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a main result, we establish the invariance principle of the bootstrap sam-
ples, from which it follows that the bootstrap samples preserve the correct
second-order moment structure for a large class of random fields. The fre-
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to be effective in various applications including constructing confidence in-
tervals of correlograms for linear random fields, testing for signal presence
using scan statistics, and testing for spatial isotropy in Gaussian random
fields. Simulation studies are conducted to illustrate the finite sample per-
formance of the proposed method and to compare with the existing spatial
block bootstrap and subsampling methods.
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1. Introduction

Following Efron’s influential paper ([8]), development of bootstrap resampling
procedures has been growing rapidly. Bootstrap resampling constitutes a pow-
erful tool for approximating certain characteristics of a statistic, that cannot be
easily calculated by analytical means. In addition, bootstrap methods require no
explicit knowledge of the underlying dependence mechanism, or the marginal
distribution of the observations. These user-friendly features make bootstrap
resampling popular for statistical inference.

In recent decades, various resampling methods for dependent data have been
proposed. For time series data, block bootstrap and frequency domain boot-
strap are two important classes of bootstrap procedures. For block bootstrap
methods, include moving block bootstrap ([25] and [29]), non-overlapping block
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bootstrap ([3]), circular block bootstrap ([41]), and stationary block bootstrap
([43]). Despite its simplicity, the accuracy of a block bootstrap estimator criti-
cally depends on the block size employed. On the other hand, frequency domain
bootstrap methods use the periodogram of the data to derive bootstrap ap-
proximations for a class of estimators called ratio statistics, see [5], [10] and
[22] for details. [21] proposed the time frequency toggle (TFT) bootstrap for
time series, which directly resamples the discrete Fourier transform instead of
resampling the periodograms. Unlike periodograms, the bootstrapped discrete
Fourier transforms can be transformed back to generate bootstrap resamples of
a time series. Thus, TFT bootstrap not only comprises the classical frequency
domain bootstrap methods, but is also applicable to statistics that are based
on the time domain representation of the observations, including the CUSUM
statistic for change-point detection, and the least-squares statistic for unit-root
testing. By combining a time domain parametric bootstrap and a frequency
domain nonparametric bootstrap, [18] extended the autoregressive aided peri-
odogram bootstrap suggested by [22] and proposed a multiple hybrid bootstrap
for linear processes which can generate bootstrap resamples in the time domain.
For reviews of resampling methods in time series, see [2], [36], [26], and [38].

Apart from time series, subsampling and resampling methods for spatial
data have also become increasingly popular in past decades; see [6] for a brief
overview. [16] used a block resampling procedure to bootstrap spatial data.
[44] developed a subsampling method for random fields. [42] considered a block
bootstrap method for homogeneous strong mixing random fields. [46] used a
resampling method to estimate variance for statistics computed from spatial
data. [40] proposed subsampling methods for statistical inference in irregularly
spaced dependent observations. [28] used spatial subsampling for least squares
variogram estimation. [34] and [35] developed the optimal block sizes for spatial
subsampling and bootstrap methods. However, they are only applicable to vari-
ance estimation. [30] proposed a bootstrap method for Gaussian random fields
under fixed domain asymptotics. See [26] for a comprehensive review. Recently,
[32] proposed an AR sieve bootstrap for linear random fields. To the best of our
knowledge, the development of spatial bootstrap methods focuses mainly on the
block bootstrap type methods, and a frequency domain bootstrap method for
possibly nonlinear random fields remains absent from the literature.

In this paper, we develop a frequency domain bootstrap method for random
fields on Z

2. The basic principle of the proposed method is to bootstrap Fourier
coefficients of observations, and then inverse-transform the resampled Fourier
coefficients to obtain bootstrap samples in the spatial domain. By resampling
the discrete Fourier transforms instead of the periodograms, we can handle
situations where the statistics of interest are not expressible by periodograms,
such as scan statistics for testing presence of spatial signal, see Section 6. The
proposed frequency domain bootstrap method is similar in spirit to the TFT
bootstrap of [21] for time series. However, resampling the Fourier coefficients in
spatial data is not as straightforward as that in time series due to an additional
rotational symmetry of the coefficients. In addition, applications of the spatial
frequency domain bootstrap method, such as testing for signal presence and
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testing for spatial isotropy, are very different from applications of the time series
counterpart, such as change-point detection and testing for unit roots. Moreover,
to develop the bootstrap theory in spatial context, we establish an invariance
principle for the bootstrap partial sum process indexed by a classical example
of Vapnik-Chervonenkis-classes (V C-classes) of set [0, 1]2. The results can be
generalized to other V C-classes. The proofs of the asymptotic results require
different ideas and techniques compared with that for the time series counterpart
in [21].

We propose three resampling schemes for bootstrapping the Fourier coeffi-
cients of spatial processes in Z

2. We show that the resulting bootstrap sample
correctly captures the second-order moment structure for a large class of random
fields. The results are illustrated by applications to constructing confidence in-
tervals of correlograms for linear random fields, testing for the presence of signal,
and testing for spatial isotropy in Gaussian random fields. Simulation studies
are performed to explore the finite sample performance of the proposed method
and to compare with existing spatial block bootstrap and subsampling methods.

This paper is organized as follows. Section 2 provides the problem setting and
reviews the spectral theory for spatial processes in Z

2. In Section 3, three re-
sampling schemes for the Fourier coefficients are proposed to develop bootstrap
procedures for spatial processes in Z

2. The main results are presented in Section
4, in which we establish the validity of the bootstrap procedures by showing the
invariance principles of bootstrap samples under some meta-assumptions on the
bootstrapped Fourier coefficients. Section 5 verifies these meta-assumptions for
the three resampling schemes. In Section 6, we introduce some practical applica-
tions for the proposed bootstrap method, and simulation studies on comparing
the proposed method with existing spatial block bootstrap and subsampling
methods are given. Technical proofs of the theorems and lemmas are provided
in Appendices A and B.

2. Problem setting and spectral theory for spatial processes in Z
2

In this section, we describe the problem settings and preliminary about the
spectral theory for spatial processes. First, we introduce some notations. For any
vector a = (a1, a2, . . . , aq) ∈ R

q, denote |a| =
∏q

i=1 |ai|, ‖a‖ = maxi=1,...,q{|ai|}
and ‖a‖p = (

∑q
i=1 |ai|p)1/p for p ≥ 1. Let T = {(t1, t2) ∈ Z2, 1 ≤ tk ≤ dk, k =

1, 2} be a spatial rectangular lattice, and denote dT = (d1, d2) ∈ N
2. Denote

j�dT = (j1d1, j2d2) for j = (j1, j2) ∈ R
2. For any set G, denote the cardinality

of G by |G|. For random variables X ∈ L
p, denote the L

p norm as ‖X‖p =
(E(|X|p))1/p. For any two sequences of real numbers {an} and {bn}, denote
by an � bn when an = O(bn) and bn = O(an). For any x ∈ R, 	x
 is the
greatest integer that is less than or equal to x. All vectors are column vectors
unless specified otherwise, hence for any a = (a1, a2, . . . , aq) ∈ R

q and b =
(b1, b2, . . . , bq) ∈ R

q, the dot product between vectors a and b is defined as the
vector multiplication a′b = b′a =

∑q
i=1 aibi.
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2.1. Settings and assumptions

Let
{
V (t) : t ∈ Z

2
}

be a stationary random field on a two-dimensional grid
with mean μ = E(V (0)). Assume that we have observed {V (t) : t ∈ T} on
a rectangular spatial region T = {(t1, t2) ∈ Z

2, 1 ≤ tk ≤ dk, k = 1, 2} with
dT = (d1, d2) ∈ N

2 and cardinality |T | = d1d2. Throughout the paper, T → ∞
denotes both d1, d2 → ∞. We impose the following assumptions about the
increasing domain asymptotic framework and the underlying random fields for
establishing the asymptotic results.

Assumption A.1. For all sufficiently large |T |, there exist 0 < ξ ≤ 1/2 and
c1, c2 > 0 such that d1 > c1|T |ξ and d2 > c2|T |ξ.
Assumption A.2. The random field

{
V (t) : t ∈ Z

2
}
is stationary with abso-

lutely summable auto-covariance function γ(·), i.e.,
∑

j∈Z2 |γ(j)| < ∞, where
γ(j) = Cov(V (0), V (j)). In this case the spectral density of the random field
exists and can be expressed as

f(λ) =
1

4π2

∑
j∈Z2

e−iλ′jγ(j) , (2.1)

where λ ∈ [0, 2π]2. Moreover, f(·) is continuous and bounded. See, e.g., [11],
Section 1.2.2, for details.

Assumption A.3. The spectral density is bounded from below, i.e., f(λ) ≥ c

for some c > 0 and all λ ∈ [0, 2π]
2
.

Assumption A.4(p). For j ∈ Z2, assume that V (j) − μ = G(εj−s : s ∈ Z2),
where G(·) is a measurable function and {εi}i∈Z2 is an i.i.d. random field. Let
{ε̃i}i∈Z2 be an i.i.d. copy of {εi}i∈Z2 . Define the coupled version of V (j) as

Ṽ (j) = G(ε∗j−s : s ∈ Z
2), where

ε∗j−s =

{
εj−s if j− s = 0 ,
ε̃0 if j− s = 0 .

Assume that there exists some p > 0 such that V (j) belongs to L
p and Δp :=∑

j∈Z2 δj,p :=
∑

j∈Z2 ‖V (j)− Ṽ (j)‖p < ∞ .

Assumption A.4(p) is the p-stable condition for random fields defined in [9]
in which central limit theorems and invariance principles are established for a
wide class of stationary random fields. We will discuss the invariance principles
in detail in Section 4. The next assumption is a geometric-moment contraction
(GMC) condition:

Assumption A.5. Under the notation of Assumption A.4(p), define another

coupled version of V (j) as Ṽ †(j) = G(ε†j−s : s ∈ Z
2), where

ε†j−s =

{
εj−s if ‖s‖ < ‖j‖ ,
ε̃j−s if ‖s‖ ≥ ‖j‖ .
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Assume that there exist α > 0, C > 0 and 0 < ρ = ρ(α) < 1 such that for all

j ∈ Z2, E(|V (j)− Ṽ †(j)|α) ≤ Cρ‖j‖ .

Assumption A.5 is the spatial extension of the geometric-moment contraction
condition for time series, see [45]. This condition is fulfilled for short-range
dependent linear random fields with finite variance, and a large class of nonlinear
random fields such as nonlinearly transformed linear random fields, Volterra
fields and nonlinear spatial autoregressive models, see [9] and [7].

2.2. Fourier coefficients of spatial processes in Z2

Denote the sample mean as VT = |T |−1
∑

t∈T V (t), and the centered observa-

tions as Z(j) = V (j) − VT , j ∈ T . Let the Fourier coefficients be x(j) + iy(j),
where

x(j) =
1√
|T |
∑
t∈T

V (t)cos(−λ′
jt) , y(j) =

1√
|T |
∑
t∈T

V (t)sin(−λ′
jt) , (2.2)

for j = (j1, j2) ∈ T and λj = (λj1, λj2) =
(

2πj1
d1

, 2πj2
d2

)
. Note that the depen-

dence of Fourier coefficients x(j) and y(j) on T is suppressed for notational
simplicity. The basic principle of the proposed bootstrap method is to sample
the Fourier coefficients of the observations, and then back-transform them to
obtain bootstrap samples in the spatial domain. First, we discuss some struc-
tural properties of the Fourier coefficients of spatial processes in Z2. Note from
(2.2) that

x(dT − j) = x(j), y(dT − j) = −y(j) . (2.3)

By using the symmetry property in (2.3), we now partition T as T = N ∪Ñ ∪M
such that the Fourier coefficients defined on Ñ are determined by the Fourier
coefficients defined on N . Also, the information about the covariance structure
and mean of the random field are contained in N and M respectively. Hence, a
spatial process can be reconstructed from the Fourier coefficients defined on N
and M . In particular, when d1, d2 are both odd, define

N =

{
(t1, t2) : 1 ≤ t1 ≤ d1, 1 ≤ t2 ≤ d2 − 1

2

}
∪
{
(t1, t2) : 1 ≤ t1 ≤ d1 − 1

2
, t2 = d2

}
.

When d1 is odd and d2 is even (similar for d1 is even and d2 is odd), define

N =

{
(t1, t2) : 1 ≤ t1 ≤ d1, 1 ≤ t2 ≤ d2

2
− 1

}
∪
{
(t1, t2) : 1 ≤ t1 ≤ d1 − 1

2
, t2 =

d2
2
, d2

}
.
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When d1, d2 are both even, define

N =

{
(t1, t2) : 1 ≤ t1 ≤ d1, 1 ≤ t2 ≤ d2

2
− 1

}
∪
{
(t1, t2) : 1 ≤ t1 ≤ d1

2
− 1, t2 =

d2
2
, d2

}
.

Then, using the symmetry property in (2.3), subset Ñ of T is defined as

Ñ =

{
(t1, t2) ∈ T : ti =

{
di − si , if si < di

di , if si = di
for i = 1, 2 , (s1, s2) ∈ N

}
.

Note that the Fourier coefficients at j ∈ Ñ can be completely determined by the
Fourier coefficients at j ∈ N . From (2.2), for all c ∈ R, the Fourier coefficients
of {V (t) − c : t ∈ T} at j ∈ N are the same. In other words, the Fourier
coefficients in N and Ñ are invariant under additive constants and thus contain
no information about the mean. In contrast, all of the information about the
mean is contained in the Fourier coefficients x(j) for j ∈ M , where

M =

⎧⎪⎪⎨⎪⎪⎩
{(d1, d2)} , when d1, d2 are odd ,

{(d1, d2), (d1/2, d2)} , when only d1 is even ,
{(d1, d2), (d1, d2/2)} , when only d2 is even ,

{(d1, d2), (d1/2, d2), (d1, d2/2), (d1/2, d2/2)} , when d1, d2 are even .
(2.4)

Table 1 shows some examples to illustrate the partitions of set T under different
scenarios. Table 2 summarizes the value of the Fourier coefficients in M .

Table 1

The set N for extracting Fourier coefficients. In the grid, � are coefficients in N and ◦ are
coefficients in M .

d1, d2 are both odd d1 is odd, d2 is even d1, d2 are both even
d1 = 7, d2 = 7 d1 = 7, d2 = 8 d1 = 8, d2 = 8

(1, 1)

(1, 2)

(1, 3)

..

.

(1, 6)

(1, 7)

(2, 1) (3, 1) . . . (6, 1) (7, 1)

(7, 7)

� � � � � � �

� � � � � � �

� � � � � � �

� � � ©

(1, 1)

(1, 2)

(1, 3)

(1, 4)

.

.

(1, 7)

(1, 8)

(2, 1) (3, 1) . . . (6, 1) (7, 1)

(7, 8)

� � � � � � �

� � � � � � �

� � � � � � �

� � � ©

� � � ©

(1, 1)

(1, 2)

(1, 3)

(1, 4)

.

.

(1, 7)

(1, 8)

(2, 1) (3, 1) . . . (6, 1) (7, 1) (8, 1)

(8, 8)

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � © ©

� � � © ©

Since in spatial statistics the main concern is the covariance structure of the
random field, we focus on bootstrapping the Fourier coefficients in N . The issue
of bootstrapping spatial mean is deferred to Section 4.2.3.
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Table 2

Fourier coefficients in M contain information about the mean.

j (d1, d2) (d1/2, d2) (d1, d2/2) (d1/2, d2/2)

x(j)
√

|T |VT

∑
t∈T (−1)t1V (t)√

|T |

∑
t∈T (−1)t2V (t)√

|T |

∑
t∈T (−1)t1+t2V (t)√

|T |
y(j) 0 0 0 0

2.3. Kernel spectral density estimation

We consider the kernel spectral density estimator

f̂T (λ) =

∑
j∈Z2 K

(
λ1−λj1

hT 1
,
λ2−λj2

hT 2

)
I(j)

4π2
∑

j∈Z2 K
(

λj1

hT 1
,
λj2

hT 2

) , (2.5)

for λ = (λ1, λ2) ∈ [0, 2π]2, where λj = (λj1, λj2) =
(

2πj1
d1

, 2πj2
d2

)
for j ∈ Z2,

K(·) is the kernel function, hT = (hT 1, hT 2) ∈ R
2 is the bandwidth satisfying

hT k → 0, hT 1 � hT 2 and hT kdk → ∞ for k = 1, 2, and

I(j) =

{
0 , if j ∈ D = {(c1d1, c2d2) : (c1, c2) ∈ Z

2} ,
x2(j) + y2(j) , if j ∈ Z

2\D ,

is the periodogram at frequency λj. The periodogram can be set to 0 on D since
it only contains information about the mean. We impose the following mild
regularity assumptions on the kernel function K(·).
Assumption K.1. The kernel K(·) is a real, positive, even function with∫
R2 K(λ)dλ = 1 and

4π2

|hT ||T |
∑
j∈Z2

K

(
2πj1
hT 1d1

,
2πj2
hT 2d2

)
=

∫
R2

K(λ)dλ+ o(1) = 1 + o(1) .

Assumption K.2. Assume that supλ∈[0,2π]2 |Kh(λ)| = O
(
(hT 1hT 2)

−1
)
, where

Kh(λ) =
1

|hT |
∑
j∈Z2

K

(
λ1 + 2πj1

hT 1

,
λ2 + 2πj2

hT 2

)
. (2.6)

Assumption K.3. The inverse Fourier transform of K(·),

k(x) =

∫
R2

K(λ) exp(ix′λ)dλ , (2.7)

is Lipschitz continuous with support [−1, 1]2.

Assumption K.4. The quantityKh(λ) in (2.6) satisfies the following uniformly
Lipschitz condition: for some constant LK > 0,

|hT |3/2|Kh(λs)−Kh(λt)| ≤ LK‖λs − λt‖ ,

uniformly in λs =
(

2πs1
d1

, 2πs2
d2

)
and λt =

(
2πt1
d1

, 2πt2
d2

)
.
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Remark 2.1. Assumption K.2 is mild, as it holds for any bounded kernels with
compact support. Moreover, under Assumption K.3, we have

Kh(λ) =
1

4π2

∑
j∈Z2

k(j1hT 1, j2hT 2) exp(−ij′λ) ,

and

K(λ) =
1

4π2

∫
k(x) exp(−ix′λ)dx ,

where k(·) is defined in (2.7). From the above representations it is clear that for
large T ,

Kh(λ) ∼=
1

|hT |
K

(
λ1

hT 1

,
λ2

hT 2

)
, (2.8)

which is of order O
(
|hT |−1

)
for bounded K(·). By (2.8), if the kernel K(·)

is uniformly Lipschitz continuous with compact support, then Assumption K.4
holds for a small enough hT = (hT 1, hT 2). For infinite support kernels, if K(·)
is bounded and continuously differentiable, then Assumption K.4 also holds.
Assumptions K.1 to K.4 hold for many commonly used kernels such as uni-
form kernels K(λ1, λ2) =

1
41{|λ1|≤1}1{|λ2|≤1}, multiplicative 2-d Epanechnikov

kernels K(λ1, λ2) =
9
16 (1− λ2

1)(1− λ2
2)1{|λ1|≤1}1{|λ2|≤1}, and Gaussian kernels

K(λ1, λ2) =
1
2π exp(

−λ2
1−λ2

2

2 ).

3. Frequency domain bootstrap

In this section, we propose three bootstrap schemes in the frequency domain,
namely Residual-Based Bootstrap (RB), Wild Bootstrap (WB) and Local Boot-
strap (LB), for resampling the Fourier coefficients. Similar bootstrap schemes in
time series context are first proposed by [10], [37], and [17] respectively. A boot-
strap procedure that produces resamples of spatial processes is then developed
in Section 3.2.

3.1. Bootstrap schemes

3.1.1. Residual-based bootstrap (RB)

In RB, we first standardize the Fourier coefficients to obtain a set of residuals,
which consists of approximately i.i.d. normal random variables. Hence, i.i.d. re-
sampling methods can be applied to yield a resample of Fourier coefficients.

Step 1: Estimate the spectral density f by f̂T , which satisfies

sup
λ∈[0,2π]2

∣∣∣f̂T (λ)− f(λ)
∣∣∣ p−→ 0 . (3.1)
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Step 2: For the Fourier coefficients x(j) and y(j), j ∈ N , define

s̃j,1 =
x(j)√

2π2f̂T (λj)
, s̃j,2 =

y(j)√
2π2f̂T (λj)

.

For j ∈ N and k = 1, 2, define the residuals sj,k by standardizing s̃j,k as

sj,k =
s̃j,k − 1

2|N |
∑

l∈N,k s̃l,k√
1

2|N |
∑

t∈N,k

(
s̃t,k − 1

2|N |
∑

l∈N,k s̃l,k

)2 .

Note that the residuals sj,k are approximately independent standard normal
variables, see Theorem 4.1 of [33].
Step 3: Draw randomly and with replacement from S � {sj,k : k = 1, 2, j ∈ N}
to obtain an i.i.d. sample {s∗j,k, j ∈ N, k = 1, 2}.
Step 4: Define the bootstrapped Fourier coefficients by

x∗(j) =

√
2π2f̂T (λj)s

∗
j,1 , y∗(j) =

√
2π2f̂T (λj)s

∗
j,2 ,

where j ∈ N .

3.1.2. Wild bootstrap (WB)

Compared to RB, the WB further exploits the asymptotic normality of the
Fourier coefficients by generating independent standard normal random vari-
ables instead of resampling the residuals.

Step 1: Estimate the spectral density f by f̂T , which satisfies (3.1).
Step 2: Define the bootstrapped Fourier coefficients by

x∗(j) =

√
2π2f̂T (λj)Gj,1 , y∗(j) =

√
2π2f̂T (λj)Gj,2 ,

where {Gj,k : j ∈ N, k = 1, 2} are independent standard normal random vari-
ables.

For RB and WB, conditions for kernel spectral density estimators satisfying
(3.1) can be found in [33] for a large class of random fields.

3.1.3. Local bootstrap (LB)

In contrast to RB and WB, LB does not require any spectral density estima-
tion. Instead, LB makes use of the smoothness of spectral density, which ensures
that in a neighborhood of each frequency, the distributions of the Fourier coeffi-
cients are nearly identical. Therefore, replicates of the Fourier coefficients can be
produced by directly resampling the Fourier coefficients within neighborhoods.
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Step 1: Select a symmetric, nonnegative kernel K(·) that satisfies Assumptions

K.1 and K.4. Select a bandwidth hT = (hT 1, hT 2) ∈ R
2 such that hT k → 0,

hT 1 � hT 2 and hT kdk → ∞ for k = 1, 2.
Step 2: Generate i.i.d. jittering variables {Jj,k,T : j ∈ N, k = 1, 2} on Z

2 with

ps,T = P(Jj,k,T = s) =
K
(

2πs1
hT 1d1

, 2πs2
hT 2d2

)
∑

j∈Z2 K
(

2πj1
hT 1d1

, 2πj2
hT 2d2

) , (3.2)

where s = (s1, s2) ∈ Z
2. Independent of {Jj,k,T }, generate i.i.d. Bernoulli ran-

dom variables {Bj,k : j ∈ N, k = 1, 2} with parameter 1/2.
Step 3: For j ∈ N , define the uncentered bootstrapped Fourier coefficients by
resampling within a neighborhood of j.

x̃∗(j) =

{
x(j+ Jj,1,T ) if Bj,1 = 0 ,
y(j+ Jj,1,T ) if Bj,1 = 1 ,

and ỹ∗(j) =

{
y(j+ Jj,2,T ) if Bj,2 = 0 ,
x(j+ Jj,2,T ) if Bj,2 = 1 .

Step 4: Define the centered bootstrapped Fourier coefficients by

(x∗(j), y∗(j)) = (x̃∗(j), ỹ∗(j))− 1

2

(∑
s∈Z2

ps,T (x(j+ s) + y(j+ s))

)
(1, 1) .

3.2. Bootstrap procedure for spatial processes

With the three bootstrap schemes for the Fourier coefficients, we develop the
bootstrap procedure for resampling spatial processes as follows:

Step 1: Compute the Fourier Coefficients x(j), y(j) for j ∈ T using Fast Fourier
Transform (FFT).
Step 2: Set x∗(j) = y∗(j) = 0 for j ∈ M , where M is defined in (2.4).
Step 3: Obtain a bootstrap sample {(x∗(j), y∗(j)) : j ∈ N} using one of the
RB, WB or LB schemes.
Step 4: Set bootstrapped Fourier coefficients on Ñ according to the symmetric
relations (2.3), i.e. x∗(dT − j) = x∗(j), and y∗(dT − j) = −y∗(j).
Step 5: Use the inverse FFT algorithm to transform the bootstrap Fourier
coefficients {x∗(j)+ iy∗(j), j ∈ T} back into the spatial domain {Z∗(t) : t ∈ T},
where

Z∗(t) =
1√
|T |
∑
j∈T

(x∗(j) + iy∗(j)) exp(iλ′
jt) .

The resulting bootstrap spatial process {Z∗(t) : t ∈ T} is real-valued and
centered, and can be used for inference on a large class of statistics that are based
on partial sums of the centered process {Z(t)}; see Section 6 for examples. Note
that since the Fourier coefficients in N can also be uniquely determined by the
Fourier coefficients in Ñ , it would be technically the same if we interchange the
roles of Ñ and N in the above bootstrap procedure. That is, we can first obtain
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a bootstrap sample on Ñ instead of N in Step 3, and then set bootstrapped
Fourier coefficients on N instead of Ñ in Step 4 using the rotational symmetry
in (2.3).

Remark 3.1. To compare the computational cost of the proposed frequency
domain bootstrap methods and the existing spatial block bootstrap method,
we first investigate the number of random data required to be simulated for
generating one bootstrap spatial resample. The classical block bootstrap with a
block size m1×m2 typically requires a simulation of (	d1/m1
+1)(	d2/m2
+1)
random data to generate one bootstrap spatial resample, which is with order of
O(|T |/(m1m2)). On the other hand, the proposed frequency domain bootstrap
methods need to simulate 2|N | random data for RB and WB and 4|N | ran-
dom data for LB to generate one bootstrap spatial resample, which are of order
O(|T |). Hence, the computational cost for generating resamples in the classical
block bootstrap method is smaller compared to that of the proposed methods as
the block size m1 ×m2 diverges. However, in practice the computational com-
plexity for evaluating the test statistics under consideration is O(|T |) and hence
the computational complexity for conducting bootstrap inference, for example
constructing bootstrap confidence intervals, is O(B|T |), where B is the number
of bootstrap replications. Thus, the computational cost of both methods are
essentially of the same order O(B|T |).

4. Main results

In this section, we first review the invariance principles of the partial sum process
of a random field. Then, we present the main results of the paper: the invariance
principles of the partial sum process of the bootstrap sample (Theorem 4.3), and
the validity of the bootstrap methods (Corollaries 4.4 and 4.5).

4.1. Invariance principles for random fields

To facilitate applications to different situations, we consider the following col-
lection of Borel subsets of [0, 1]2 as the index set of the partial sum process:

Q′
2 =

{
[u1, v1]× [u2, v2] : u1 ≤ v1, u2 ≤ v2, (u1, u2), (v1, v2) ∈ [0, 1]2

}
.

The class Q′
2 is a classical example of Vapnik-Chervonenkis-classes (V C-classes),

with V C-index equal to 5; see Section 2.6 of [48].
We equip the class Q′

2 with the pseudo-metric ρ(A,B) =
√

L(AΔB), where
A,B ∈ Q′

2, L(·) is the Lebesgue measure and Δ is the symmetric difference
operator. Given A = [a11, a12] × [a21, a22] ∈ Q′

2 and a rectangular region E ={
(e1, e2) ∈ Z2, bk ≤ ek ≤ ck, k = 1, 2

}
, define the scaled region as A⊗E = ([b1+

(c1−b1)a11, b1+(c1−b1)a12]×[b2+(c2−b2)a21, b2+(c2−b2)a22])
⋂

E. Note that
A⊗E = gE(A), where gE(u1, u2) = (	b1 + u1(c1 − b1)
, 	b2 + u2(c2 − b2)
) ∈ E
is a linear mapping that translates and rescales [0, 1]2 to E.
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Define the Q′
2-indexed partial sum processes {ST (A) : A ∈ Q′

2} as ST (A) =∑
t∈A⊗T (V (t) − μ). Let C be the space of continuous real functions on Q′

2,
equipped with the norm ‖ · ‖Q′

2
defined by ‖f‖Q′

2
= supA∈Q′

2
|f(A)|. A standard

Brownian motion indexed by Q′
2 is a mean zero Gaussian process {W(A) :

A ∈ Q′
2} with sample paths in C and Cov(W(A),W(B)) = L(A

⋂
B), where

L(·) is the Lebesgue measure. A standard Brownian bridge indexed by Q′
2 is

a mean zero Gaussian process {B(A) : A ∈ Q′
2} with sample paths in C and

Cov(B(A),B(B)) = L(A
⋂

B)− L(A)L(B).
The following lemmas by [9] give the invariance principles of the partial sum

processes {ST (A) : A ∈ Q′
2}.

Lemma 4.1. Under Assumptions A.1 and A.4(p) with some p > 8, the Q′
2-

indexed partial sum processes of the random field {V (t) : t ∈ T} satisfies the
invariance principle: when T → ∞,{

(4π2f(0)|T |)−1/2
ST (A) : A ∈ Q′

2

}
d−→ {W(A) : A ∈ Q′

2} ,

where f is the spectral density of {V (·)} defined in (2.1).

4.2. Invariance principles for bootstrap samples

This section contains the main result: the invariance principles for the partial
sum process of the bootstrap sample. This result implies the validity of the boot-
strap methods in case the invariance principles are involved in the asymptotic
of the underlying test statistics. To facilitate further extensions to bootstrap
schemes other than RB, WB and LB, the results are formulated in a general
way under some meta-assumptions on the resampling scheme. In Section 5, we
verify the meta-assumptions for the RB, WB and LB schemes.

4.2.1. Assumptions on the bootstrapped Fourier coefficients

Denote L∗, E∗, Var∗, Cov∗, and P
∗ as the bootstrap distribution, expectation,

variance, covariance and probability, conditional on the data, respectively. More-
over, let {·|V (·)} denote conditioning on the data.

Assumption B.1. For the bootstrap scheme in the frequency domain, condi-
tional on the data, the resampled Fourier coefficients {x∗(j), y∗(j), j ∈ N} are
mutually independent with

E
∗(x∗(k)) = E

∗(y∗(k)) = 0 .

Assumption B.2. Uniform convergence of the variances of the bootstrapped
Fourier coefficients:

sup
j∈N

∣∣Var∗(x∗(j))− 2π2f(λj)
∣∣ = op(1) , sup

j∈N

∣∣Var∗(y∗(j))− 2π2f(λj)
∣∣ = op(1) .
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Assumption B.3. There exists some p > 8 such that the p-th moments of the
bootstrapped Fourier coefficients are uniformly bounded:

sup
j∈N

E
∗ (|x∗(j)|p) ≤ C1 + op(1) , sup

j∈N
E
∗ (|y∗(j)|p) ≤ C1 + op(1) .

The Mallows distance on the space of all real Borel probability measures with

finite variance is given by d2(L1,L2) = inf
(
E|X1 −X2|2

)1/2
, where the infimum

is taking over all random variables X1 and X2 with marginal distributions L1

and L2, respectively. Convergence in Mallows distance implies convergence in
distribution and convergence in the second moment, see [31].

Assumption B.4. The probability distributions of the bootstrapped Fourier
coefficients converge uniformly in the Mallows distance to the same limit as the
Fourier coefficients do, i.e.,

sup
j∈N

d2

(
L∗(x∗(j)), N

(
0, 2π2f(λj)

))
= op(1) ,

sup
j∈N

d2

(
L∗(y∗(j)), N

(
0, 2π2f(λj)

))
= op(1) .

4.2.2. Asymptotic results on bootstrap samples

The following lemma asserts that the bootstrap sample {Z∗(·)} and the corre-
sponding partial sum process have correct auto-covariance structures.

Lemma 4.2. Let AT ∈ Q′
2 be a set which depends on T , and Assumptions A.1

and B.1 hold.

(a) For any AT , B ∈ Q′
2, we have E

∗
(

1√
|AT⊗T |

∑
l∈B⊗(AT⊗T ) Z

∗(l)

)
= 0 .

(b) If Assumptions A.2 and B.2 also hold, then for AT , B, C ∈ Q′
2,

Cov∗
(

1√
|AT⊗T |

∑
l1∈B⊗(AT⊗T ) Z

∗(l1),
1√

|AT⊗T |

∑
l2∈C⊗(AT⊗T ) Z

∗(l2)
)

p−→
{

4π2f(0)L(B
⋂

C) , if |AT ⊗ T |/|T | → 0 ,
4π2f(0)[L(B

⋂
C)− L(B)L(C)] , if AT = [0, 1]2 .

(c) If Assumptions A.2 and B.2 also hold, then for any fixed l1, l2 ∈ T ,

Cov∗(Z∗(l1), Z
∗(l2)) = Cov(V (l1), V (l2)) + op(1)

= Cov(Z(l1), Z(l2)) + op(1) .

For any rectangular region T , denote the Q′
2-indexed partial sum processes

of the bootstrap sample {S∗
T (B) : B ∈ Q′

2} as S∗
T (B) =

∑
t∈B⊗T Z∗(t). Note

that if AT = [0, 1]2, then AT ⊗ T = T . The following theorem establishes the
invariance principles for the Q′

2- indexed partial sum processes of the bootstrap
samples.
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Theorem 4.3. Suppose that Assumptions A.1, A.2, B.1-B.3 hold.

(a) If AT ∈ Q′
2 and |AT ⊗ T |/|T | → 0, then it holds in probability{

(4π2f(0)|AT ⊗ T |)−1/2S∗
AT⊗T (B) : B ∈ Q′

2|V (·)
} d−→ {W(B) : B ∈ Q′

2} .

(b) If AT = [0, 1]2 and Assumption B.4 holds, then it holds in probability{
(4π2f(0)|T |)−1/2S∗

T (B) : B ∈ Q′
2|V (·)

}
d−→ {B(B) : B ∈ Q′

2} .

The following corollary states that the bootstrap samples preserve the second-
order dependence structure of the random field asymptotically. In particular, if
the underlying random field is Gaussian, then the proposed bootstrap proce-
dure produces asymptotically valid approximation of the centered random field
{V (t)− μ}.
Corollary 4.4. If Assumptions A.1, A.2, B.1-B.3 hold, then for any subset
{l1, ..., lp} of positive integers in Z2, we have

(Z∗(l1), ..., Z
∗(lp)|V (·)) d−→ N(0,Σ) ,

in probability, where Σ = (σi,j)i,j=1,...,p with σi,j = Cov(V (li), V (lj)).

4.2.3. Bootstrapping the mean

The bootstrap sample {Z∗(t) : t ∈ T} obtained from Section 3.2 is real-valued
and centered. In order to obtain a non-centered bootstrap process, we may
employ a separate bootstrap procedure independent of {Z∗(·)} to acquire a
bootstrapped mean μ∗

T . For details on bootstrapping the mean μ∗
T , see [16], [42],

[46], [26], and [35]. Then, the non-centered bootstrap process V ∗(·) = Z∗(·)+μ∗
T

gives a bootstrap approximation of V (·). Note that {Z∗(·)} contains information
about the covariance structure of the spatial process and μ∗

T contains informa-
tion about the mean level. The following corollary shows that the non-centered
bootstrap sample V ∗(·) has the same asymptotic behavior as the original spatial
process in terms of the partial sum process.

Corollary 4.5. Suppose that Assumptions A.1, A.2, B.1-B.4 hold. Let μ∗
T

be any bootstrap version of the mean μ = E(V (0)) (taken independently from
{Z∗(·)}) such that for all z ∈ R,

P
∗
(√

|T |(μ∗
T − μ) ≤ z

)
p−→ Φ

(
z√

4π2f(0)

)
,

where Φ(·) denotes the standard normal distribution function. Then, it holds in
probability that{

(4π2f(0)|T |)−1/2
∑

t∈B⊗T

(V ∗(t)− μ) : B ∈ Q′
2

∣∣∣V (·)
}

d−→ {W(B) : B ∈ Q′
2} ,

where V ∗(t) = Z∗(t) + μ∗
T .
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Possible generalizations of asymptotic results in Section 4 to other V C-classes
with V C-index equal to V as index sets can be established with p > 2(V − 1)
moment conditions, see Theorem 2(i) of [9] for the invariance principles indexed
by V C-classes. For example, the class Q2 =

{
[0, v1]× [0, v2] : (v1, v2) ∈ [0, 1]2

}
is a classical example of V C-classes, with V C-index equal to 3, and the above
asymptotic results hold when the moment condition with p > 4 in Assumptions
A.4(p) and B.3 hold.

Remark 4.1. From Theorem 4.3 and Corollary 4.5, the proposed frequency
domain bootstrap method can mimic the second-order dependence structure
of the random field asymptotically. Hence, the proposed method is applicable
to statistics of interest which depend asymptotically on second order depen-
dence structure. In Section 6, we discuss applications of the proposed bootstrap
method to confidence intervals construction of correlograms for linear random
fields, testing for signal presence in random fields, and spatial isotropy test for
Gaussian random fields. The validities of the proposed bootstrap method for
the above applications are also theoretically investigated.

5. Validity of meta-assumptions for the resampling schemes RB,
WB, and LB

In this section, we prove the validity of the bootstrap schemes RB, WB, and
LB under some conditions on the spatial processes. We also give conditions
under which the bootstrap schemes remain valid when the bootstrap methods
are applied to an estimated field {V̂ (t) : t ∈ T} rather than the observed field
{V (t) : t ∈ T}.

Theorem 5.1. Let Assumptions A.1-A.3, A.4(p) with some p > 8 and K.1
hold.

(a) Suppose that Assumptions K.3 and A.5 with E
(
|V (0)|16

)
< ∞ hold, and

the bandwidth satisfies |hT | → 0, (|hT ||T |η)−1 = O(1) for some 0 < η <
1/2. Then, the kernel spectral density estimator (2.5) satisfies (3.1), and
RB satisfies Assumptions B.1 to B.4.

(b) Suppose that Assumptions K.3 and A.5 with E (|V (0)|μ) < ∞ for some
4 < μ ≤ 8 hold, and the bandwidth satisfies |hT | → 0, (|hT ||T |η)−1 = O(1)

for some 0 < η < (μ−4)
μ . Then, the kernel spectral density estimator (2.5)

satisfies (3.1), and WB satisfies Assumptions B.1 to B.4.
(c) Suppose that Assumptions K.4 and A.5 with E

(
|V (0)|16

)
< ∞ hold, the

bandwidth satisfies |hT | + (|hT |4|T |)−1 → 0, and the kernel K(·) fulfills
1

|T ||hT |
∑

j∈Z2 K2
(

2πj1
hT 1d1

, 2πj2
hT 2d2

)
= O(1). Then, LB satisfies Assumptions

B.1 to B.4.

For illustration, we give some examples where Theorem 5.1 is applicable.

Example 5.1 (Linear Random Fields). Let {εt}t∈Z2 be an i.i.d. random field
with E(ε0) = 0, E(|ε0|p) < ∞ with p ≥ 16. The linear random field {V (t) :
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t ∈ Z
2}, i.e., V (j) =

∑
s∈Z2 asεj−s with |aj| ≤ Cρ‖j‖ for some ρ ∈ (0, 1) and

C > 0, satisfies Assumptions A.4(p) with p > 8 and A.5 with E
(
|V (0)|16

)
< ∞

since
∑

j∈Z2 δj,p =
∑

j∈Z2 ‖V (j) − Ṽ (j)‖p =
∑

j∈Z2 |aj|‖ε0 − ε̃0‖p < ∞ and

δj,p = O(ρ‖j‖) respectively.

Example 5.2 (Volterra Fields). Volterra Fields is a class of nonlinear random
fields which plays an important role in the nonlinear system theory. Let {εt}t∈Z2

be an i.i.d. random field with E(|ε0|p) < ∞ for some p ≥ 32. Consider the second
order Volterra process

{
V (t) : t ∈ Z

2
}
,

V (j) =
∑

s1,s2∈Z2

as1,s2εj−s1εj−s2 ,

where {as1,s2} are real coefficients with as1,s2 = 0 if s1 = s2. Then, by Rosenthal
inequality, there exists a constant Cp > 0 such that

δj,p = ‖V (j)− Ṽ (j)‖p ≤ Cp

(
A

1/2
j ‖ε0‖2‖ε0‖p +B

1/p
j ‖ε0‖2p

)
,

where Aj =
∑

s1,s2∈Z2(a2s1,j+a2j,s2) and Bj =
∑

s1,s2∈Z2(|as1,j|p+ |aj,s2 |p). Thus,
if as1,s2 = O(ρmax{‖s1‖,‖s2‖}) for some ρ ∈ (0, 1), then δj,p = O(ρ‖j‖), and
Assumptions A.4(p) with p > 8 and A.5 with E

(
|V (0)|16

)
< ∞ hold.

Example 5.3 (Nonlinear Spatial Autoregressive Models). Let N ⊂ Z
2 be a

finite set and 0 /∈ N . Consider the spatial process in the form of nonlinear
autoregressive scheme

V (t) = G({V (t− s)}s∈N ; εt) ,

where the function G is such that there exists nonnegative numbers us, s ∈ N ,
with

∑
s∈N us < 1 and the following holds: for all {v(−s)}s∈N and {v′(−s)}s∈N ,

|G({v(−s)}s∈N ; εt)−G({v′(−s)}s∈N ; εt)| ≤
∑
s∈N

us|v(−s)− v′(−s)| .

Also assume that there exists {v(−s)}s∈N such that G({v(−s)}s∈N ; ε0) ∈ L
p

for p ≥ 16. Then following the argument in Section 5 of [45] or Example 2 of
[7], we have δj,p = O(ρ‖j‖) for some ρ ∈ (0, 1) and hence Assumptions A.4(p)
with p > 8 and A.5 with E

(
|V (0)|16

)
< ∞ hold.

In many applications, the bootstrap methods are not applied directly to sta-
tionary spatial data {V (t)}, but to an estimate {V̂ (t)} from spatial data {Y (t)},
see, for example, the testing for signal presence using scan statistics in Section
6.2. The following corollary gives conditions for the validity of the bootstrap
schemes in this situation.

Corollary 5.2. Under the setting of Theorem 5.1, suppose that for the spatial
data {Y (t)}, we have an estimator {V̂ (t)} of {V (t)} such that the average
squared error

1

|T |
∑
t∈T

(
V (t)− V̂ (t)

)2
= op

(
α−1
T

)
,
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as αT → ∞. Furthermore, assume that for RB and WB, the kernel of the spectral
density estimator (2.5) satisfies Assumptions K.1 and K.2; and the kernel for
LB satisfies Assumptions K.1 and K.2. Let p be the order of uniformly bounded
moments of the bootstrapped Fourier coefficients stated in Assumption B.3 which
is satisfied under the setting of Theorem 5.1 given {V (t) : t ∈ T}. Then given
{Y (t)}, we have the followings hold:

(a) If αT = O
(
|T |

p−2
p + |hT |−1

)
with bandwidth hT in (2.5), then RB satisfies

Assumptions B.1 to B.4.
(b) If αT = O

(
|hT |−1

)
with bandwidth hT in (2.5), then WB satisfies As-

sumptions B.1 to B.4.
(c) If αT = O

((
|T |p−2/|hT |2

) 1
p

)
with bandwidth hT in (3.2), then LB satifies

Assumptions B.1 to B.4.
Remark 5.1. For random fields exhibiting complex non-linear trends, the pro-
posed bootstrap procedure requires some modifications. Specifically, assume
that the underlying random field {Y (t)} can be modeled by Y (t) = μ(t)+V (t)
for t ∈ T , where μ(t) is a non-linear trend, and V (t) is a zero-mean random
field which satisfies the conditions stated in the Section 2. From Corollary 5.2,
the proposed bootstrap method remains valid for the field {V̂ (t)} estimated
from the spatial data {Y (t)} under some conditions on the decay rate αT of
the average squared error. Hence, to apply the proposed bootstrap method, we
can proceed as follows. First, we apply local smoothing or kernel methods to
estimate the trend μ̂(t), and then an estimated field {V̂ (t)} can be obtained by

V̂ (t) = Y (t)− μ̂(t). The proposed bootstrap method can be applied on {V̂ (t)}
to get a centered bootstrapped sample {Z∗(t)}, and then employ a separate
bootstrap procedure independent of {Z∗(t)} to acquire a bootstrapped mean
μ∗
T , and get a non-centered bootstrap field V ∗(t) = Z∗(t) + μ∗

T as illustrated
in Section 4.2.3. Finally, a bootstrapped sample Y ∗(t) = μ̂(t) + V ∗(t) can be
obtained.

Remark 5.2. To implement the proposed frequency domain bootstrap meth-
ods, we need to specify one tuning parameter, the bandwidth hT = (hT 1, hT 2) ∈
R

2. From Theorem 5.1, the bandwidths have to satisfy some decay rate con-
ditions. To be precise, we require |hT | = O(|T |−η) for some 0 < η < 1/2
for RB and WB, and |hT | → 0 and (|hT |4|T |)−1 → 0 for LB. For example,
|hT | = O(|T |−1/5) works for all three methods. To provide a more precise guide-
line for the choice of hT , in Section 6.1, we first conduct a sensitivity analysis
for a wide range of bandwidths, and then select the one with the best cover-
age of the confidence intervals. As the bandwidths in RB and WB are for the
kernel spectral density estimation, we can also employ the adaptive bandwidth
selection proposed in [39] or [19]. Although no theoretically supported optimal
bandwidth selection method is available for LB, the bandwidth obtained from
the adaptive bandwidth selections for RB and WB can be shown to satisfy
the required conditions for LB asymptotically. In Section 6, we apply the same
range of bandwidths in RB, WB and LB, and similar results occured in all three
methods. It indicates that the same suitable bandwidths for RB and WB may
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also be appropriate for LB. For more discussions in bandwidth selection in local
bootstrap in time series context, see [37].

6. Applications and simulation studies

In this section, we demonstrate applications of the proposed bootstrap proce-
dures to constructing confidence intervals for correlograms for linear random
fields, testing for signal presense using scan statistics, and testing for spatial
isotropy of Gaussian random fields. We also perform numerical studies to com-
pare the proposed bootstrap methods with existing methods including the spa-
tial block bootstrap and spatial subsampling methods. Unless specified other-
wise, in all of the simulation experiments, we consider random fields {V (·)}
on a 50 × 50 region T , i.e., d1 = 50, d2 = 50 and |T | = 2500. In addition,
the number of bootstrap samples is set as 1000. Moreover, the Gaussian ker-
nel K(λ) = φ(λ) is employed for the kernel spectral density estimation in RB
and WB, and the smoothing function in LB, where φ(·) is the bivariate stan-
dard normal density function. For the spatial block bootstrap, we employ the
overlapping block bootstrap ([26]). For the spatial subsampling method, we use
the overlapping subblocks subsampling ([15]) with the suggested subblock size

d
1/2
1 × d

1/2
2 = 7× 7.

6.1. Confidence intervals construction of correlograms for linear
random fields

One major application of frequency domain bootstrap in linear time series is
on ratio statistics such as sample autocorrelation functions; see [5] and [21].
Analogously, for spatial statistics, the proposed frequency domain bootstrap
method can be applied to construct confidence intervals of the spatial cor-
relograms for linear random fields. Consider a random field

{
V (t) : t ∈ Z

2
}

with covariance function C(h). The correlogram at lag t is defined as the ratio
statistic ρ(t) = C(t)/C(0). A natural estimator of the correlogram is given by
ρ̂(t) = Ĉ(t)/Ĉ(0), where Ĉ(t) = 1

|T (t)| ×
∑

s∈T (t)

[
V (s)− VT

] [
V (s+ t)− VT

]
,

with VT = 1
|T |
∑

s∈T V (s) and T (t) = {s : s, s + t ∈ T}, is the method-of-

moments estimator of the covariogram at lag t. To apply the proposed bootstrap
methods, generate B bootstrap samples from either RB, WB or LB. For the i-th
bootstrap sample, we compute the correlogram estimator ρ̂∗(i)(t). Then, confi-
dence intervals can be constructed from the sample quantiles of the correlogram
estimates of the resamples.

To illustrate the construction of bootstrap confidence intervals for correlo-
grams, consider real-valued mean-zero Gaussian random fields on Z

2 with a
Gaussian covariance function

C(h) = σ2 exp

(
−
(
‖h‖
φ

)2
)

+ η1{h=0} ,
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Fig 1. Coverage accuracy of confidence intervals for correlograms under different band-
widths/block sizes.

where σ2 is the partial sill parameter, φ is the range parameter and η is the
nugget effect. First, we consider the model (η, σ2, φ)=(0, 1, 1) to investigate
the choice of the bandwidth parameter hT for RB, WB and LB schemes, and
the choice of block size for the Block Bootstrap (BB). For each resample of
data, we compute the correlogram estimates ρ̂(t) at a range of lags: t = (1, 0),
(0, 1), (1, 1), (2, 0) and (0, 2). Then, for each lag, a 95% confidence interval is
constructed from the sample quantiles of the correlogram estimates of the re-
samples. The above procedure is repeated 1000 times to investigate the coverage
accuracy of the confidence intervals. The results are summarized in Figure 1. It
can be seen that the bandwidths hT = (0.05, 0.05), (0.11, 0.11), or (0.15, 0.15)
give good performance for all of the proposed RB, WB, and LB schemes. For
BB, block sizes 4× 4, 7× 7, and 13× 13 are recommended.
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Next, we consider the models (η, σ2, φ)=(0, 1, 0.5), (0, 1, 1), (1, 1, 0.5),
and (1, 1, 1) to explore the effect of various decay rates of spatial dependency,
and the presence of the nugget effect. For each model, a 95% confidence interval
is constructed for each lag based on the sample quantiles of the bootstrapped
correlogram estimates. Again, 1000 replications are performed to investigate
the coverage accuracy of the confidence intervals. The results are summarized
in Tables 3 and 4. It can be seen that the coverage accuracy of the proposed
bootstrap methods is much closer to the nominal level of 95% than that of the
block bootstrap method. On the other hand, the coverage accuracy of the block
bootstrap method is not stable in the sense that it ranges from 50% to nearly
100% coverage under various models.

Table 3

The coverage accuracy of the C.I.s for the correlogram by RB, WB, LB, and BB.

Lag (1,0) (0,1) (1,1) (2,0) (0,2)

(η, σ2, φ)= (0,1,0.5)

hT = (0.05, 0.05)
RB 0.856 0.852 0.885 0.851 0.862
WB 0.962 0.971 0.978 0.980 0.970
LB 0.852 0.856 0.867 0.862 0.863

hT = (0.11, 0.11)
RB 0.895 0.891 0.899 0.898 0.908
WB 0.935 0.932 0.937 0.934 0.943
LB 0.925 0.934 0.938 0.944 0.953

hT = (0.15, 0.15)
RB 0.936 0.937 0.934 0.936 0.942
WB 0.947 0.945 0.941 0.945 0.948
LB 0.942 0.940 0.934 0.937 0.945

Block size = 4 × 4 BB 1 0.998 0.999 1 1
Block size = 7 × 7 BB 0.998 0.998 0.997 0.998 0.999

Block size = 13 × 13 BB 0.979 0.973 0.981 0.985 0.983

(η, σ2, φ)= (0,1,1)

hT = (0.05, 0.05)
RB 0.763 0.763 0.862 0.871 0.878
WB 0.941 0.950 0.969 0.978 0.974
LB 0.777 0.764 0.853 0.855 0.856

hT = (0.11, 0.11)
RB 0.782 0.802 0.873 0.924 0.929
WB 0.821 0.842 0.909 0.943 0.959
LB 0.821 0.841 0.910 0.933 0.948

hT = (0.15, 0.15)
RB 0.809 0.826 0.915 0.939 0.940
WB 0.803 0.821 0.903 0.933 0.942
LB 0.807 0.823 0.907 0.931 0.939

Block size = 4 × 4 BB 0.063 0.061 0.553 1 1
Block size = 7 × 7 BB 0.544 0.558 0.877 1 1

Block size = 13 × 13 BB 0.816 0.818 0.933 0.981 0.991

6.2. Testing for signal presence in random fields

In this subsection, we consider the problem of detecting a deterministic signal
against a noisy background. This problem has received considerable attention
and has profound applications in epidemiology, astronomy, and biosurveillance.
The standard statistical tool to address this problem is the spatial scan statistic;
see [24], [13], [14], [12], and [4]. Consider the observations {Y (t) : t ∈ T} given
by

Y (t) =

{
V (t) if t ∈ T\IT ,
V (t) + s if t ∈ IT ,

(6.1)
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Table 4

The coverage accuracy of the C.I.s for the correlogram by RB, WB, LB, and BB.

Lag (1,0) (0,1) (1,1) (2,0) (0,2)

(η, σ2, φ)= (1,1,0.5)

hT = (0.05, 0.05)
RB 0.907 0.901 0.893 0.887 0.892
WB 0.973 0.982 0.976 0.972 0.977
LB 0.905 0.905 0.893 0.865 0.875

hT = (0.11, 0.11)
RB 0.912 0.916 0.918 0.912 0.924
WB 0.957 0.958 0.960 0.947 0.952
LB 0.938 0.944 0.946 0.945 0.947

hT = (0.15, 0.15)
RB 0.934 0.942 0.939 0.948 0.938
WB 0.942 0.951 0.949 0.954 0.948
LB 0.941 0.944 0.946 0.948 0.939

Block size = 4 × 4 BB 1 1 1 1 1
Block size = 7 × 7 BB 0.997 1 1 1 1

Block size = 13 × 13 BB 0.987 0.987 0.985 0.995 0.990

(η, σ2, φ)= (1,1,1)

hT = (0.05, 0.05)
RB 0.841 0.844 0.851 0.895 0.891
WB 0.966 0.974 0.980 0.975 0.971
LB 0.855 0.859 0.861 0.876 0.874

hT = (0.11, 0.11)
RB 0.892 0.885 0.912 0.932 0.928
WB 0.928 0.925 0.943 0.967 0.965
LB 0.915 0.914 0.935 0.955 0.946

hT = (0.15, 0.15)
RB 0.935 0.941 0.937 0.933 0.956
WB 0.935 0.937 0.935 0.946 0.966
LB 0.932 0.935 0.937 0.943 0.962

Block size = 4 × 4 BB 0.888 0.893 0.970 1 1
Block size = 7 × 7 BB 0.981 0.979 0.984 1 1

Block size = 13 × 13 BB 0.954 0.949 0.967 0.995 0.994

where T ∈ Z
2 is a rectangular region, {V (t) : t ∈ T} is a zero-mean process, and

IT ⊂ T is the location of a deterministic signal with magnitude s. We assume
that IT is sufficiently large in the sense that

gT (CIT ) ⊆ IT , (6.2)

where CIT ⊂ [0, 1]2 is a circle with radius rIT > 0, and gT is the linear mapping
defined in Section 4.1. Let ZT = {gT (A) : A ∈ Q′

2} be the collection of all
possible rectangular subsets of T , and μA = 1

|A|
∑

t∈A E (Y (t)). To determine

whether a signal exists, we consider the hypotheses

H0 : μA = μ0, ∀A ∈ ZT versus H1 : μA = μ0, ∃A ∈ ZT ,

where μ0 ∈ R. To test between H0 and H1, the scan statistics

SST = max
A∈ZT

√
|A|
∣∣YA − YT

∣∣ ,
where YA = 1

|A|
∑

t∈A Y (t) and YT = 1
|T |
∑

t∈T Y (t), is a natural candidate; see

Theorem 1 of [4] in time series context, and [23] and [49] in spatial context. In
particular, H0 should be rejected for a large SST .

To determine the critical value of the test statistics SST , the bootstrap meth-
ods can be applied to the locally demeaned spatial data V̂ (t) = Y (t) − YBt ,
where YBt = 1

|Bt|
∑

t∈Bt
Y (t) is the local mean in the neighborhood Bt =

[t1 − wT , t1 + wT ] × [t2 − wT , t2 + wT ]
⋂
T of t = (t1, t2) with window width
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wT > 0. Denote {Z∗(t), t ∈ T} as the bootstrap sample of {V̂ (t), t ∈ T}.
The following theorem asserts that, by using the locally demeaned data, the
frequency domain bootstrap methods asymptotically yield the null distribution
even under the presence of a signal.

Theorem 6.1. Consider {Y (t) : t ∈ T} defined in (6.1), αT defined in Corol-
lary 5.2, and the bootstrapped test statistic

SS∗
T = max

A∈ZT

√
|A|
∣∣V ∗

A − V ∗
T

∣∣ ,
where V ∗

A = 1
|A|
∑

t∈A V ∗(t), V ∗(t) = Z∗(t) + YT and V ∗
T = 1

|T |
∑

t∈T V ∗(t) =

YT . If w
−1
T = op(α

−1
T ), then

sup
x∈R

∣∣P0(SST ≤ x)− P
∗(SS∗

T ≤ x)
∣∣→ 0 ,

where P0 is the probability measure under H0 with s = 0, and P
∗ is the con-

ditional probability measure given {Y (t) : t ∈ T} using any bootstrap method
satisfying Assumptions B.1 to B.4.

The following theorem proves the consistency of the bootstrap test.

Theorem 6.2. Let {Y (t) : t ∈ T} be defined in (6.1) with a signal s = 0 at
IT satisfying (6.2) for some circle CIT ⊂ [0, 1]2. Assume that there exists some
A ∈ ZT such that CIT ⊂ A. Then, we have

P1,s(SST ≥ c∗) → 1 ,

where P1,s is the probability measure under H1 with signal magnitude s, and c∗

is the critical value determined by any bootstrap method satisfying Assumptions
B.1 to B.4, i.e., P∗(SS∗

T ≥ c∗) = α with significance level α.

The following simulation experiments evaluate the finite sample performance
of the bootstrap methods on testing for the presence of spatial signal. We gen-
erate real-valued zero-mean non-Gaussian random fields V (·) using point-wise
transformation of homogeneous Gaussian random fields. First, we generate real-
valued mean-zero Gaussian random fields X(·) on a 50× 50 region T using the

Gaussian covariance function C(h) = σ2 exp

(
−
(

‖h‖
φ

)2)
+η1{h=0} with (η, σ2,

φ)=(1, 1, 1). Then, for each t ∈ T we transform X(t) to a non-Gaussian V (t)
by V (t) = F−1

R (FN (X(t)), where FN is the cumulative distribution function of
the standard normal distribution and F−1

R is the inverse distribution function
of a centered distribution R. In our simulation, Student’s t(20) distribution is
used. The signal location IT is taken as a 8 × 8 square grid at the center of
T . Let ZT = Q′

2 be the collection of all possible rectangular regions of T . For
simplicity, let ZT contain all rectangular regions A ⊂ T with a fixed size of
10× 10.

We investigate the size and power of the bootstrap test for signal detection
under different magnitudes: s = −3, −2, −1, 0, 1, 2, and 3. The window width
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wT = 10 is used to compute the locally demeaned data. We compute the scan
statistic for each bootstrap sample and compute the critical values from the
quantiles of the bootstrapped scan statistics. Table 5 reports the rejection rate
of the test using block bootstrap, RB, WB, and LB under various values of s.
Different block sizes 4× 4, 7× 7, and 13× 13 are used for block bootstrap, and
a wide range of bandwidths, hT = (0.05, 0.05), (0.1, 0.1), (0.15, 0.15), (0.2, 0.2),
and (0.25, 0.25) are used for RB, WB, and LB for evaluating the effect of band-
width selections on the performance. It can be seen that the performance of
RB, WB, and LB is superior to that of the block bootstrap, and robust to the
choice of the bandwidth hT . One possible reason for the good performance of
frequency domain bootstrap methods is that the frequency domain bootstrap
samples have a constant mean of zero; see Lemma 4.2. On the other hand,
even though the locally demeaned data are used, the block bootstrap samples
may still occasionally contain regions which largely deviate from zero, which
affects the performance of the test. From Table 5, the effect of this phenomenon
magnifies with an increase in block size.

Table 5

The rejection rate of the bootstrap test for the presence of spatial signal using BB, RB, WB,
and LB under different block sizes, bandwidths and signal magnitudes s on correlated t(20)

random fields.

Magnitude s
Method −3 −2 −1 0 1 2 3

Block size = 4 × 4 BB 0.979 0.737 0.074 0.006 0.071 0.735 0.979
Block size = 7 × 7 BB 0.051 0.057 0.019 0.003 0.017 0.072 0.059

Block size = 13 × 13 BB 0.001 0 0.006 0.016 0.009 0.004 0

hT = (0.05, 0.05)
RB 1 0.959 0.259 0.055 0.233 0.961 1
WB 1 0.910 0.225 0.059 0.209 0.918 1
LB 1 0.946 0.218 0.045 0.205 0.952 1

hT = (0.1, 0.1)
RB 1 0.971 0.249 0.054 0.264 0.970 1
WB 1 0.969 0.262 0.058 0.275 0.971 1
LB 1 0.963 0.242 0.048 0.249 0.968 1

hT = (0.15, 0.15)
RB 1 0.967 0.252 0.053 0.264 0.971 1
WB 1 0.970 0.267 0.055 0.278 0.973 1
LB 1 0.965 0.258 0.053 0.258 0.971 1

hT = (0.2, 0.2)
RB 1 0.973 0.260 0.058 0.282 0.962 1
WB 1 0.974 0.265 0.061 0.292 0.962 1
LB 1 0.974 0.259 0.056 0.283 0.958 1

hT = (0.25, 0.25)
RB 1 0.967 0.308 0.063 0.294 0.977 1
WB 1 0.969 0.310 0.062 0.301 0.977 1
LB 1 0.969 0.302 0.061 0.295 0.974 1

6.3. Spatial isotropy test for Gaussian random fields

In this subsection, we study the application of the proposed bootstrap meth-
ods to test for spatial isotropy of Gaussian random fields, i.e., the covariance
between two sites depends on their distance but not direction. Since the asymp-
totic distributions of spatial covariances and variograms depend on the fourth
order structure, Gaussian assumption is needed for the random fields in this
application. Since it is difficult to exhaust all possible distances and directions,
[15] considered the null hypothesis of isotropy asH0 : 2γ(ti) = 2γ(tj), ∀ti, tj ∈
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Λ, ti = tj , and ‖ti‖ = ‖tj‖, where ‖t‖ =
√
t′t, Λ = {t1, . . . , tm} is a pre-

specified set of sites, and 2γ(t) = E(V (0)−V (t))2 is the variogram at lag t. Let
G = (2γ(t1), . . . , 2γ(tm))′ be a vector of variograms in Λ. Observe that, under
H0, there exists a full row rank matrix A such that AG = 0. For example, if
Λ = {(1, 0), (0, 1)}, then G = (2γ(1, 0), 2γ(0, 1))′, and we may set A = [1 − 1].
Based on this observation, [15] derive the test statistic

TST = |T (t)| × (AĜT )
′(AΣ̂RA

′)−1(AĜT ) , (6.3)

where ĜT = (2γ̂(t1), . . . , 2γ̂(tm))′ is the sample variogram vector that estimates
G,

2γ̂(t) =
1

|T (t)| ×
∑

s∈T (t)

[V (s)− V (s+ t)]2 , (6.4)

is the estimator of the variogram at lag t, T (t) = {s : s, s + t ∈ T}, and Σ̂R is
a consistent estimator of ΣR, the covariance matrix of the sample variograms
ĜT . Under H0 and some regularity conditions, Theorem 1 of [15] states that

TST
d−→ χ2

d as T → ∞, where d is the row rank of A. However, the convergence
of the test statistic appears to be slow. Therefore, [15] consider a subsampling
method to determine the p-value of the test. In the following, we consider using
the proposed frequency domain bootstrap method to determine the p-value of
the test.

Following the simulation study in [15], we employ a mean-zero Gaussian
random field on Z

2 with a spherical covariance function

C(h) =

{
σ2
(
1− 3r

2φ + r3

2φ3

)
+ η1{h=0} if 0 ≤ r ≤ φ ,

η1{h=0} otherwise ,
(6.5)

where σ2 is the partial sill parameter, φ is the range parameter, η is the nugget
effect, and r =

√
h′Bh is related to a geometric anisotropy transformation.

Specifically, given an anisotropy angle ψA and anisotropy ratio ψR, define the
rotation matrix R and shrinking matrix T as

R =

[
cos(ψA) sin(ψA)
− sin(ψA) cos(ψA)

]
and T =

[
1 0
0 ψR

]
,

then B = R′T ′TR is a 2 × 2 positive definite matrix representing a geometric
anisotropy transformation. A random field with spherical covariance function
(6.5) is in general anisotropy except that it is isotropy when ψR = 1. In addition,
if ψA = 0, then the main anisotropic axes are aligned with the (x, y) axes. See,
for example, Section 5.1 of [47] for details. For the Gaussian process, it can
be shown that the covariance function (6.5) satisfies the absolute integrability
condition, which is sufficient for Theorem 1 of [15] to hold.

We consider model parameters (η, σ2, φ, ψA, ψR) = (2, 3, 4, 0, ψR) for different
anisotropy ratio ψR. Also, set Λ = {(1, 0), (0, 1)}, G = (2γ(1, 0), 2γ(0, 1))′,
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A = [1 − 1] and ĜT = (2γ̂(1, 0), 2γ̂(0, 1))′. Thus, the test statistics (6.3)
becomes

TST = |T (t)| × (2γ̂(1, 0)− 2γ̂(0, 1))
2
(AΣ̂RA

′)−1 , (6.6)

where Σ̂R may be estimated by subsampling or by the proposed bootstrap meth-
ods. However, since (AΣ̂RA

′)−1 is only a normalizing factor in (6.6), we may
focus on subsampling and bootstrapping the test statistic

TST = |T (t)| × (2γ̂(1, 0)− 2γ̂(0, 1))
2
.

Next, we briefly outline the subsampling and bootstrap methods. For the spatial
subsampling, the region T is divided into kT small overlapping subblocks, known
as subsampling windows, which are congruent to T in both configuration and
orientation. Denote T i

sub, as the i-th subblock. For each of the kT subblocks,
compute the statistic

TSi
T,sub = |T i

sub| ×
(
2γ̂i

sub(1, 0)− 2γ̂i
sub(0, 1)

)2
,

where γ̂i
sub(t) is defined similarly as in (6.4), but with T (t) replaced by T i

sub(t) =
{s : s, s+t ∈ T i

sub}. Using the TSi
T,subs, the p-value for the test can be calculated

by
∑kT

i=1 1{TSi
T,sub≥TST }/kT , and the null hypothesis is rejected if the p-value is

smaller than the significance level α.
For the proposed bootstrap methods, B bootstrap samples are generated

from either RB, WB or LB. For the i-th bootstrap sample, we compute the
variogram γ̂i

boot(1, 0) using (6.4). Next, define the variogram difference V Di =
2γ̂i

boot(1, 0)− 2γ̂i
boot(0, 1), and the bootstrapped test statistic

TSi
T,boot = |T | ×

(
V Di − V D

)2
,

where V D =
∑B

i=1 V Di/B. Note that centering of V Dis is required since V Di

has a non-zero mean under the alternative. Similar to the test for signal presence,
this centering procedure allows the bootstrapped test statistic to converge to the
null distribution even under the alternative hypothesis; see Theorem 6.3 below.
Finally, the p-value of the test can be calculated by

∑B
i=1 1{TSi

T,boot≥TST }/B,

and the null hypothesis is rejected if the p-value is smaller than the significance
level α.

The following theorem states that the bootstrapped test statistic converges
to the same limit as that of TST , and hence the proposed bootstrap method is
valid.

Theorem 6.3. For a stationary Gaussian random field {V (t) : t ∈ T}, under
the assumptions of Theorem 1 in [15], we have

sup
x∈R

∣∣P0(TST ≤ x)− P
∗(TSi

T,boot ≤ x)
∣∣→ 0 ,

where P0 denotes the probability measure under H0, and P
∗ denotes the condi-

tional probability given {V (t) : t ∈ T} using any bootstrap method satisfying
Assumptions B.1 to B.4.
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Table 6 summarizes the rejection rates of the bootstrap test by spatial sub-
sampling, RB, WB and LB under different values of anisotropy ratio ψR. It can
be seen that the performance of the proposed methods is superior to that of
spatial subsampling in both size and power.

Table 6

The rejection rate of the isotropy tests under various anisotropy ratio ψR.

ψR Subsampling RB WB LB
1 0.025 0.052 0.049 0.054
1.1 0.110 0.197 0.167 0.173
1.2 0.426 0.580 0.561 0.523
1.3 0.770 0.872 0.848 0.862
1.4 0.946 0.969 0.962 0.967
1.5 0.997 1 1 1

7. Conclusion

This paper develops a frequency domain bootstrap method for random fields
on Z

2. Three bootstrap schemes for resampling the Fourier coefficients are pro-
posed. Inverse-transformations are then applied to obtain resamples in the spa-
tial domain. The resulting bootstrap resamples capture the correct second-order
moment structure for a large class of random fields. Moreover, invariance prin-
ciples of the partial sum process indexed by a classical example of Vapnik-
Chervonenkis classes of Borel subsets of [0, 1]2 are established. The results can
be easily generalized to other Vapnik-Chervonenkis classes. The frequency do-
main bootstrap method is simple to apply and is demonstrated to be effective in
various applications including constructing confidence intervals of correlograms
for linear random fields, testing for signal presence using scan statistics, and
testing for spatial isotropy in Gaussian random fields.

Simulation studies are conducted to illustrate the finite sample performance
of the proposed method and to compare with the existing spatial block boot-
strap and subsampling methods. For small or moderate sample sizes, since the
effective number of blocks for block bootstrap and subsampling methods would
be small when the block size is chosen to be large, severe bias would be induced,
and the finite sample performances are sensitive to the selection of block size.
However, this problem cannot be resolved by choosing a smaller block size as
the dependency structure of the underlying spatial fields cannot be preserved
when the block size is too small. On the other hand, although the bandwidth
selection may also affect the performance of the proposed frequency domain
bootstrap for small or moderate sample sizes, its effect is relatively small com-
pared to that of block bootstrap as shown in the simulation studies in Section
6. However, as shown in Section 4, the proposed frequency domain bootstrap
can only mimic the second order moment structure of the underlying spatial
fields, and hence may not be appropriate for general statistics which involve
higher moment structures, or may require some form of transformations of the
data. On the other hand, in general the block bootstrap methods can be applied
directly without any transformations beforehand.
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Appendix A: Proofs and technical details

A.1. Proofs of Section 4

We start with a short lemma needed to prove Lemma 4.2. Its proof is deferred
to Appendix B.

Lemma A.1. Under Assumption A.2, the following representation holds,

8π2

|T |
∑
j∈N

f(λj) cos(λ
′
jh) =

∑
l∈Z2

γ(h+ l� dT )−
4π2

|T | f(0)

− 4π2

|T | f(π, 2π) exp(i(π, 2π)
′h)1{d1 even}

− 4π2

|T | f(2π, π) exp(i(2π, π)
′h)1{d2 even}

− 4π2

|T | f(π, π) exp(i(π, π)
′h)1{d1,d2 even} ,

where λj =
(

2πj1
d1

, 2πj2
d2

)
, j = (j1, j2) ∈ T .

We are now ready to prove Lemma 4.2. Note that |T | = d1d2, for AT =
[a11T , a12T ]× [a21T , a22T ] ∈ Q′

2, |AT ⊗ T | = L(AT )d1d2 = (a12T − a11T )(a22T −
a21T )d1d2, and |AT ⊗ T | → ∞ as |T | → ∞.

Proof of Lemma 4.2. Assertion (a) follows immediately from the fact that the
bootstrapped Fourier coefficients are conditionally centered. For assertion (b),
by Lemma A.3 in [20], it holds that (uniformly in u) for λk = 2πk

T ,

	mu
∑
l=1

cos(λkl) = O

(
min

(
T

k
,m

))
and

	mu
∑
l=1

sin(λkl) = O

(
min

(
T

k
,m

))
.

(A.1)

We will show that for all λk =
(

2πk1

d1
, 2πk2

d2

)
, k = (k1, k2) ∈ Z

2, and sets

AT , B, C, where AT = [a11T , a12T ]×[a21T , a22T ] ∈ Q′
2, B = [b11, b12]×[b21, b22] ∈

Q′
2 and C = [c11, c12]× [c21, c22] ∈ Q′

2, we have∑
l∈B⊗(AT⊗T )

cos(λ′
kl)

= O

(
min

(
d1
k1

, (a12T − a11T )d1

))
O

(
min

(
d2
k2

, (a22T − a21T )d2

))
,

∑
l∈B⊗(AT⊗T )

sin(λ′
kl)

= O

(
min

(
d1
k1

, (a12T − a11T )d1

))
O

(
min

(
d2
k2

, (a22T − a21T )d2

))
.
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Note that ∑
l∈B⊗(AT⊗T )

cos(λ′
kl)

=
∑

(l1,l2)∈B⊗(AT⊗T )

[
cos

(
2πk1
d1

l1

)
cos

(
2πk2
d2

l2

)

− sin

(
2πk1
d1

l1

)
sin

(
2πk2
d2

l2

)]
= O

(
min

(
d1
k1

, (a12T − a11T )d1

))
O

(
min

(
d2
k2

, (a22T − a21T )d2

))
,

where the last equality follows from (A.1) and that B⊗(AT ⊗T ) is a rectangular
region. Similar arguments apply to the term

∑
l∈B⊗(AT⊗T ) sin(λ

′
kl).

Then, we have∑
l1∈B⊗(AT⊗T )

∑
l2∈C⊗(AT⊗T )

∑
k∈N

cos(λ′
kl1) cos(λ

′
kl2) (A.2)

=
∑
k∈N

⎛⎝ ∑
l1∈B⊗(AT⊗T )

cos(λ′
kl1)

⎞⎠⎛⎝ ∑
l2∈C⊗(AT⊗T )

cos(λ′
kl2)

⎞⎠
=

∑
k∈N

[
O
(
min

(d1
k1

, (a12T − a11T )d1

))
O
(
min

(d2
k2

, (a22T − a21T )d2

))]2
= O

(
(a12T − a11T )d

2
1

)
O
(
(a22T − a21T )d

2
2

)
= O (|AT ⊗ T ||T |) .

The same equation holds true if we replace cosine by sine.
By Assumptions B.1 and B.2, and the definition of Z∗(l), it holds that

Cov∗
( 1√

|AT ⊗ T |
∑

l1∈B⊗(AT⊗T )

Z∗(l1),
1√

|AT ⊗ T |
∑

l2∈C⊗(AT⊗T )

Z∗(l2)
)

=
1

|AT ⊗ T |
∑

l1∈B⊗(AT⊗T )

∑
l2∈C⊗(AT⊗T )

Cov∗(Z∗(l1), Z
∗(l2))

=
1

|AT ⊗ T |
4

|T | ×∑
l1∈B⊗(AT⊗T )

∑
l2∈C⊗(AT⊗T )

∑
k∈N

Cov∗(x∗(k) cos(λ′
kl1)− y∗(k) sin(λ′

kl1),

x∗(k) cos(λ′
kl2)− y∗(k) sin(λ′

kl2))

=
4

|AT ⊗ T ||T | ×∑
l1∈B⊗(AT⊗T )

∑
l2∈C⊗(AT⊗T )

∑
k∈N

[Var∗(x∗(k)) cos(λ′
kl1) cos(λ

′
kl2)

+Var∗(y∗(k)) sin(λ′
kl1) sin(λ

′
kl2)]
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=
4

|AT ⊗ T ||T |
∑

l1∈B⊗(AT⊗T )

∑
l2∈C⊗(AT⊗T )

∑
k∈N

{[2π2f(λk) cos(λ
′
k(l1 − l2))]

+op(1) cos(λ
′
k(l1 − l2))}

=
8π2

|AT ⊗ T ||T |
∑

l1∈B⊗(AT⊗T )

∑
l2∈C⊗(AT⊗T )

∑
k∈N

f(λk) cos(λ
′
k(l1 − l2))

+op(1) .

Using Lemma A.1, we can handle the above sum by decomposing the inmost
sum into the 5 terms. For the first term, by the absolute summability of γ(·),
we have

1

|AT ⊗ T |
∑

l1∈B⊗(AT⊗T )

∑
l2∈C⊗(AT⊗T )

γ(l1 − l2)

=
1

|AT ⊗ T |

{ ∑
l1,l2∈(B⊗(AT⊗T ))

⋂
(C⊗(AT⊗T ))

γ(l1 − l2)

+
∑

l1∈B⊗(AT⊗T )

∑
l2∈C⊗(AT⊗T )\(B⊗(AT⊗T ))

γ(l1 − l2)

+
∑

l1∈B⊗(AT⊗T )\(C⊗(AT⊗T ))

∑
l2∈(B⊗(AT⊗T ))

⋂
(C⊗(AT⊗T ))

γ(l1 − l2)

}

=
1

|AT ⊗ T |
∑

l1,l2∈(B⊗(AT⊗T ))
⋂
(C⊗(AT⊗T ))

γ(l1 − l2) + op(1)

= 4π2f(0)
|(B ⊗ (AT ⊗ T ))

⋂
(C ⊗ (AT ⊗ T ))|

|AT ⊗ T | + op(1)

= 4π2f(0)L(B
⋂

C) + op(1) .

Also, by the absolute summability of γ(·), we have

1

|AT ⊗ T |
∑

l1∈B⊗(AT⊗T )

∑
l2∈C⊗(AT⊗T )

∑
j�=0

|γ(l1 − l2 + j� dT )|

≤ 1

|AT ⊗ T |
∑

l1∈AT⊗T

∑
l2∈AT⊗T

∑
j�=0

|γ(l1 − l2 + j� dT )|

≤
∑

h∈{(h1,h2):
|h1|≤(a12T−a11T )d1,
|h2|≤(a22T−a21T )d2}

[(
(a12T − a11T )d1 − |h1|

(a12T − a11T )d1

)(
(a22T − a21T )d2 − |h2|

(a22T − a21T )d2

)

×
∑
j�=0

|γ(h+ j� dT )|

⎤⎦
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≤
2
∑
j∈Z2

|γ(j)|√
|AT ⊗ T |

+
∑

h∈{(t1,t2):
|t1|≤(a12T−a11T )d1−

√
(a12T−a11T )d1,

|t2|≤(a22T−a21T )d2−
√

(a22T−a21T )d2}

∑
j�=0

|γ(h+ j� dT )|

≤o(1) + 2
∑

k∈
{
(t1,t2): |t1|≥

√
(a12T−a11T )d1, |t2|≥

√
(a22T−a21T )d2

} |γ(k)| = o(1) .

For the sum of the last three terms of Lemma A.1, we have

4π2

|T ||AT ⊗ T |
∑

l1∈B⊗(AT⊗T )

∑
l2∈C⊗(AT⊗T )

exp(i(π, 2π)′(l1 − l2))

=
4π2

|T ||AT ⊗ T |
∑

l1∈B⊗(AT⊗T )

exp(i(π, 2π)′l1)
∑

l2∈C⊗(AT⊗T )

exp(−i(π, 2π)′l2)

=O

(
1

|T ||AT ⊗ T |

)
.

Similar arguments can be applied on the remaining two terms. Finally, the sum
of the second term is

4π2f(0)

|T ||AT ⊗ T | (|B ⊗ (AT ⊗ T )|)(|C ⊗ (AT ⊗ T )|)

=

{
o(1) if |AT⊗T |

|T | → 0 ,

4π2f(0)L(B)L(C) + o(1) if AT ⊗ T = T .

Putting everything together, we obtain (b). The proof of (c) is analogous. A
simple calculation shows that Cov(Z(l1), Z(l2)) = Cov(V (l1), V (l2)) + o(1) by
the absolute summability of the auto-covariance function.

Proof of Theorem 4.3. To prove the invariance principle of the Q′
2-indexed par-

tial sum process of the bootstrap sample, we have to show the finite-dimensional
convergence and also the tightness of the partial sum process. The following
lemma shows the convergence of the finite-dimensions distribution of the Q′

2-
indexed partial sum process of the bootstrap sample. Its proof is deferred to
Appendix B.

Lemma A.2. For AT ∈ Q′
2, let S

∗
AT⊗T (B) =

∑
l∈B⊗(AT⊗T ) Z

∗(l), where B ∈
Q′

2.

(a) If Assumptions A.2, B.1 to B.3 are fulfilled and |AT⊗T |
|T | → 0 for B1, B2,

. . . , Bp ∈ Q′
2, we have

1√
|AT ⊗ T |

(S∗
AT⊗T (B1), ..., S

∗
AT⊗T (Bp))

d−→ N(0,Σ) ,

in probability, where Σ = (ci,j)i,j=1,...,p with ci,j = 4π2f(0)L(Bi ∩Bj).
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(b) If Assumptions A.2, B.1 and B.4 are fulfilled, for B1, B2, . . . , Bp ∈ Q′
2,

we have
1√
|T |

(S∗
T (B1), ..., S

∗
T (Bp))

d−→ N(0,Σ) ,

in probability, where Σ = (ci,j)i,j=1,...,p with ci,j = 4π2f(0)[L(Bi

⋂
Bj)−

L(Bi)L(Bj)].

The following lemma gives the critical step towards tightness of the Q′
2-

indexed partial sum process of the bootstrap sample. Its proof is deferred to
Appendix B.

Lemma A.3. Under Assumptions A.2, B.1 to B.3, for any ε > 0 and AT ∈ Q′
2,

we have

lim
δ→0

lim sup
T→∞

P

⎛⎜⎝ sup
B,C∈Q′

2

ρ(B,C)<δ

∣∣∣∣∣ S∗
AT⊗T (B)√
|AT ⊗ T |

−
S∗
AT⊗T (C)√
|AT ⊗ T |

∣∣∣∣∣ > ε

⎞⎟⎠ = 0 . (A.3)

Theorem 13.5 of [1] gives a characterization of weak convergence via conver-
gence of the finite-dimensions distributions as well as tightness. Lemmas A.2 and
A.3 show that these conditions are fulfilled. It completes the proof of Theorem
4.3.

Proof of Corollary 4.4. The proof is analogous to the proof of Lemma A.2(a)
and is thus omitted.

Proof of Corollary 4.5. The corollary is an immediate consequence of Theorem
4.3, thus the proof is omitted.

A.2. Proofs of Section 5

Proof of Theorem 5.1. In the following we only prove the assertions for x∗(·),
while the assertions for y∗(·) follow because x∗(j)

d
= y∗(j) (conditionally given

V (·)). Since Assumption B.1 directly follows from the definition of the bootstrap
schemes, we will show that Assumptions B.2 to B.4 are also valid under the
assumptions stated in the theorem.

(a) Residual-Based Bootstrap (RB): It follows directly from Theorem 5.1

and Corollary 4.2 in [33] that we have supλ∈[0,2π]2

∣∣∣f̂T (λ)− f(λ)
∣∣∣ p−→ 0 ,

and the empirical distribution function of the Fourier coefficients con-
verges uniformly to the standard normal distribution function Φ(·), i.e.,
supz∈R

∣∣∣∣ 1
2|N |

∑
j∈N

(
1{

x(j)≤z
√

2π2f(λj)
} + 1{

y(j)≤z
√

2π2f(λj)
})− Φ(z)

∣∣∣∣ p−→
0. Also, by Theorem 4.3 in [33], we also have the following four conditions
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on the sums of the periodograms and Fourier coefficients:

(i)
1

2|N |
∑
j∈N

x(j) + y(j)√
f(λj)

p−→ 0 ,

(ii)
1

4π2|N |
∑
j∈N

I(j)

f(λj)

p−→ 1 ,

(iii)
1

|N |
∑
j∈N

I2(j)

f2(λj)
≤ C1 + op(1) ,

(iv)
1

|N |
∑
j∈N

Iq(j)

fq(λj)
≤ C2 + op(1) ,

for some constant C1, C2 ≥ 0 and q = 4 + ε with some ε ∈ (0, 1). Next,
since we have for k = 1, 2,

1

2|N |
∑

j∈N,k

⎛⎝s̃j,k − 1

2|N |
∑
l∈N,k

s̃l,k

⎞⎠2

=
1

2|N |
∑
j∈N

I(j)

2π2f̂T (λj)
−

⎛⎝ 1

2|N |
∑
j∈N

x(j) + y(j)√
2π2f̂T (λj)

⎞⎠2

=
1

2|N |
∑
j∈N

I(j)

2π2f(λj)
−

⎛⎝ 1

2|N |
∑
j∈N

x(j) + y(j)√
2π2f(λj)

⎞⎠2

+O(1)

(
sup
l

∣∣∣∣∣f(λl)− f̂T (λl)

2π2f̂T (λl)

∣∣∣∣∣
)⎛⎝ 1

|N |
∑
j∈N

I(j)

f(λj)

⎞⎠ p−→ 1 .

Also, we have for k = 1, 2,

1

2|N |
∑

j∈N,k

|s̃j,k|p ≤ 1

2|N |
∑
j∈N

I(j)q

(2π2f(λj))q

(
1 + sup

l

∣∣∣∣∣f(λl)− f̂T (λl)

2π2f̂T (λl)

∣∣∣∣∣
q)

≤ C + op(1) .

Hence, Assumption B.3 holds with p = 2q > 8 since

sup
j∈N

E
∗(|x∗(j)|)p = sup

j∈N
E
∗
(√

2π2f̂T (λj)|s∗j,k|
)p

= sup
j∈N

(
2π2f̂T (λj)

) p
2

E
∗(|s∗j,k|p)
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=
Cp

2|N |

∑
j∈N,k

∣∣∣∣∣s̃j,k − 1
2|N |

∑
t∈N,k

s̃t,k

∣∣∣∣∣
p

⎡⎣ 1
2|N |

∑
l∈N,k

(
s̃l,k − 1

2|N |
∑

t∈N,k

s̃t,k

)2
⎤⎦

p
2

≤C + op(1) ,

Lastly, for Assumption B.4, let {UN (j, k) : j ∈ N, k = 1, 2} be i.i.d. taking

values in N with equal probability. Denote s̃∗j,k = s̃UN (j,k) (i.i.d.), ˜̃s∗j,k =√
f̂T (λUN (j,k))/f(λUN (j,k))s̃UN (j,k) (i.i.d.) and s∗j,k = sUN (j,k) (i.i.d.), fur-

thermore x∗(j)
d
=

√
2π2f̂T (λj)s

∗
j,1, y

∗(j)
d
=

√
2π2f̂T (λj)s

∗
j,2, j ∈ N and k =

1, 2. Since s∗j,k are from the standardized residues, we have E
∗(s∗1,k)

2 = 1,

E
∗(s∗1,k − s̃∗1,k)

2

�

∣∣∣∣ 1
2|N |

∑
j∈N,k

(
s̃j,k − 1

2|N |
∑

l∈N,k s̃l,k

)2
− 1

∣∣∣∣
1

2|N |
∑

j∈N,k

(
s̃j,k − 1

2|N |
∑

l∈N,k s̃l,k

)2 1

2|N |
∑

j∈N,k

s̃2j,k

+

(
1

2|N |
∑

j∈N,k s̃j,k

)2
1

2|N |
∑

j∈N,k

(
s̃j,k − 1

2|N |
∑

l∈N,k s̃l,k

)2 = op(1) ,

and

E
∗(s̃∗1,k − ˜̃s∗1,k)2 � sup

l∈N

∣∣∣f(λl)− f̂T (λl)
∣∣∣

f(λl)

1

2|N |
∑

j∈N,k

s̃2j,k = op(1) .

From this, it follows that

sup
j∈N

d22(L∗(x∗(j)), N(0, 2π2f(λj)))

≤ sup
j∈N

d22

(
L∗(x∗(j)),L∗

(√
2π2f(λj)s

∗
j,k

))
+ sup

j∈N
d22

(
L∗
(√

2π2f(λj)s
∗
j,k

)
, N(0, 2π2f(λj))

)
≤2π2 sup

j
|f(λj)− f̂T (λj)|E∗(s∗1,k)

2 + 2π2 sup
j

|f(λj)|d22(L∗(s∗1,k), N(0, 1))

�op(1) + d22(L∗(s∗1,k),L∗(s̃∗1,k))

+ d22

(
L∗(s̃∗1,k),L∗

(˜̃s∗1,k))+ d22
(
L∗ (˜̃s∗1,k) , N(0, 1)

)
�op(1) + E

∗(s∗1,k − s̃∗1,k)
2 + E

∗
(
s̃∗1,k − ˜̃s∗1,k)2 + d22

(
L∗
(˜̃s∗1,k) , N(0, 1)

)
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=op(1) ,

where L∗
(˜̃s∗1,k) is given by the (empirical) distribution (conditionally

on {V (·)}) which gives the correct convergence of the first and second
moment, which together gives the convergence in the Mallows distance.

(b) Wild Bootstrap (WB):
By Theorem 5.1 in [33], we have the following condition:

sup
λ∈[0,2π]2

∣∣∣f̂T (λ)− f(λ)
∣∣∣ p−→ 0 .

Hence, Assumption B.2 holds since

sup
j∈N

|Var∗(x∗(j))− 2π2f(λj)| = sup
j∈N

|2π2f̂T (λj)− 2π2f(λj)|
p−→ 0 .

Also, Assumption B.3 holds since

sup
j∈N

E
∗(|x∗(j)|)p =Cp sup

j∈N
f̂T (λj)

p ≤ Cp sup
j∈N

f(λj)
p + op(1) ≤ C + op(1) .

For Assumption B.4, let X ∼ N(0, 1) such that

√
2π2f̂T (λj)X ∼ x∗(j).

Then,

sup
j∈N

d22
(
L∗(x∗(j)), N(0, 2π2f(λj))

)
≤ 2π2 sup

j∈N
|f̂T (λj)− f(λj)| = op(1) .

(c) Local Bootstrap (LB):
By Corollary 4.2 in [33], the empirical distribution function of the Fourier
coefficients converges uniformly to the standard normal distribution func-
tion Φ(·), i.e.,

sup
s∈Z2

P

(
sup
z∈R

∣∣∣1
2

∑
j∈N

pj−s,T

(
1{

x(j)≤z
√

2π2f(λj)
} + 1{

y(j)≤z
√

2π2f(λj)
})

− Φ(z)
∣∣∣ ≥ ε

)
p−→ 0 .

Also, by by Theorem 4.4 in [33], we also have the following conditions on
the sums of the periodograms and Fourier coefficients:

(i) sup
j∈N

∣∣∣∣∣∑
s∈Z2

ps,T (x(j+ s) + y(j+ s))

∣∣∣∣∣ = op(1) ,

(ii) sup
j∈N

∣∣∣∣∣∑
s∈Z2

ps,T I(j+ s)− 4π2f(λj)

∣∣∣∣∣ = op(1) ,

(iii) sup
j∈N

∑
s∈Z2

ps,T I
2(j+ s) ≤ C1 + op(1) ,

(iv) sup
j∈N

∑
s∈Z2

ps,T I
q(j+ s) ≤ C2 + op(1) ,
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for some constant C1, C2 ≥ 0 and q = 4 + ε with some ε ∈ (0, 1). Hence,
Assumption B.2 holds since

sup
j∈N

|Var∗(x∗(j))− 2π2f(λj)|

� sup
j∈N

∣∣∣∣∣∑
s∈Z2

ps,T I(s+ j)− 4π2f(λj)

∣∣∣∣∣+ sup
j∈N

( ∑
s∈Z2

ps,T (x(j+ s) + y(j+ s))
)

=op(1) .

Furthermore, by Assumption K.1, Assumption B.3 holds with p = 2q > 8,
since

sup
j∈N

E
∗(|x∗(j)|p)

� sup
j∈N

1

2

∑
s∈Z2

ps,T (|x(j+ s)|p + |y(j+ s)|p)

+ sup
j∈N

∣∣∣∣∣12 ∑
s∈Z2

ps,T (x(j+ s) + y(j+ s))

∣∣∣∣∣
p

≤ sup
j∈N

∑
s∈Z2

ps,T I
q(j+ s) + op(1) ≤ C + op(1) .

Next, for Assumption B.4, note first that f is uniformly continuous (since
it is continuous by Assumption A.2 and periodic on [0, 2π]2). Hence,

sup
j∈N

sup
s∈{(t1,t2):−hT 1d1≤t1≤hT 1d1,−hT 2d2≤t2≤hT 2d2}

|f(λj+s)− f(λj)| = o(1) .

Denote ˜̃x∗
(j) = x̃∗(j)√

2π2f(λj+Jj,1,T
)
, where Jj,1,T is defined in LB. Then, we

get

sup
j∈N

d22
(
L∗(x∗(j)), N(0, 2π2f(λj))

)
� sup

j∈N
d22
(
L∗(x∗(j)),L∗(x̃∗(j))

)
+ π sup

l∈N
|f(λl)| sup

j∈N
d22

(
L∗

(
x̃∗(j)√
2π2f(λj)

)
, N(0, 1)

)

� sup
j∈N

[∑
s∈Z2

ps,T (x(j+ s) + y(j+ s))

]2

+ sup
j∈N

d22

(
L∗

(
x̃∗(j)√
2π2f(λj)

)
,L∗(˜̃x∗

(j))

)
+ sup

j∈N
d22
(
L∗(˜̃x∗

(j)), N(0, 1)
)

=op(1) .
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The last line follows from the uniform convergence of the empirical dis-
tribution function of the Fourier coefficients. Note that convergence in
Mallows distance is equivalent to convergence in distribution in addition
to convergence of the first two moments. In this case, the convergences in
all three cases hold uniformly in j.

Proof of Corollary 5.2. It follows directly from Theorem 6.1 in [33] and the
above proof of Theorem 5.1.

A.3. Proofs of Section 6

Proof of Theorem 6.1. By the conditions stated in the theorem, it is easy to see
that {V̂ (t)} satisfies the condition in Corollary 5.2. Since ZT ⊂ Q′

2, the results
follows from Theorem 4.3(a).

Proof of Theorem 6.2. It is easy to see that the scan statistics diverges to infin-
ity under the conditions stated in the theorem.

Proof of Theorem 6.3. To simplify the notation used, we illustrate the proof by
a simpler example using Λ = {(1, 0), (0, 1)}, then G = (2γ(1, 0), 2γ(0, 1))′. The
general results can be proved similarly.

Denote the vectors ĜT = (2γ̂(1, 0), 2γ̂(0, 1))′ and G = (2γ(1, 0), 2γ(0, 1))′

where γ(j) = Var[Z(0) − Z(j)]. Respectively, for the bootstrapped version,

denote ĜT,boot = (2γ̂boot(1, 0), 2γ̂boot(0, 1))
′ and Gboot = E

∗(ĜT,boot). From

Theorem 1 of [15], we have
√

|T | ×
(
ĜT −G

)
d−→ N(0,ΣR) , where ΣR =

limT→∞ |T | × Cov
(
ĜT , ĜT

)
. In particular, its (1, 2)th element is∑

s∈Z

Cov
(
[Z(0, 0)− Z(1, 0)]

2
, [Z(s)− Z(s+ (0, 1))]

2
)
.

The other elements are defined similarly. To prove Theorem 6.3, it suffices to
show that √

|T | ×
(
ĜT,boot −Gboot

)
d−→ N(0,ΣR) .

First, we show that for all s1, s2 ∈ Z
2,

lim
T→∞

∑
s∈T

∣∣∣Cov∗ ([Z∗(0)− Z∗(s1)]
2
, [Z∗(s)− Z∗(s+ s2)]

2
)∣∣∣ < ∞ ,

and

lim
T→∞

∑
s∈T

Cov∗
(
[Z∗(0)− Z∗(s1)]

2
, [Z∗(s)− Z∗(s+ s2)]

2
)
= ΣR .

Note that for fixed s, s1, s2 ∈ Z
2, we have

Z∗(0)− Z∗(s1) =
2√
|T |
∑
j∈N

[
x∗(j)(1− cos(λ′

js1)) + y∗(j) sin(λ′
js1)

]
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=
2√
|T |
∑
j∈N

(x∗(j)Aj + y∗(j)Bj) ,

and

Z∗(s)− Z∗(s+ s2)

=
2√
|T |
∑
j∈N

{
x∗(j)[cos(λ′

js)− cos(λ′
j(s+ s2))]

−y∗(j)[sin(λ′
js)− sin(λ′

j(s+ s2))]
}

=
2√
|T |
∑
j∈N

(x∗(j)Cj + y∗(j)Dj) ,

where Aj, Bj, Cj and Dj are defined as Aj = 1 − cos(λ′
js1), Bj = sin(λ′

js1),
Cj = cos(λ′

js)− cos(λ′
j(s+ s2)) and Dj = sin(λ′

j(s+ s2))− sin(λ′
js).

Consider

Cov∗
(
[Z∗(0)− Z∗(s1)]

2
, [Z∗(s)− Z∗(s+ s2)]

2
)

=Cov∗

⎛⎜⎝ 4

|T |

⎛⎝∑
j∈N

{x∗(j)Aj + y∗(j)Bj}

⎞⎠2

,
4

|T |

⎛⎝∑
j∈N

{x∗(j)Cj + y∗(j)Dj}

⎞⎠2
⎞⎟⎠

=
16

|T |2
∑
i∈N

∑
j∈N

∑
k∈N

∑
l∈N

[
AiAjCkClCov

∗(x∗(i)x∗(j), x∗(k)x∗(l))

+AiBjCkDlCov
∗(x∗(i)y∗(j), x∗(k)y∗(l))

+BiBjDkDlCov
∗(y∗(i)y∗(j), y∗(k)y∗(l))

]
=

16

|T |2

[∑
i∈N

A2
iC

2
i Var

∗(x∗(i)2) +
∑
i∈N

B2
i D

2
i Var

∗(y∗(i)2)

+ 2
∑

i∈N,j∈N,i �=j

AiAjCiCjE
∗(x∗(i)2)E∗(x∗(j)2)

+ 2
∑

i∈N,j∈N,i �=j

BiBjDiDjE
∗(y∗(i)2)E∗(y∗(j)2)

+ 4
∑

i∈N,j∈N

AiBjCiDjE
∗(x∗(i)2)E∗(y∗(j)2)

]

=
16

|T |2

[∑
i∈N

A2
iC

2
i Var

∗(x∗(i)2) +
∑
i∈N

B2
i D

2
i Var

∗(y∗(i)2)

]

+
32

|T |2

[ ∑
i∈N,j∈N,i �=j

AiAjCiCjE
∗(x∗(i)2)E∗(x∗(j)2)

+
∑

i∈N,j∈N,i �=j

BiBjDiDjE
∗(y∗(i)2)E∗(y∗(j)2)
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+ 2
∑

i∈N,j∈N

AiBjCiDjE
∗(x∗(i)2)E∗(y∗(j)2)

]
.

By adding and subtracting terms and completing the square, we have

32

|T |2
[∑
i∈N

AiCiE
∗(x∗(i)2) +

∑
j∈N

BjDjE
∗(y∗(j)2)

]2
− 16

|T |2
[∑
i∈N

A2
iC

2
i K

∗
x(i) +

∑
j∈N

B2
j D

2
jK

∗
y (j)

]
=J1 − J2 ,

where K∗
x(i) = E

∗(x∗(i)4)−3E∗(x∗(i)2)2 and K∗
y (j) = E

∗(y∗(j)4)−3E∗(y∗(j)2)2,
respectively.

For the first term J1,

J1 =
32

|T |2

[∑
i∈N

AiCiE
∗(x∗(i)2) +

∑
j∈N

BjDjE
∗(y∗(j)2)

]2

=
32

|T |2

[
Cov∗

⎛⎝∑
i∈N

[Aix
∗(i) +Biy

∗(i)],
∑
j∈N

[Cjx
∗(j) +Djy

∗(j)]

⎞⎠]2

=2
[
Cov∗ (Z∗(0)− Z∗(s1), Z

∗(s)− Z∗(s+ s2))
]2

.

For the second term J2, since the underlying field is Gaussian, the Fourier
coefficients x(i) and y(i) are Gaussian. By the Gaussianity of x(i) and y(i),
asymptotic independence and strong law of large numbers, we haveK∗

x(i) = o(1)
and K∗

y (j) = o(1). Hence, we have J2 = o( 1
|T | ). Therefore,∑

s∈T

∣∣∣Cov∗ ([Z∗(0)− Z∗(s1)]
2
, [Z∗(s)− Z∗(s+ s2)]

2
)∣∣∣

=
∑
s∈T

2 [Cov∗ (Z∗(0)− Z∗(s1), Z
∗(s)− Z∗(s+ s2))]

2
+ o (1) .

Furthermore, we have∑
s∈T

2 [Cov∗ (Z∗(0)− Z∗(s1), Z
∗(s)− Z∗(s+ s2))]

2

=
∑
s∈T

32

|T |2

[∑
i∈N

[
(1− cos(λ′

is1))(cos(λ
′
is)− cos(λ′

i(s+ s2)))

+ sin(λ′
js1)(sin(λ

′
j(s+ s2))− sin(λ′

js))
]
E
∗(x∗(i)2)

]2
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=
∑
s∈T

32

|T |2

[∑
i∈N

[
(cos(λ′

is)− cos(λ′
i(s− s1))

+ cos(λ′
i(s+ s2 − s1))− cos(λ′

i(s+ s2))
]
2π2f(λi)

]2
+ op(1)

=
∑
s∈T

2 [Cov (Z(0)− Z(s1), Z(s)− Z(s+ s2))]
2
+ op(1)

=
∑
s∈T

Cov
(
[Z(0)− Z(s1)]

2
, [Z(s)− Z(s+ s2)]

2
)
+ op(1)

p−→ ΣR .

Hence, we have

lim
T→∞

∑
s∈T

Cov∗
(
[Z∗(0)− Z∗(s1)]

2
, [Z∗(s)− Z∗(s+ s2)]

2
)
= ΣR .

Then, we have√
|T | 1

|T |
∑
s∈T

[Z∗(s)− Z∗(s+ t)]2

=
1√
|T |
∑
s∈T

[
1√
|T |
∑
j∈T

(x∗(j) + iy∗(j))[exp(iλ′
js)− exp(iλ′

j(s+ t))]

]2

=
1

|T |3/2
∑
s∈T

[∑
k∈T

(x∗(k) + iy∗(k))[exp(iλ′
ks)− exp(iλ′

k(s+ t))]

]
×[∑

l∈T

(x∗(l)− iy∗(l))[exp(−iλ′
ls)− exp(−iλ′

l(s+ t))]

]

=
1

|T |3/2

[(∑
k∈T

(x∗(k) + iy∗(k))[1− exp(iλ′
kt)]

)
×(∑

l∈T

(x∗(l)− iy∗(l))[1− exp(−iλ′
lt)]

)
×
(∑

s∈T

exp(iλ′
ks) exp(−iλ′

ls)

)]

=
1

|T |3/2

[(∑
k∈T

(x∗(k) + iy∗(k))[1− exp(iλ′
kt)]

)

×
(∑

l∈T

(x∗(l)− iy∗(l))[1− exp(−iλ′
lt)]

)
× |T |1{k=l}

]
,

by grouping the terms with k = l in the summation, we have

1√
|T |

[∑
k∈T

(x∗(k)2 + y∗(k)2)[2− exp(iλ′
kt)− exp(−iλ′

kt)]

]
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=
4√
|T |

[ ∑
k∈N

(x∗(k)2 + y∗(k)2)[1− cos(λ′
kt)]

]
.

Since the above sum is sum of independent random variables with finite
second moment, by the central limit theorem, it converges to normal distribution
with variance ΣR. Hence, the results follows directly by applying Cramer-Wold
device.

Appendix B: Proofs of lemmas in Appendix A

Proof of Lemma A.1. Because cos(λ′
jh) =

1
2 [exp(iλ

′
jh) + exp(iλ′

dT−jh)], we ob-
tain

8π2

|T |
∑
j∈N

f(λj) cos(λ
′
jh)

=
4π2

|T |
∑
j∈T

f(λj) exp(iλ
′
jh)−

4π2

|T | f(0)

− 4π2

|T | f(π, 2π) exp(i(π, 2π)
′h)1{d1 even}

− 4π2

|T | f(2π, π) exp(i(2π, π)
′h)1{d2 even}

− 4π2

|T | f(π, π) exp(i(π, π)
′h)1{d1,d2 even} .

Moreover, since f(λ) = 1
4π2

∑
j∈Z2 γ(j) exp(−iλ′j), we have

4π2

|T |
∑
j∈T

f(λj) exp(iλ
′
jh) =

1

|T |
∑
j∈T

[∑
k∈Z2

γ(k) exp(−iλ′
jk)

]
exp(iλ′

jh)

=
1

|T |
∑
k∈Z2

γ(k)
∑
j∈T

exp(iλ′
j(h− k))

=
∑
k∈Z2

γ(h+ k� dT ) .

where the exchange of summations is due to Fubini’s Theorem.

Proof of Lemma A.2. For the assertion in (a), we use the Cramer-Wold device
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and prove a Lyapunov type condition. Let αi ∈ R. Consider

p∑
i=1

αiS
∗
AT⊗T (ui)

=
1√

|AT ⊗ T |
√

|T |
∑
j∈N

2
[
x∗(j)

p∑
i=1

αi

∑
l∈Bi⊗(AT⊗T )

cos(λ′
jl)

− y∗(j)

p∑
i=1

αi

∑
l∈Bi⊗(AT⊗T )

sin(λ′
jl)
]

=
1√

|AT ⊗ T |
√

|T |
∑
j∈N

[
A∗

j,N +B∗
j,N

]
,

where A∗
j,N , B∗

j,N for all j ∈ N are conditionally row-wise independent. The
Lyapunov conditon is then (in probability) fulfilled since by Assumptions B.2
and B.3, similar to (A.2), we have

1

|AT ⊗ T |2|T |2
∑
j∈N

[
E
∗(A∗

j,N − E(A∗
j,N ))4 + E

∗(B∗
j,N − E(B∗

j,N ))4
]

≤(C + op(1))
1

|AT ⊗ T |2|T |2×∑
j∈N

[
min

(
d1
j1

, (a12T − a11T )d1

)
min

(
d2
j2

, (a22T − a21T )d2

)]4
≤(C + op(1))

|AT ⊗ T |2
|T |2 = op(1) .

Together with Lemma A.1, this gives assertion (a). Note that it is essential that
|AT⊗T |

|T | → 0. In fact, it is easy to see that for AT ⊗ T = T , the Feller condition

is not fulfilled. Thus, the Lindeberg condition cannot be fulfilled. Therefore, we
need a different argument to obtain the asymptotic normality of AT ⊗ T = T .
We now use the Cramer Wold device and Lemma 3 of [31] which gives an upper
bound for the Mallows distance ρ2 of weighted sums of independent N(0, 1)
random variables. The assertion then follows, since by the proof of Lemma A.1,

p∑
i=1

p∑
j=1

αiαj
8π2

|T |2
∑
j∈N

f(λj)
∑

l1∈Bi⊗T

∑
l2∈Bj⊗T

cos(λ′
j(l1 − l2))

=

p∑
i=1

p∑
j=1

αiαj4π
2f(0)[L(Bi

⋂
Bj)− L(Bi)L(Bj)] + op(1) .

Proof of Lemma A.3. Recall that the pseudo-metric ρ is defined as ρ(B,C) =√
L(BΔC) for any fixed B,C ∈ Q′

2. We have

S∗
AT⊗T (B)− S∗

AT⊗T (C) =
∑

l∈AT⊗T

alZ
∗(l) ,
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where al = 1{l∈B⊗(AT⊗T )} − 1{l∈C⊗(AT⊗T )}. First, we show that

|AT ⊗ T |−1/2

∥∥∥∥∥ ∑
l∈AT⊗T

alZ
∗(l)

∥∥∥∥∥
p

≤ Dp

( ∑
l∈AT⊗T

a2l

) 1
2

= Dpρ(B,C) , (B.1)

where Dp is a constant depends only on p, and the value of p is the same as in
the Assumption B.3, which requires p > 8. Recall that

Z∗(t) =
2√
|T |
∑
j∈N

[
x∗(j)cos(λ′

jt)− y∗(j)sin(λ′
jt)
]
.

Hence by Burkholder inequality and x∗(j)
d
= y∗(j), we have∥∥∥∥∥ ∑

l∈AT⊗T

alZ
∗(l)

∥∥∥∥∥
p

=
2√
|T |

∥∥∥∥∥∥
∑

l∈AT⊗T

al

⎛⎝∑
j∈N

(x∗(j)cos(λ′
jl)− y∗(j)sin(λ′

jl))

⎞⎠∥∥∥∥∥∥
p

=
2√
|T |

∥∥∥∥∥∥
∑

l∈AT⊗T

∑
j∈N

al
[
(x∗(j)cos(λ′

jl)− y∗(j)sin(λ′
jl))
]∥∥∥∥∥∥

p

≤ 2√
|T |

⎛⎝2p
∑

l∈AT⊗T

∑
j∈N

‖alx∗(j)cos(λ′
jl)‖2p + ‖aly∗(j)sin(λ′

jl)‖2p

⎞⎠
1
2

≤ 2√
|T |

⎛⎝2p
∑

l∈AT⊗T

∑
j∈N

a2l ‖x∗(j)‖2p

⎞⎠
1
2

=

(
2p

∑
l∈AT⊗T

a2l

) 1
2

⎛⎝ 4

|T |
∑
j∈N

‖x∗(j)‖2p

⎞⎠
1
2

.

Finally, by Assumption B.3, we have

|AT ⊗ T |−1/2

∥∥∥∥∥ ∑
l∈AT⊗T

alZ
∗(l)

∥∥∥∥∥
p

≤ |AT ⊗ T |−1/2

(
2p

∑
l∈AT⊗T

a2l

) 1
2

⎛⎝ 4

|T |
∑
j∈N

‖x∗(j)‖2p

⎞⎠
1
2

=

(
1

|AT ⊗ T |
∑

l∈AT⊗T

a2l

) 1
2

⎛⎝ 8p

|T |
∑
j∈N

‖x∗(j)‖2p

⎞⎠
1
2
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= Dp

(
1

|AT ⊗ T |
∑

l∈AT⊗T

a2l

) 1
2

= Dp

√
L(BΔC) = Dpρ(B,C) .

From Theorem 2.6.4 of [48], with C = Q′
2 and V (Q′

2) = 5, there exists a
positive constantK such that N(ε,Q′

2, ρ) ≤ KV (Q′
2)(4e)

V (Q′
2)(1/ε)2(V (Q′

2)−1) =
5K(4e)5(1/ε)8 , where N(ε,Q′

2, ρ) is the smallest number of open balls of radius
ε with respect to ρ which forms a covering of Q′

2. Since p > 8, we have∫ 1

0

(N(ε,Q′
2, ρ))

1
p dε < ∞ . (B.2)

By (B.1) and (B.2), we can apply Theorem 11.6 in [27] and we have that for
each ε > 0, there exists a δ > 0 which depends on ε and on the value of the
entropy integral (B.2) but not on T , such that

E

⎛⎜⎝ sup
B,C∈Q′

2

ρ(B,C)<δ

∣∣∣|AT ⊗ T |−1/2S∗
AT⊗T (B)− |AT ⊗ T |−1/2S∗

AT⊗T (C)
∣∣∣
⎞⎟⎠ < ε .

Thus, (A.3) follows and hence the sequence of the bootstrap sample processes{
(4π2f(0)|AT ⊗ T |)−1/2S∗

AT⊗T (B) : B ∈ Q′
2|V (·)

}
,

is tight in the space of continuous real functions on Q′
2.
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