Algorithm 1 can significantly
improve the initial estimators.

Lemma 16. Let data {yi}ni=1 satisfy Assumption 1. For any set {νk}Kk=1 sat-
isfying

max
k=1,...,K

|νk − ηk| ≤ Δ/5,

with ν0 = 1 and νK+1 = n+ 1, define

sk = νk−1/2 + νk/2, ek = νk/2 + νk+1/2 and Ik = [sk, ek), ∀k ∈ {1, . . . ,K}.

Let
η̂k = argmin

t∈Ik\{sk}
{H(y, [sk, t)) +H(y, [t, ek))} , ∀k ∈ {1, . . . ,K}.

For any τ > 0, if
ρ > 2× 52r+1τ, (31)

then on the event M(τ), it holds that for an absolute constant c > 0,

|η̂k − ηk| ≤ c

{
n2rkτ

κ2
k

}1/(2rk+1)

.
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Proof. For any k ∈ {1, . . . ,K}, we have that

ηk − sk =ηk − νk +
νk − νk−1

2

=ηk − νk +
νk − ηk

2
+

ηk − ηk−1

2
+

ηk−1 − νk−1

2

≥− Δ

5
− Δ

10
+

Δ

2
− Δ

10
=

Δ

10
.

and

sk − ηk−1 =
νk − νk−1

2
+ νk−1 − ηk−1

=
νk − ηk

2
+

ηk − ηk−1

2
+

ηk−1 − νk−1

2
+ νk−1 − ηk−1

≥− Δ

10
+

Δ

2
− Δ

10
− Δ

5
=

Δ

10
.

Using identical arguments, it also holds that min{ek − ηk, ηk+1 − ek} ≥ Δ/10.
Without loss of generality, we assume that

sk < η̂k < ηk < ek.

Let J1 = [sk, η̃k), J2 = [η̃k, ηk) and J3 = [ηk, ek). By the definition of η̃k, we
have that

H(y, J1 ∪ J2) +H(y, J3) ≥ H(y, J1) +H(y, J2 ∪ J3)

=H(y, J1) +H(y, J2) +H(y, J3) +Q(y; J2, J3).

We then have that

cpoly
κ2
k

n2rk
min{|J2|2rk+1, |J3|2rk+1} ≤Q(y; J2, J3) ≤ Q(y; J1, J2) = Q(ε; J1, J2)

≤3τ,

where the first inequality is due to Proposition 8. Since |J3| ≥ Δ
10 , the final claim

follows from (31).

Appendix D: Proofs of Lemmas 2, 3 and 4

Proof of Lemma 2. Let P0 denote the joint distribution of the independent ran-
dom variables {yi}ni=1 such that

yi ∼
{
N (0, σ2), i ∈ {1, . . . ,Δ}
N (κ(i/n−Δ/n)r, σ2), i ∈ {Δ+ 1, . . . , n}.

Let P1 denote the joint distribution of the independent random variables {zi}ni=1

such that

zi ∼
{
N (0, σ2), i ∈ {1, . . . ,Δ+ δ}
N (κ(i/n−Δ/n)r, σ2), i ∈ {Δ+ δ + 1, . . . , n},
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where δ is a positive integer no larger than Δ. We further assume that
σ2 log(n)κ−2 ≥ 1 and Δ ≤ n/4.

As for P0, it is easy to see that

E(yi) =

{
0, i ∈ {1, . . . ,Δ},
κ {(i−Δ)/n}r , i ∈ {Δ+ 1, . . . , n},

which implies that the change point of P0 satisfies η(P0) = Δ+1. Recalling (13),
we also know that the corresponding order r1 equals r, and the jump size κ1 = κ.

As for P1, we have that

E(yi) =

{
0, i ∈ {1, . . . ,Δ+ δ},
κ {(i−Δ)/n}r = κ

∑r
l=0

(
r
l

) (
i−Δ−δ

n

)r−l ( δ
n

)l
, i ∈ {Δ+ δ + 1, . . . , n},

which implies that the change point of P1 satisfies η(P1) = Δ + δ + 1. Recall-
ing Definition 1 and (13), we have that for l ∈ {0, . . . , r},

ρ1,l = κ2

(
δ

n

)2r−2l

(Δ + δ)2l+1n−2l

and (
σ2 log(n)

ρ1,l

)1/(2l+1)

=

(
σ2 log(n)

κ2

)1/(2l+1)
1

Δ + δ
δ

2l−2r
2l+1 n

2r
2l+1 . (32)

In the above, we have used the condition that δ ≤ Δ < n/4. Due to the as-
sumption that σ2 log(n)κ−2 ≥ 1, we have that (32) is a decreasing function of
the order r. Therefore by the definition in (13), we have that the corresponding
order r1 = r and the jump size κ1 = κ.

It then follows from Le Cam’s lemma [e.g. 44], a standard reduction of estima-
tion to two point testing, and Lemma 2.6 in [34], a form of Pinsker’s inequality,
that

inf
η̂

sup
P∈Q

EP (|η̂ − η|) ≥ δ(1− dTV(P0, P1)) ≥
δ

2
exp

(
− κ2

σ2n2r

Δ+δ∑
i=Δ+1

(i−Δ)2r

)

=
δ

2
exp

(
− κ2

σ2n2r

δ∑
i=1

i2r

)
≥ δ

2
exp

(
− κ2

σ2n2r

∫ δ+1

1

x2r dx

)

≥δ

2
exp

{
− κ2(δ + 1)2r+1

(2r + 1)σ2n2r

}
≥ δ

2
exp

{
−cκ2δ2r+1

σ2n2r

}
.

We set

δ = max

{[
cσ2n2r

κ2

]1/(2r+1)

, 1

}
and complete the proof.
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Proof of Lemma 3. Let P0 denote the joint distribution of the independent ran-
dom variables {yi}ni=1 such that

yi ∼
{
N (κ(i/n−Δ/n)r, σ2), i ∈ {1, . . . ,Δ}
N (0, σ2), i ∈ {Δ+ 1, . . . , n}.

Let P1 denote the joint distribution of the independent random variables {zi}ni=1

such that

zi ∼
{
N (0, σ2), i ∈ {1, . . . , n−Δ}
N (κ(i/n− 1 + Δ/n)r, σ2), i ∈ {n−Δ+ 1, . . . , n}.

As for P0, it is easy to see that

E(yi) =

{
κ {(i−Δ)/n}r , i ∈ {1, . . . ,Δ},
0, i ∈ {Δ+ 1, . . . , n},

which implies that the change point of P0 satisfies η(P0) = Δ+1. Recalling (13),
we also know that the corresponding order r1 equals r, and the jump size κ1 = κ.

As for P1, it is easy to see that

E(yi) =

{
0, i ∈ {1, . . . , n−Δ},
κ {(i− n+Δ)/n}r , i ∈ {n−Δ+ 1, . . . , n},

which implies that the change point of P1 satisfies η(P1) = n −Δ+ 1. Recall-
ing Definition 1, we also know that the corresponding smallest order r equals r,
and the jump size κ = κ.

Since Δ ≤ n/3, it follows from Le Cam’s lemma [e.g. 44] and Lemma 2.6 in
[34] that

inf
η̂

sup
P∈P

EP (|η̂ − η|) ≥ (n/3)(1− dTV(P0, P1)) ≥
n

6
exp{−KL(P0, P1)}.

Since both P0 and P1 are product measures, it holds that

KL(P0, P1) =
κ2

σ2

{
Δ∑
i=1

(
i−Δ

n

)2r

+
n∑

i=n−Δ+1

(
i− n+Δ

n

)2r
}

≤ 2κ2

σ2

Δ∑
i=1

(
i

n

)2r

≤ 2κ2

σ2n2r

∫ Δ+1

1

x2r dx ≤ c0κ
2Δ2r+1

σ2n2r
= c0ξ.

Therefore
inf
η̂

sup
P∈P

EP (|η̂ − η|) ≥ n

6 exp(c0ξ)
= cn.

Proof of Lemma 4. Let P0 denote the joint distribution of the independent ran-
dom variables {yi}ni=1 such that

yi ∼
{
N (0, σ2), i ∈ {1, . . . ,Δ}
N (κ(i/n−Δ/n)r, σ2), i ∈ {Δ+ 1, . . . , n}.
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Let P1 denote the joint distribution of the independent random variables {zi}ni=1

such that

zi ∼
{
N (0, σ2), i ∈ {1, . . . ,Δ+ δ}
N (κ(i/n−Δ/n− δ/n)r, σ2), i ∈ {Δ+ δ + 1, . . . , n},

where δ is a positive integer no larger than Δ. We further assume that Δ ≤ n/4.
As for P0, it is easy to see that

E(yi) =

{
0, i ∈ {1, . . . ,Δ},
κ {(i−Δ)/n}r , i ∈ {Δ+ 1, . . . , n},

which implies that the change point of P0 satisfies η(P0) = Δ+1. Recalling (13),
we also know that the corresponding order r1 equals r, and the jump size κ1 =
κ. In addition, at the change point, under the reparametrisation, a1,l = b1,l,
l ∈ {0, . . . , r − 1}.

As for P1, we have that

E(yi) =

{
0, i ∈ {1, . . . ,Δ+ δ},
κ {(i−Δ− δ)/n}r , i ∈ {Δ+ δ + 1, . . . , n},

which implies that the change point of P1 satisfies η(P1) = Δ + δ + 1. Recall-
ing (13), we also know that the corresponding order r1 equals r, and the jump
size κ1 = κ. In addition, at the change point, under the reparametrisation,
a1,l = b1,l, l ∈ {0, . . . , r − 1}.

It then follows from Le Cam’s lemma [e.g. 44], a standard reduction of estima-
tion to two point testing, and Lemma 2.6 in [34], a form of Pinsker’s inequality,
that

inf
η̂

sup
P∈Q

EP (|η̂ − η|) ≥ δ(1− dTV(P0, P1))

≥δ

2
exp

(
− κ2

σ2n2r

Δ+δ∑
i=Δ+1

(i−Δ)2r

)
(33)

× exp

(
− κ2

σ2n2r

n∑
i=Δ+δ+1

{(i−Δ)r − (i−Δ− δ)r}2
)

=
δ

2
(I)× (II). (34)

As for the term (I), we have that

(I) = exp

(
− κ2

σ2n2r

δ∑
i=1

i2r

)
≥ exp

(
− κ2

σ2n2r

∫ δ+1

1

x2r dx

)

≥ exp

{
− κ2(δ + 1)2r+1

(2r + 1)σ2n2r

}
≥ exp

{
−cκ2δ2r+1

σ2n2r

}
.
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In order to ensure that (I) � 1, we need

δ �
(
σ2n2r

κ2

)1/(2r+1)

. (35)

As for the term (II), we have that

(II) = exp

⎛⎝− κ2

σ2n2r

n−Δ−δ∑
i=1

{
r−1∑
l=0

(
r

l

)
ilδr−l

}2
⎞⎠

≥ exp

(
− rκ2

σ2n2r

n−Δ−δ∑
i=1

r−1∑
l=0

(
r

l

)2

i2lδ2r−2l

)

≥ exp

(
− rκ2

σ2n2r

r−1∑
l=0

(
r

l

)2

δ2r−2l

∫ n−Δ−δ+1

i=1

x2l dx

)

≥ exp

(
− rκ2

σ2n2r

r−1∑
l=0

(
r

l

)2

δ2r−2l (n−Δ− δ + 1)2l+1

2l + 1

)

≥ exp

(
− rκ2

σ2n2r

r−1∑
l=0

(
r

l

)2
δ2r−2ln2l+1

2l + 1

)

=exp

(
−rκ2

σ2

r−1∑
l=0

(
r

l

)2
n

2l + 1

(
δ

n

)2r−2l
)
.

Since δ < n, we have that with a constant C being a function of r, it holds that

(II) ≥ exp

(
−Cκ2

σ2
n

(
δ

n

)2
)
.

In order to ensure that (II) � 1, we need

δ �
(
σ2n

κ2

)1/2

. (36)

Combining (34), (35) and (36), setting

δ = max

{[
cσ2n

κ2

]1/2
, 1

}
,

we complete the proof.
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