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Abstract: Statistical analysis of high-dimensional functional times series
arises in various applications. Under this scenario, in addition to the in-
trinsic infinite-dimensionality of functional data, the number of functional
variables can grow with the number of serially dependent observations.
In this paper, we focus on the theoretical analysis of relevant estimated
cross-(auto)covariance terms between two multivariate functional time se-
ries or a mixture of multivariate functional and scalar time series beyond
the Gaussianity assumption. We introduce a new perspective on dependence
by proposing functional cross-spectral stability measure to characterize the
effect of dependence on these estimated cross terms, which are essential in
the estimates for additive functional linear regressions. With the proposed
functional cross-spectral stability measure, we develop useful concentra-
tion inequalities for estimated cross-(auto)covariance matrix functions to
accommodate more general sub-Gaussian functional linear processes and,
furthermore, establish finite sample theory for relevant estimated terms
under a commonly adopted functional principal component analysis frame-
work. Using our derived non-asymptotic results, we investigate the conver-
gence properties of the regularized estimates for two additive functional
linear regression applications under sparsity assumptions including func-
tional linear lagged regression and partially functional linear regression in
the context of high-dimensional functional/scalar time series.
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1. Introduction

Functional time series have received a great deal of attention in the last decade
in order to provide methodology for functional data objects that are observed
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sequentially over time. Despite progress being made in this area, existing litera-
ture has focused on the statistical analysis of a single or small number of random
functions. The increasing availability of large dataset with multiple functional
features corresponds to the data structure of

Xe(u) = (Xea(u), ..., Xep(w)) ', t=1,...,n, uel,

with covariance matrix function 3 (u,v) = Cov{X;(u), X;(v)}, where, under
the high-dimensional and dependent setting, the number of functional variables
(p) can be comparable to, or even larger than, the number of serially dependent
observations (n), posing new challenges to existing work.

Examples of high-dimensional functional time series include daily electric-
ity consumption curves (Cho et al., 2013) for a large collection of households,
half-hourly measured PM10 curves (Aue, Norinho and Hérmann, 2015) over a
large number of sites and cumulative intraday return curves (Horvath, Kokoszka
and Rice, 2014) for hundreds of stocks. These applications require developing
learning techniques to handle such type of data. One large class considers im-
posing various functional sparsity assumptions on the model parameter space,
e.g. vector functional autoregressions (VFAR) (Guo and Qiao, 2021) and, un-
der a special independent setting, functional graphical models (Qiao, Guo and
James, 2019) and functional additive regressions (Fan et al., 2014; Fan, James
and Radchenko, 2015; Kong et al., 2016; Luo and Qi, 2017; Xue and Yao, 2021),
where the corresponding regularized estimates are proposed.

Within the high-dimensional time series framework, it is essential to estab-
lish necessary concentration inequalities for dependent data and assess how the
presence of serial dependence affects non-asymptotic error bounds. See relevant
concentration results for Gaussian process (Basu and Michailidis, 2015), linear
process or linear spatio-temporal model with more general noise distributions
(Sun et al., 2018; Shu and Nan, 2019) and heavy tailed time series (Wong, Li
and Tewari, 2020). Compared with theoretical analysis of scalar time series, the
added technical challenges that arise to handle functional time series involve
developing non-asymptotic results for dependent processes within an abstract
Hilbert space and characterizing the effect of serial dependence in {X;(-)} with
infinite, summable and decaying eigenvalues of Eé( .

Theoretical investigation of high-dimensional functional time series is rather
incomplete. Guo and Qiao (2021) proposed a functional stability measure for
Gaussian functional time series by controlling the functional Rayleigh quotients
of spectral density matrix functions relative to Eé( and hence can precisely
capture the effect of small eigenvalues. Moreover, they relied on it to estab-
lish concentration bounds on sample (auto)covariance matrix function of X,(+),
serving as a fundamental tool to provide theoretical guarantees for the proposed
three-step procedure and the regularized VFAR estimate, in a high dimensional
regime. However, their proposed stability measure only facilitates finite sample
theory to accommodate Gaussian functional time series and is not sufficient to
evaluate the effect of serial dependence on the estimated cross-(auto)covariance
terms in a non-asymptotic way, which plays a crucial role in the theoretical



Finite sample theory for high-dim funct time series 529

analysis of a wide class of additive functional linear regressions under the high-
dimensional regime when the serial dependence exists.

To illustrate, we consider two important examples of additive functional lin-
ear regressions in the context of high-dimensional functional/scalar time series.
The first example considers the high-dimensional extension of functional lin-
ear lagged regression (Hormann, Kidzinski and Kokoszka, 2015) in the additive
form:

L »p
Yi(v) = Y ) L X(t—ny; (W)Brj(u,v)du+te(v), t=L+1,...,n, (u,v) eUxV,
h=0j=1
(1.1)
where p-dimensional functional covariates {X;(:)} and functional errors {e;(-)}
are generated from independent, centered, stationary functional processes, and
{Bni(,-) + h =0,...,L,j = 1,...,p} are sparse functional coefficients to be
estimated. Under an independent setting without lagged functional covariates,
model (1.1) reduces to the additive function-on-function linear regression (Luo
and Qi, 2017).

The second example studies partially functional linear regression (Kong et al.,
2016) consisting of a mixture of p-dimensional functional time series {X;(-)} and
d-dimensional scalar time series Z; = (Zi1,...,Zq)* for t = 1,...,n, both of
which are independent of errors {e¢;}, as follows:

P d
Y, = 2 f Xij(u)B;(uw)du + Z Zuve + €, t=1,....nuel, (1.2)
j=1JU k=1

where {3;(-) : 7 = 1...,p} are sparse functional coefficients and {y; : k =
1,...,d} are sparse scalar coefficients. Whereas Kong et al. (2016) focused on
an independent scenario and treated p as fixed, we allow both p and d to be
diverging with n under a more general dependence structure. See also special
cases of model (1.2) without functional covariates or scalar covariates in Basu
and Michailidis (2015); Wu and Wu (2016) or Fan, James and Radchenko (2015);
Xue and Yao (2021), respectively.

In addition to existing non-asymptotic results in Guo and Qiao (2021), the
central challenge to provide theoretical supports for the regularized estimates
for models (1.1) and (1.2) is: (i) to characterize how the underlying dependence
structure affects the non-asymptotic error bounds on those essential estimated
cross-(auto)covariance terms, e.g. estimated cross-covariance functions between
X:(+) and Yiin(+) (or €:4p(+)) for h = 0,...,L in model (1.1) and estimates
of Cov(Xy(+),Z¢), Cov(Zy,er) and Cov(Xy(+),€:) in model (1.2); (ii) to develop
useful non-asymptotic results beyond Gaussian functional/scalar time series.

To address such challenges, the main contribution of our paper is threefold.

e First, we propose a novel functional cross-spectral stability measure be-
tween {X;()} and d-dimensional functional (or scalar) time series, i.e.
{Y(:) = (Yia (), ..., Yia(:))"}, defined on V or {Z.}, based on their cross-
spectral density properties. Compared with the direct functional extension
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of the cross-stability measure in Basu and Michailidis (2015), our func-
tional cross-spectral stability measure can more precisely capture the effect
of small eigenvalues to handle truly infinite-dimensional functional objects.

~X,Y
It also facilitates the development of non-asymptotic results for ¥,  and

oXZ . . . .
3, , which respectively are estimates of cross-(auto)covariance terms,
Ei(’y(u, v) = Cov(X¢(u), Yien(v)) and E,)L(’Z = Cov(Xy(u), Z¢yp) for all

integer h. Moreover, it provides insights into how ihXY and ihXZ are
affected by the presence of serial dependence.

e Second, we establish finite sample theory in a non-asymptotic way for
relevant estimated (cross)-(auto)covariance terms beyond Gaussian func-
tional (or scalar) time series to accommodate more general multivariate
functional linear processes with sub-Gaussian functional errors. Our finite
sample results and adopted techniques are general, and can be applied
broadly to provide theoretical guarantees for regularized estimates of other
high-dimensional functional time series models, e.g., the autocovariance-
based estimates of sparse functional linear regressions (Chang, Chen, Qiao
and Yao, 2021) and the functional factor model (Guo and Qiao, 2021).

e Third, due to the infinite dimensionality of the functional covariates, di-
mension reduction is necessary in the estimation. One common approach is
functional principal component analysis (FPCA). We hence establish use-
ful deviation bounds on relevant estimated terms under a FPCA frame-
work. To illustrate using models (1.1) and (1.2), we implement FPCA-
based three-step procedures to estimate unknown parameters under spar-
sity constraints. With derived non-asymptotic results, we verify functional
analogs of routinely used restricted eigenvalue and deviation conditions in
the lasso literature (Loh and Wainwright, 2012; Basu and Michailidis,
2015) and, furthermore, investigate the convergence properties of regular-
ized estimates under a high-dimensional and serially dependent setting.

Literature review. Our work lies in the intersection of two strands of liter-
ature: functional time series and high-dimensional time series. In the context of
functional time series, many standard univariate or low-dimensional time series
methods have been recently adapted to the functional domain with theoreti-
cal properties explored from a standard asymptotic perspective, see, e.g., Bosq
(2000); Bathia, Yao and Ziegelmann (2010); Hormann and Kokoszka (2010);
Panaretos and Tavakoli (2013); Aue, Norinho and Hérmann (2015); Hérmann,
Kidzinski and Kokoszka (2015); Pham and Panaretos (2018); Li, Robinson and
Shang (2020) and reference therein. In the context of high-dimensional time se-
ries, some lower-dimensional structural assumptions are often incorporated on
the model parameter space and different regularized estimation procedures have
been developed for the respective learning tasks including, e.g., high-dimensional
sparse linear regression (Basu and Michailidis, 2015; Wu and Wu, 2016; Han
and Tsay, 2020) and high-dimensional sparse vector autoregression (Guo, Wang
and Yao, 2016; Lin and Michailidis, 2017; Gao et al., 2019; Ghosh, Khare and
Michailidis, 2019; Zhou and Raskutti, 2019; Wong, Li and Tewari, 2020; Lin and
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Michailidis, 2020).

Outline. The remainder of the paper is organized as follows. In Section 2,
we propose cross-stability measures under functional and mixed-process scenar-
ios, define sub-Gaussian functional linear processes and rely on them to present
finite sample theory for estimated (cross-)terms used in subsequent analyses. In
Section 3, we consider sparse high-dimensional functional linear lagged model
n (1.1), develop the penalized least squares estimation procedure and apply
our derived non-asymptotic results to provide theoretical guarantees for the
estimates. Section 4 is devoted to the modelling, regularized estimation and ap-
plication of established deviation bounds on the theoretical analysis of sparse
high-dimensional partially functional linear model in (1.2). Finally, we examine
the finite-sample performance of the proposed methods for both models (1.1)
and (1.2) through simulation studies in Section 5. All technical proofs are rele-
gated to the appendix.

Notation. Let Z and R denote the sets of integers and real numbers, respec-
tively. For z,y € R, we use z v y = max(x,y). For two positive sequences
{an} and {b,}, we write a, < b, or a, = O(b,) or b, 2 a, if there ex-
ists a positive constant ¢ independent of n such that a,/b, < c¢. We write
an = b, if a, < b, and a, = b,. For a vector x € RP, we denote its /1, {5y
and maximum norms by [x|1 = 7_; |z, |x[| = (35 |2z;)*/* and [x]max =
max; |z;|, respectively. For a matrix B € RP*¢, we denote its Frobenius norm

by |Blr = (Zw. ij)l/z. Let Lo(U) be a Hilbert space of square integrable
functions on a compact interval Y. For f, g € La(U), we denote the inner prod-
uct by {f,g) = fu f(w)g(u)du for f,g € Ly(U) with the norm || - || = (-, -HV/2.
For a Hilbert space H = Lo(U), we denote the p-fold Cartesian product by
HP = H x --- x H and the tensor product S = HQH. For f = (f1,..., f,)" and
g = (91,...,9p)" in HP, we denote the inner product by {f,g) = >\_{fi, gi)
with induced norm of f by |f| = (f, F)/2, €1 norm by |f|1 = X2, |fil,
and ¢y norm by ||fllo = Xr_; I(|fi] # 0), where I(-) is the indicator func-
tion. For an integral matrix operator K : HP — H? induced from the ker-
nel matrix function K = (Kj;)qxp with each K;; € S through K(f)(u) =
(3P (B (u, ), £330 (K gj(u, ), £5())) " € HY, for any given f € HP.
To simplify notation, we will use K to denote both the kernel function and
the operator. When p = ¢ = 1, K degenerates to K and we denote its Hilbert—
Schmidt norm by | K|s = (f f K (u,v)?dudv) 2 For general K, we define func-
tional versions of Frobenius, elementwise £, matrix 1 and matrix £, norms
by [Klr = (2 1K351%) "7, 1K lmax = maxi g | Kiyls, Kb = max; 3, |54 s
and [K|o = max; 3, | Kij|s, respectively.

2. Finite sample theory

In this section, we first review functional stability measure and propose func-
tional cross-spectral stability measure. We then introduce the definitions of sub-
Gaussian process and multivariate functional linear process. Finally, we rely on
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our proposed stability measures to develop finite sample theory for useful esti-
mated terms to accommodate sub-Gaussian functional linear processes.

2.1. Functional stability measure

Consider a p-dimensional vector of weakly stationary functional time series
{X(-)}tez defined on U, with mean zero and p x p autocovariance matrix func-
tions,

Ef(um) = Cov{X;(u), Xsip(v)} = {Zi{jk(u,v)}lgj’kgp, t,heZ,(u,v) € Uuz.

These autocovariance matrix functions (or operators) encode the second-
order dynamical properties of {X;(-)} and typically serve as the main focus
of functional time series analysis. From a frequency domain analysis prospec-
tive, spectral density matrix function (or operator) aggregates autocovariance
information at different lag orders h € Z at a frequency 6 € [—m, 7] as

x _ 1 X :
fo = o 2 35 exp(—ihd).
heZ

According to Guo and Qiao (2021), the functional stability measure of {X;(-)}
is defined based on the functional Rayleigh quotients of fgf relative to Eé( ,

X
MY =21 ess sup w, (2.1)
o[~ @exy (B, Xy (®))
where HE = {® € HP : (®, % (®)) € (0,0)}. To handle truly infinite-dimen-
sional objects {X;(-)} with infinite, summable and decaying eigenvalues of Eé( ,
such stability measure MX can more precisely capture the effect of small eigen-
values of 33 on the numerator in (2.1).
We next impose a condition on M* and introduce the functional stabil-
ity measure of subprocesses of {X;(-)}, which will be used in our subsequent
analysis.

Condition 1. (i) The spectral density matrix operator fg(,e € [—m, 7] exists;

(if) MX < o0.

For any k-dimensional subset J € {1,...,p} with its cardinality |J| < k, the
functional stability measure of {(th(-)) 1je€ J}teZ is defined by

X
ME =27 ess sup M k=1,...,p. (2.2)

bel -], |® o<k @tz (B, ) (B))

Under Condition 1, we have M < MX < 0.
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2.2. Functional cross-spectral stability measure

Consider {X;(-)} and {Y:(-)}, where {Y;(:)}+ez is a d-dimensional vector of
centered and weakly stationary functional time series, defined on V, with lag-h
autocovariance matrix function given by

EZ(u,v) = Cov{Y(u), Yiin(v)} = {E{jk(’uqv)}lgj’kgd, t,heZ,(u,v) € V2,

To characterize the effect of dependence on the cross-covariance between two
sequences of joint stationary multivariate functional time series, we can corre-
spondingly define the cross-spectral density matrix function (or operator) and
functional cross-spectral stability measure. The proposed cross-spectral stabil-
ity measure plays a crucial role in the non-asymptotic analysis of relevant es-
timated cross terms, e.g., estimated cross-(auto)covariance matrix functions in
Section 2.4.

Definition 1. The cross-spectral density matrix function between {X:(-)}iez

and {Y¢(-)}tez is defined by

xy 1 XY :
£ = 5z LI ex(in), O -mr],

where 3V (u,v) = Cov{X;(u), Yiin(v)} = {Eh)i;;(u7’U)}lgjgpylgkgd,t,h €
Z,(u,v) €U x V.

Condition 2. For {X;()}ez and {Y:(")}tez, fg(’yﬁ € [—m, 7] exists and the
functional cross-spectral stability measure defined in (2.3) is finite, i.e.
. (@1, £ (@2))]
MY =2 ess sup
Oel ) o B () B (1)) (@ B (®2)

<, (2.3)

where HY = {® € HP : (&, 37 (®)) € (0,00)} and HE = {® e H? : (&, =} (®)) €
(0,00)}.

Remark 1. (a) If {X;(-)} are independent of {Y(-)}, then MXY = 0. More-
over, in the special case that {X;(-)} and {Y:(-)} are identical, MXY de-
generates to M in (2.1).

(b) Under the non-functional setting where X; € R? and Y; € RY, Basu and
Michailidis (2015) introduced an upper bound condition for their proposed
cross-spectral stability measure with p = d, i.e.

N f pX,Y g pX,Y
MXY = ess sup \/V o  *fo" v < o0, (2.4)

N T
Oe[—m,n],veRd vy

where Hig ={veR?:v"ve (0,0)} and * denotes the conjugate. This mea-
sure relates the cross-stability condition to the largest singular value of the
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cross-spectral density matriz fg(’y. On the other hand, the non-functional
analog of (2.3) is equivalent to

o eX,Y
Vl.fe V2‘
€8s sup

I ~ /1, T /T
96[—#,77],1/161&3,1/261&3 ViViN\/V3V2

whose upper bound is MXY g5 justified in Lemma 1 in Appendiz B.3. This
demonstrates that, compared with (2.4), our proposed cross-stability measure
corresponds to a milder condition.

For two truly infinite-dimensional functional objects, one limitation of the

< oo,

functional analog of MXY s that it only controls the largest singular value
of fg(’y. By contrast, our proposed M*Y can more precisely characterize
the effect of singular values of fg(’y relative to small eigenvalues of E()f
and Eé/. Furthermore, it facilitates the development of finite sample theory
for normalized versions of relevant estimated cross terms, where the nor-
malization is formed by the corresponding eigenvalues in the denominator
of MXY . See Sections 2.4 and 2.5 for details.

We can generalize (2.3) to measure the serial and cross dependence structure
between a mixture of multivariate functional and scalar time series. Specifi-
cally, consider {X4(+)}tez and d-dimensional vector time series {Zy}1ez with
autocovariance matrices Ef for h € Z. We can similarly define fg(,z =
=Yz 22{,2 exp(—ihf) with Eff’z() = Cov(X¢(+), Ziypn). According to
(2.8), the mized cross-spectral stability measure of {X.(-)} and {Z.;} can
be defined by

<@, £57)|
MXZ = or ess sup (2.5)
oe[—m, ], BeHp veRE \/<q>7 E§(¢)>\/VTE§V
and the non-functional stability measure of {Z;} reduces to
T £Z
M? =21 esssup v fov (2.6)

A Y
Oe[—m,m],veRd VT Z30 v

where RE = {v e R? : v"S¥v € (0,00)}. The proposed stability measures
in (2.5) and (2.6) play an essential role in the convergence analysis of the
reqularized estimates for model (1.2). See Section 4 for details.

For any k;-dimensional subset J of {1,...,p} and kg-dimensional subset K

of {1,...,d}, we can accordingly define the functional cross-stability measure of
two subprocesses.

Definition 2. Consider subprocesses {(X¢;()):j€ J},., for J < {1,...,p}
with |J| < ki (k1 = 1,...,p) and {(Yir()) : k € K}, for K < {1,...,d} with

| K

| < ky (ke = 1,...,d), their functional cross-spectral stability measure is



Finite sample theory for high-dim funct time series 535

defined by

. (@1, £ (@)
Mk, =27 ess sup

be[—m, ], B1cHY Bocll | [( By, BX (P &, 2 (@ .
Lol e ol V@S (@000 (@2, 5 (@2)

(2.7)

Under Condition 2, it is easy to verify that,
M3k, S M S MY <o for by < By and kg < K.
According to (2.2), (2.5), (2.6) and (2.7), we can similarly define /\/lkxli and

Mfz for ki =1,...,pand ky = 1,...,d, which will be used in our subsequent
analysis.

2.3. Sub-Gaussian functional linear process

Before presenting relevant non-asymptotic results beyond Gaussian functional
time series, we introduce the definitions of sub-Gaussian process and multivari-
ate functional linear process in this section.

Provided that our non-asymptotic analysis is based on the infinite-dimension-
al analog of Hanson—Wright inequality (Rudelson and Vershynin, 2013) for sub-
Gaussian random variables taking values within a Hilbert space, we first define
sub-Gaussian process as follows.

Definition 3. Let X;(:) be a mean zero random variable in H and ¥o : H — H
be a covariance operator. Then X;(-) is a sub-Gaussian process if there exists
an « > 0 such that for all x € H,

E{é(@,X)} < ea2<1720(17)>/2' (28)

The proof of Hanson—Wright inequality for serially dependent random func-
tions relies on the fact that uncorrelated Gaussian random functions are also
independent, which does not apply for non-Gaussian random functions. How-
ever, we show that, for a larger class of non-Gaussian functional time series, it is
possible to develop finite sample theory for useful estimated terms in Sections 2.4
and 2.5. We focus on multivariate functional linear processes with sub-Gaussian
errors, namely sub-Gaussian functional linear processes:

Xt() = i 1&1(515707 teZ, (2.9)
1=0

where A; = (Ayjk)pxp With each A; ;i € S and €:(-) = (ea1(+), ..., €4p(-))" € HP.
{€:(-) }tez denotes a sequence of p-dimensional vector of random functions, whose
components are independent sub-Gaussian processes satisfying Definition 3. It is
worth noting that (2.9) not only extends the functional linear processes (Bosq,
2000) to the multivariate setting but also can be seen as a generalization of
p-dimensional linear processes (Li et al., 2019) to the functional domain.
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Denote the polynomial B(z)(u,v) = >,° As(u,v)z! for u,v € Y. Under (2.9),
we can derive the spectral density matrix function as

F(u,v) ff e ) (u,w)Z5 (', v")B (e Z'9)* (v,0")du'dv”  (2.10)

and the covariance matrix function as
0
=5 (u,v) = Z JJA[(U,, )25 (v, v ) A (v, ") du' dv’. (2.11)

Then we can express the functional stability measure M~ in (2.1) based on
(2.10) and (2.11). The cross-spectral stability measure MX¥ in (2.3) or M*:Z
in (2.5) can be expressed in a similar fashion.

Condition 3. The coefficient functions satisfy >, [A]s = O(1).

Condition 4. (i) The marginal-covariance functions of {e;(-)}, 3§ ;;(u,v)’s,

are continuous on U? and uniformly bounded over j € {1,...,p}; (i) w§ =
max; fu 25,55 (u,u)du = O(1).

Condition 3 ensures functional analog of standard condition of elementwise
absolute summability of moving average coefficients for multivariate linear pro-
cesses (Hamilton, 1994) under Hilbert—Schmidt norm. It also guarantees the
stationarity of {X(-)} and, furthermore together with Condition 4, implies that
wi = max; fu %55 (u,u)du = O(1), both of which are essential in our subse-
quent analysis. See Lemma 2 in Appendix B.3 for details. In general, we can
relax Conditions 3 and 4 by allowing >,°, |A]« and w§ to grow at very slow
rates as p increases, then our subsequent non-asymptotic bounds will depend
on wg, or, more precisely, these two terms, which complicate the presentation
of theoretical results.

2.4. Concentration bounds on sample (cross-)(auto)covariance
matriz function

We construct estimated (auto)covariance of {X;(-)}7_; by

-— 2 Xi(w)Xiin(0)", h=0,1,..., (u,v) eU?,

and estimated cross-(auto)covariance matrix functions between {X:(-)} and
{Y:()} by

= () = —— D Xe(W)Yen ()", h=0,1,..., (u,v) €U x V.
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Theorem 1. Suppose that Conditions 1—4 hold for sub-Gaussian functional
linear processes, {Xi(-)}, {Y:(-)} and h is fixzed. Then for any given vectors
(I)l € Hg and @2 € Hg with Hq)lHO < kl,H@QHQ < k‘g (kl = ].,...,p,kg =

1,...,d), there exists some constants c,c1,c2 > 0 such that for any n > 0,
~AX
(@1, () —)(®1)) X o
P > Minp <2exp{—cnmin (n°,n)}, (2.12)
{ (@1, %5 (®1)) ' { )}

and
P {

Remark 2. (2.12) extends the concentration inequality for normalized quadratic

form of f)é( in Theorem 1 of Guo and Qiao (2021) under the Gaussianity as-
sumption to accommodate a larger class of sub-Gaussian functional linear pro-
cesses and serves as a starting point to establish further useful non-asymptotic
results, e.g. those listed in Theorems 1-4 and Proposition 1 of Guo and Qiao
(2021), so we present some results used in our subsequent analysis in Ap-
pendiz E. The concentration inequality in (2.13) illustrates that the tail for

@, (5, =557 (®2)
(1,25 (1)) + (P2, 5] (P2

X Y XY
)>‘ > (/\/lk1 + My, +M,€1,k2) 77} (2.13)

< c1 exp{—conmin(n?,n)}.

normalized bilinear form of thXY — Eff’y behaves in a sub-Gaussian or sub-
exponential way depending on which term in the tail bound is dominant. It
s also crucial in deriving subsequent concentration results, e.g. with suitable
choices of ®1 and P, it facilitates the elementwise concentration bounds on

axXy | .
X, in the following theorem.

Theorem 2. Suppose that conditions in Theorem 1 hold. Then there exists some
constants c1,c3 > 0 such that for anyn >0 and each j =1,... ,p, k=1,....,d,

SX,Y XY .
P {HZth — Zh)ijS > (wéf + wé/)MX7yn} < exp{—csnmln(n2’n)} 7
(2.14)
XY
where Mxy = MY + MY + M7} ,wg = max; fu 50, (u, u)du and wi =
maxp fu Egkk(u,u)du. In particular, there exists some constant c4 > 0 such
that, for sample size n 2 log(pd), with probability greater than 1 — c1(pd)~%,

the estimate ZA)h7 satisfies the bound

~X,Y
th - 2hX7Y||max < MX,Y

log(pd) (2.15)
n

Remark 3. In the deviation bounds established above, the effects of depen-

dence are commonly captured by the sum of marginal-spectral and cross-spectral

stability measures, Mxy = MF + MY + ./\/lf’ly, with larger values yielding a

slower elementwise Ly, rate in (2.15). Under a mized-process scenario consisting
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of {X¢()} and d-dimensional time series {Z;} belonging to multivariate linear
processes with sub-Gaussian errors (Sun et al., 2018), namely sub-Gaussian lin-
ear processes, it is easy to extend (2.15) as

N log(pd)
X2 X2 - g
léjérg,al}ékéd th,]k Zh,ng S Mx,z n (2.16)

where Mx z = M + M7 + Mf’lz. (2.16) can be justified in the proof of
Proposition 1 in Appendix B.2.

2.5. Rates in elementwise £, norm under a FPCA framework

For each j = 1,...,p, suppose that X1;(-),..., X,;(-) are n serially dependent
observations of X (-). The Karhunen-Lo¢ve theorem (Bosq, 2000) serving as the
theoretical basis of FPCA allows us to represent each functional observation in
the form of Xy;(-) = Zlﬁl Cejiv;i(+). Here the coefficients (i = (X5, Y1),
namely FPC scores, are uncorrelated random variables with mean zero and
Cov(Ceji, Crjir) = wﬁ](l = {’). In this formulation, {(wﬁ, ;1) }72, are eigenpairs
satisfying <Eéfjj(u, D, () = wﬁwﬂ(u). Similarly, for each k = 1,...,d, we
represent Yy (-) = D0 | Etpm®rm (+) With eigenpairs {(w), drm )} _;.

To estimate relevant terms under a FPCA framework, for each j, we perform
an eigenanalysis on X35 (u,v) = n~t Y Xpj(u) Xy (v), ie. (555, (u, ), ()
= @ﬁ'lj[;jl(u), where {(@jl71z)\jl) 72, denote the estimated eigenpairs. The cor-
responding estimated FPC scores are given by Etjl = <th,1zjl>. Furthermore,
relevant estimated terms for {Yi(-)}, i.e. @}, $km(-),§tkm, can be obtained in
the same manner.

Before presenting relevant deviation bounds in elementwise ¢, norm, which
are essential under high-dimensional regime, (logp v logd)/n — 0, we impose
the following lower bound condition on the eigengaps.

Condition 5. Foreach j=1,...;,pand k =1,...,d, wj)i >wj)§ >...>0and
w}:l > w,é > ... > (. There exist some positive constants ¢y and a1, as > 1 such

that wjf - wﬁlﬂ) >col L forl=1,...,0and w) — wz/(mﬂ) > com 21
form=1,...,00.

Condition 5 implies the lower bounds on eigenvalues, i.e. wﬁ > coozl_ll_a1
and wY = = coay 'm 22, See also Kong et al. (2016) and Qiao et al. (2020) for
similar conditions.

In practice, the infinite series in the Karhunen-Loeve expansions of Xy;(-) and
Yim(+) are truncated at M; and Ma, chosen data-adaptively, which transforms
the infinite-dimensional learning task into the modelling of multivariate time
series. Given sub-Gaussian functional linear process {X;(:)}, to aid convergence
analysis under high-dimensional scaling, we establish elementwise concentra-
tion inequalities and, furthermore, elementwise ¢, error bounds on relevant
estimated terms, i.e. estimated eigenpairs and sample (auto)covariance between
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estimated FPC scores. These results are of the same forms as those under the
Gaussianity assumption (Guo and Qiao, 2021), so we only present them in Lem-
mas 25 and 27 in Appendix E.

In the following, we focus on sample cross-(auto)covariance between esti-

mated FPC scores, 8,)53},:“% =(n—h)"t Z;:lh @jlémh)km, and establish a nor-

malized deviation bound in elementwise o, norm on how Giffglm concentrates
XY

around oy, 5 = Cov(Cejis E(t4nykm)-

Theorem 3. Suppose that Conditions 1-5 hold for sub-Gaussian functional lin-
ear processes, {X¢(*)}, {Y:(*)}, and h is fized. Let My and My be positive integers
possibly depending on (n,p,d). If n 2 log(pdM, My) (M2 v M§a2+2)M%<7y,
then there exist some positive constants cs and cg such that, with probability
greater than 1 — cs(pdM1 M)~ the estimates {Sfﬂlm} satisfy

‘ax,y oY og(pd )
h.jkim — 9h,jklm og(pdMy M,
max S Mxy gi.

1<j<p,1<k<d 1 1 X,,Y ’
1<stl,71<m<M2 (la1+ Vma2+) wjlwkm

- (2.17)

In the special case that {X:(-)} and {Y:(-)} are identical, (2.17) degen-
erates to the deviation bound on 8,{ jkim under the Gaussianity assumption
(Guo and Qiao, 2021). We next consider a mixed process scenario consist-
ing of {X;(-)} and {Z;} and establish a normalized deviation bound in ele-
mentwise £, norm on sample cross-(auto)covariance between estimated FPC

scores of {X;(-)} and Z(;4p),. Define @ffﬁd =(n-h)"t Z::lh Ctj1Z(t+nyk and
fo]il = Cov(Ctji, Z(t+hyk)- We are ready to extend (2.17) to the following mixed-
process scenario.

Proposition 1. Suppose that Conditions 1-5 hold for sub-Gaussian functional
linear process {Xy(-)}, {Z+} follows sub-Gaussian linear process and h is fized.
Let M, be a positive integer possibly depending on (n,p,d). If sample size n 2
log(del)Mfm”M%(’Z, then there exist some constants c7,cg > 0 such that,

with probability greater than 1 — cy(pdM1) ™8, the estimates {@hxﬁd} satisfy

log(pd My )

‘AX,Z X.,Z ‘
S Mx z — (2.18)

Oh ikl — Ch,jkl

max ,
1<j<p,1<k<d Joi+1 wX
1<I<M; gl

We next consider {e:(-)}?_;, defined on V, which can be seen as the er-
ror term in model (1.1) being independent of {X;(-)}. Define th’;(u,v) =
Cov{Xy;(u), er4n(v)} and its estimate X5 (u, v) = (n—h) = 23" Xy (w)€rsn (v).
To provide theoretical analysis of the estimates for model (1.1), the FPCA-based
representation in Appendix F suggests to investigate the consistency proper-

) , L AXe 0 aXe 2 ~XY
ties of the estimated cross terms, i.e. G55, = (Y, (X}, 7, ¢m)) or 0,5, =

(n— B0 Gineanym = Wit SR dmd)- As {Xe () + h = 0,..., L}
and {e;(-)} are independent and can together determine the response {Y;(:)} via
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(1.1), it is more sensible to study the former term, i.e. how 8,)5 Jim deviates from
aiﬁm = 0 in the following proposition.

Proposition 2. Suppose that Conditions 1-5 hold for sub-Gaussian functional
linear processes {X:(-)}, {e:(-)} and h is fixed. Let My, Ms be positive integers
possibly depending on (n,p). If n = log(pMyMy) (M4 v M2ty (ME +
MY)2 then there ewist some constants cy,c19 > 0 such that, with probability
greater than 1 — co(pM;Ms) ™10 the estimates {Gfﬁm} satisfy

‘a_X,e

h,jlm

Jmax < (M55 + M)
<I< X

1$l<1\/11,]1$£’0$1\42 (o1 v mez) wjlw}?/m

10g(pM1M2)

- (2.19)

Finally, we consider a mixed-process scenario in model (1.2), where {€;}}_; are
scalar errors, independent of both {X;(-)} and {Z;}. In addition to Proposition 1
above, the following proposition demonstrates how @ffl =(n—h)~1 Z?:_lhctjleﬂrh

X
converges to g}, = Cov(Cji, €r+n) = 0.

Proposition 3. Suppose that Conditions 1-5 hold for sub-Gaussian functional
linear process {X(+)}, {e:} is sub-Gaussian linear process and h is fized. Let My
be positive integer possibly depending on (n,p). If n 2 log(pMy) M1 2 (M)?,
then there exist some constants ci1,c12 > 0 such that, with probability greater
than 1 — c11(pMy) ™2, the estimates {§hXﬁ} satisfy

~X €
M (ME 4 M)y 8 (2.20)

max <
1<j<p,I<I<SMy [, X n
Wi

Remark 4. Benefiting from the independence assumption between {X.(-)} and
{e:()}, Proposition 2 leads to a faster rate of convergence in (2.19) compared
with (2.17) with d = 1. Proposition 2 also plays a crucial rule in the proof of
Proposition 7 to demonstrate that, with high probability, model (1.1) satisfies
the routinely used deviation condition. Analogously, taking an advantage of the
independence assumption between {X(-)} and {e;}, Proposition 3 results in a
faster rate in (2.20) than that in (2.18) with d = 1. In the proof of Proposition 8,
we will apply Proposition 3 to wverify that, with high probability, model (1.2)
satisfies the corresponding deviation condition.

3. High-dimensional functional linear lagged regression

In this section, we first develop a three-step procedure to estimate sparse func-
tional coefficients in model (1.1) and then apply our derived finite sample results
in Section 2.5 to investigate the convergence properties of the estimates under
high-dimensional scaling.
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3.1. Estimation procedure

Consider functional linear lagged regression model in (1.1), where {85; € S :
h =0,...,L,j =1,...,p} are unknown functional coefficients and {e;(-)}}_,
are mean-zero errors from sub-Gaussian functional linear process, independent
of {X;(-)}7-, from sub-Gaussian functional linear process. Given observed data
{Yi, X}, our goal is to estimate a vector of functional coefficients, 3 =
(Bots---»Bops -+ BL1,---,Brp)" with each By € S. To assure a feasible so-
lution under a high-dimensional regime, we impose a sparsity assumption on
3. To be specific, we assume that (3 is functional s-sparse with support set
S ={(h,j) €{0,...,L} x {1,...,p} : |Bn;ls # 0} and its cardinality |[S| = s,
much smaller than the dimensionality, p(L + 1).

Due to the infinite dimensional nature of functional data, we approximate
each X;;(-) and Y;(-) under the Karhunen-Loéve expansion truncated at ¢i;
and g, respectively, i.e.

q1j

th(')wzCtjlel(')zcg;'¢j(')v Yt()% 2 gtm¢m('):£;¢(')a
=1 m=1

where €y = (Ctjts -5 Ctjar;) " ()= ()s - ¥jar; ()75 & =&, -, tga)”
and ¢(-) = (¢1(-),. .., Pg,(-))". The truncation levels ¢1; and g» are carefully
chosen so as to provide reasonable approximations to each X;;(-) and Y;(-). See
Kong et al. (2016) for the selection of the truncated dimension in practice.

According to Appendix F, we can represent model (1.1) in the following
matrix form

L p
U=> > Vy¥,; +R+E, (3.1)
h=0j=1

where ¥, = fv fu Y (1) Brj (u, v)P(v)"dudv € R1*92, U e RE)*a2 with its
row vectors given by £;.4,...,§, and Vj; € R =L)xa1; with its row vectors
given by C(r41-n)js- - -»C(n—n);- Note R and E are (n — L) x g» matrices whose
row vectors are formed by truncation errors {r; € R% : ¢t = L + 1,...,n} and
random errors {€; € R® : ¢t = L + 1,...,n} respectively.

We develop the following three-step estimation procedure.

First, we perform FPCA on {X;;(-)}{, foreach j = 1,...,p and {Y;(-)}7—1,
thus obtaining estimated FPC scores and eigenfunctions, i.e. @jl, 1@-1() forli >1
and Etm, quStm(~) for m > 1, respectively.

Second, it is worth noting that the problem of recovering functional sparsity
structure in @ is equivalent to estimating the block sparsity pattern in {®y; :
h=0,...,L,j=1,...,p}. Specifically, if 8p,;(-,-) is zero, all entries in ¥p,; will
be zero. This motivates us to incorporate a standardized group lasso penalty
(Simon and Tibshirani, 2012) by minimizing the following penalized regression
criterion over {¥; : h=0,...,L,j=1,...,p}

DN | =

L p L p
0= 37 > Vi @3+ A D) X Ve @i, (3.2)
h=0j=1 h=0j=1
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where U and {/hj are the estimates of U and Vj;, respectively, and A, is a
non-negative regularization parameter. Let {¥},;} be the minimizer of (3.2).
Finally, we estimate functional coefficients by

th(u,v) = @](U)T\ilh]as(v% (’U,,U) eU x V7h = 07"'7ij = 17' Ry

3.2. Theoretical properties

We begin with some notation that will be used in this section. For a block matrix
B = (Bjk)i<j<pi,i<k<ps € RPIO*P2%2 with the (j,k)-th block Bj, € R x4,
we define its (g1, g2)-block versions of elementwise ¢, and matrix ¢; norms by

|BJ$4:%) = max; . [Bjx|r and [B[{" %) = max;, Y, |Bji|r, respectively. To

simplify notation, we will assume the same ¢; across j = 1,...,p, but our
theoretical results extend naturally to the more general setting where g;;’s are
different. R R R R

Let Z = (Vo1,..., Vop,---, ViL1,..., V) € ROZExUEADpa g = (W
UG WY BT )T e REFDPaxe and D = diag(Doy, .. ., Doy, - -,
Dri,...,Dp,) € REFDPXTH0pa1 with Dy; = {(n—L) "'V V1Y% € Ruxa
forh=0,...,Landj = 1,...,p. Then minimizing (3.2) over {W¥};} is equivalent
to the following optimization task:

B - arg min {7
BeR(L+1)pa1 xa2 2(” - L) ‘

Then we have ¥ = D~'B with its {(h + 1)j}-th row block given by 'ilhj.

Before our convergence analysis, we present the following regularity condi-
tions.

Condition 6. For each (h,j) € S, Buj(u,v) = 3,0 _1 anjim¥ji(u)pm(v) and
there exist some positive constants k > (a1 v a2)/2 + 1 and pp; such that
lanjim| < pnj (1 +m)=""12 for I, m > 1.

O-ZDB B} 6

We expand each non-zero functional coefficient 85 (u, v) using principal com-
ponent functions {¢;;(u)};>1 and {¢n,(v)}m=1, which respectively provide the
most rapidly convergent representation of {X¢;(u)} and {Y;(v)} in the Ly sense.
Such condition prevents the coefficients {anjim }i,m=1 from decreasing too slowly
with parameter k controlling the level of smoothness in non-zero components
of {Bn;(-,-)}. See similar smoothness conditions in functional linear regression
literature (Hall and Horowitz, 2007; Kong et al., 2016).

Condition 7. Denote the covariance matrix function by

gg zi 2}3{{
X Z31 Z30 EL—l

DI
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and the diagonal matrix function by D = I, ® diag(X1, - - -, X3 pp)- The

~ X ~
infimum p of the functional Rayleigh quotient of 3 relative to D{ is bounded
below by zero, i.e.

~X
.3 (P
W= inf —< L ( )>>O,
T @er(t V7 (@, Dy (@)

where ® € AP = (& e HE+DP . (B, DX (®)) € (0,0)}.

Condition 7 can be interpreted as requiring the minimum eigenvalue of the
correlation matrix function for (X7 ;,...,X})" to be bounded below by zero.
See also a similar condition in Guo and Qiao (2021).

Before presenting the consistency analysis of 3 in Theorem 4, we show that
the functional analogs of the restricted eigenvalue (RE) condition and the de-
viation condition in the lasso literature (Loh and Wainwright, 2012) are sat-
isfied with high probability in Proposition 4 below and Propositions 6-7 in
Appendix A, respectively.

Proposition 4. Suppose Conditions 1-5 and 7 hold. Then there exist some
positive constants Cr,cf and ¢& such that, for n 2 log(pql)qu”(/\/lf)?, the
matriz T = (n — L)’lf)flzTZf)*l e READpax(L+1)par satisfies, with proba-
bility greater than 1 — cf (pql)*cg,

07T = 7,02 — 7 |0|> VO e RE+DPar, (3.4)

where 71 = CrMi g7 ™1\ /log(par)/n and > = p.

(3.4) can be viewed as the functional extension of RE condition under the
FPCA framework. Intuitively, it provides some insight into the eigenstructure of
the sample correlation matrix of a vector formed by estimated lagged FPC scores
of {Xy;(")}_;. In particular, for any 6 € RUADPE guch that 7|03/ 0] is
relatively small, "T'6/|6/? is bounded away from 0. Proposition 4 formalize this
intuition by showing (3.4) holds with high probability. Furthermore, Proposi-
tions 6 and 7 verify the essential deviation bounds for model (1.1), where further
discussions can be found in Appendix A.

Now we are ready to present the main convergence result.

Theorem 4. Suppose that Conditions 1-7 hold with 7o > 3271q1q2s. If n =
log(pqlqg)(qéfo‘1+4 v q§“2*4)(/\/t{( + MY)2, then there exist some positive con-
stants ¢¥ and & such that, for any regularization parameter, A\, >

2C0sqy > {(ME + M) v MY H(g T2 v g52t2) [ loslenaz) o it 2y g

qi”ps)\n — 0 as n,p,q1,q2 — 0O, the estimate B satisfies

al/Qs)\n

e ——" (3.5)
o]

. . ok
with probability greater than 1 — cf (pq1q2) ™2 .
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Remark 5. (a) The error bound of,@ under functional {1 norm is determined
by sample size (n), number of functional variables (p), functional sparsity
level (s) as well as internal parameters, e.g., the convergence rate in (3.5)
is better when truncated dimensions (q1,q2), functional stability measures
(ME, M, MY ), decay rates of the lower bounds for eigenvalues (o, )
in Condition 5 are small and decay rate of the upper bounds for basis coef-
ficients (k) in Condition 6 and curvature (u) in (3.4) are large.

(b) The serial dependence contributes the additional term (M5 + M) v MY
in the error bound. Specifically, the presence of M + M€ is due to Propo-
sition 2 under the independence assumption between {X:(-)} and {e/(-)},
which is used to verify the deviation bound in Proposition 7. Moreover, pro-
vided that our estimation is based on the representation in (3.1), formed
by eigenfunctions {¢m(-)} of By, the term MY comes from the consistency
analysis of {g/b\m} in Proposition 6.

(¢) Note that the VFAR model can be rowwisely viewed as a special case of
model (1.1). The serial dependence in the error bound of the VFAR es-
timate 1s captured by M{( partially due to its presence in the deviation
bounds on estimated cross-covariance between response {X.(-)} and covari-
ates {Xy—p(-) : 1 < h < L}. By contrast, the serial dependence effect
in (3.5) partially comes from estimated cross-covariance between covari-
ates {Xi—p(-) :+ 0 < h < L} and error {e()} instead of that between
{Xi—n(-) : 0 < h < L} and response {Yi(-)} due to the fact that {Y:(-)}
is completely determined by {Xi—p(-) : 0 < h < L} and {e:(-)} via (1.1)
given B. Specially, if M v MY < M, q1 = qo and ay = ao, the rate in
(3.5) is consistent to that of the VFAR estimate in Guo and Qiao (2021).

4. High-dimensional partially functional linear regression

This section is organized in the same manner as Section 3. We first present
the three-step procedure to estimate sparse functional and scalar coefficients in
model (1.2) and then study the estimation consistency in the high-dimensional
regime.

4.1. Estimation procedure

Consider partially functional linear regression model in (1.2), where B(-) =
(B1(), ..., Bp(-))" are functional coefficients of functional covariates {X(-)}7_;
and v = (v1,...,74)" are regression coefficients of scalar covariates {Z;}} ;.
{et}7, are mean-zero errors from sub-Gaussian linear process, independent of
{Z:} from sub-Gaussian linear process and {X;(-)} from sub-Gaussian functional
linear process. To estimate B(-) and v under large p and d scenario, we assume
some sparsity patterns in model (1.2), i.e. B(:) is functional s;-sparse, with
support S1 = {j € {1,...,p} : |B;] # O} and cardinality s; = |Si|, and = is
so-sparse, with support So = {j € {1,...,d} : 7; # 0} and cardinality s, =
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|S2|. Here s; and sy are much smaller than dimension parameters, p and d,
respectively.

Under the Karhunen-Loéve expansion of each Xy;(-) as described in Sec-
tion 3.1, model (1.2) can be rewritten as

P4 d
= >3 kb By + D Zagyy + i+ e
j=1i=1

Jj=1

where 1o = YP_ M2 G, By)- Let ¥ = (Y1,...,Y,)T € R, 2 =
(Zl,...,Zd) € RnXd, Zj = (le,...,an)T € Rn, Y= (’yl,...,’)/d) € Rd X €
R™*% with its row vectors given by (y;,...,¢,; and ¥; f 1# u)du €
R%. Then we can represent model (1.2) in the following matrix form

P
Y=> AU+ Zy+R+E, (4.1)
j=1
where R = (r1,...,7,)" € R® and E = (e1,...,€,)" € R™ correspond to the

truncation and random errors, respectively.

Our proposed three-step estimation procedure proceeds as follows. We start
with performing FPCA on each {X;;(-)}}_;, and hence obtain estimated FPC
scores {Etjl} and eigenfunctions {QZJZ()} Motivated from (4.1), we then develop
a regularized least square approach by incorporating a standardized group lasso
penalty for {¥; };7:1 and the lasso penalty for v, aimed to shrink all elements in
V¥; of unimportant functional covariates and coefficients of unimportant scalar
covariates to be exactly zero. Specifically, we consider minimizing the following
criterion over Wy,..., ¥, and v :

p
—Hy ZX\I/ = 2] + A1 ) 195+ Anzllyls (4.2)
Jj=1 Jj=1

where /'? is the estimate of A;, and A1, Xng are non-negative regularization pa-
rameters. Let the minimizers of (4. 2) be \Ill, ..., ¥, and 7. Finally, our estimated
functional coefficients are given by ﬁj( ) = 111 ()" forj=1,...,p

4.2. Theoretical properties

We start with some notation that will be used in this section. For a block
vector B = (b7,...,b;)" € RPY with the j-th block b; € R?, we define its

g-block versions of ¢; and elementwise £y, norms by HBng) = 2 [b;] and

||BHE§;X = max; |b;|, respectively. To simplify our notation, we denote oy in
Condition 5 by a and assume the same truncated dimension across j = 1,...,p,
denoted by ¢. Let X = (Xl,...,X) € RMPI U = (UT,...,¥))" € R”q, D =
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diag(Dy, . . ,ﬁp) € RP9*P4_ where ﬁj = {n_lijé’?j}l/Q e R for j =1,...,p.
Then our minimizing task in (4.2) is equivalent to

~

~ . 1 A

B.3) = argmin {1y - 08— 2o + AalBIY + halili . (03
BeRra yeRd | 2T

where O = XD! and A2 = Xng/n Then ¥ = D~1B with its j-th row block

given by ¥;.

Condition 8. For j € S1, 8;(u) = >, ajji(u) and there exist some positive
constants k£ > a/2 + 1 and p; such that |aj| < p;I7" for I > 1.

Condition 8 controls the level of smoothness for non-zero coefficient functions
in B(+). See also Condition 6 for model (1.1) and its subsequent discussion.

Condition 9. For the mixed process {X;(+), Z;}+cz, we denote a diagonal matrix
function by D = diag(Xg' 5, - -, 8 ,p). The infimum p* is bounded below by
zero, i.e.

*

S =i (B, X (®)) +(®, = 7v) + ™)X (®) + v Ziv
- @eﬂg,ueﬂwﬁg <¢7D5((¢)> + vty

> 0,

where FI = {® e T : (&, DX (®)) € (0, 0)}.

This condition is similar to Condition 7. In the special case where each X;(-)
is bj-dimensional, ;* reduces to the minimum eigenvalue of the covariance ma-

: §t11 Erby Etp1 Etpby T P bj+d
tI‘lXOf(\/w—f(l,...,\/U?bl,...,\/w—;(l,...,\/U?bp,Zﬂ,...,th) ERZJ—lJ .

We next present Proposition 5 below and Propositions 8-9 in Appendix A
to respectively show that the RE and deviation conditions are satisfied with
high probability. These results together with Proposition 6(i) lead to theoretical
guarantees for regularized estimates of model (1.2).

Proposition 5. Suppose Conditions 1-5 and 9 hold. Let S = (Q, Z)eRn*(patd)
then there exist some positive constants Czp,cf and ci such that, for n 2

log(pqd)q‘lo‘”/\/@gz, with probability greater than 1 — c¢¥(pq + d)*“’g,

1
EQTSTSO > 7502 — 176]3, VO eRPITY (4.4)

/i d
where 77 = CzrMx, zq* T 7%(1;;# ) and Ty = p¥.

__ Instead of verifying RE conditions on n:lﬁTﬁ and n~! ZT Z separately, since
Q is correlated with Z, we define § = (2, Z) and verify (4.4), which requires
n~107STSO to be strictly positive as long as 77(6]3/75(0|? is relatively small.
Let 8 = (A", §")" with A = B— B and § = 4 — v, applying Proposition 5 with
suitable choice of 7 yields that, with high probability, n_l((AZA + ZJ)T((AZA +
Z0) = %(HAH + [8])2, which plays a crucial role in the proof of Theorem 5
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below. Similar to Proposition 7, Propositions 8 and 9 in Appendix A verify
that, with high probability, the essential deviation bounds hold for model (1.2).

~

Now we are ready to present the main theorem about the error bound for B
and 7.

Theorem 5. Suppose that Conditions 1-5, 8 and 9 hold with 75 = 647 q(s1 +
s2). If n 2 log(pqd)q‘lo‘*z./\/lg(,z, then, for any regularization parameters, A\, =
Ant = An2 = 20§ s1(Mx z+ME)[q* *{log(pg+d) /n} /2 +q~" 1] with ¢*/* X, (s1

~

+ 89) — 0 as n,p,q,d — o0, the estimates B and 7 satisfy

N a/2)\
1B =Bl + g5 — 4]y s L2l T 52)

(4.5)

with probability greater than 1 — ¢ (pq + d)—cilf.

Remark 6. (a) The error bound in (4.5) is governed by both dimensionality
parameters (n,p,d, s1,s2) and internal parameters (M, MZ MXZ Me,
q,, k, u* ). See also similar Remark 5 (a) for model (1.1).

(b) Note that the sparse stochastic regression (Basu and Michailidis, 2015; Wu
and Wu, 2016) can be viewed as a special case of model (1.2) without the
functional part. Under such scenario, the absence of {X(-)} degenerates
(A.5) in Proposition 9 to n™ Y| Z™(Y = Z7) |lmax < Co(MZ +M*)(log d/n)*/?
and simplifies the error bound to [—7|y S An2sa/75 with Ay = 2Co(MZ +
M) (log d/n)'/2 for some positive constant Co, which is of the same order
as the rate in Basu and Michailidis (2015).

(c) In another special scenario where scalar covariates are not included in (1.2),
the error bound reduces to H@—BHl < @ A1y /T8 with Ay = 208 s (M5S

+ M) {q* T2,/ % + q " *1}. Interestingly, this rate is consistent to that

of@ in Theorem 4 under the special case where the non-functional response
results in the absence of MY and qo in the rate.

5. Simulation studies

We conduct a number of simulations to evaluate the finite-sample performance of
our proposed £; /¢s-penalized least squares estimators (¢1 /¢5-LS) for models (1.1)
and (1.2) in Sections 5.1 and 5.2, respectively.

5.1. High-dimensional functional linear lagged regression

We consider model (1.1) with L = 1, where functional covariates {X;(-)}i=1....n
are generated from a sparse VFAR model (Guo and Qiao, 2021). Specifically,
we generate Xij(u) = (y9p(u) for j = 1,...,p and v € U = [0,1], where
() = (W1(-),...,¥s5(:))" is a 5-dimensional Fourier basis function and ¢, =
(¢H, - ,CtTp)T € R5” are generated from a stationary block sparse vector au-
toregressive (VAR) model, {, = W(,_; + m,. The transition matrix W =
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(W k) pxp € R?P*5P is block sparse such that >, I(|Wx|lr # 0) = 5 for each
Jj, and n, are sampled independently from N (0, I5,). The nonzero elements in W
are sampled from N(0,1) and we rescale W by tW /p(W) with ¢ ~ Unif[0.5,1] to
guarantee the stationarity of {¢,}. For each (h,j) € S = {0,1} x {1,...,5}, we
generate non-zero functional coefficients f5;(u,v) = Z?m:1 brjim i (w)hm (v),
where bpjinm’s are sampled from Unif(0,0.4) for h = 0 and Unif(0,0.15) for
h = 1. The functional responses {Y;(v) : v € V};=1,.., with V = [0, 1] are then
generated from model (1.1), where €;(v) = an:l etmWm (V) with eg,’s being
independent N (0, 1) variables.

In our simulations, we consider n = 75,100, 150 dependent observations for
p = 40,80 and replicate each simulation 100 times. The truncated dimensions
q; for j =1,...p and ¢o are selected by the ratio-based method (Lam and Yao,
2012). To select the regularization parameter \,, there exists several possible
methods such as AIC/BIC and cross-validation. The AIC/BIC requires to spec-
ify the effective degrees of freedom, which poses a challenging task for functional
data under the high-dimensional setting and is left for future study. In this ex-
ample, we generate two separate training and validation samples of the same size
n. For a sequence of \,, values, we implement the block fast iterative shrinkage-
thresholding (FISTA) algorithm (Guo and Qiao, 2021) to solve the optimization
problem (3.2) on the training data, obtain {B,{}”(', )}h=0,1,j=1,....p as a func-
tion of \,, calculate the squared error between observed and fitted responses
on the validation set, i.e. Y7 [Vi(-) = Sr_, PR fu X(t_h)j(u)ﬁfg")(u, Ddul?
and choose the optimal 3\” with the smallest error.

We evaluate the performance of ¢1/¢5-LS in terms of both model selection
consistency and estimation accuracy. For model selection consistency, we plot
the true positive rates against false positive rates, respectively defined as

#{(h. ) 1B s # 0 and |Bass # 0}
#{(h.5) : |Bnslls # 0} ’

#{(h,5) : 1B s # 0 and | Byls = 0}
#{(h,7) : | Brjls = 0}

over a grid of values of A\, to produce a ROC curve, and then calculate the
area under the ROC curve (AUROC) with values closer to 1 indicating better
performance in support recovery. The estimation accuracy is measured by the
relative estimation error |3 — B|r/|B|r. For comparison, we also implement the
ordinary least squares in the oracle case (OLS-O), which uses the true sparsity
structure in the estimates and does not perform variable selection. Table 1 gives
some numerical summaries. Several conclusions can be drawn. First, the model
selection consistency and estimation accuracy are improved as n increases or p
decreases. Second, ¢1 /¢s-LS provides substantially improved estimation accuracy
over OLS-O especially in the “large p, small n” scenario. This is not surprising,
since implementing OLS-O in the sense of (3.2) with A\, = 0 still require to
estimate 10 x 52 = 250 parameters, which is intrinsically a high-dimensional
estimation problem.
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The mean and standard error (in parentheses) of AUROCSs and estimation errors for

model (1.1) over 100 simulation runs.

n £1/€2-LS OLS-O
p AUROC Estimation error  Estimation error
75 40 0.849(0.006) 0.727(0.005) 1.116(0.011)
80  0.834(0.007) 0.768(0.005) 1.121(0.012)
100 40 0.:898(0.005) 0.648(0.005) 0.777(0.006)
80  0.879(0.007) 0.684(0.005) 0.787(0.006)
150 40 0.953(0.004) 0.544(0.004) 0.550(0.004)
80  0.942(0.004) 0.576(0.004) 0.547(0.004)

5.2. High-dimensional partially functional linear regression

We now consider model (1.2) with p-dimensional vector of functional covari-
ates {X¢(-)}i=1,...n and d-dimensional scalar covariates {Z;};—1 .., which are
jointly generated in a similar procedure as in Section 5.1. Let Xt]( ) = ijw(u)
for j = 1,...,p and v € [0,1], and (¢},ZF)" € R°P*9 are jointly gener-
ated from a stationary VAR(1) process with a block sparse transition ma-
trix W* e ROP+xGptd) - whose (4, k)-th block is W7, In particular, for
each j = 1,...,p, ij e R (kK = 1,...,p) and W;‘k e R (k = p+
1,...,p+d) such that 37, I(|[W¥ g # 0) = 3250 I(|W¥%| # 0) = 5.
For each j = p+1,...,p +d, (W})" € R (k = 1,...,p) and Wi e R

(k=p+1,....p+d) such that 37 I(|(W%)™] # 0) = 3070 | I((W¥| #
0) = 5. For each j € S; = {1,...,5}, the non-zero functional coefﬁments are
generated by f;(u) = Zz 1 ]lwl( u), where bj;’s are uniformly sampled from
[0,0.15]. For each k € So = {1,...,10}, the non-zero scalar coefficients ~y;’s are
uniformly sampled from [0.5, 1]. Finally, we generate responses {Y;};—1, .., from
model (1.2), where €;’s are sampled from N(0,1).

We simulate the data under six different settings, where n € {75,100, 150}
and p = d € {40,80}, and replicate each simulation 100 times. For a sequence
of pairs of (An1, An2), following the procedure in Section 4.1, we truncate each
functional covariate with g; chosen by the ratio-based method, apply the block
FISTA algorithm to minimize the criterion (4.2) on the training data and ob-

tain {55 ()}jo,p and (50 b
parameters (an,Ang) are selected by mlmmlzmg the prediction error on the
J‘ Xt] B(Am, n2)( )du _

.....

d- The optimal regularization

.....

validation data with size n, ie. >, {Y; —

A(AIL17AIL2) 2
Zk 14 }

We examine the performance of ¢1/¢5-LS based on AUROCs and estima-
tion errors, and compare it with the performance of OLS-O, where the sparsity
structures in the estimates are determined by the true model in advance. The
numerical results are summarized in Table 2, where the relative estimation er-
rors for functional and scalar coefficients are HB B|/IB| and |5 — y]/I¥I,
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TABLE 2
The mean and standard error (in parentheses) of AUROCSs and estimation errors for
model (1.2) over 100 simulation runs.

71 /03-LS OLS-O
AUROC IB—BIABI 17 =~I/vl 1B =BI/AB[ 17—~/
40 0.001(0.004)  1.034(0.013) 0.283(0.005)  1.741(0.034) _ 0.196(0.005)

s 80  0.868(0.004) 1.051(0.012) 0.363(0.008) 1.750(0.039)  0.198(0.005)
100 40 0.919(0.003) 0.999(0.007) 0.235(0.005) 1.376(0.024) 0.151(0.004)

80  0.902(0.004) 1.025(0.008) 0.283(0.005) 1.417(0.025)  0.151(0.004)
150 40 0.045(0.003) 0.38(0.008) 0.185(0.004) 1.006(0.018) 0.113(0.003)

80 0.937(0.004) 0.972(0.009) 0.216(0.004)  1.061(0.018)  0.113(0.003)

respectively. A few trends are apparent. First, as expected, we obtain improved
overall support recovery and estimation accuracies as n increases or p and d
decrease. Second, although /1 /¢5-LS is outperformed by OLS-O with lower es-
timation errors for scalar coefficients, it provides more accurate estimates of
functional coefficients relative to OLS-O, since, in the oracle case, the number
of unknown parameters is still relatively large especially when n is small.

6. Discussion

We identify several directions for future study. First, it is possible to extend our
established finite sample theory for stationary functional linear processes with
sub-Gaussian errors to that with more general noise distributions, e.g. general-
ized sub-exponential process, or even non-stationary functional processes. Sec-
ond, it is of interest to develop useful non-asymptotic results under other com-
monly adopted dependence framework, e.g. moment-based dependence measure
(Hérmann and Kokoszka, 2010) and different types of mixing conditions (Bosq,
2000). However, moving from standard asymptotic analysis to non-asymptotic
analysis would pose complicated theoretical challenges. Third, from a frequency
domain perspective, it is interesting to study the non-asymptotic behaviour of
smoothed periodogram estimators (Panaretos and Tavakoli, 2013) for spectral
density matrix function, served as the frequency domain analog of the sample
covariance matrix function. Under a high-dimensional regime, it is also interest-
ing to develop the functional thresholding strategy to estimate sparse spectral
density matrix functions. These topics are beyond the scope of the current paper
and will be pursued elsewhere.

Appendix A: Additional theoretical results

We first present the following Propositions 6 and 7, in which we show that the
essential deviation bounds for model (1.1) are satisfied with high probability.
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Proposition 6. Suppose that Conditions 1-5 hold. Then there exist some posi-
tive constants Cy, C.,, Cy, ¢ and ¢ such that (i) for n zlog(pq1)qi™ 2 (M:5)?,

@) w1 log(pg1)

<C X, [ ZoHL)
1<j<127£1u<(l<q1 {wﬁ}*lﬁ < CuMy n @)
> log(pq1)
R Ll < X oai+1
1<idpiicg, 1P~ Vil < CpMEGRTN =07,

with probability greater than 1 — ¢ {pq1} =% ; (ii) forn = log(g2)ga? T2 (MY)?,

n o lo
max (¢ — ¢ < CoM¥ g5 " %, (A.2)

1<m<q2

with probability greater than 1 — c’f{qz}fcg.

Proposition 7. Suppose that Conditions 1-6 hold. Then there exist some posi-

tive constants Co, ¢ and ¢ such that, for n = log(pqig2) (g7 T v g3 ) (MK

+ MY)2,

(n—L)~YD'Z"(0 - 2D 'B)[\“:*

max

(e} « 1 — K
<Cosqi/2{(/\/lf +Me) v MY}{(q11+3/2 v q22+3/2) Og(pnqqu) +q +1/2}7
(A.3)

with probability greater than 1 — ¢ (pqlqg)_ci‘k.

(A.1) and (A.2) in Proposition 6 control deviation bounds for relevant esti-
mated eigenpairs of X;(-) and Y;(-) under the FPCA framework. (A.3) in Propo-
sition 7 ensures that the sample cross-covariance between estimated lagged-and-
normalized FPC scores and estimated errors consisting of truncated and random
errors due to (3.1), are nicely concentrated around zero.

We next provide Propositions 8 and 9, where the essential deviation bounds
for model (1.2) hold with high probability.

Proposition 8. Suppose Conditions 1-5 and 8 hold. Then there exist some
positive constants CF, c¢§ and ¢ such that, for n Z log(pq)g**?(M3X)?,

max

1 A ~ 1
Ljr (-85 - 2y, < O (M + MY g2y [P ey

with probability greater than 1 — cf (pq)*cg.

Proposition 9. Suppose Conditions 1-5 and 8 hold. Then there exist some
positive constants C&, c¥ and ¢ such that, for n 2 log(pqd)qg’a”./\/l%(z,

1 ~ lo +d k
L2 0B — 29) e < Cinr(Mo 7 + Mg LD iy

(A.5)
with probability greater than 1 — cf (pg + d)*ci‘k,
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Intuitively, (A.4) in Proposition 8 (or (A.5) in Proposition 9) indicates the
sample cross-covariance between estimated normalized FPC scores (or scalar
covariates) and estimated errors is nicely concentrated around zero.

Appendix B: Proofs of theoretical results in Section 2

We provide proofs of theorems and propositions stated in Section 2 in Appen-
dices B.1-B.2, followed by the supporting technical lemmas and their proofs in
Appendix B.3. Throughout, we use Cy, C1, ..., C,C1y--; €1,C2y vy Py P15 02, - - -
to denote positive constants. For a matrix B € RP*4 we denote its operator
norm by B[ = sup|y|,<:1|Bx|2. For ¢1,¢2 € H and K € S, we respectively de-

note f K (u,v)¢:1(u)du, f K (u,v)pa(v)dv and f f K (u,v)1 (u)pa(v)dudv
by {¢1, K), {K, ¢2» and <¢1,<K $2)). For a fixed ® € HP, we denote M (f~, ®)
= 27 - €88 SUPge[ .71 [(B f7 (B))].

B.1. Proofs of theorems

Proof of Theorem 1 Part (i): Define Y = ((®1,X1),...,{®1,X,,))", then

we obtain |<<P1,(flg( —ZN)(®1)| = LY"Y — E(Y"Y)|. Our proof is or-
ganised as follows: We first introduce the M truncated sub-Gaussian process
Xarna(uw) = 3o Ar(enri-t), where enry;(1) = S0, \/w5anipn() for j =
1,...,p. We then apply the inequality in Lemma 5on Xt = Xpi(u) =
ZlL:O A;(g—1) by proving [Ty ]| < M(fﬁ,u ®;) and im0 M(ffv(j,La )
= M( ff, ®,). Finally, we will show that such inequality still holds as L — oo.
When L and M are both fixed, we first define Y, = (®1,Xm,0,1)5-- -,
(®1,Xn,L,n))". Then YJT\/LLYM,L can be represented in the same form as

(err,K(ey)) in Lemma 5, where epr = (€3,,,,-..,€h,_ )" € HP+LP, We
rewrite Yz 1, as

Yur = jf n @ ®1(u) Wi (u,v)®y(v)an, rdudv = Tarran,r,

where

0 0 -~ 0 Ay --- A; ., Ag

0 0 - Ay A -~ A, 0

W =1 . ) ) ) ) .

Ay Ay - o o AL - 0
O (u) = Ly L @diag(Phy g5+ Phr,) With pr; = (VWG b, .../ w ¢1M)
and ay = (anlly---aan1M7-~-aanp17~--7aana-~-7a(1—L)p1a-- a(l L)pM)
e RO*+LPM  Then we can write Y3, 1Y = ay Xy ran,p with Iy, =
Tar,r"T . Lemma 8 implies that |[Var(Yar,)| = HFM,LFR/[,LH < ./\/l(ff/[’L,

®,), where M(fi(/I,Lv ®,) =27 - ess Sque[—rr,ﬂ]<¢.1a fi(/I7L,9<(I>1)> and ff/I,L,é)(')
is the spectral density matrix operator of process {Xps 1.+(-) }tez-
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Define Y, = Yoo, = ((®1,X11),...,(®1,X,,))T. By Lemma 7, (B.8) in
Lemma 5 and rank(T';, ;T 1) = n, we obtain

~X
P{(®1,(Z10 — 7.0)(R1)| > M(f, ®1)1}
=P{‘YEYL - ]EYEYL| > nM(‘ff7 ¢1)n} < 2€Xp {—CTL min (772777)} )
where M(f{, ®1) = 27-ess SUPge[— {1, f§79(@1)> and f§9(~) is the spectral

density matrix operator of {Xp, ;(-)}ez-
Next, we need to show that this result still holds as L — c0. Lemmas 9 and 10

~ X ~X
imply that 1imL%E{’<q>1, (10— % )(@1)>)} = 0, limy o (®y, 5 (81))

= (&, (®))) and limp_,o M(fX, ®1) = M(f~, ®,). Combining the above
results and following the similar argument in the proof of Lemma 5, we obtain

P @1 (&) - =5)@)| > M~ @)}

< 2exp {—cnmin (772, 77)} .
Provided that M(f*, ®1) < MY (P, 5] (®1)), we obtain

|

which completes the proof of (2.12). Part (ii): For fixed vectors ®; € H? and
®, € H?, we denote M(f5Y, &, ®5) = 27 - €8 SUPpe[—r 7] [{P1, ff’y(¢2)>|.
Define M () = [(X:(-))*, (Y:(-))*]*. Letting ® = (®], ®3)", we have

1

= E)(@2)) =5 (@, (8 — SH)(@)) - (@1, (85 - 55)(®1))

- (@2,(8 — =) (@2))].
Applying (B.1) on {X;(-)} and {Y(-)}, we obtain that

(B.1)

(@1, (5, —3)(®1)
(P4, Eé((‘IH»

> Mﬁn} < 2exp {—cnmin (7]2,1))},

~AX,Y
<‘§1a (20

P{@1,(£5 - £3)(@1)] > MY, ®1)n} < 2exp{—cnmin(?,m)},

P{[(@2 (8 — =)(@2))] > M(F", @)} < 2exp{—cnmin(?,m)}.

For {M,(-)}, M(fM,®) < M(f*, &)+ M(f, &) +2M(f5Y, &, ®,). This,
together with (B.1) implies that

Pll@ &0 - 2i@)] > (MU 20 + MU @)+ 2M(FX @1, @2) )}
< 2exp{—cnmin(n®,7n)}.
Combining the above results, we obtain
P{[(@1, (50" = )(@2))] > (M(FS, 1) + M(FY, B2) + M(FXY, @1, )}

< 6exp{—cnmin(n’,n)}.
(B.2)
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For h > 0, let Ul,t = X¢ + X, Ug,t =X — X¢an, Vl,t =Y:+ Y:p and
Vo =Y, — Y. Accordingly, we have that

(@1, (®2)) = AP, 1T (R2)) + (@1, By (B2)) + (D1, 51 (B2)),
(D1, 5272(8,)) = A1, B0 (82)) — (@1, 55 (B2)) — (21, 5]} (P2)),

and

ghvl — (2 + Cxp(*lha) + pr(ihe))fg(7ya
F7Y = (2= exp(=ind) — exp(in)) £,

Combining these with the definition of M(fX’Y, Py, Py) yields

~AX,Y
K1, (2, —Z7)(@))
U1,V ~Us, V-
=(®1,(5, =B (@2)) — (@1, (5, = B (@2)),
and
M(fU17V17 (ﬁh (52) < 4M(fX7Y7 (I)la (§2)

By similar arguments, we obtain /\/l(fU", P,) < 4./\/l(fX, ®,) and /\/l(fvi, P,)
< 4/\/l(fy, ®,), for i = 1,2. Then it follows from (B.2) that

Pll@y, (S0 = =0 (@2))] > 2M(FX, @1) + M(FY, 22) + MY, 21, 82)}n}

2
< ) P{[(@, (20" - m{

)(@2))] > (M7, 1) + M(FYE, ®2) + MU0V, @1, )}

<12exp{—cn min(nQ, n)}.

Provided that M (™Y, &1, ®5) < M5 (1,50 (1)) +(P2, By (82))) and
M(F¥, ®1) < ME (@1, 2] (®1)), we obtain

|
|

Letting ¢y = ¢/4, we complete the proof of (2.13). O

@, (5 =35 (®2)
(21,57 (81)) + (P2, X)) (82))

‘ (M + My, +Mk1k2>}

< 6exp {—cnmin(n*,n)},

I 2 (M + MY, +Mk1k2)}

< 12exp{—cnmin(n?n)}.

(@, (5, -5 (@)
(21,57 (1)) + (P2, X)) (®2))
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Proof of Theorem 2 Under FPCA framework, for each &k = 1,...,d, we
have Yy, (-) = Zﬁzl EtkemPrm () with eigenpairs (w) | ¢rm), and for each j =
L,...,p, we have X;(-) = Y2, Gjui(-) with eigenpairs (wﬁ,wﬂ). Denote
Mxy = ME + MY + M7 Let @1 = (0,...,0,{w}} 2¢;,0,...,0)" and
P, = (0,...,0, {w{m}_%@gm, 0,...,0)". Following the similar argument in the
proof of Theorem 2 in Guo and Qiao (2021) with 24/wgwl < wg + wy and
Theorem 1, we can prove

P{IS5% = Siklls > @i + @l )Mxynf < e exp{—cgnmin(n?,n)}.

~X,Y
By the definition of |£, " — %Y

have that

”mwx = MaXi1<j<p,1<k<d th]k thHSa we

~X,Y
P, = 20 s > @+l )M ynf < epdexp{—csnmin(n?,n)).

Let n = py/log(pd)/n < 1 and p?c3 > 1, which can be achieved for sufficiently
large n. We obtain that

~X)Y log(pd e
P{mh S > (e )Moy gf”}m(pd)l

which implies (2.15). O

Before presenting the proof of Theorem 3, we provide some useful inequalities
for estimated eigenpairs under the FPCA framework. For {X;(*)}iez, let 5])5 =

minlgllgl{Wﬁ/—Wﬁl,+1 } and Ajl = Eéfjl—ngjl forj=1,...,pandl=1,2,....
It follows from (4.43) and Lemma 4.3 of Bosq (2000) that

sup (o — | < 1A%l and supd¥ 1 — vl < 2VEIAK s (B3)
Similarly, for process {Y:(:)}tez, let 6F = minj<mem{wi,, — w,’c/(m,ﬂ)} and
ﬁkym =f]3/’km723/km fork=1,...,dand m =1,2,..., we have

sup @7, —win| < |AY s and Su>p15;’fmll¢km—¢km\\ <2v2|AL s (B4)
mz=

m=1

Proof of Theorem 3 Recall c?fff,ilm = = h POV Ctglf(t+h)/cm and O’h]klm =

COV(Ctjla§ t+h) km) <¢jz,<2h gk ¢km>> Let 7. T = ¢]l _¢]l7 wkm = ¢km ¢km

AX)Y _ QXY XY
andAth ik — Xpjk» then

GXY XY
Oh,jkim — Oh,jkim

_<7"]la <Eh ko Uka>> + (<7’Jl, <A ,Jk’ ¢km>> + <w]l, <Ah ko wkm>>)

(it (i Srmd> + <1, (S Brmd) + Wty BN, )
=L+ 1+ Is+ 1.



556 Q. Fang et al.

Let @7 = {IANV]ls < @i +wd)Mxynf, 0, = {IA%]s < 2MFeifnf,

ey = {1B%ls < 2MY i} and 1 = {IA01s < (@i +w)}. By Theo-
rem 2 and Lemma 24, we have

((Qﬁi)%

P((©,,)°)

P((Q%.,)°)

P((@1)°)

On the event of 4 mQX >y K NN QY .» by Condition 5, (B.3), (B.4), Lemma 2

and the fact that (wiwd )1/2 1/2(wgf + wl), we obtain that

c1 exp{—cznmin(n?, n)},
4exp{—¢inmin(y®, n)},
dexp{—éinmin(y®,n)},

< cpexp{—csn(Mx y) 2}

//\ //\

< ¢ anan) I P me 2R (1A s + 15550 s) [@en

L
A /wﬁw,{m
< /2Ly A AX G | A, Hs@mﬁkus + (wiwy)?)
(lda1+2 v m3a2+2)MXM1 n?,
< (B2 v mBee ) (ME + MY,

< ¢ M(anag) P21 Pme RN s (7] + Dk )

S 1o 2 AR | AK s + mo A )
< (l2a1+1 v m2a2+1)MX,Y(MX \V2 MY)TI )

S (l20¢1+1 v m2a2+1)/\/l§(,y772,

By Theorem 1,

1,

————| = 2Mxyn} < c1 exp{—cenmin(n*,n)}.
LUX(UY
\/ “il¥km

Next, we consider the term I3 = <rﬂ,<2h ]k,qﬁkm}} + <1/Jﬂ,<2h]k,wkm>>. By
Condition 5, Lemmas 14 and 26 for {X;}+cz and {Y:}+cz, we obtain that

P

I3
N
SMflmHn-i-( X)Ql(5a1+4)/2772 + MY mertly 4 (M}/)Qm(Sa2+4)/2n2

§(1a1+1 a2+1)(M1 +M ) (l(5o¢1+4)/2 v m(5a2+4)/2)(M{( +M}/)2n2

holds with probability greater than 1 — 16 exp{—ésn min(n?,n)} — 8 exp{—ésn
(M) (MY J2mi(eati)) -1,
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Combining the above results, we obtain that there exists positive constants
p1, P2, ¢r and ¢g such that

~AX,Y XY
o — o

h,jklm h,jklm at+1 az+1 2 3a1+2 3ag+2y\ 2

PQ | IP T s 5 Mx,y (1907 v m® 2T )+ pe My (P07 v mP 2T g
wXwY
Jl " km

<cgexp{—érn min(n27 n}+ Cs exp{—57/\/l;(?yn(l2(°”+1> v m2(a2+1>)71},

where Mxy = MF + MY —&-M*lX)’IY. Applying the Boole’s inequality, we obtain
that

XY _ XY
h,jklm h,jklm [e% 1 o 1 2 3a 2 3a 2 2
Py max | IR IR s o My (17 v m®2 iy 4 pp ME (10015 v mP02 )y
=sJsP )
l<k<d Wit %km
1<ISM;y
1<m<My

-1
< pdM; My {& exp{—&mmin(n?,n)} + s exp{—57/\/[;(?yn(l2(a1+l) v m2e2th )}

Letting n = p34/ 71°g(pdrj\;hM2) < Land py+papsMx y (MZ Ty MZ* ) < py,
there exist some constants cs, cg > 0 such that

~X,)Y X,Y
Ol iktm — O log(pd My M.
h,jklm ~ Oh,jkim 1 1, [log(pdMiMs
P max I IR > pgpaMxy (MPTT v MG R
1<j<p,1<k<d wXwY n
1<ISMy,1Sm<M> I km

<cs(pdMiMz)c. O

B.2. Proofs of propositions

Proof of Proposition 1 Under a mixed-process scenario consisting of {X¢(-)}

)

and d-dimensional time series {Z;}, we obtain the concentration bound on ) ho

|

<cy exp{—cenmin(n*,n)}.

~X,Z
(®,(%,” -2 W)
(B, 35 (@) + 727w

X Z X,z
> (Mkl + ng +Mk1,k2> 77} (B5>

Provided with Lemma 28, the above result can be proved in similar way to
(2.13) in Theorem 1, hence we omit it here.

Denote UOZMC = /Var(Zy), (6£)* = maxj<kr<q Var(Zy) < o0 and Mx z =

M+ MZ + Mif’lz. Letting ®; = (0,...,0, {wﬁ *%zbﬂ,(),...,())T and v =
~X,Z

(0,...,0,{0,}71,0,...,0)%, we obtain that A, ji = (@1, (%, —X; 7)) =

(W¥) V(08 ) T i, S = S0 and (@1, 35 (®1)) = ™S = 1. Then
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HEth thH2 Yz wii (08 ) A% ji- By Jensen’s inequality, we have that

X.,Z Z 24 Z \2q - X\t J- X 2
E{th ik jk” } < (00.k) (ijz) ijlE|Ah,Jkl‘
1=1

1=1
2
< {of 12wy } SI;PE‘Ah,jM !
By (B.5), we obtain that

P{|Anji| > 2Mx zn} < c1 exp{—conmin(n®, n)}.

Combining the above results and following the similar argument in the proof of
Theorem 2 in Guo and Qiao (2021) yields

{|Eh T hjk|| > 2Mx zog A/ wh 77} c1 exp{—csnmin(n?,1)}.
Then with the fact that 24/(c% 2wy’ < (0€)? + wgt, we obtain

P{IENT =il > ((0f)? + w3 )szn} 1 exp{—cgnmin(n,m)}. (B.6)

This also implies (2.16).
A, n—h %
Recall that thjil = nlh D1 Gtj1Z(s+n)k and gfﬁcl = Cov(Ctji, Z(t+nyk)- Let

7 _ QX2 X,Z
i = wgl ¥ji and Ahjk = X5, — X5,k We have

~X,Z X,Z X,z
Ohjkl — Oh jkl = <7"le h jk> + T Xy k) + i Ah Jk>
=1+ Iy + I5.

Let Q57 = {||Ah]k|| (wi (Z)Q)szn} ngn—{l\A s < 2MXw§n}

Jk.m
and Q; = {HAfJi | < (Wi + (o8)? )} By (B.6) and Lemma 24, we have

P((Q5:7)°) < e1 exp{—cgnmin(y®, )},
P((955,)) < 4exp{—énmin(n®,n)},
P((21)%) < e1 exp{—can(Mx )72}

Q

On the event of Q; N QX]k N »» by Condition 5, (B.3), Lemma 2 and (0?)? <
o0, we obtain that

I X,Z
—A | SRR 7] < B AT A s
w*
7l

S l3a1/2+1MX,ZM{(n2~
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By Condition 5, Lemma 26 and |27 < wé/zao x> We obtain that

I

SM{([O&1+1U+ (Mi)(>2l(5a1+4)/2,r]2
wii

holds with probability greater than 1 — 8 exp{—ésn min(n?,7)} — 4exp{— 6471
(M} 72172+ )} By (B.5) and the fact that 1/(0f) 2wy < 1/2{(0§)?+wi},

we obtain that

I3

P{ > 2Mx z0{n} < c1 exp{—conmin(n?,n)}.

w3
Combining the above results, we obtain that there exists positive constants
Ps, P6, Co and ¢1g such that

oXZ N7
P Lth > psMx 210V + pe M L1002
w=

gl

< &10 exp{—conmin(n°,n)} + é1o exp{fég./\/l}?znl%(aﬁl)}.

Letting n = p74/ M < 1 and ps + psprMx, ZM1 Sar+l n < ps, there exist
some constants cz, cg > 0 such that

i — Onin log (pdM:)
P max h,jkl h,jkl > P7P8MX,ZM1QI+1 Z2(p 1 < C7(de1)087
1<j<p,1<k<d wX n
1<I< My jl
which implies (2.18). O

Proof of Proposition 2 To simplify our notation, we will denote G,fﬁm
and U,)fflm by Gh jim and oy jim in subsequent proofs. Recall that & jim, =

<@Zjl,<§]i(;,$m>> and o jim = <1/JJ1,<ZX67¢m> Since we assume {X;(-)} and
{e:(-)} are independent processes, op,jim = 0

Let 7 rj = 1/131 Vi, Wy, = ¢m ¢m and A hX - Ehx,}‘e'
~ ~ SX,e A~ ~ N X, e ANXe ~
On.jim = T, (Cp 7 Wm)) + (<7“jl7 AR Pmp) + i, (A ’wm>>>
A X,e
+ <wjl7 <Ah7j 7¢m>>
=1+ 1+ Is.
Denote 7, = {Hﬁhxj ls < (wif + wg)/\/lx,eﬂ} Fim {H Hlls < 2Mf(w§n},
Q) = {IAY |5 < 2M¥ ¥} and 0, = {|AYS

ls < (wgf + wg)}. By Theorem 2
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and Lemma 24, we have

P((Qfe)c c1 exp{—cznmin(n?,n)},
P((QJX;”)C 4exp{—énmin(n?,n)},

) <
) <

P((2))°) < 4dexp{—&nmin(n*,n)},
) <

P((Ql)c c1 exp{763n(./\/lx,e)72}.

On the event of ) N QX6 Qx n 0 QY, by Condition 5, (B.3), (B.4) and

33
Lemma 2, we obtain that

5L

XWY

< g Hanan) I P me R 2y | (AT F s + 1505 1) @]

w]l

S (l30¢1+2 v m3a2+2)M{(MY 2’

I
A /wﬁw}fb

< 1P| AT s Al + meHAY )

< (l2a1+1 v m2a2+1)MX7€{M{( +MY}772,

V21 2 el A
)

a1a2) s S (1% vm*)Mx n.

il

Combining the above results, we obtain that there exists positive constants
P9, P10, 511 and 512 such that

P Oh,jlm >ngX‘€(la1 v ma2)77 + p1oMX,e(M{( + MY)(13a1+2 N m3a2+2)n2

X,,Y
Wi Wy,

<é1p exp{—crinmin(n®,1)} + ¢z exp{—éu./\/l;(in}.

Letting 1 = p11y/ ls@MiMa) < 1 and pg + prop1i{ M + MY (M2 Y

MZ*2"2) < p1o, there exist some constants cg, ¢1o > 0 such that

Oh ilm — Oh.i log(pM1 M:
P max Thugm — TWln | o o gy (ME + MM v Mg2) | EEIM1)
1<j<p waY n
1<ISMq,1<Sm<Msy Jl
< cg(pMy Ma)“10,
which completes the proof. O
Proof of Proposition 3 Recall that g5 = —- Y"1, and g% =
p Qh jl = n—n Zt=1 Stjl€t+h Opj1 =
X J€ X,e
Cov(Cijis €r4n)- Let 75 = %l — 1 and A Yng — X We have

~X © _n : AX,
On ]El Qh,jel = <lea Ah,j6> + <7/’jla Ah,j6>
=1L+ I.



Finite sample theory for high-dim funct time series 561

Let QX N {HA <(wf + (05)2)/\/!;(7617} and Q {||A s < QM{(w()fn}.
By (B.6) and Lemma 24, we have

P((Qf;)c) < c1 exp{—cgnmin(n? )},

((Qﬁ )C) < dexp{—énmin(n?,n)}.

On the event of QX cn Qj; e by Condition 5, (B.3) and Lemma 2, we obtain
that

1
| s AR RXSIASs
w7}
s l3a1/2+lMX EM{(WQ'
y (B.5) and the fact that 1/(0§)2wg < 1/2{(0§)? + wg }, we obtain that
I
P{ > 2Mx cogn} < ¢1 exp{—conmin(n?, n)}.
w

gl

Combining the above results, we obtain that there exists positive constants
P13, P14, €13 and ¢14 such that

~X e
0, — o
P{ e thl > p1aMx,en + pral®** My My } @14 exp{—cignmin(n”,n)}.
w3y
Letting n = M < 1and piz + prapisME M) < pog, there

exist some constants 011, c12 > 0 such that

- ons log(pM1)
P max Shjt — Chijt = pi5preMx,e oglpMy) < 011(29]\41)0127
1<j<p wX
1<ISM;y gl
which implies (2.20). O

B.3. Technical lemmas and their proofs

Lemma 1. The non-functional version of our proposed cross-spectral stability
measure satisfies

XY
vify 1/2‘
ess sup

T T
Oe[—m,7],v1€RE ,v2eRE \/ V1 V1N/ Vo V2

where MXY is defined in (2.4).

V.84
<MD



562 Q. Fang et al.

Proof. For any fixed 6 € [—m, 7], we perform singular value decomposition
on f;(’y = UDV™, where D is a diagonal matrix with singular values {o;} of
fg(’y on the diagonal. Then

ngc,yug‘
max
V1€R0,V2€Rd A/ Vl Vl’\/ VQVQ
Ix"Dy]|

= max ——— (x=U"v;,y=V'v
xeRE,yeR¢ VXTXA/ YTy ( ! 2)
2 TiYioi 277 Y(yioi)?

max

xeRpyekd /2 xi/ 2y}

< max(o;)

= max —
xeRP,yeR? VXTX\YTY

r.)2
< max Z(ysz;)
yeRd 2

XY XY
vt B Sl A V)
<m\/ s
v

veRd Tv

N

This holds almost everywhere for 6 € [—7, 7], which completes our proof. O
Lemma 2. Suppose that Conditions 3 and 4 hold, then wg = O(1).

Proof. Recall that X;(u) = ZiofAl(u,v)et_l(v)dv and &(-)’s are i.i.d.
mean-zero functional processes. Let A; ; denote the j-th row of A;. Then

max JES{jj (u, u)du

1<j<p

= max JE { X (u) X5 (uw)} du

—maxf ZZJAWMQ L)) Jdu

1=0k=1

max i \/J (A jr(u,v) dv\/‘[ (e—p (v de} ]d
1= k

< maxE Zp: JJ (A ik (u,v) dudvn&xE{ f(f‘?t—l,k(v)yd’u}

o w P
< wfmax Y Z | ALjxls < w§ maXZ > Auls)?
7 Z0k=1 1=0 k=1
= w§ DAL
=0

< Wi (X [Al)? = 0(1),
=0

which completes our proof. O
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Before presenting Lemma 3, we define sub-Gaussian distribution and sub-
Gaussian norm as follows. A centered random variable x with variance proxy
o? is sub-Gaussian if for any ¢ > 0, P(|z| > t) < 2exp(—t?/(20?)). The sub-
Gaussian norm of z is defined by |z]y, = inf{K > 0: Eexp(2?/K?) < 2}.

Lemma 3. Let x = (z1,...,2,) € R"™ be a random vector with independent
mean zero sub-Gaussian coordinates. Without loss of generality, we assume that
Ex? =1 fori = 1,...,n. Let A be an n x n matriz. Then there exists some

universal constant ¢ > 0 such that for any given n > 0,

2
P (|xTAx — ExTAx| = |Alln) < 2exp {—cmin (#(A)’ 77) } . (B.7)

Proof. It follows from Theorem 1.1 of Rudelson and Vershynin (2013) and
[zilly, =1 fori=1,...,n, that there exists a constant ¢ > 0 such that

t2 t
P(x"Ax —ExTAx| > 1) < 2exp{cmin< ,>}
[ENF PN

By |A|r < A/rank(A)|A| and letting ¢ = 5| A||, we obtain (B.7). O

Lemma 4. Suppose that sub-Gaussian process {e;(-) }1ez follows Definition 3.
Under Karhunen-Loéve expansion £4j(-) = Y2 &idju(-) = Doy NCHLOTIIS!
with E(at;) = 0 and E(afﬂ) =1forteZ and j = 1...,p, a follows sub-
Gaussian distribution with |ajil|ly, = 1, that is for alln >0,t€Z, j=1,...,p
andl > 1,
Pllagi] > 1] < 2exp(—1*/2).

Proof. By Definition 3, for all z € H, E{e(**)} < ¢*@%0())/2_ Combining

with the choice of z = ¢¢;i(-) for ¢ > 0 and orthonormality of {¢,;(-)} yields

IE(eC1 /wjlatjl) < eO‘QCQWJE'l/Z.

Without loss of generality, we assume a = 1. By Markov’s inequality and the
above result, we have that for all ¢ > 0,

ey/Ehas )
Plag > 1) < P(eV¥in™at > Vi) < Elev ™) < e i/,
ec, /wj.ln
2
Choosing ¢ = n/, /w5, we have P(ay; > n) < e~z . In the same manner with
2
the choice of = —c¢ji(+) for ¢ > 0, we can prove P(asj; < —n) < e~ =. Com-

2
bining the above results, P[|asi| > 1] = P(aii > 1) + Plag < —n) < 2e~ 7
which completes the proof. O

Before presenting Lemma 5 below, we give some definitions:
(i) Suppose that e = (eq,...,en)" € HY is formed by N independent mean zero
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sub-Gaussian processes with ¢;(-) = Y7 \/wgay¢u(-) under the Karhunen-
Loéve expansion. Define ¢, ; = (\/_1@17 s a W ZM@M)T.

(ii) Suppose K = (K;;)nxn with each K;; € S. For any nonempty subset G <
Zy ={12,...} with |G| < o0, write G = {g1,...,9|¢} With g1 <--- < g/ and
bci = (Digys- - Pige)” foreachi =1,..., N. Let &g = diag(dg 1, - -, PG n);
then we define

rank(K) = sup rank ff@T (u,v)Pg(v )dudv) .
GcZy,|Gl<wo

Condition 10. Let ITy; = ff@X/[(u)K(u,v)GM(v)dudv with ©;; taking the
form ©,; = diag(cp}/m,...,go}/[,N) and K = (K;j)nxn with each K;; € S. It
satisfies that |IIys|| < bas and limps o0 bas = b.

Lemma 5. Suppose that max1<l<Nf X% (u,u)du < oo and K satisfies Con-
dition 10. Then, there exists some umversal constant ¢ > 0 such that for any
given n > 0,

: 7’

P (|{e,K(e)) — Ele,K(e))| = bn) < 2exp {—cmm (W(K)’n> } . (B

Proof. We organize our proof as follows: First, we truncate e;(-) to M-
dimensional process e (- Zl 1 \/7 a;; i (), then apply Hanson-Wright
inequality in Lemma 3 and finally show that the 1nequa1ity still hold under the
infinite-dimensional setting.

Rewrite enr = (err1,. .., enmn)" with eps; = ay P and ay; = (aity -y
aiv)®. Let ay = (ajy,...,a5 v)" € RMM " then we have (ey,K(ey)) =
ay, Ilyap . By Lemma 4, elements in ays € R¥M are ii.d. sub-Gaussian with
E(a;;) = 0 and E(a?) = 1. Combining this with Lemma 3 yields

P (Kenr, K(en)) — Eear, K(enr))| = barn)
P (|layIIpan — EayIan| = [an)

<
< 2e —cmin 7}2
S 2exp rank(ITy;)’ )

rank ()
It follows from Lemma 6 that {er, K(eps)) converges in probability to (e, K(e))
and limp; o Edenr, K(epr)) = E{e, K(e)). These results together with Condi-
tion 10 imply that

(B.9)

(en, K(en)) — Ederr, K(enr)) — barn
converges in distribution to
(e,K(e)) — Ele, K(e)) — bn.

Finally, by the fact that rank(II);) < rank(K) and taking M — oo on both
sides of (B.9), we obtain (B.8), which completes the proof. O
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Lemma 6. Under the same assumption and notation in Lemma 5 and its proof,
we have

Jim E {lexr —e|?} =0 (B.10)
and
Nl{iinoo Eden, K(en)) = Ede,K(e)). (B.11)

. N N = .

Proof. Since HeM—eH2 = Zi:l HeM,i_ez'H2 = Zi:l [ Z?ZM-H \V Wy @i Pil sz it
suffices to show limp/_,n E {H Z?(;MH A/ Wi Dil Hz} = 0. By E(a;a;) = 1{l =
I’} and the orthonormality of {¢;}, we have

[ee} 2 0
E J( Z \/E%l@l(@) du p = Z wi.

I=M+1 I=M+1

This together with Condition 4 implies that above goes to zero as M — oo,
which completes the proof of (B.10).

By triangle inequality, we have

[Edens, K(en)) — Ede, K(e))| < [Eens; K(en — e))] + [E{(er — ), K(e))].
(B.12)
By Jensen’s inequality and Lemma 11, we have

[Ederr, K(enr —e))|* < [K|FE(lear|*)E(lear — ef*),
[E(enr — ), K(e))|* < |K[FE(|e|*)E(|ear —ef?).

From (B.10), we have limy—,o E {|eas — €[?} = 0 and limp—,oo E{|ens[?} =
E{|le||?}. Combining these with E(|e[?) < N maxj<i<n fu ¢ (u, u)du < o0 and
|[K|r < oo implies the right side of (B.12) goes to zero when M — oo, which
completes the proof of (B.11). O

Lemma 7. Suppose Conditions 1, 3 aLnd 4 hold for stationary sub-Gaussian
process {X¢(-) ez Let Xagpe(u) = D o Ai(eni—1). Then, for any ®; € HE
with |®1llo < k and k =1,...,p,

lim M(fi(/[,L,‘I)l) = M(ffa Ql)

M —o0

Proof. By the definitions of M(f]\X/[’L,@) and f)AfLL’a(fb) in the proof of
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Theorem 1 in Appendix B.1, we have

lim |M(.f5\(4,Lv ®1) — M(f7,®1)|
M —o0

=2 hm
D\ ge[—7,7] Oe[—m,m]

€ss sup |<(I)17.fML a(‘1’1)>\ — €ss sup |<‘I’17fL ,0 (@) >|‘

<2n L ess sup [(@1, £37 1.(@1))] = (@1, £7(@1))]

M- D ge[—m,n]

< H‘IHHQeranoc Z(EM,L,}L Ef,h)

heZ

< @42 A}linoo 2 HEJ\X/I,L,h - thHF
heZ

(by Lemma 11 and |exp(—ihd)| = 1)

F

Provided that |®1[|> < o0, it suffices to prove that >, HE)AZ Lh— thH <

ooandlimMﬁwHEﬁLh—thH =0.

By triangle inequality and Lemma 12, we obtain that

0 [e¢]
X X
HEMM =5 < 2 1Bl + Y IBEale <.
h=—0o0 h=—0

We next prove limps_,q HE)]\Z’L,h — thHF = 0. Write

S0 (,0) = E{Xar e (w)Xhy 1,0 (0)}
- Z JAH;L(u,u’)ESM (', ") {A(v,0")} du'dv’
Spn(u,v) = E{Xp o (u)XE 4 (v)}

- Z JAHh(U’ )5 (w0 ) { A (v, 0"} du' dv'.
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Then,

. X X
Nl[lm HEML,h - EL,h’
—00

F

L—h

= lim Z fAHh(u,u’){ZgM (', v") = 25, v") HA (v, 0) ) du' dv’
M—o0 =0 -
L—h

< ) Al Anle Jim [36Y =3[ (by Lemma 11)
1=0
h 1/2

< 2, [Adp|Aven]e lim {Z 1252 — i,jk?s}
=0 J-k
L—h

< D IAdle|Avenle lim >S5 — 5 ls
1=0 ik
=0 (by Lemmas 12 and 13)
which completes the proof. O
Lemma 8. Suppose that conditions in Lemma 7 hold. For any ®, € Hf, with
[®1]0 <k andk=1,...,p, defineY = ((®1,X1),...,{(P1,X,))". Then
| Var(Y)| < M(F%,@1) < Mi{(®1, 55 (@1))-

Proof. The proof follows from the proof of Theorem 1 in Guo and Qiao
(2021) and hence the proof is omitted here. O

Lemma 9. Suppose that conditions in Lemma 7 hold. Let Xp (u)
ZZL:() Ai(e1—y). For any ®; € Hf with |[®1]o < k (k =1,...,p), define Y,
(<¢’13 XL,1>5 ceey

(@1, Xpn))" and Y = ((@1,X1),...,{P1,X,))", then

. o 2 _
Lll_rgo]E{\|YL Y[*} =0 (B.13)
and
Jim E[Y7Y,] =E[Y"Y]. (B.14)
—00

Proof of (B.13). By definitions of Y, and Y, we have that
E{|Yr - Y[*} = D E{l(®1, X, — X0)*}
t=1

By Lemma 11, we have E {[(®1,X 1, — X;)|*} < |®1]°E{|X ., — X;[?}. With
the fact ||®1]? < oo, it suffices to prove that limy_ E{|Xz; — X¢[?} = 0 for
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t = 1,...,n. By Lemma 13, we have E(|e;—;|) < 4/pw§. This together with
Lemma 11 implies that

o 2

E(|[Xp: —X?) =E{ | D] J-Al('lh )& (v)dv
1=L+1
0 o0
<]E< > 2 |Al1|F|Al2|FEt—l1|”€t—l2”>
WLt1l=Lt1
0 2
<Pw5< > |Al|F> :
l=L+1

By Lemma 12, we have },°, |A;|r < 0. This together with the above yields
lim E{|Xr:— X¢|?} =0, (B.15)
L—oo

which completes the proof of (B.13).
Proof of (B.14). Next we show that lim; o, E[YIY ] —E[Y"Y] = 0. Write

E[YiY.]-E[Y'Y]|
— n[(@1, (50— =5)(®1))]

_n f BT (u)E (X1 ()X, (0) — Xy (w)X7 (1) @y (0)dudy

N
3

J‘I‘T]E (Xr,+(Xp,e —Xy)T) @1dudv

+n

_[‘PTE (Xp,e — Xy)X]) ®qdudv

By Jensen’s inequality and Lemma 11, we have

2
<@ B XL

U«}{E (Xp(Xpt —Xy)") ®1dudv PIE{|X L — Xe]?),

2

U‘PTE (Xpp = X)X7) @rdudv| < @1 "E{Xe[*}E{[ XL, — X}

Combining the above results with (B.15), we complete the proof of (B.14). O

Lemma 10. Suppose conditions in Lemma 7 hold. Let X, +(u) :ZZL:() Aj(eey).
Then, for any ®1 € HY with |®1]o <k and k=1,....,p,

gi_IP.OM(ffv(I)l) = M(f¥, ).
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Proof. By definitions of M(f*,®) and f; (®), we have
Jm IM(FT, ®1) — M(F¥, @)
— 27 Tim_|ess sup K@, £55(®1))] — ess sup [(@1, 7 (®1) >|‘
L= ge[—n 7] oe[—m,m]
< 2r lim s sup |[(1, £75(@1)] — (@1, £ (@1)]]
L—a 96[ 7]
<@ lim | (25, - )| (by Lemma 11 and | exp(—ihf)| = 1)
L=l 2 F
< 2 1 X XH
< [|®4] LIE%;E HEL,h 3, -
heZ
With |®1]? < o, it suffices to prove >, HZi{h -y HF < oo and
limp or Hth - thH —0.
’ F
By triangle inequality and Lemma 12, we obtain that
D D Y S Sl I
h=—0 h=—000 h=—0
We next prove limy,_, HE)L(h - E,)L(H = 0. Write
’ F
=i (u,v) = E (Xeon (w)X7 (v EJAM u, )25 (v, v ) { A (v, )} du/ do,
th(u,v) =FE (XL,t,h( )XL . Z JAHh w,u) 3G (uw, v ) { A (v,v")}  du'dv.
Then,
lim Hth EX”
= lim JAHh (u, v )5 (v, v ) { Ay (v,v")}  du' dv'
L= L The F
< pwg lim Z |[Ailr|Ai+r|r  (by Lemmas 11 and 13)
L—w
I=L—h+1
(e 0] [e¢]
< pup lim Do lAde D) IAale
I=L—h+1 l=L—h+1
= 0 (by Lemma 12),
which completes the proof. O
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Lemma 11. (i) Let A = (A;j)pxq with each A;; €S and B = (By,...,By)" €

H9.
H f f A(u, v)B(v)dudv
H f A(u,0)B(v)dv

(it)Let A = (A;j)pxq with each A;; € S and B = (Bji)gxr with each Bjj € S.
Then we have

< [Al#B]. (B.16)

Similarly, we have

< [A[rB], (B.17)

< |A[FIB|F. (B.18)

' J A 2)B(z 0)dz)

Proof of (B.16). Let C = ffA (u,v)B(v)dudv, then we have that |C;| =
|2 J [ A, 0) Bi(v)dudv| < 3, \\Azkusanu.

IC)? =Z il < Z(Z | Aiklls| Br )

Z(Z |Air]3) ZHBkH (by Cauchy-Schwarz inequality)

Z”AzkHSZ HBkH2 AlEIB|*.

Proof of (B.17). Let C(u fA (u,v)B(v)dv, then we have that C;(u) =
Zka,k (u,v)Bg(v)dv.

ek =Zi:f0i(u)2du - Zf {;JAik(u,v)Bk(v)dv}2 du

< Z f {; \/J Agk(u,u)vaBg(v)du}z du
< Z J {Zk] JA?k(u, v)dvzk:JBi(v)dv} du

= > [ Ail? Y I1Bel? = |A7IB.
ik k

Proof of (B.18). Let C(u,v) = fA(u,z)B(z,v)dz, then we have C;;(u,v) =
Dk f A;r(u, 2) Byj(z,v)dz. Following the similar argument in the proof of (B.17),
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we obtain

IC|? :;JJC”(U’ v)2dudv = ;ff {Zk:JAik(% z)Bkj(z,v)dz}2 dudv
< ; J-J {Zk: J.A?k(u, z)dzzk: Jsz (z, v)dz} dudv

= [AlRIBIE. O

Lemma 12. Suppose that conditions in Lemma 7 hold. Then we have

[oe]
DA<
1=0
and

2
o0
DIER | < 2pws {Z ||Al|F} <.

heZ =0

Proof. It follows from Condition 3 that

. . 1/2
DAr =D {Z |Al,jk%}
=0

1=0 Ujk

[ee}
< DDA < .
=0 j

Provided that X;(u) = ¥,,7, f Aj(u,v)er—i(v)dv and e¢(-)’s are i.i.d. mean
zero sub-Gaussian processes, we have

=i (u,v) = E{Xeon(w)XF (v)}

Y fAHh(u, W)E {er_i(u)er_ ()} {As(v, o)} "l !
=0

0
- 2 fAHh(m u) 2G5 (v ) {A (v, ")} du' dv'
1=0
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T
This together with the fact that %, (u,v) = {Ef (v, u)} implies that

1% (w0l < 2 2 125 () e
heZ h=0

\2 JA (1 Z5 (0,0 A, )}l
0

jo¢]

Z Z fAHh WY (o) { A (0, )}l d

h=01=0

o o0
Z Z |AdllelAsnr|>][e  (by Lemma 11)

0
< 2pwp Z |AZF} <o (by Lemme 13),
which completes the proof. 0

Lemma 13. For a p-dimensional vector process {X:(-)}tez, whose lag-h au-

tocovariance matriz function is 3p = (Znjk),j <, with each 3y ji, € S and

wo = maxlgjgpfﬁo_jj(u,u)du < 00, we have
[Zhikls <wo, [Znlr<pwo, E(IXel) < vpwo and E(|X¢]*) < pwo.
Let Xp45() = Zl]\il &1 (+) be the M-truncated process, we have
Jim (35— 5ls = 0. (B.19)
Proof. By ¥, ;i = Zlo,om:l E (&1 (t+h)km) 51 (4) Prm (v), orthonormality of

{#;1} and Cauchy—Schwarz inequality, we obtain

. 2
I1Zh5el% = J{ > ]E(ftjlﬁ(t+h)km)¢jl(u)¢km(v)} dudv

l,m=1
[o0] ee]
= 2 E(&ti€enyem)” < 2 E(E70)E(E 4 nygm) < Wo-
l,m=1 l,m=1

This implies that |22 = 3, . |Zn,jx[% < p?w§. By the similar arguments, we
have

15755 — Shal3

o 2
J{ > E(ﬁtﬂﬁmh)km)@bﬂ(u)¢km(’0)} dudv

lm=M+1

> ECu€ermm)? < Y. E(&0E(EL 4 nykm)-

lym=M+1 lym=M+1
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Since 3,2 E(¢7;;) < wo < o0, the above goes to zero when M — 0, completing
the proof of (B.19).

Provided that Xy;(-) = >.,7, &jiés(+), orthonormality of {¢;;} and Jensen’s
inequality, we have

Xil?) = E{X0_, [ X2 (wdu} = 5, 5, E(E) <

Ppwo. UJ

Similarly, we obtain that E(

Lemma 14. For process {X¢(-)}iez and {Y(-)}iez, we have that

125 ﬂcHS Y wi wg
XY XY
[ s )l S AJwgtwi,  and - [KE5 5 Yl < yJwijwg

Proof. This lemma can be proved in similar way to Lemma 8 of Guo and
Qiao (2021) and hence the proof is omitted here. O

and

Appendix C: Proofs of theoretical results in Section 3

We present the proof of Theorem 4 in Appendix C.1 and proofs of Proposi-
tions 4-7 in Appendix C.2, followed by the supporting technical lemmas and
their proofs in Appendix C.3. For a matrix A € RP*? we denote its elemen-
twise maximum norm by |A|max = max; ;|A4;;|. To simplify our notation, for
a square-block matrix B = (Bjx)1<j<p,,1<k<p, € RP19*P27 with the (7, k)-th
block Bj; € R?7*?, we use ||B\|r(r[f;x and |\B||§q) to denote its block versions of
elementwise ¢, and matrix /1 norms.

C.1. Proof of Theorem /

Denote the minimizer of (3.3) by B e READpaixaz Then

o
2(n—1L)

1

———|[U-ZD 'B|2+A,|B[{"*)
<o [5+AnlBl;

[U-ZD'B|2+A,|B|®%) <
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Let A = B—B and S° be the complement of S in the set {0,..., L} x{1,...,p},
For matrices A, B € RP1*P2 we let ((A,B)) = trace(A"B). Then we write

S(atay

71270 - ZD'B)) + MBI — B+ Al )

<

1 P N
—(ADTZN(U - ZD B + Au(|As ] — | Ase]i),

where T' = (n—L)~'D~1Z"ZD~!. By Proposition 7 and A, > 2Cosqy’* (M +
Me) v M{){(q<1h+3/2 v q20¢2+3/2) log(pg1q2) + ql—ﬁ+1/2}7

n

we have
1 N N
m|<<A7D 'Z7(U - ZD"'B)))|

max

1
< EHD 1ZT(U ZD IB)H q1,92 HAnghqz)

%(HA ”(thz) + HASCngl’qZ))-

This implies that
0< l<<A f‘A}) HA H(Ql q2) An HAS ”((117(12) )\ HAH(quqz)
2 ) .

Therefore HAngl’qQ) < 4\|A5H(q1’q2 < 44/s|A|r. By Proposition 4 and = >
327191925, we obtain

P T
(ATA) > B A} — (| A ™) > (2~ 16nags)| AR > T Al

Therefore,
HAHF < —A |AJ79) < 6A,5 2| A,

which implies that

24512\, (a1.02) _ 965Xn

|Ar < — and [|A[3 (C.1)
2

T2

Here, we aim to prove the upper bound of H@ — B|1. For each (h,j) € S we
have,
th — Brj = "Zj(u)T‘i’hj&(v) — 1 (u)" Whip(v) + Rpj(u,v)
= (9 (u) = () 1 B(v) + 3 () W5 (B(v) — B(v))
+ 1, (U)T(‘i’hj = Wp)p(v) + Rpj(u,v),
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where Rp;(u,v) = — Z?inH Zf@:qzﬂ anjim¥ji(w)@m (v). Therefore,
18 = Bl <D 1@, (u) — ()" B (v) s +2 [ (w)™ @ (d(v) — B(v))]s
h,j
+ZH¢J T(Wh — Bny)h(v)s +ZHth u,v)|s.
h,j

(C.2)

Due to the orthonormality of {¢;;(-)} and {¢,,(-)} and the estimated eigenfunc-
tions {¢;u(-)} and {¢m ()},

(8 (w) = %(w))" B0 6(0) s < @1 [ @y e max [0 —
4 ()" @15 (B(0) = S(0)]ls < a3 | Ty e max S — ol

4, () (®h; — ©ny)p()s = [Zny — P
To bound the first three terms of (C.2), we start with the upper bound of

S 15 = Tl = @ — @) and 3, [l = | @[, From
Condition 6, for (h,j) € S, |®slr = {3, 1Mh](l +om)"2 12 <
q q —2Kk— c
{Mij flz fll(x + )25 Ndady}/? = O(pnj). For (h,]) € S W¥;,; = 0. Hence,
(Q1 q2) Z H‘I’hg ”F = ) (03)

By the definition of wg, Condition 5 and Proposition 6, we have |D|mpax <
1 1/2 —1/2 «1/2
VWi D7 lmax < ¢ '"qy " and

. . ]
HD—l - D_leax < a%/z 1/2q1 1/QCwM{( Og(pQ1) )
n

Recall that ¥ — & = D-'B - D~ !'B = D_l(ﬁ -B)+ (f)_l ) Then
H‘I/ — \I;Hg‘hﬂlz) < HDilumax”B B BngI’QZ) + HDfl 1HmmxHBngl7q2)
< HD_lumaxHB _ BngwIz) + HD—l _ 1HmaxHB _ BH(1Q1,Q2)

D! = D x| B
< D Yimax|B — B[ + D! — D70 |B — BJ %)
D = D D e 7.
This, together with (C.1) implies that,

IB{%) = O(y/wis), (C.4)

and

~ 96051/2 a1/25)\n
|@ — w2 < ZELAL 20 o(1)} (C.5)
Cy T2
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Combining (C.3) and (C.5), we have
[ 2™ = O(s).

To bound the fourth term of (C.2), [ Rp;lls = O(| XiL, X0r— gy 11 @hjim¥i1Pmls v

I le:qhq DB anjim®idm|s) = O(un; min(qr, g2)~ n+1/2)7 for each (h,j) € S.
For (h, j) € 8¢, |Rpjls = 0. Hence, 33, ;| Rpjls = O(s min(qi, g2) " TY?).
Combining all the results with Proposition 6, we obtain

, 1/2 ~ 1/2 n
I8 - Bl < @[3 {q/ max [0~ dils + a3’ mn%X”(ZSm(ZSms}

+ 1% — %) £ 3Ryl

h.j
9602 25\,
< 1/—2 {1 + 0(1)} R
Coy T2
which completes the proof. O

C.2. Proofs of propositions

Proof of Proposition 4 Define I' = (n — L) 'D!E{Z*"Z}D~!. Note that
0°TO = 0"'TO + 6" (T — T')0. Hence we have

6°T6 = 67T6 — |T' — T'|max| 6]>.

By Condition 7, wmin(T") = p, where wmin(T') denotes the minimum eigenvalue
of I. This, together with Lemma 16, completes our proof. O

Proof of Proposition 6 This proposition can be proved in similar way to
Proposition 3 of Guo and Qiao (2021) and hence the proof is omitted here. O

Proof of Proposition 7 Notice that_ U=2ZD'B+R+ E where B =
DW and {(h + 1)j}-th row block of ¥, W,; = [ [ b (u)Bh;(u, v)qb( )T dudv.

The matrix R and E are both (n — L) x g2 matrices whose row vectors are
formed by {T; = (Fu1,...,71q,)"}7 11 and {€ = (&1,...,€q,)" }7 1 respectively,

where 7, = 21€=0 Z§=1 Z?iq1+1<<¢jl75hj>,¢m>gtjl and €, = <€t,¢m>- Then
we rewrite
1
n—1L
1 ~ .~ NN
= D 'Z*(ZD'B-ZD'B
n—1L ( )+ n—L n—L
=11 + I + Is.

D~ 'Z"(U - ZD'B)

SRV
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Next, we show the deviation bounds of the above three parts.

724220
A R Lo )
- ) - - )+ - - — 1,92
D™'Z"(zD™! - ZD "B D 'Z"ZD (B — B)||{4,22)
n—L —
<= D~'Z" (2D ~ 2D B
n_

max

1 ~_ 45 -
DflzTZDfl (q1) B—-B (g1,92)
= 1B - B

<|

1 ~ .~ ~ A~ ~ -
7D7'Z7(ZD ! - ZD )| B + [T B - Bl

max max
n —

1 A~ 12 ~ A~ -
+; =7 D72"(ZD" — ZD T In]B - B,

where T' = (n — L)*lﬁflzTZﬁfl. By Lemmas 15, 17, 18 and (C.4) in Ap-
pendix C.1, there exist some positive constants Cf, ¢ and ¢ such that

(e (o4 1
|1 (o) < CikSQiﬁ(M{((h 1+3/2 M¥q22+3/2) log(pq1 v ¢2) (C.6)

max n
with probability greater than 1 — ¢f (pg1 v qQ)_CEX< i
By Lemma 19, we obtain that there exist some positive constants C¥, ¢f and
¢ such that

|12 < CFsqy ™ (C.7)

max
with probability greater than 1 — ¢f (pqlqg)*C§< .
Let Q = ((n — L)"'UTU)Y2 = diag({w} }'/2,...,{w) }'/?). It follows from

Proposition 2 and |Q|r < \/w{ that there exist some positive constants C¥, c¥
and c3 such that

15188 < 01 |D ™' Dlmax|(n — L) "D Z"EQ ™ x| QU

(C.8)

o a asy . 1108(pq1q
< G (ME + MO (g v 452) y

. . ok
with probability greater than 1 — ¢ (pg1q2) 2.

It follows from (C.6)—(C.8) that there exist some positive constants Cp, cf
and ¢} such that

L |D7'Z7(0 - 2D 7' B)| )
-

€ «@ (% 1 —K
< Cosal (M + M) v MY (g2 v g2 [PERRE) oty

with probability greater than 1 — ¢ (pqlqg)’cg|< , which completes the proof. O



578 Q. Fang et al.
C.3. Technical lemmas and their proofs

Lemma 15. Hf‘Hl(gé;)( = O(CI}/Q)'

Proof. For a semi-positive definite block matrix

L X
A= )

we have that |X|% < |L|r|M|r. This can be seen as a special case of p = 1
in Theorem 4.2 of Horn and Mathias (1990). Without loss of generality, we
take L = 0 as an example. Let f‘jk = (f‘jl’km)lgl’mgql. Then for j = k, by
the diagonal structure of f‘jj, we have Hf‘H|F = O(qi/z). Applying the above

inequality, we obtain |Tx|r < A/|T; ¢ |Trelr = O(a”?). 0

Lemma 16. Suppose that Conditions 1-5 hold. Then there exist some positive
constants Cr, c§ and ¢ such that

~ 1
||I‘ _ I‘H < Cer(q‘f‘l“ og(pq1)
max n
with probability greater than 1 — cf (pql)’C;k.
Proof. The proof follows from Lemma 5 in Guo and Qiao (2021). O

Lemma 17. Suppose that Conditions 1-5 hold. Then there exist some positive
constants Cr, ¢ and ¢ such that

L p1z 7D . 1
HmD—lzT(ZD—l — ZD ) o < CrMF g ™! %

with probability greater than 1 — cf (pgr)~°2 .

Proof. We first consider Hﬁﬁ_liTZD_l — I'|max- By Lemma 26, Propo-
sition 6 and following the similar argument in the proof of Lemma 27, we obtain
that

(n—L) 30, CammjiCorm E(CiemnyiiCkm)

max —
Joklm @ﬁw,fm wjl(w,fm
< . Bt Cilgs Bm)) = Wit (i bm))
o e
< max it = Vi1, B 1 ) + Bty i = DX i1 bkm )
ki ek
log(pq1)

X a1+l
< Miq] —



Finite sample theory for high-dim funct time series 579

holds with probability greater than 1 — ¢f (pq1)~ . This, together with Lemma,
16, shows that

1 ~ -~ ~ A
D 'Z"(ZD ' — ZD V)| 1nax
——D'Z7( )l

I
1 A 1~ ES
< |——=D'Z"ZD ! — I'lmax + |T — T|max
n—L

o lo
= Opimigp 1y [Py

Lemma 18. Suppose that Conditions 1-6 hold. Then there exist some positive
constants Cp, c§f and c§ such that

~ o 1
IB - BH(lqwlz) < CBSM¥q22+3/2 Oggh)

with probability greater than 1 — cf (qg)_cgk,

Proof. We start with the convergence rate of |¥ — \Ingql’qZ). Elementwisely,
for fixed h, jand I =1,...,q1,m =1,...,q2, we have that

<<¢jl’ ﬁhj>7 (gm> - <<wjl7 th>7 ¢m> = <<wjla ﬁhj>a (gm - ¢m> = Il

Recall that B; = 335, _ @njim®j1(w)dm (v) and |apjim| < un; (1 +m) =12,

I = Yy, 2 anjirm Vjir Pm ) bm — Om) = Z anjim D O — Gm)

l'ym'=1 m’=1
$ H¢m (ybmHUhjl H+1/2

It follows from Lemma 25, for (h,j) € S,
IPIE
=1 m=1

log(q
M}/qg2+3/2 ’r(l 2)}

[®n; — Cnjle < ungay' Y max [6m — bl

= Op{uhj

Then [ & — @ (%) = 1 (5P [y — Uyl = Op{sMY gg /2 [ losle)y

This result, together with |D|max < {w{ }*/2, implies that there exists Cp such
that

IB-B[{"* = D(¥ - ¥)|{"" < Dl | ¥ — TS

< CpsMY g2t log(q2)

n

. . ok
with probability greater than 1 — ¢ (¢g2) ™. |
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Lemma 19. Suppose that Conditions 1-6 hold. Then there exist some positive
constants Cr, ¢¥ and ¢ such that

|(n — L) "D Z"R {8 < Crsqy "

*
—c¥

with probability greater than 1 — c¥(pq1q2)

Proof. Recall that we have 7, = Zﬁ:o PR Z?O:ql+1<<1pjl,ﬁhj>7 (;Abmxtjl =

Zﬁ:o 2_1 Temny- The matrix R are (n— L) x g3 matrices whose row vectors are
formed by {r¥, = (Fi1,...,714,)",t = L+1,...,n}. By Cauchy-Schwarz inequality

and the definition of @ w] 1, We obtain

— ~ L ~
(n = L)™' X0 11 Cle—nyjt D=0 2y =1 Pmhy’

{@J}l(}1/2

n
=2
Z Timhg!

t=L+1

>
Il

o
<
Il

—

N
D=
e
——

Il
D=
1=

E(f?mhj ) Z {rtmhj (Ttmhj )}
t=L+1

>
|

o
<
I

-

p
N tmng + Igmngr-
0j=1

[l
=

h

Recall that Cov(Cyji, Grjir) = wi I(L = 1), Brj(u,v) = 335, _1 anjimtji(u)dm (v)
and |apjim| < up;(l +m)~"" 1/2 Then for (h,j') € S,

Iy = B[ )] v, Bhjrs mdMCejrr)?] = > by, Brjr, dmpywinw

l’*q1+1 U'=q1+1

Z <’L/)J/l/ < Z ahj'l"m”¢]'l”¢m”> ¢m ( ¢m)>>2
zuq1+1 1" m" =1

0 =N o0 0

D hjrm +om = dml® D0 (D angrme)?
l'=q1+1 l'=q1+1 m"=1

<y (ar + )7 4k |G — Ol

To provide the upper bound of I5 mh;, we start with

Z;L:L-&-l[ctj’ll Ctj’lz - E(Ctj'llgtj'b)]
n—L

- <1/)J/l1’<20 NE Zé{j’j’7¢j’lz>> HZO N 0_] 3’ HS - OP{MX _1/2}

Combining this result with Lemmas 24 and 25 and following the similar argu-
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ment in the proof of the upper bound of Iy ;y,n;/, we obtain that, for (k,j’) € S,

IZ,tmhj’
o N T Zn: [Ct i’1 Ct i1 _E(Ct i1 Ct i1 )]
= Z Wity Bhjts DY Wjriy Bhyr, Gmyy ==L 71—2L ALl
li,la=q1+1
0
aX X " 2
<H207j/]'/7207j/]'/‘|s{ 2 <7/}j’l’7<ﬁhj’a¢M>>} :OP(Ilytth”)'
U'=q1+1
Then
1~ . ( ) q1 92 . ) )
D'z q1,92 -2 _ 2, —2K+
DT 2RI <5 e\ 31 (a4 m) 2k W — )
—1m=

< s max —2/@-#2+ —2Kk+3 max T 2
s JaT 40T s 16— 6l

= Op{sq;"™}. O

Appendix D: Proofs of theoretical results in Section 4
This section is organized in the same manner as Appendix C. The proofs of
Theorem 5 and Propositions 5-9 are presented in Appendices D.1 and D.2,

respectively, followed by supporting technical lemmas and their proofs in Ap-
pendix D.3.

D.1. Proof of Theorem 5
Here B € R and 4 € R? are the minimizer of (4.3). Then
oY~ 2D B - Z31 + Al BIY + Al
<5 |Y = RD7B = 212 + Al BI + Al

Letting A = B- B, § =4 —7, S{ be the complement of Sy in the set {1,...,p}
and S§ be the complement of Sy in the set {1,...,d}, we have

%{ATQTQA +2ATQT 28 + 0T ZT 26}
n

1 ~ ~
< (ATQTHETZN)Y - 2B~ 29) + A (IBIY ~ B + A[)
Fnz(lls = Iy + )
< lAT@T()} —QB— Z7) + lcSTZT(y — QOB - 2)
n n

A1 (188,157 = [Ase ) + A2 (185, 1 — [05511),
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where Q) = XD~!. By Propositions 8, 9 and the choice of Ay = Ap1 = Apy =
2051 (Mx.z + M) [ 2{log(pg + d)/n}/? + ¢~**1], we obtain that

1, A N 1
SATQN(Y - 0B - 29) < C[AV 0T (Y - 0B - 29)12,
An

< G185, 17 + |Asg i),

1 ~ 1 A
5TENY — B - 29) < _ILIZTY - OB - 27

An
< 5 (05,1 + 11955 ]1)-

2

Combining the above results, we have

3 1
< 5085 117 + 185,10) = 5 (18s¢ 11 + 1dsg ).

This ensures [Age | + |0ss |1 < 3(|As, |1 + 65, 1) Then we have that
IAI + 160 < 4(1As, 157 + 185, ]11) < 411 A] + vs2(8]) < 4v/s1 + s2(|A] + [5])-

This, together with Proposition 5, |A[; < ﬁ”Ang) and 75 > 6477 q(s1 + s2)
implies

l{ATﬁTﬁA +20TQT 28 + 0T 2T 26}

>3 (JAI? + 161%) — ¥ (Val Al + []1)?

*
> 2 (1A + [8)? = ¥ (ALY + [a]1)?
,7_*
>{5 — 1677 q(s1 + 2)} (18] + 8])?
*
72
> (1A] + a])*

This implies

*
3A\n
i(HAH +[91)* < = ZEAAIY + 16]1) < 6Anv/s1 + sa(|A] + [6]).
Therefore, we obtain that

AnA/S1 + S
T ’

AL+ 18] =

An(s1 + s
|AIF + 18] < Q
2
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Provided that |D™!||pax < al/Qcal/zqa/Q, the rest can be proved in a similar
way to the proof of Theorem 4, which shows

1B — Bl + 27—l < [T — ¥ +¢*2|7 — 3]s +o(1)
< D max| B = Bl + ¢*72|3 = 7|1 + o(1)

q n(S1 T 52
< - N - 47
< o {14+ 0(1)}.

D.2. Proofs of propositions
Proof of Proposition 5 By Lemmas 16, 20 and 28, we obtain

1 T 1 T
”ES S— EE{S S} max

1, 1 . 1 a1 -
= max(|~272 - ~E(2"Z}[,,.. |~ 2"~ ~E{27Q}],,,.. IT — Tlmax)
1 1 1 d
_ Op{max(./\/llz Og( ) MX a+1 Og’r(lpq) M Og(’:q ))}
— OP{MX an+1 log(pq + d) }
9 n °

Combining this with Condition 9 and following the similar argument in the
proof of Proposition 4 implies Proposition 5. O

Proof of Proposition 8 Notice that
1A PN 1A A~
QY -QB—-Zy)=-QT(QY-Q)B+R+E)
n n

where Q /\?ﬁ_l, B = DV and j-th row of U takes the form that ¥; =

[, ¥;(w)B;(u)du. Recall that ry = 30_) 332 1 GjuCibsi, B;)- Then it follows
from Lemma 17 when L = 0 that there exist some positive constants Cy, c¥

and ¢4 such that

H—QT(Q 0B, <[~ ﬂT(ﬂ )9, 1B

51 B
lo
CiklslM{(anrz g(pq) ,
n
with probability greater than 1 — ¢f (pq)_C;i< .

Second, it follows from Lemma 22 that there exist some positive constants
Cfy, cf and ¢ such that

max

1 ~
|0 R0, < Clysia ™",
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with probability greater than 1 — ¢f (pq)_C;X< .
Third, it follows from Proposition 3 that there exist some positive constants
Cfs, cf and ¢ such that

' laaipp-1p . log(pq)
|~ B0, = [~D' DDA B|E, < ClyM{T + Mg/ |22 EE,

with probability greater than 1 — ¢f (pq)*cgk .
Combining the above results, we obtain that there exist some positive con-
stants Co1, ¢f and ¢ such that

Lo 0 1
|7V = OB — 29)[{Dhx < Const (M + M) {g*+ o8(P0) | ey

max n
with probability greater than 1 — ¢f (pq)_c§< . O

Proof of Proposition 9 Notice that
1 . A 1_, N
—Z'(Y-QB—-29)=-Z"((Q—-Q)B+R+E).
n n

First, we show the deviation bound of L Z7(Q— ﬁ)B . It follows from Lemma 21

and the fact that |¥;|; = 3:1 u;l™" = O(uy), for j € Sy, that there exist some
positive constants C3;, cf and c¥ such that

1 ~ 1 ~
2270~ ) Bl < 1 2270 D Bl
1 ~
< HEZT(Q — Q) | max | Dl max[¥1
1 d
< CHsiMx z¢*! %7

with probability greater than 1 — ¢f (pqd)’cg‘ .
Second, it follows from Lemma 23 that there exist some positive constants
C3,, cf and ¢f such that

1 _
|2 Rl < Cysng ™12,

with probability greater than 1 — ¢f (pqd)_cgk )
Third, it follows from Lemma 28 that there exist some positive constants
C35,cF and ¢f such that

1 .\, flos(@)
|= 27 Bl < CEAME + Mo}y [ 22D,

. - o
with probability greater than 1 — ¢f(d)~ .
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Combining the above results, we obtain that there exist some positive con-
stants Coz, ¢f and ¢} such that

1, ¢ ~ o p o lo +d ke
2" 0B 29l < Cosr M, 7+ M) (g1 LD ey

. 1. _c*
with probability greater than 1 — ¢f(pg + d)~2. |

D.3. Technical lemmas and their proofs

Lemma 20. Suppose that Conditions 1-5 hold. Then there exist some positive
constants C1 zr, ¢f and c§ such that

1Lzr0 - Lezra)| < Guar My pgetty | 28000
n n n

with probability greater than 1 — cf (pqd)*‘:;
Proof. Note that

1 _..~ 1 ~X\—1/2~X,Z Xy\—1/2 X,Z
270 B2, = max, O E - ) el
1<i<gq

1/2
Let 5 = {wﬁ/@ﬁ} , then we obtain that

AX\—1/2~X,Z —1/2 X.Z
{Wﬁ} 1/29h7jkl - {wﬁ} 1/2Qh,jkl
~X,Z X,Z ~ X,Z
S On.ikl — Oh,jki {Wﬁ}l/2 - {Wﬁ}lp Oh,jki
J {wﬁ}lﬂ {@J)_g}m {w])_g}m

It follows Propositions 1, 6 and the fact E((yj, Zix) < of {o.;jf}l/2 that there exist

some positive constants C zr, ¢} and ¢§ such that

”lZT(A2 - lE{ZTQ}HIMX < C~'1,ZFMX,an+1 Lg(pqd)
n n n

with probability greater than 1 — ¢f (pqd)*cg< . O
Lemma 21. Suppose that Conditions 1-5 hold. Then there exist some positive

constants Ca zr, ¢f and c§ such that

1 ~ ~ 1 d
1 27( — 0) e < Ol e M g1y 220D

n

. . ok
with probability greater than 1 — cf (pgd) == .
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Proof. We first consider |2 ZTQ— LE{Z7Q}|max. By (B.5) in Appendix B.2,
we obtain that

ax (n—L)"' 30 1 Zi—n)jCekm B E(Z(¢—n);Ctkm)

i NES NS

axc <§fﬁca Yhom) — <Efj§7 Yim) log(pqd) |
n

m e OP{MX’Z
J.k,m /X
Wim

This, together with Lemma 20, implies that

1 T O 1 T 1 T 1 ™A 1 T
[=Z7(2 = Q) |max < [|[=Z7Q — =E{Z"Q}|max + |=Z"Q — =E{Z"Q} | max
n n n n n

lo d
= OP{MX’anJrl 7g(:q )} |
Lemma 22. Suppose that Conditions 1-5 and 8 hold. Then there exist some
positive constants Cr1, ¢§ and ¢ such that
HTL_IQTRH((J) ﬁCRlslq_’H_l

max

. 7 _ ok
with probability greater than 1 — cf (pq)~°= .

Proof. This lemma can be proved in a similar way to Lemma 19 and hence
the proof is omitted here. O

Lemma 23. Suppose that Conditions 1-5 and 8 hold. Then there exist some
positive constants Cra, ¢ and ¢ such that

Hn_lzTR”max < CRQSIQ_K+1/2

with probability greater than 1 — ¢ (pqd)_ci,

Proof. This lemma can be proved in a similar way to Lemma 19 and hence
the proof is omitted here. O

Appendix E: Existing results for sub-Gaussian (functional) linear
processes

For ease of reference, we present some useful existing results in Guo and Qiao
(2021), including non-asymptotic error bounds on estimated covariance ma-
trix function, estimated eigenpairs and estimated (auto)covariance between es-
timated FPC scores. By Theorem 1, we can easily extend these results from
Gaussian functional time series to accommodate sub-Gaussian functional linear
processes in Lemmas 24-27. Moreover, we also present non-asymptotic error
bounds on estimated (cross-)covariance matrix in Basu and Michailidis (2015)
to accommodate sub-Gaussian linear processes in Lemma 28.
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Lemma 24. Suppose that Conditions 1, 3 and 4 hold for sub-Gaussian linear
process {X(-)}tez. Then there exists some universal constant ¢1 > 0 such that
for any >0 and each j,k=1,...,p,

P {15856 = Sils > 203" M0} < dexp{—cnmin(r?,m)}.

Proof. This lemma follows directly from Theorem 1 and Theorem 2 of Guo
and Qiao (2021) and hence the proof is omitted here. O

Lemma 25. Suppose that Conditions 1, 3, 4 and 5 hold for sub-Gaussian linear
process {Xy()}ez. Let M be a positive integer possibly depending on (n,p). If
n 2 log(pM)M**2(M;X)?2, then there exist some constants ¢, 3 > 0 such that,
with probability greater than 1—¢éy(pM) =%, the estimates {w 7} and {w]l} satisfy

o (s P B | RSN

1<j<p,I<ISM i

Proof. This lemma follows directly from Theorem 1 and Theorem 3 of Guo
and Qiao (2021) and hence the proof is omitted here. O

Lemma 26. Suppose that conditions in Lemma 25 hold. Then there exists some
universal constant ¢4 > 0 such that for eachj =1,...,p,l =1,...,d;, any given
function g e H and n > 0,

P {‘<7Zjl - ¢j179>) > p1llg77 oM {wis 1210y + ﬁQHQH{M{(}?ﬁ(aH)nz}
< Sexp { — émmin(n?, 77)} +4dexp { - 64{M{f}*2nz*2<a+1>},

. 1/2
where g(-) = 32 g0 ()s 1977w = (Sppmwivgly)” s p1 = 2¢5 wi and

pa = 4(6 + 2¢/2)cy 2 {wi}? with cg < AMFwgEloTL.

Proof. This lemma follows directly from Theorem 1 and Lemma 3 of Guo
and Qiao (2021) and hence the proof is omitted here. O

Lemma 27. Suppose that conditions in Lemma 25 hold. Let M be a positive
integer possibly depending on (n,p). If n = log(pM)M*“+2(M:X)2, then there
exist some constants Cs,c¢ > 0 such that, with probability greater than 1 —
s (pM) =%, the estimates {5, ;.1 } satisfies

~AX X
‘Uh ikim — Oh, 'klm‘
max d ’ s MY M. (E.2)

1<j,k< X, ,X n
1<l]m<l\€ (l Vv m)aJrl wjlwk:m

Proof. This lemma follows directly from Theorem 1 and Theorem 4 of Guo
and Qiao (2021) and hence the proof is omitted here. O

Lemma 28. (i)Suppose {Z.} is from d-dimensional sub-Gaussian linear process
with absolute summable coefficients and bounded M? . For any given vector v €
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RE with |v|o < k (k=1,...,d), denote M(f ,,v) = 27 €8$SUPge[—r ) U f 2V
Then there exists some constants c, ¢1g,C17 > 0 such that for any n > 0,

P

|

In particular, with probability greater than 1 — ¢16(d) =17,

~Z
vi(E, — Eg)u‘ > M(fZ,V)’I]} < 2exp{—cnmin (772,7])},
and

~7 7
v (3, — X7 )v

VTEOZV

> an} < 2exp {—cnmin (772,77)} .

log(d)
Z < 2
12%3%'200}6 okl = Mi no

(7i)Suppose {€:} is from sub-Gaussian linear process with absolute summable co-
efficients, bounded M® and independent of {Z:}. Then there exist some positive
constants é1s,C19 such that with probability greater than 1 — é15(d)™°,

log(d)

n

max Z Zijer/n| < (MZ + M)

Isisd iz

Proof. This lemma can be proved in similar way to Proposition 2.4 of Basu
and Michailidis (2015) and be extended to sub-Gaussian linear process setting
following the similar techniques used in the proof of Theorem 1. O

Appendix F: Matrix representation of model (1.1)

It follows from the Karhunen-Loeve expansion that model (1.1) can be rewritten

as
0 L p

This, together with orthonormality of {¢,,(-)}m>1, implies that

<¢Jl ) Bhj (w, ) )Ce—nyju + €:(v),

HMS

<¢gl ﬁhj(% U)>7 ¢m(v)><(t7h)jl + Ttm + €tm,

Q
HI\/_ =
&

where i = Yo S0y 302, i), B (1, 0)), S (0))C—nyjt and € =

{pm,€ty for m = 1,...,qo, represent the approximation and random errors,
respectively. Let ry = (r41,...,7,)" and € = (€, -, €q,)"- Let R and E be
(n— L) x g2 matrices whose row vectors are formed by {r;,t = L+1,...,n} and

{€;,t =L +1,...,n} respectively. Then (1.1) can be represented in the matrix
form of (3.1).



Finite sample theory for high-dim funct time series 589

Acknowledgments

We are grateful to the editor, the associate editor and two referees for their
insightful comments, which have led to significant improvement of our paper.

References

AUE, A., NoriINHO, D. D. and HORMANN, S. (2015). On the prediction
of stationary functional time series. J. Amer. Statist. Assoc. 110 378-392.
MR3338510

Basu, S. and MICHAILIDIS, G. (2015). Regularized estimation in sparse high-
dimensional time series models. Ann. Statist. 43 1535-1567. MR3357870

BaTHIA, N., YAO, Q. and ZIEGELMANN, F. (2010). Identifying the finite di-
mensionality of curve time series. Ann. Statist. 38 3352-3386. MR2766855

Bosq, D. (2000). Linear processes in function spaces. Lecture Notes in Statistics
149. Springer-Verlag, New York Theory and applications. MR1783138

CHANG, J., CHEN, C., Qrao, X., and Ya0o, Q. (2021). An autocovariance-
based learning framework for high-dimensional functional time series.
arXiw:2008.12885v2.

CHoO, H., GOUDE, Y., BrossaT, X. and YA0, Q. (2013). Modeling and fore-
casting daily electricity load curves: a hybrid approach. J. Amer. Statist.
Assoc. 108 7-21. MR3174599

Fan, Y., JaMES, G. M. and RADCHENKO, P. (2015). Functional additive re-
gression. Ann. Statist. 43 2296—-2325. MR3396986

FaN, Y., Foutz, N., JAMEs, G. M. and JANK, W. (2014). Functional response
additive model estimation with online virtual stock markets. Ann. Appl. Stat.
8 2435-2460. MR3292504

GAO, Z., Ma, Y., WANG, H. and YA0, Q. (2019). Banded spatio-temporal
autoregressions. J. Fconometrics 208 211-230. MR3906968

GHOSH, S., KHARE, K. and MICHAILIDIS, G. (2019). High-dimensional poste-
rior consistency in Bayesian vector autoregressive models. J. Amer. Statist.
Assoc. 114 735-748. MR3963176

Guo, S. and Qrao, X. (2021). On consistency and sparsity for high-
dimensional functional time series with application to autoregressions.
arXiv:2003.11462v2.

Guo, S., WANG, Y. and YAO, Q. (2016). High-dimensional and banded vector
autoregressions. Biometrika 103 889-903. MR3620446

Harr, P. and HorowiTz, J. L. (2007). Methodology and convergence rates
for functional linear regression. Ann. Statist. 35 70-91. MR2332269

HamirToN, J. D. (1994). Time series analysis. Princeton University Press,
Princeton, NJ. MR1278033

HAN, Y. and Tsay, R. S. (2020). High-dimensional linear regression for de-
pendent data with applications to nowcasting. Statist. Sinica 30 1797-1827.
MR4260745

HORMANN, S., KipzINskI, L. U. and Kokoszka, P. (2015). Estimation in
functional lagged regression. J. Time Series Anal. 36 541-561. MR3356268


https://www.ams.org/mathscinet-getitem?mr=3338510
https://www.ams.org/mathscinet-getitem?mr=3357870
https://www.ams.org/mathscinet-getitem?mr=2766855
https://www.ams.org/mathscinet-getitem?mr=1783138
https://arxiv.org/abs/2008.12885v2
https://www.ams.org/mathscinet-getitem?mr=3174599
https://www.ams.org/mathscinet-getitem?mr=3396986
https://www.ams.org/mathscinet-getitem?mr=3292504
https://www.ams.org/mathscinet-getitem?mr=3906968
https://www.ams.org/mathscinet-getitem?mr=3963176
https://arxiv.org/abs/2003.11462v2
https://www.ams.org/mathscinet-getitem?mr=3620446
https://www.ams.org/mathscinet-getitem?mr=2332269
https://www.ams.org/mathscinet-getitem?mr=1278033
https://www.ams.org/mathscinet-getitem?mr=4260745
https://www.ams.org/mathscinet-getitem?mr=3356268

590 Q. Fang et al.

HORMANN, S. and KOokoszkA, P. (2010). Weakly dependent functional data.
Ann. Statist. 38 1845-1884. MR2662361

HoRrN, R. A. and MATHIAS, R. (1990). Cauchy-Schwarz inequalities associ-
ated with positive semidefinite matrices. Linear Algebra Appl. 142 63-82.
MR1077974

HorvATH, L., Kokoszka, P. and RICE, G. (2014). Testing stationarity of
functional time series. J. Econometrics 179 66-82. MR3153649

Kong, D., XuEg, K., Yao, F. and ZuANG, H. H. (2016). Partially functional
linear regression in high dimensions. Biometrika 103 147-159. MR3465827

LaMm, C. and YA0, Q. (2012). Factor modeling for high-dimensional time series:
inference for the number of factors. Ann. Statist. 40 694-726. MR2933663

L1, D., RoBiNsON, P. M. and SHANG, H. L. (2020). Long-range dependent
curve time series. J. Amer. Statist. Assoc. 115 957-971. MR4107692

L1, Z., Lam, C., YAO, J. and YAO, Q. (2019). On testing for high-dimensional
white noise. Ann. Statist. 47 3382-3412. MR4025746

LiN, J. and MIcHAILIDIS, G. (2017). Regularized estimation and testing for
high-dimensional multi-block vector-autoregressive models. J. Mach. Learn.
Res. 18 Paper No. 117, 49. MR3725456

LiN, J. and MicHAILIDIS, G. (2020). Regularized estimation of high-
dimensional factor-augmented vector autoregressive (FAVAR) models. J.
Mach. Learn. Res. 21 Paper No. 117, 51. MR4119185

LoH, P.-L. and WAINWRIGHT, M. J. (2012). High-dimensional regression with
noisy and missing data: provable guarantees with nonconvexity. Ann. Statist.
40 1637-1664. MR3015038

Luo, R. and Q1, X. (2017). Function-on-function linear regression by signal
compression. J. Amer. Statist. Assoc. 112 690-705. MR3671763

PANARETOS, V. M. and TAVAKOLI, S. (2013). Fourier analysis of stationary
time series in function space. Ann. Statist. 41 568-603. MR3099114

PuaM, T. and PANARETOS, V. M. (2018). Methodology and convergence
rates for functional time series regression. Statist. Sinica 28 2521-2539.
MR3839872

Qrao, X., Guo, S. and JAMES, G. M. (2019). Functional graphical models. J.
Amer. Statist. Assoc. 114 211-222. MR3941249

Qrao, X., Qian, C., JaMEs, G. M. and Guo, S. (2020). Doubly functional
graphical models in high dimensions. Biometrika 107 415-431. MR4108937

RUDELSON, M. and VERSHYNIN, R. (2013). Hanson-Wright inequality and
sub-Gaussian concentration. Flectron. Commun. Probab. 18 no. 82, 9.
MR3125258

SHU, H. and NaN, B. (2019). Estimation of large covariance and precision ma-
trices from temporally dependent observations. Ann. Statist. 47 1321-1350.
MR3911114

SIMON, N. and TIiBSHIRANI, R. (2012). Standardization and the group Lasso
penalty. Statist. Sinica 22 983-1001. MR2987480

SuN, Y., L1, Y., KUCEYESKI, A. and BAsu, S. (2018). Large spectral density
matrix estimation by thresholding. arXiv:1812.00532.

Wong, K. C., L1, Z. and TEWARI, A. (2020). Lasso guarantees for S-mixing


https://www.ams.org/mathscinet-getitem?mr=2662361
https://www.ams.org/mathscinet-getitem?mr=1077974
https://www.ams.org/mathscinet-getitem?mr=3153649
https://www.ams.org/mathscinet-getitem?mr=3465827
https://www.ams.org/mathscinet-getitem?mr=2933663
https://www.ams.org/mathscinet-getitem?mr=4107692
https://www.ams.org/mathscinet-getitem?mr=4025746
https://www.ams.org/mathscinet-getitem?mr=3725456
https://www.ams.org/mathscinet-getitem?mr=4119185
https://www.ams.org/mathscinet-getitem?mr=3015038
https://www.ams.org/mathscinet-getitem?mr=3671763
https://www.ams.org/mathscinet-getitem?mr=3099114
https://www.ams.org/mathscinet-getitem?mr=3839872
https://www.ams.org/mathscinet-getitem?mr=3941249
https://www.ams.org/mathscinet-getitem?mr=4108937
https://www.ams.org/mathscinet-getitem?mr=3125258
https://www.ams.org/mathscinet-getitem?mr=3911114
https://www.ams.org/mathscinet-getitem?mr=2987480
https://arxiv.org/abs/1812.00532

Finite sample theory for high-dim funct time series 591

heavy-tailed time series. Ann. Statist. 48 1124-1142. MR4102690

Wu, W.-B. and Wu, Y. N. (2016). Performance bounds for parameter esti-
mates of high-dimensional linear models with correlated errors. Electron. J.
Stat. 10 352-379. MR3466186

XUE, K. and YA0, F. (2021). Hypothesis testing in large-scale functional linear
regression. Statist. Sinica 31 1101-1123. MR4286208

Zuou, H. H. and RaskutTIi, G. (2019). Non-parametric sparse additive
auto-regressive network models. IEEE Trans. Inform. Theory 65 1473-1492.
MR3923181


https://www.ams.org/mathscinet-getitem?mr=4102690
https://www.ams.org/mathscinet-getitem?mr=3466186
https://www.ams.org/mathscinet-getitem?mr=4286208
https://www.ams.org/mathscinet-getitem?mr=3923181

	Introduction
	Finite sample theory
	Functional stability measure
	Functional cross-spectral stability measure
	Sub-Gaussian functional linear process
	Concentration bounds on sample (cross-)(auto)covariance matrix function
	Rates in elementwise  norm under a FPCA framework

	High-dimensional functional linear lagged regression
	Estimation procedure
	Theoretical properties

	High-dimensional partially functional linear regression
	Estimation procedure
	Theoretical properties

	Simulation studies
	High-dimensional functional linear lagged regression
	High-dimensional partially functional linear regression

	Discussion
	Additional theoretical results
	Proofs of theoretical results in Section 2
	Proofs of theorems
	Proofs of propositions
	Technical lemmas and their proofs

	Proofs of theoretical results in Section 3
	Proof of Theorem 4
	Proofs of propositions
	Technical lemmas and their proofs

	Proofs of theoretical results in Section 4
	Proof of Theorem 5 
	Proofs of propositions
	Technical lemmas and their proofs

	Existing results for sub-Gaussian (functional) linear processes
	Matrix representation of model (1.1)
	Acknowledgments
	References

