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Abstract: Huber loss, its asymmetric variants and their associated func-
tionals (here named Huber functionals) are studied in the context of point
forecasting and forecast evaluation. The Huber functional of a distribution
is the set of minimizers of the expected (asymmetric) Huber loss, is an inter-
mediary between a quantile and corresponding expectile, and also arises in
M-estimation. Each Huber functional is elicitable, generating the precise set
of minimizers of an expected score, subject to weak regularity conditions on
the class of probability distributions, and has a complete characterization
of its consistent scoring functions. Such scoring functions admit a mixture
representation as a weighted average of elementary scoring functions. Each
elementary score can be interpreted as the relative economic loss of using
a particular forecast for a class of investment decisions where profits and
losses are capped. The relevance of this theory for comparative assessment
of weather forecasts is also discussed.
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1. Introduction

In many fields of human endeavor, it is desirable to make forecasts for an un-
certain future. Hence, forecasts should be probabilistic, presented as probabil-
ity distributions over possible future outcomes (Gneiting and Katzfuss, 2014).
Nonetheless, many practical situations require forecasters to issue single-valued
point forecasts. In this situation, a directive is required about the specific fea-
ture or functional of the predictive distribution that is being sought, or about
the loss (or scoring) function that is to be minimized (Gneiting, 2011a; Ehm
et al., 2016). Examples of functionals include the mean, median, a quantile or
expectile, with the latter recently attracting interest in risk management (Bellini
and Di Bernardino, 2017). Examples of scoring functions include the squared
error scoring function S(x, y) = (x − y)2 and absolute error scoring function
S(x, y) = |x − y|. In the case that the directive is in the form of a statistical
functional, it is critical that any scoring function used is appropriate for the
task at hand. Ideally, a point forecast sampled from one’s predictive distribu-
tion by using the requested functional should also minimize one’s expected score.
That is, the scoring function should be consistent for the functional (Gneiting,
2011a). It is well-known that the squared error scoring function is consistent for
the mean and that the absolute error scoring function is consistent for the me-
dian. Within this framework, predictive performance is assessed by computing
the mean score over a number of forecast cases.

This paper studies Huber loss, and asymmetric variants of Huber loss (Def-
inition 4.2), as a scoring function of point forecasts, along with its associated
functional. The classical Huber loss function (Huber, 1964) with positive tuning
parameter a is given by

S(x, y) =

{
1
2 (x− y)2, |x− y| ≤ a

a|x− y| − 1
2a

2, |x− y| > a,
(1.1)

where x is a point forecast and y the corresponding realization. It applies a
quadratic penalty to small errors and a linear penalty to large errors and is an
intermediary between the squared error and absolute error scoring functions.
Huber loss is used by the Australian Bureau of Meteorology (BoM) to compare
predictive performance of temperature and wind speed forecasts with a view to
streamlining forecast production (Foley et al., 2019), and is described to weather
forecasters in that organization as “a compromise between the absolute error
and the squared error, in an attempt to use the benefits of both of these.” The
motivation for using Huber loss in this applied context is given in Section 2.

For a given predictive distribution, we call the set of point forecasts that
minimize expected Huber loss the Huber mean of that distribution. The Huber
mean is an intermediary between the median and the mean with some appeal-
ing properties. It can be described as the midpoint of the ‘central interval’ of
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length 2a of a distribution, where a is the tuning parameter of the correspond-
ing Huber loss function (see Equation (3.6) and the accompanying geometric
interpretation). The Huber mean, unlike the mean, is not dependent on the be-
havior of the distribution at its tails. At the same time, it accounts for more
behavior in the vicinity of the center of the distribution than the median. It is
therefore a robust measure of location for a distribution. More generally, the
Huber functional gives the minimizers of expected asymmetric Huber loss, and
is an intermediary between some α-quantile and α-expectile, as was also noted
by Jones (1994) from the perspective of M-estimation. Basic properties of Huber
means and Huber functionals are discussed in Section 3, many of which can be
traced to Huber (1964) in the classical symmetric case.

In the context of point forecasting, an essential property of a statistical func-
tional is that it is elicitable; that is, that the functional generates precisely
the set of minimizers of some expected score (Lambert, Pennock and Shoham,
2008). The Huber functional is shown to be elicitable for classes of probability
distributions on R (or subintervals of R) under weak regularity assumptions
(Theorem 4.5). The class of scoring functions that are consistent for the Hu-
ber functional is also characterized, being parameterized by the set of convex
functions (also Theorem 4.5). Edge cases of this characterization recover the
general form of scoring functions that are consistent for quantiles (Gneiting,
2011b; Thomson, 1979) and expectiles (Gneiting, 2011a).

Determining which consistent scoring function to use is non-trivial since in
practice this choice can influence forecast rankings (Murphy, 1977; Schervish,
1989; Merkle and Steyvers, 2013) as illustrated in Section 5.1. In the case of
quantiles and expectiles, Ehm et al. (2016) gave clarity to this issue by show-
ing that each consistent scoring function for those functionals admits a mixture
representation; that is, can be expressed as a weighted average of elementary
scoring functions. Likewise, each consistent scoring function for the Huber func-
tional can be expressed as a weighted average of elementary scoring functions
that are consistent for the Huber functional (Theorem 5.3). Again, the analo-
gous results for quantiles and expectiles are recoverable as edge cases of this
theorem. The Huber functional and its associated elementary scores arise nat-
urally in optimal decision rules for investment problems with fixed up-front
costs, where profits and losses are capped (Section 5.3). Such models are inter-
mediaries between the classical simple cost–loss decision model (e.g. Richardson
(2000); Wolfers and Zitzewitz (2008)) on the one hand, and investment deci-
sion models with no bounds on profits or losses (Ehm et al., 2016; Bellini and
Di Bernardino, 2017) on the other. The mixture representation, along with the
economic interpretation of elementary scoring functions and Murphy diagrams,
aids interpreting forecast rankings in empirical situations (Ehm et al. (2016);
Section 5.4). Applications include, for example, selecting a consistent scoring
function that emphasizes predictive performance at the extremes of a variable’s
range (Taggart, 2021).

Conclusions are presented in Section 6 and proofs of the main results are
given in the appendix.
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2. The use of Huber loss for assessing weather forecast quality

The following summarizes the context and initial motivation for using Huber
loss to assess predictive performance of forecast systems at the Australian BoM.

The U.S. National Weather Service and the BoM have an operational model
where automated gridded weather forecasts are curated and manually adjusted
by meteorologists prior to publication for public use. Advances in numerical
weather prediction have led to on-going re-evaluation of the role of human fore-
casters in meteorological service provision (Just and Foley, 2020; Sturrock and
Griffiths, 2020). At the BoM, comparative assessment of the predictive perfor-
mance of official forecasts, which are issued by meteorologists, and automated
forecasts from the Operational Consensus Forecasts (OCF) system (Bureau of
Meteorology, 2017), was performed initially for forecasts of probability of pre-
cipitation. One goal was to advise on the likely impact on forecast quality if
automation were adopted. The forecast service was well-defined for these pre-
cipitation forecasts and the Brier score was used as a consistent scoring function
for ranking the two forecast systems and reporting on the statistical significance
of those ranks (Griffiths et al. (2017), c.f. Section 5.1).

However, for some other variables, such as daily maximum temperature, the
BoM’s forecast service was not clearly defined. Point forecasts (i.e. R-valued
forecasts) were requested from forecasters but there was no policy on which
point forecast was suitable, either in the form of a directive (e.g. issue the mean
of the predictive distribution) or of a scoring (or loss) function to be minimized.
This lack of service clarity led a team within the BoM to seek a scoring function
that would be suitable for penalizing forecast errors when the forecast user group
is the heterogeneous public.

First, scoring functions that penalized over- and under-prediction asymmetri-
cally were not considered. Second, anecdotal evidence suggested that maximum
temperature forecasts with small errors (where the forecast x and observation
y differed by about 1◦C) were generally viewed favorably by the public whereas
those with larger forecast errors (around 4 or 5◦C) were not. Furthermore, the
heavy reputational costs associated with egregious errors of comparable size were
similar: a 9◦C error was not much worse than an 8◦C error. Hence, for daily
maximum temperature forecasts, two clear preferences could be articulated:

1. five 1◦C errors are preferred over four perfect forecasts followed by a 4◦C
error;

2. a 9◦C error followed by a perfect forecast is to be preferred over an 8◦C
error followed by a 4◦C error.

Two commonly used scoring functions, the absolute error and squared error
functions, do not satisfy both requirements. Table 1 shows that the mean abso-
lute error scores for these error sequences are consonant with Preference 2 but
not with Preference 1, while the opposite holds for mean squared error. However,
the mean scores generated by the Huber loss scoring function of Equation (1.1),
with a = 3, are consonant with both preferences. This is the scoring function
that was selected.
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Table 1

Mean absolute error (MAE), mean squared error (MSE) and mean Huber loss (MHL) for
different error sequences. Here, Huber loss is given by Equation (1.1) with the choice a = 3.

sequence of errors (x− y) MAE MSE MHL
(1, 1, 1, 1, 1) 1 1 0.5
(0, 0, 0, 0, 4) 0.8 3.2 1.5

(9, 0) 4.5 40.5 11.25
(8, 4) 6 40 13.5

Huber loss has subsequently been used by the BoM to score daily maximum
and minimum temperature forecasts, and hourly temperature, dewpoint temper-
ature and wind magnitude forecasts, each with an appropriate choice of tuning
parameter a. The remainder of the paper is devoted to developing the theory
of Huber loss, and its asymmetric variants, in the context of point forecasting
and forecast evaluation, with some applications of the theory illustrated using
official BoM forecasts and OCF forecasts.

3. Quantiles, expectiles and Huber functionals

To begin, we establish some notation. We work in a setting where forecasts
are made for some quantity, where the range of possible outcomes belongs to
some interval I ⊆ R. Forecasts of the quantity can be in the form of a predictive
distribution F on I or of a point forecast x in I. The realization (or observation)
of the quantity will usually be denoted by y.

Let F(R) denote the class of probability measures on the Borel–Lebesgue sets
of R and F(I) denote the subset of probability measures on I. For simplicity, we
do not distinguish between a measure F in F(R) and its associated cumulative
density function (CDF) F . For F in F(I), write Y ∼ F to indicate that a
random variable Y has distribution F ; that is, P(Y ≤ t) = F (t) whenever
t ∈ I. Throughout, the notation EF indicates that the expectation is taken with
respect to Y ∼ F .

The power set of a set A will be denoted P(A). For a real-valued quantity X,
we denote by X+ the quantity max(0, X). The partial derivative with respect
to the ith argument of a function g is denoted ∂ig.

Whenever a, b ∈ [0,∞], define the ‘capping function’ κa,b : R → R by

κa,b(x) = max(min(x, b),−a) ∀x ∈ R.

That is, κa,b(x) is x capped below by −a and above by b. Note that x+ =
κ0,∞(x).

In many contexts users or issuers of forecasts want a relevant point summary
x of a predictive distribution F . This can be generated by requesting a specific
statistical functional of F . Given an interval I ⊆ R and some space F of prob-
ability distributions in F(I), a statistical functional (or simply a functional) T
on F(I) is a mapping T : F(I) → P(I) (Horowitz and Manski, 2006; Gneiting,
2011a). Two important examples are quantiles and expectiles.
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Example 3.1. Suppose that I ⊆ R and α ∈ (0, 1). The α-quantile functional
Qα : F(I) → P(I) is defined by

Qα(F ) = {x ∈ I : lim
y↑x

F (y) ≤ α ≤ F (x)}

whenever F ∈ F(I). For any F , Qα(F ) is a closed bounded interval of I. The two
endpoints only differ when the level set F−1(α) contains more than one point,
so typically the functional is single valued. The median functional Q1/2 arises
when α = 1/2. If q is an α-quantile of F and F is continuous at q then F (q)/(1−
F (q)) = α/(1−α). Figure 1 illustrates the quantiles Q1/2(F ) (the median) and
Q0.7(F ), where F is the exponential distribution. The aforementioned property
is illustrated in the figure via the vertical dashed line segments, whose lengths
are in the ratio α : (1− α).

Example 3.2. Given an interval I ⊆ R, let F1(I) denote the space of probability
measures F(I) with finite first moment. The α-expectile functional Eα : F1(I) →
P(I) is defined by

Eα(F ) =

{
x ∈ I : α

∫ ∞

x

(y − x) dF (y) = (1− α)

∫ x

−∞
(x− y) dF (y)

}
(3.1)

whenever F ∈ F1(I). It can be shown there is a unique solution x to the defining
equation, so expectiles are single-valued. Expectiles were introduced by Newey
and Powell (1987) in the context of least squares estimation and have recently
attracted interest in financial risk management (Bellini and Di Bernardino,
2017). Expectiles share properties of both expectations as well as quantiles,
and nests the mean functional E1/2. Using integration by parts, one can show
that {x} = Eα(F ) if and only if

α

∫
[x,∞)∩I

(1− F (t)) dt = (1− α)

∫
(−∞,x]∩I

F (t) dt.

The latter equation gives a geometric interpretation of the α-expectile of F . It
is the unique point x such that the (1−α)-weighted area of the region bounded
by F and 0 on the interval (−∞, x] ∩ I is equal to the α-weighted area of the
region bounded by F and 1 on the interval [x,∞) ∩ I. Figure 1 illustrates this
interpretation, via the areas of the shaded regions, for the expectiles E1/2(F )
(i.e. mean) and E0.7(F ), where F is the exponential distribution.

Equation (3.1) can be re-written as

Eα(F ) = {x ∈ I : αEF κ0,∞(Y − x) = (1− α)EF κ0,∞(x− Y )} . (3.2)

By modifying the parameters of the capping function κ0,∞, we introduce another
functional.

Definition 3.3. Suppose that a > 0, b > 0, α ∈ (0, 1) and that I ⊆ R is an
interval. Then the Huber functional Hα

a,b : F(I) → P(I) is defined by

Hα
a,b(F ) = {x ∈ I : αEF κ0,a(Y − x) = (1− α)EF κ0,b(x− Y )} (3.3)
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Fig 1. The quantile Qα, expectile Eα and Huber quantile Hα (where Hα = Hα
a (F ), a =

0.6) when α = 0.5 (top) and α = 0.7 (bottom) for the exponential distribution F (t) = 1 −
exp(−t), t ≥ 0. The ratios of the areas of the two shaded regions, of the areas of the two
regions bounded by thick dashed lines, and of the lengths of the two dotted line segments, are
α : (1− α).

whenever F ∈ F(I). In the case when a = b, we simplify notation and write

Hα
a (F ) for Hα

a,a(F ). The special case H
1/2
a (F ) is called a Huber mean.

We have named the Huber functional for Peter Huber, whose loss function

ha(u) =

{
1
2u

2, |u| ≤ a

a|u| − 1
2a

2, |u| > a
(3.4)

(Huber, 1964) also bears his name. The connection between the Huber functional
and Huber loss will be made explicit in Section 4. Since the Huber functional
is an example of a generalized quantile (Breckling and Chambers, 1988; Jones,
1994; Bellini et al., 2014), Hα

a,b(F ) may also be called a Huber quantile of F . We
note here that x ∈ Hα

a,b(F ) if and only if EFV (x, Y ) = 0, where V : I × I → R

is given by
V (x, y) = |1{x≥y} − α|κa,b(x− y). (3.5)
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Fig 2. Top left: Generalized Huber loss function hα
a,b where α = 0.7, a = 2 and b = 1.

Top right: The Huber quantile H = Hα
a,b(F ) where α = 0.7, a = 2 and b = 1 for the

exponential distribution F (t) = 1− exp(−t), t ≥ 0. The two shaded areas satisfy the equation
(1 − α)A1 = αA2. Bottom: A piecewise linear distribution F with endpoints H− and H+ of

the interval H
1/2
a (F ) where a = 1, endpoints Q− and Q+ of the median interval Q1/2(F ),

and the mean value E. The area of each shaded rectangle is equal.

The function V is an identification function (Gneiting, 2011a, Section 2.4) for
Hα

a,b, and will be used to establish important properties of the Huber functional.
As with expectiles, a routine calculation using integration by parts shows

that x ∈ Hα
a,b(F ) if and only if

α

∫
[x,x+a]∩I

(1− F (t)) dt = (1− α)

∫
[x−b,x]∩I

F (t) dt. (3.6)

This gives a geometric interpretation of the Huber functional as the set of points
x where the (1−α)-weighted area of the region bounded by F and 0 on [x−b, x]∩I
equals the α-weighted area of the region bounded by F and 1 on [x, x+ a] ∩ I.
In the case when α = 1/2, the two areas are equal. This is illustrated for the
exponential distribution in Figure 1 for Hα

0.6(F ) (when α = 1/2 and α = 0.7)
and in Figure 2 for Hα

a,b(F ) (when α = 0.7, a = 2 and b = 1).
In light of the corresponding geometric interpretations of quantiles and expec-

tiles, and also the similarity between Equations (3.2) and (3.3), it should come



Point forecasting and forecast evaluation with generalized Huber loss 209

as no surprise that α-quantiles and α-expectiles are nested as edge cases in the
family {Hα

a}a∈(0,∞) of Huber functionals. The following proposition makes this
precise and lists several other basic properties of the Huber functional. In what
follows, F−1(w) denotes the closure in R of the level set F−1(w), and R(F ) de-
notes the smallest closed interval of R that contains the support of the measure
F .

Proposition 3.4. Suppose that a > 0, b > 0, α ∈ (0, 1), I ⊆ R is an interval
and F ∈ F(I).

1. Then Hα
a,b(F ) is a nonempty closed bounded subinterval of I contained in

R(F ).
2. If Hα

a,b(F ) = [c, d] for some c < d, then there exists w in (0, 1) such that

F−1(w) = [c− b, d+ a] and α = bw/(bw + a(1− w)).
3. If there exists w in (0, 1) such that F−1(w) = [c0, d0] for some c0 and

d0 satisfying d0 − c0 > a + b, then Hα
a,b(F ) = [c0 + b, d0 − a] where α =

bw/(bw + a(1− w)).
4. lima↓0 min(Hα

a (F ))=min(Qα(F )) and lima↓0 max(Hα
a (F ))=max(Qα(F )).

5. If F has finite first moment then

lim
a→∞

min(Hα
a (F )) = lim

a→∞
max(Hα

a (F )) = Eα(F ) .

6. If F̃ ∈ F(I) and F (t) = F̃ (t) whenever

min(Hα
a,b(F ))− b ≤ t ≤ max(Hα

a,b(F )) + a,

then Hα
a,b(F ) = Hα

a,b(F̃ ).

Part (1) is similar to Proposition 1(a) of Bellini et al. (2014), whilst parts (4),
(5) and (6) were noted, in the case of finite discrete distributions when a = b
and α = 1/2, by Huber (1964). The proof is given in the appendix.

Part (6) can be interpreted as saying that the Huber functional only de-
pends on the values of the CDF F away from its tails. In situations where
the tail of a predictive distribution is difficult to model, but a point summary
describing its broad center is desired, this property is useful. In particular,
the Huber functional is invariant to the modification of F outside the inter-
val [min(Hα

a,b(F )) − b,max(Hα
a,b(F )) + a]. In contrast, modification of the tails

of F will generally change its mean and expectile values, whilst quantile values
are invariant to modifications of F anywhere apart from at the quantile.

Parts (2) and (3) specify conditions on F for which Hα
a,b(F ) is multi-valued.

Expectiles are always single-valued whereas quantiles can sometimes be multi-
valued. Multi-valued quantiles can arise when F has a bi-modal probability
density function (PDF), taking values from the interval I that separates the two
distinct densities that comprise the PDF. Huber functionals Hα

a,b(F ) provide a
single-valued alternative to multi-valued quantiles by choosing a and b such that
a+ b is at least the length of I. A precisely stated corollary is that if each level
set of F on R(F ) has length not exceeding a + b then Hα

a,b(F ) is single-valued
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for every α in (0, 1). It also follows that Hα
a,b(F ) is single-valued whenever the

quantile Qα(F ) is single-valued.

Figure 2 illustrates a distribution F for which H
1/2
a (F ) is multi-valued if and

only if 0 < a < 3. In this particular case, F has a symmetric bi-modal PDF,

and also the property that E1/2(F ) ⊆ H
1/2
a (F ) ⊂ Q1/2(F ) whenever a > 0.

Note that while Hα
a (F ) is in some sense an intermediary between Qα(F ) and

Eα(F ), the right-hand side of Figure 1 illustrates that the Huber quantile does
not always lie between the corresponding quantile and expectile.

4. Scoring functions, consistency and elicitability

In this section we discuss scoring functions and their relationship to point fore-
casts and functionals. Two key concepts are those of consistency and elicitability.
How these concepts relate to the Huber functional is the subject of Theorem 4.5,
which is the first major result of this paper.

4.1. Scoring functions and Bayes’ rules

Definition 4.1. Suppose that I ⊆ R. A function S : I × I → R is a called a
scoring function if S(x, y) ≥ 0 for all (x, y) ∈ I × I with S(x, y) = 0 whenever
x = y. The scoring function S is said to be regular if (i) for each x ∈ I the
function y �→ S(x, y) is measurable, and (ii) for each y ∈ I the function x �→
S(x, y) is continuous, with continuous derivative whenever x = y.

The score S(x, y) can be interpreted as the loss or cost accrued when the point
forecast x is issued and the observation y realizes. Examples of scoring functions
include the squared error scoring function S(x, y) = (x− y)2, the absolute error
scoring function S(x, y) = |x − y| and the zero–one scoring function S(x, y) =
1{|x−y|≥k}(x), for some positive k. Only first two of these are regular, whilst
the zero–one scoring function fails to be regular on account of its discontinuity
when |x− y| = k. The measurability condition (i) is a technical condition that
is satisfied by most (if not all) scoring functions that arise in practice.

Huber loss (3.4) gives rise to the regular scoring function S(x, y) = ha(x−y).
We introduce a more general version.

Definition 4.2. Suppose that a > 0, b > 0 and α ∈ (0, 1). The generalized
Huber loss function hα

a,b : R → R is defined by

hα
a,b(u) =

⎧⎪⎨
⎪⎩
|1{u≥0} − α| 1

2u
2, −a ≤ u ≤ b

(1− α) b(u− 1
2b), u > b

−αa(u+ 1
2a), u < −a.

The classical Huber loss function given by Equation (3.4) is 2h
1/2
a,a . The same

generalization is used by Zhao, Yan and Zhang (2021) for robust expectile re-
gression. Figure 2 shows the graph of h0.7

2,1. Note that hα
a,b is differentiable on R,
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with derivative

(hα
a,b)

′(u) = |1{u≥0} − α|κa,b(u), u ∈ R . (4.1)

Generalized Huber loss gives rise to the regular scoring function S(x, y) =
hα
a,b(x− y).
Given a scoring function S, a forecast system that generates point forecasts

can be assessed by computing its mean score S̄, where

S̄ =
1

n

n∑
i=1

S(xi, yi),

over a finite set of forecast cases {x1, . . . , xn} with corresponding observations
{y1, . . . , yn}. In this framework, if a number of competing forecast systems are
being compared then the one with the lowest mean score is the best performer.
Thus, given a scoring function S and predictive distribution F , an optimal point
forecast is any x̂ in I that minimizes the expected score; that is,

x̂ = argmin
x∈I

EFS(x, Y ),

provided that the expectation exists. A point forecast that is optimal in this
sense is also known as a Bayes’ rule (Gneiting, 2011a; Ferguson, 1967).

It has long been known that the Bayes’ rule under the squared error scoring
function S(x, y) = (x − y)2 is the mean of F , and under the absolute error
scoring function S(x, y) = |x−y| is any median of F . The Bayes’ rule under the
asymmetric piecewise linear scoring function

S(x, y) = |1{x≥y} − α||x− y| (4.2)

is a quantile Qα(F ) (e.g. Ferguson (1967)), whilst the Bayes’ rule under the
asymmetric quadratic scoring function

S(x, y) = |1{x≥y} − α|(x− y)2 (4.3)

is the expectile Eα(F ) (Newey and Powell, 1987; Gneiting, 2011a).
To find the Bayes’ rule under the generalized Huber loss scoring function

S(x, y) = hα
a,b(x−y), we look for solutions x to the equation ∂1EFS(x, Y ) = 0. If

interchanging differentiation and integration can be justified then EF∂1S(x, Y )
= 0. Using Equation (4.1), one obtains EFV (x, Y ) = 0, where V is the iden-
tification function given by (3.5). This implies that x ∈ Hα

a,b(F ). So, at least
formally, the Bayes’ rule under generalized Huber loss is the corresponding Hu-
ber functional of F . A precise statement will be given in the next subsection.

4.2. Consistency and elicitability

Whenever a point forecast request specifies what functional of the predictive
distribution is being sought, the scoring function used to evaluate the point
forecast should be appropriate for that functional.
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Definition 4.3. (Gneiting, 2011a; Murphy and Daan, 1985) Suppose that I ⊆
R. A scoring function S : I × I → R is said to be consistent for the functional
T relative to a class F of probability distributions on I if

EFS(t, Y ) ≤ EFS(x, Y ) (4.4)

for all probability distributions F in F , all t in T(F ) and all x in I. The func-
tional T is said to be strictly consistent relative to the class F if it is consistent
relative to the class F and if equality in (4.4) implies that x ∈ T(F ).

Evaluating point forecasts with a strictly consistent scoring function rewards
forecasters who give truthful point forecast quotes from carefully considered pre-
dictive distributions. This is because the requested functional of the predictive
distribution coincides with the optimal point forecast (or Bayes’ rule).

The families of consistent scoring functions for quantiles and expectiles each
have a standard form. Subject to slight regularity conditions, a scoring function
S is consistent for the quantile functional Qα if and only if S is of the form

S(x, y) = |1{x≥y} − α||g(x)− g(y)|, (4.5)

where g is a non-decreasing function (Gneiting, 2011b; Thomson, 1979; Saerens,
2000). Moreover, if g is strictly increasing then S is strictly consistent. The
standard asymmetric piecewise linear scoring function (4.2) for quantiles (which
includes, up to a multiplicative constant, the absolute error scoring function for
the median) is recovered from Equation (4.5) with the choice g(t) = t.

Subject to standard regularity conditions, a scoring function S is consistent
for the expectile functional Eα if and only if S is of the form

S(x, y) = |1{x≥y} − α|
(
φ(y)− φ(x) + φ′(x)(x− y)

)
, (4.6)

where φ is a convex function with subgradient φ′ (Gneiting, 2011a). Moreover,
if φ is strictly convex then S is strictly consistent. The standard asymmetric
quadratic scoring function (4.3) for expectiles (including, up to a multiplicative
constant, the squared error scoring function for the mean) is recovered from
(4.6) by taking φ(t) = t2. When α = 1/2, the function S of (4.6) is known as a
Bregman function.

We will show that consistent scoring functions for the Huber functional also
have a standard form. Before doing so, we introduce a critical concept related
to the evaluation of point forecasts.

Definition 4.4. (Lambert, Pennock and Shoham, 2008) A statistical functional
T is said to be elicitable relative to a class F of probability distributions if there
exists a scoring function S that is strictly consistent for T relative to F .

For example, quantiles are elicitable relative to the class F(R), while expec-
tiles are elicitable relative to the class of distributions in F(R) with finite first
moment (Gneiting, 2011a). It is worth noting that some statistical functionals
are not elicitable, including the sum of two distinct quantiles and conditional
value-at-risk, a risk measure used in finance (Gneiting, 2011a).
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We turn now to the Huber functional. The main thrust (subject to appropri-
ate regularity conditions) is that the Huber functional is elicitable, and that S
is consistent for Hα

a,b if and only if S is of the form

S(x, y) = |1{x≥y} − α|
(
φ(y)− φ(κa,b(x− y) + y) + κa,b(x− y)φ′(x)

)
, (4.7)

where φ is a convex function with subgradient φ′. Moreover, S is strictly consis-
tent if φ is strictly convex. The generalized Huber loss scoring function S(x, y) =
hα
a,b(x− y) arises from Equation (4.7) with the choice φ(t) = t2. The following

gives a precise statement.

Theorem 4.5. Suppose that I ⊆ R is an interval and that a > 0, b > 0 and
α ∈ (0, 1).

1. The Huber functional Hα
a,b is elicitable relative to the class of probability

measures F(I) when I is bounded or semi-infinite, and elicitable relative
to the class of probability measures F(I) with finite first moment when
I = R.

2. Suppose that φ : I → R is convex on I. Then the function S : I × I → R,
defined by Equation (4.7), is a consistent scoring function for the Huber
functional Hα

a,b relative to the class F(I) of probability measures F for
which both EF [φ(Y ) − φ(Y − a)] and EF [φ(Y ) − φ(Y + b)] exist and are
finite. If, additionally, φ is strictly convex then S is strictly consistent for
Hα

a,b relative to the same class of probability measures.
3. Suppose that the scoring function S : I×I → R is regular. If S is consistent

for the Huber functional Hα
a,b relative to the class of probability measures

in F(I) with compact support, then S is of the form (4.7) for some convex
function φ : I → R. Moreover, if S is strictly consistent then φ is strictly
convex.

The proof is given in the appendix.
The general form (4.7) for the consistent scoring functions of the Huber func-

tional yields, as edge cases, the general form for the consistent scoring functions
of expectiles and quantiles. To be precise, let SH,φ

a denote the scoring function S
given by (4.7) when a = b, and let SE,φ and SQ,g denote the consistent scoring
functions of Equations (4.6) and (4.5) respectively. The relationship between
SH,φ
a and SE,φ is straightforward via pointwise limit

lim
a→∞

SH,φ
a (x, y) = SE,φ(x, y). (4.8)

For the other end of the spectrum we consider the rescaled consistent scoring
function SH,φ

a /a, and obtain the pointwise limit

lim
a↓0

SH,φ
a (x, y)/a = SQ,φ′

(x, y), (4.9)

where φ′ is nondecreasing because φ is convex. Importantly, the relevant regular-
ity conditions ensure that every non-decreasing function g in the representation
(4.5) is the subderivative of some suitable convex φ.
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The consistent scoring functions for the Huber functional thus show a mix-
ture of the properties of the consistent scoring functions for quantiles and expec-

tiles. Focusing on the functional H
1/2
a for positive a, the only consistent scoring

function (up to a multiplicative constant) on R × R that only depends on the
difference x − y between the forecast and observation is the classical Huber

loss scoring function (x, y) �→ h
1/2
a,a (x − y). This is because the only Bregman

function (up to a multiplicative constant) that has the same property for E1/2

is the squared error scoring function (x, y) �→ (x − y)2 (Savage, 1971). Hence,
apart from multiples of classical Huber loss, other consistent scoring functions

for H
1/2
a on R×R penalize under- and over-prediction asymmetrically. One such

example is the exponential family

Sλ;a(x, y) =

⎧⎪⎨
⎪⎩

1
λ2

(
exp(λy)− exp(λx)

)
− 1

λ exp(λx)(y − x), |x− y| ≤ a
1
λ2

(
exp(λy)− exp(λ(y + a))

)
+ a

λ exp(λx), x− y > a
1
λ2

(
exp(λy)− exp(λ(y − a))

)
− a

λ exp(λx), x− y < −a,

(4.10)
parameterized by λ ∈ R and obtained from (4.7) via φ(t) = 2 exp(λt)/λ2. These
are analogous to the exponential family of Bregman functions considered by
Patton (2020).

5. Mixture representations and Murphy diagrams

The main theoretical tool presented in this section is the mixture representa-
tion for consistent scoring functions of the Huber functional (Theorem 5.3).
Mixture representations were introduced for quantiles and expectiles by Ehm
et al. (2016) and have several very useful applications, including providing in-
sight into forecast rankings.

5.1. Ranking of forecasts

Recall from Section 4.1 that point forecasts from two competing forecast systems
A and B can be ranked by calculating their mean scores S̄A

n and S̄B
n over a finite

number n of forecast cases for some scoring function S. If the forecast cases are
independent, a statistical test for equal predictive performance can be based on
the statistic tn, where

tn =
√
n
S̄A
n − S̄B

n

σ̂n
and σ̂2

n =
1

n

n∑
i=1

(S(xA
i , yi)− S(xB

i , yi))
2 (5.1)

for forecasts {xA
i } and {xB

i } and corresponding realizations {yi}. Subject to tra-
ditional regularity conditions, the statistic tn is standard normal under the null
hypothesis of vanishing expected score differentials. Corresponding p-values are
computed and if the null hypothesis is rejected then A is preferred if tn < 0 and
B is preferred otherwise (Diebold and Mariano, 1995; Gneiting and Katzfuss,
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2014). Unfortunately, forecast rankings and the results of hypothesis tests can
depend on the choice of consistent scoring function (Ehm et al., 2016, pp. 506,
515–516), as we now illustrate.

Example 5.1. Two forecast systems, OCF and MAN, of the Australian BoM
produce point forecasts for the daily maximum temperature at Sydney Obser-
vatory Hill. The OCF system is fully automated and generates forecasts from a
blend of bias-corrected numerical weather prediction forecasts. The MAN fore-
cast is the official forecast of the BoM and is manually issued by meteorologists
who have access to various information sources, including OCF. We consider
forecasts for the period July 2018 to June 2020 with a lead time of one day. See
Figure 3 for a sample time series of MAN and OCF forecasts with observations.

Suppose that these forecasts are targeting the Huber mean H
1/2
3 , and make

the simplifying assumption that successive forecast cases are independent. If

the consistent scoring function S(x, y) = 2h
1/2
3,3 (x − y) is used, then the mean

score for MAN is lower than the mean score for OCF, and with a p-value of
6.52 × 10−4 the null hypothesis of equal predictive performance is rejected at
the 5% significance level in favor of MAN forecasts. However, if the consistent
scoring function S2;3 defined by Equation (4.10) is used, then OCF has the lower
mean score, albeit with a p-value of 0.333 that does not lead to rejection of the
null hypothesis.

5.2. Mixture representations

In Section 4.2 it was seen that the class of consistent scoring functions for
each quantile, expectile and Huber functional is very large, being parametrized
either by the set of nondecreasing functions or by the set of convex functions.
The following results show that this apparent multitude can, in a certain sense,
be reduced to a one-parameter family of so-called elementary scoring functions.

In general, the choice of function φ′ in the representations (4.6) and (4.7) is
not unique. To facilitate precise mathematical statements, a special version of
φ′ will be chosen. Let I denote the class of all left-continuous non-decreasing
functions on R, and let C denote the class of all convex functions φ : R → R

with subgradient φ′ in I. This last condition will be satisfied if φ′ is chosen to
be the left-hand derivative of φ. Denote by SQ

α the class of scoring functions S
of the form (4.5) such that g ∈ I, by SE

α the class of scoring functions S of the
form (4.6) such that φ ∈ C, and by SH

α,a,b the class of scoring functions S of

the form (4.7) such that φ ∈ C. For most practical purposes, SQ
α , SE

α and SH
α,a,b

can be identified with the class of consistent scoring functions for the respective
functional on R.

The following important result on the representation of scoring functions
that are consistent for the quantile and expectile functionals is due to Ehm
et al. (2016).

Theorem 5.2. (Ehm et al., 2016, Theorem 1)
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1. Every member S of the class SQ
α has a representation of the form

S(x, y) =

∫ ∞

−∞
SQ
α,θ(x, y) dM(θ), (x, y) ∈ R

2 , (5.2)

where

SQ
α,θ(x, y) =

⎧⎪⎨
⎪⎩
1− α, y ≤ θ < x,

α, x ≤ θ < y,

0, otherwise,

(5.3)

and M is a non-negative measure. The mixing measure M is unique and
satisfies dM(θ) = dg(θ) whenever θ ∈ R, where g is the nondecreas-
ing function in the representation (4.5). Furthermore, M(x) − M(y) =
S(x, y)/(1− α).

2. Every member S of the class SE
α has a representation of the form

S(x, y) =

∫ ∞

−∞
SE
α,θ(x, y) dM(θ), (x, y) ∈ R

2 , (5.4)

where

SE
α,θ(x, y) =

⎧⎪⎨
⎪⎩
(1− α)|θ − y|, y ≤ θ < x,

α|θ − y|, x ≤ θ < y,

0, otherwise,

(5.5)

and M is a non-negative measure. The mixing measure M is unique and
satisfies dM(θ) = dφ′(θ) whenever θ ∈ R, where φ′ is the left-hand deriva-
tive of the convex function φ in the representation (4.6). Furthermore,
M(x)−M(y) = ∂2S(x, y)/(1− α).

Both integral representations (5.2) and (5.4) hold pointwise. The functions
defined by (5.3) and (5.5) are called elementary scoring functions for the quantile
and expectile functionals respectively. Thus Theorem 5.2 essentially states that
each scoring function that is consistent for a quantile or expectile functional
can be expressed as a weighted average of corresponding elementary scoring
functions. The analogous result for Huber functionals is new and stated below.

Theorem 5.3. Every member S of the class SH
α,a,b has a representation of the

form

S(x, y) =

∫ ∞

−∞
SH
α,a,b,θ(x, y) dM(θ), (x, y) ∈ R

2 , (5.6)

where

SH
α,a,b,θ(x, y) =

⎧⎪⎨
⎪⎩
(1− α)min(θ − y, b), y ≤ θ < x,

αmin(y − θ, a), x ≤ θ < y,

0 otherwise,

(5.7)

and M is a non-negative measure. The mixing measure is unique and satisfies
dM(θ) = dφ′(θ) whenever θ ∈ R, where φ′ is the left-hand derivative of the
convex function φ in the representation (4.7). Furthermore, M(x) − M(y) =
∂2S(x, y)/(1− α).
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The proof is given in the appendix and is a simple adaptation of the proof
for quantiles and expectiles.

Each function SH
α,a,b,θ of Theorem 5.3 is called an elementary scoring function

for the Huber functional, and also belongs to SH
α,a,b, as can be seen via Equation

(4.7) with the choice φ(t) = (t − θ)+ and φ′(t) = 1{θ<t}. The mixture repre-
sentation of Equation (5.6) holds pointwise. Moreover, when a = b, the mixture
representations for the consistent scoring functions of expectiles and quantiles
emerge as edge cases of Theorem 5.3 by taking limits as a → ∞ and as a ↓ 0 and
using the dominated convergence theorem. Details are given in Remark A.1.

5.3. Economic interpretation of elementary scoring functions

Ehm et al. (2016) showed how the elementary scoring functions SQ
α for quantiles

have a natural economic interpretation related to binary betting and the classical
simple cost–loss decision model (e.g Richardson (2000); Wolfers and Zitzewitz
(2008)). On the other hand, the elementary scoring functions SE

α for expectiles
arise naturally in simple investment decisions where profits attract taxation and
losses tax deduction, possibly at different rates (Ehm et al., 2016; Bellini and
Di Bernardino, 2017). The elementary scoring functions SH

α,a,b,θ for the Huber
functional also admit an economic interpretation. It is the loss, relative to actions
based on a perfect forecast, of an investment decision with fixed costs, possibly
differential tax rates for profits versus losses, and where profits and losses are
capped. This represents an intermediary position between the interpretation for
quantiles (where economic losses, if they occur, are fixed irrespective of how
near or far the forecast is to the realization) and that for expectiles (where
there is no cap on profits or on losses). To illustrate, we give two examples. The
first is an adaptation of the interpretation for the elementary scoring functions of
expectiles presented by Ehm et al. (2016), while the second shows how the Huber
functional and its elementary functions can arise in the context of investment
decisions based on weather forecasts.

Example 5.4. Suppose that Alexandra considers investing a fixed amount θ in a
start-up company in exchange for an unknown future amount y of the company’s
profits or losses. Additionally, Alexandra takes out an option to set a limit b
on losses she could incur but which also imposes a limit a on the profits she
could receive. Alexandra will make a profit if and only if y > θ, and so adopts
the decision rule to invest if and only if her point forecast x of y exceeds θ. Her
pay-off structure is as follows:

1. If Alexandra refrains from the deal, her pay-off will be 0, independent of
the outcome y.

2. If Alexandra invests and y ≤ θ realizes then her payout is negative at
−(1− rL)min(θ − y, b). Here min(θ − y, b) is the monetary loss, bounded
by b, and the factor 1− rL accounts for Alexandra’s reduction in income
tax with rL ∈ [0, 1) representing the deduction rate.

3. If Alexandra invests and y > θ realizes then her pay-off is positive at
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Table 2

Overview of pay-off structure for Alexandra’s decision rule to invest if and only if x > θ.

y ≤ θ y > θ
Monetary payoff

x ≤ θ 0 0
x > θ −(1− rL)min(θ − y, b) (1− rG)min(y − θ, a)

Score (regret)
x ≤ θ 0 (1− rG)min(y − θ, a)
x > θ (1− rL)min(θ − y, b) 0

(1− rG)min(y − θ, a), where rG ∈ [0, 1) denotes the tax rate that applies
to her profits.

The top matrix in Table 2 shows Alexandra’s pay-off under her decision
rule. The positively-oriented pay-off matrix can be reformulated as a negatively
oriented regret matrix, by considering the difference between the pay-off for
an (hypothetical) omniscient investor who has access to a perfect forecast and
the pay-off for Alexandra. For example, if x ≤ θ and y > θ realizes, then the
omniscient investor’s pay-off is (1− rG)min(y − θ, b) while Alexandra’s pay-off
is 0, and so Alexandra’s regret is (1− rG)min(y − θ, b). The bottom matrix of
Table 2 is Alexandra’s regret matrix, which up to a multiplication factor is the
elementary score SH

α,a,b,θ(x, y). So to minimize regret, Alexandra should invest
if and only if x > θ, where x = Hα

a,b(F ), F is Alexandra’s predictive distribution
of the future value of the investment and α = (1− rG)/(2− rL− rG). The point

forecast x = H
1/2
a (F ) arises if profits and losses are capped by the same value

and if the rates rG and rL are equal.

Example 5.5. Hannah runs a business selling ice creams from a mobile cart
at a sports stadium. Historically, there is an approximately linear relationship
between the volume of ice cream sales on any given afternoon and the observed
daily maximum temperature, so that the profit p from sales is modeled by
p = ky + c, where y is the observed daily maximum temperature, k > 0 and
c ∈ R. Additionally, 0 ≤ p ≤ a for some positive a, since total sales are limited
by cart capacity, while any unsold units can be sold at a later date. If Hannah
chooses to sell ice creams on any given afternoon, she must also pay a fixed cost
f (staff wages and stadium fees). If model assumptions are correct, Hannah will
make a profit if and only if ky + c > f . So she adopts the decision rule to sell
ice creams on any given afternoon if and only if her point forecast x of the
maximum temperature exceeds the decision threshold θ, where θ = (f − c)/k.
Her pay-off structure is as follows.

1. If Hannah does not sell ice creams then her pay-off is 0.
2. If Hannah sells ice creams and y > θ then her profit after tax is (1 −

rG)min(ky + c − f, a − f), where rG ∈ [0, 1) denotes the tax rate. Her
profit can be rewritten as (1− rG)kmin(y − θ, (a− f)/k).

3. If Hannah sells ice creams and y < θ then her loss after tax deductions is
(1− rL)min(f − (ky+ c), f), where rG ∈ [0, 1) denotes the deduction rate,



Point forecasting and forecast evaluation with generalized Huber loss 219

and losses are capped by f since unsold ice creams go back into storage.
Her loss can be rewritten as (1− rL)kmin(θ − y, f/k).

As with Example 5.4, these outcomes can be converted to a regret matrix, which
up to a multiplication factor is the elementary score SH

α,(a−f)/k,f/k,θ(x, y) where

α = (1 − rG)/(2 − rL − rG). Consequently, her optimal decision rule is to sell
ice creams if and only if x > θ, where θ = (f − c)/k, x ∈ Hα

(a−f)/k,f/k(F ), F is

her predictive distribution of the maximum temperature and α = (1− rG)/(2−
rL − rG).

The essential features of Example 5.5 also arise in the context of rainfall
storage and water trading. Any profits made by selling harvested water are
capped by storage capacity. The predicted volume v of water that is collected
from any rainfall event can be modeled by v = ky + c, where y is the predicted
rainfall at a representative point within the catchment, c is catchment initial
loss and k is determined by catchment size and continuing loss.

5.4. Forecast dominance, Murphy diagrams and choice of consistent
scoring function

We return to the problem of forecast rankings with the notion of forecast domi-
nance (Ehm et al., 2016, Section 3.2). We say that forecast system A dominates
forecast system B for point forecasts targeting a specific Huber functional if the
expected score of point forecasts from A is not greater than the expected score
of point forecasts from B, for every consistent scoring function. In practice this
is impossible to check directly because the family of consistent scoring functions,
parameterized by φ ∈ C, is very large. However, by the mixture representation of
Theorem (5.3), one need only test for dominance over the family, parametrized
by θ ∈ R, of elementary functions. In empirical situations, this is further reduced
to checking forecast dominance for finitely many θ. In what follows, we consider
tuples (xiA, xiB, yi) consisting of the ith point forecast from systems A and B
along with the corresponding observation yi.

Corollary 5.6. Suppose that α ∈ (0, 1), a > 0 and b > 0. The forecast system
A empirically dominates B for predictions targeting Hα

a,b if

1

n

n∑
i=1

SH
α,a,b,θ(xiA, yi) ≤

1

n

n∑
i=1

SH
α,a,b,θ(xiB, yi)

whenever θ ∈
⋃
{xiA, xiB, yi, yi − a, yi + b : 1 ≤ i ≤ n} and in the left-hand limit

as θ ↑ θ0, where θ0 ∈
⋃
{xiA, xiB, : 1 ≤ i ≤ n}.

To see why, note that the score differential θ �→ di(θ) for the ith forecast
case is piecewise linear and right-continuous, and is zero unless θ lies between
xiA and xiB. The only possible discontinuities are at xiA and xiB, and the only
possible changes of slope are at yi, yi − a and yi + b.
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Fig 3. Competing forecast systems targeting the Huber mean H
1/2
3 for the daily maximum

temperature at Sydney Observatory Hill (July 2018 to June 2020). Top left: Murphy diagram
of mean elementary scores. Top right: Murphy diagram of elementary skill scores. Bottom
left: mean elementary score difference of OCF and MAN with pointwise 95% confidence
intervals (less than 0 indicates that MAN is preferable). Bottom right: Sample of the forecast–
observation time series, October and November 2019.

An empirical check for forecast dominance is aided with the use of a Murphy
diagram (Ehm et al., 2016, Section 3.3), which is a plot showing the graph of

θ �→ 1

n

n∑
i=1

SH
α,a,b,θ(xi, yi)

for each forecast source, computed at each of the points θ of Corollary 5.6. The
top left of Figure 3 presents the Murphy diagram for three different forecasts

targeting the Huber mean H
1/2
3 of the daily maximum temperature at Sydney

Observatory Hill (July 2018 to June 2020). The MAN and OCF forecasts were
discussed in Example 5.1. For any given day, the Climate forecast is the Huber

mean H
1/2
3 of 46 observations, sampled from the previous 15 days and from a

31 day period this time last year centered on the day in question. A lower mean
score is better.

The graph in the top right of Figure 3 represents forecast performance as



Point forecasting and forecast evaluation with generalized Huber loss 221

a skill score (Jolliffe and Stephenson, 2003, Section 2.7) with respect to two
reference forecasts: the perfect forecast (skill score = 1) and the Climate forecast
(skill score = 0). The difference in mean elementary scores between OCF and
MAN forecasts is presented in the bottom left, with pointwise 95% confidence
intervals. Neither of these forecasts dominates the other.

Returning to Example 5.5, if Hannah’s decision rule is to sell ice creams if

and only if the H
1/2
3 point forecast x exceeds 30◦C, then Hannah should base

her decisions on the MAN forecast, since its mean elementary score, which is
proportional to economic regret, is lowest (see the top left of Figure 3 where
θ = 30). But if her fixed investment costs f changed, then so would her de-
cision threshold θ, and the Murphy diagram indicates which forecast system
historically performed better at the new threshold.

The initial motivation for the BoM using Huber loss was to inform decisions
for streamlining forecast production that are broadly consistent with public ap-
praisal of forecast quality. The decision model associated with the elementary

scoring functions of H
1/2
3 could be taken as a proxy for the decision model of the

average forecast user. Under this assumption, the evidence presented in Figure 3
suggests that using the automated OCF forecast would have negligible impact
for the average user who has a decision threshold lower than 28◦C. However,
evidence points towards human meteorologists (MAN) producing better fore-
casts for users with temperature decision thresholds from the high 20s to the
mid 30s and possibly beyond. Such information can be used to inform BoM
policy regarding when its official forecast can be based on the automated sys-
tem and when meteorologists should intervene. It also indicates where future
improvements to the OCF system are possible.

The mixture representation and Murphy diagram also gives insight into why
the two different scoring functions of Example 5.1 lead to different forecast

rankings. The classical Huber loss scoring function S(x, y) = 2h
1/2
3,3 (x − y) is

obtained from Equation (4.7) with the choice φ(t) = t2. The corresponding
mixing measure is dM(θ) = 2 dθ, implying that every elementary scoring func-
tion in the mixture representation (5.6) is weighted equally, and also that the
area underneath each graph in the Murphy diagram (top left of Figure 3) is
twice the mean Huber loss S̄ for that forecast system. On the other hand,
the exponential scoring function S2;3 is obtained from Equation (4.7) with the
choice φ(t) = exp(2t)/2. In this case dM(θ) = 2 exp(2θ) dθ and so mean elemen-
tary scores in the corresponding mixture representation are weighted heavily for
higher values of θ. Hence when scored by S2;3, a slight over-forecast of 40.4◦C
by MAN on 19 December 2019 (OCF forecast 35.4◦C and the observation was
39.3◦C) was penalized substantially more heavily than the OCF under-forecast,
resulting in a higher mean score S̄2;3 for MAN than OCF.

Finally, we consider the choice of consistent scoring function for Huber quan-
tile point predictions in the situation where the point forecast serves the needs
of a diverse community of users. Classical Huber loss, obtained when φ(t) = 2t2,
applies equal weight to all θ. For everyday use, this choice of φ may be justified
by the desire to weight all decision thresholds θ equally. On the other hand, for
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weather forecasts there may be a desire, from a public risk perspective, to give
greater weight to values of θ that lie in the hazardous climatological extremes,
so that competing forecast system candidates are evaluated with that in mind.
For maximum temperature forecasts, the mixing measure dM(θ) = φ′′(θ) dθ,
where

φ′′(θ) =

⎧⎪⎨
⎪⎩
(5− θ) + 1 , θ ≤ 5

1 , 5 < θ < 35

(θ − 35) + 1 , θ ≥ 35 ,

puts increasing weight on decision thresholds below 5◦C and above 35◦C. This
yields the convex function

φ(θ) =

⎧⎪⎨
⎪⎩

1
6 (5− θ)3 + 1

2θ
2 , θ ≤ 5

1
2θ

2 , 5 < θ < 35
1
6 (θ − 35)3 + 1

2θ
2 , θ ≥ 35 .

and the corresponding consistent scoring function S can be computed from
Equation (4.7). With this S, MAN maximum temperature forecasts for Sydney
outperform those of OCF, and with a p-value of 1.48× 10−3 the null hypothesis
of equal predictive performance is rejected at the 5% significance level.

If comparing predictive performance with emphasis on the extremes is de-
sired, the mixing measure can be designed to concentrate positive weight on
the region of interest. For example, choosing dM(θ) = 1{θ≥35} dθ emphasizes
performance for decision thresholds of at least 35◦C. Taggart (2021) discusses
evaluation of extremes and decompositions of consistent scoring functions for
quantiles, expectiles and Huber means using precisely this approach.

6. Conclusion

We have defined the Huber functional so that it gives the set of optimal point
forecasts for minimizing the expected generalized Huber loss. The Huber func-
tional is an intermediary between quantiles and expectiles, which it nests as edge
cases. The Huber functional incorporates more information about a predictive
distribution F than quantiles, yet unlike expectiles it is not sensitive to the be-
havior of F at its tails. We have shown that the Huber functional is elicitable,
given a characterization of its consistent scoring functions and stated the mix-
ture representation for those scoring functions. These theoretical results enable
the use of the Huber functional and its associated consistent scoring functions
within a theoretically sound framework for point forecasting and evaluation (see
Gneiting (2011a), Gneiting and Katzfuss (2014), Ehm et al. (2016) and the ref-
erences therein). Moreover, the Huber functional is shown to arise naturally
within decision theory for a broad class of investment problems, and within this
context the mixture representation facilitates some justification for the choice of
consistent scoring function when point forecasts targeting the Huber functional
are utilized by a heterogeneous user group.
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Many organizations, including meteorological agencies, have traditionally is-
sued point forecasts that are not well-defined, and that are consumed by a very
broad user group. Where there is appetite to clarify forecast definitions, and
where it is desirable that point forecasts target some ‘middle’ point of the pre-
dictive distribution, the Huber mean provides a good candidate functional, as
it combines the local sensitivity of the expectation with the global robustness

of the median. The classical Huber loss scoring function S(x, y) = h
1/2
a,a (x − y)

is a natural choice for a consistent scoring function of the Huber mean, as it
favors all user-decision thresholds equally (in the sense discussed in Section 5.4).
Nonetheless, if it is desirable that forecast performance at some user-decision
thresholds is more important than at others, the mixture representation provides
a method for generating the appropriate scoring function.

Appendix A: Proofs

Proof of Proposition 3.4. We first prove the proposition for the case when I =
R.

In light of the essential equivalence of Equations (3.3) and (3.6), define Ga,b :
R → R by

Ga,b(u) = (1− α)

∫ u

u−b

F (t) dt− α

∫ u+a

u

(1− F (t)) dt, u ∈ R. (A.1)

Where then is no confusion, we will drop the subscripts and simply be denote
the function by G. Since the CDF F is nonnegative and nondecreasing, it follows
that G is a nondecreasing function on R. Moreover, G is also continuous on R.

First we will show that the set of zeroes of G is nonempty and lies in R(F ),
which will establish that Hα

a,b(F ) is a nonempty subset of R(F ). Since G is
continuous and nondecreasing on R, it suffices to show that that G takes at
least one positive and one negative value in any neighborhood of R(F ), which
will also establish that the zero set is bounded.

Suppose that ε > 0. If R(F ) has finite left-endpoint r0 then

G(r0 − ε) = −α

∫ r0−ε+a

r0−ε

dt+ α

∫ r0−ε+a

r0

F (t) dt

≤ −αa+ α(a+ ε)

< 0 .

Otherwise, let η = αa/((1− α)b+ αa) and note that 0 < η < 1. So there exists
v in R(F ) such that F (u) < η whenever u ≤ v. So

G(v − a) < (1− α)bη + αaη − αa = 0 .

Similarly, if R(F ) has a finite right-endpoint r1 then G(r1 + ε) > 0. Otherwise,
there exists w in R(F ) such that F (u) > η whenever u ≥ w. So

G(w + b) > (1− α)bη + αaη − αa = 0 .
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This shows that G has at least one zero, and since ε is arbitrary and G is
nondecreasing and continuous, all the zeroes are contained in the interval R(F ),
and the zero set is a closed bounded interval.

To prove parts (2) and (3) when I = R, we note that the zero set of G is
[c, d] where c < d only if there is a constant w ∈ (0, 1) such that F (t) = w
whenever t ∈ {

⋃
((u − b, u) ∪ (u, u + a)) : u ∈ [c, d]}. The closure of this latter

set is precisely [c− b, d+ a]. Moreover, if u is any such zero of G, (A.1) implies
that

0 = G(u) = (1− α)bw + αaw − αw.

Rearranging gives α = bw/(bw + a(1− w)) as required.

To prove part (4), fix α and F . Define q0 and q1 by

q0 = min(Qα(F )) and q1 = max(Qα(F )) .

Suppose that a > 0. Denoting limy↑x F (y) by F (x−), note that

F (q−i ) ≤ α ≤ F (qi) , F (q0 − a) < α and F (q1 + a) > α . (A.2)

Therefore

Ga,a(q0 − a) ≤ (1− α)aF (q0 − a) + αaF (q0)− αa

< aα(F (q0)− F (q0 − a)) + aα− αa

≤ 0 ,

and similarly,

Ga,a(q0 + a) ≥ (1− α)αa+ α2a− αa = 0 .

This shows that q0 − a < min(Hα
a (F )) ≤ q0 + a, from which is obtained

lima↓0 min(Hα
a (F )) = q0. Similarly, one can show that Ga,a(q1 + a) > 0 and

Ga,a(q1 − a) ≤ 0, which are used to establish lima↓0 max(Hα
a (F )) = q1.

Part (5) follows from the definition of expectiles and the Huber functional.

To prove part (6), let G̃a,b denote the function of the form (A.1) defined using

F̃ in the place of F , and suppose that F = F̃ on the interval [min(Hα
a,b(F )) −

b,max(Hα
a,b(F )) + a]. If x ∈ Hα

a,b(F ) then Ga,b(x) = 0 and hence G̃a,b(x) = 0,

whence Hα
a,b(F ) ⊆ Hα

a,b(F̃ ). The reverse inclusion is obtained similarly.

Finally, for each part, the case when I ⊂ R can be deduced from the case
when I = R by considering the natural extension of F ∈ F(I) to F(R), and
using the fact that Hα

a,b(F ) ⊆ R(F ) ⊆ I.

Proof of Theorem 4.5. To prove part (2), we take a similar approach to the
proof presented in (Brehmer, 2017, pp. 38–39) (which follows Gneiting (2011a))
of the consistency theorem for expectiles. Suppose that F ∈ F(I) and that the
expectations EF [φ(Y )− φ(Y − a)] and EF [φ(Y )− φ(Y + b)] both exist and are
finite, which will guarantee the existence of the expectations that follow. Fix
a and b in (0,∞) and α in (0, 1). For convenience, denote κa,b by κ. Consider
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t ∈ Hα
a,b(F ) and let x ∈ R. Suppose that φ is convex and let S be defined by

(4.7). We need to show that

EFS(x, Y )− EFS(t, Y ) ≥ 0. (A.3)

Define the function g : I × I → R by

g(u, v) = φ(v)− φ(u)− φ′(u)(v − u)

and note that g is nonnegative by the convexity of φ, and strictly positive if φ
is strictly convex. Define the function f : I × I → R by

f(u, v) = φ′(u)− φ′(v) ,

and note that f(u, v) ≥ 0 whenever u ≥ v by the convexity of φ, with f(u, v) > 0
whenever u > v if φ is strictly convex.

To show (A.3), we break it up into two main cases (either x < t or t < x) and
then into several sub-cases. Consider first the case where x < t with subcase
x−b < x < x+a ≤ t−b < t < t+a. Define the sets Ai, where i ∈ {1, 2, ..., 7}, by
A1 = {Y ∈ (∞, x− b)∩ I}, A2 = {Y ∈ [x− b, x]∩ I}, A3 = {Y ∈ (x, x+a]∩ I},
A4 = {Y ∈ (x+ a, t− b)∩ I}, A5 = {Y ∈ [t− b, t]∩ I}, A6 = {Y ∈ (t, t+ a]∩ I}
and A7 = {Y ∈ (t+a,∞)∩ I}. Note that the sets Ai are disjoint and that their
union is I. Hence

EFS(x, Y )− EFS(t, Y ) = EF (S(x, Y )− S(t, Y ))

7∑
i=1

1Ai

We will calculate each term in the series and sum them together at the end.
The calculations are:

EF (S(x, Y )− S(t, Y ))1A1

=(1− α)f(x, t)EFκ(t− Y )1A1 ,

EF (S(x, Y )− S(t, Y ))1A2

=(1− α)EF

(
g(x, Y + b) + f(x, t)κ(t− Y )

)
1A2 ,

EF (S(x, Y )− S(t, Y ))1A3

=EF

(
αS(x, Y )− (1− α)S(t, Y )

)
1A3

=αEF g(x, Y )1A3 + (1− α)EF

(
g(Y, Y + b) + bf(Y, x) + f(x, t)κ(t− Y )

)
1A3 ,

EF (S(x, Y )− S(t, Y ))1A4

=EF

(
αS(x, Y )− (1− α)S(t, Y )

)
1A4

=αEF

(
g(Y − a, Y ) + f(Y − a, x)

)
1A4

+ (1− α)EF

(
g(Y, Y + b) + bf(Y, x) + f(x, t)κ(t− Y )

)
1A4 ,

EF (S(x, Y )− S(t, Y ))1A5

=EF

(
αS(x, Y )− (1− α)S(t, Y )

)
1A5

=αEF

(
g(Y − a, Y ) + f(Y − a, x)

)
1A5
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+ (1− α)EF

(
g(Y, t) + (t− Y )f(Y, x) + f(x, t)κ(t− Y )

)
1A5 ,

EF (S(x, Y )− S(t, Y ))1A6

=αEF

(
g(Y − a, t) + (t− Y + a)f(Y − a, x) + f(x, t)κ(t− Y )

)
1A6 ,

EF (S(x, Y )− S(t, Y ))1A7

=αf(x, t)EFκ(t− Y )1A7 .

Now when summing these terms together, note that since t ∈ Hα
a,b(F ), Equation

(3.3) implies that

(1− α)EFκ(t− Y )1A1∪A2∪A3∪A4∪A5 + αEFκ(t− Y )1A6∪A7 = 0 (A.4)

and thus the all terms containing f(x, t) vanish. The remaining terms are all
nonnegative by the properties of f and g, which establishes (A.3) in this par-
ticular subcase and hence that S is consistent for Hα

a,b.
To prove strict consistency in this subcase, suppose that φ is strictly convex

and that equality holds in (A.3). So we must have

0=EF (S(x, Y )− S(t, Y ))
7∑

i=1

1Ai

=(1− α)EF g(x, Y + b)1A2 + (1− α)EF g(Y, Y + b)1A3 + αEF g(Y − a, Y )1A4

+ αEF g(Y − a, Y )1A5 + αEF g(Y − a, t)1A6 +K ,

where K can be written as a sum of nonnegative terms, having applied (A.4).
Each of the terms in the final expression is nonnegative, so for equality to hold
they must all equal 0. Now the terms involving A3, A4 and A5 are all strictly
positive unless P(Y ∈ Ai) = 0 for i = 3, 4, 5. Similarly, the terms involving
A2 and A6 are positive unless P(Y ∈ A2\{x − b}) = P(Y ∈ A6\{t + a}) = 0.
Together, this implies that P(Y ∈ (x− b, t+ a)∩ I) = 0, or equivalently that F
is constant on (x− b, t+a)∩ I. Combining this with the fact that t ∈ Hα

a,b(F ) if
and only if (3.6) holds, it is easy to see that x ∈ Hα

a,b(F ). This establishes strict
consistency.

For the main case x < t, there are four further subcases:

x− b < x ≤ t− b < x+ a ≤ t < t+ a

x− b < t− b < x ≤ x+ a < t < t+ a

x− b < t− b < x < t < x+ a < t+ a

x− b < x ≤ t− b < t ≤ x+ a < t+ a .

The proof of consistency for each subcase proceeds in the same way as the first
subcase, and if proceeding in this order most of the calculations in subcases that
have already been proved can be used to prove subsequent subcases. The proof
of strict consistency also proceeds similarly for the first case, by showing that
F is constant on (x− b, t+ a) ∩ I. Details are left to the reader.

The case when t < x is proved the same way, but calculations are quicker by
exploiting symmetry and anti-symmetry. For example, the subcase

t− b < t < t+ a ≤ x− b < x < x+ a
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proceeds by switching the roles of t and x in the definitions of Ai, and then
making the switches −a ↔ b and Ai ↔ A8−i in the calculations for each term.
For example, in the case when t > x we have A6 = {Y ∈ (t, t+ a] ∩ I} and

EF (S(x, Y )− S(t, Y ))1A6

= αEF

(
g(Y − a, t) + (t− Y + a)f(Y − a, x) + f(x, t)κ(t− Y )

)
1A6 ,

while in the case when x < t, after making switches, we have A2 = {Y ∈
(t− b, t] ∩ I} and

EF (S(x, Y )− S(t, Y ))1A2

= αEF

(
g(Y + b, t) + (t− Y − b)f(Y + b, x) + f(x, t)κ(t− Y )

)
1A2 .

All the terms are nonnegative apart from those involving f(x, t), which will
vanish when all the terms are summed together. Details are left to the reader.
This completes the proof of part (2).

To prove part (1) for the cases when I is bounded or semi-finite, use the
result of part (2) with the bounded (on I) strictly convex function φ(t) = e−t

(or φ(t) = et if I is the of the form (−∞, c)). When I = R, use the same approach
with φ(t) = t2 and note that EF [φ(Y ) − φ(Y − a)] and EF [φ(Y ) − φ(Y + b)]
exists and is finite if EFY exists and is finite.

To prove part (3), we apply Osband’s principle with the identification function
V of Equation (3.5). An argument similar to (Gneiting, 2011a, p. 753, 759) shows
that

∂1S(x, y) = h(x)V (x, y)

for x, y ∈ I and some function h : I → I. Integration by parts yields the
representation (4.7), where the function φ is defined by

φ(x) =

∫ x

x0

∫ v

x0

h(u) du dv

for some x0 in I. Now since S(x, y) ≥ 0 for all x, y ∈ I, it follows from (4.7)
that (x − y)φ′(x) + φ(y) − φ(x) ≥ 0 whenever −a ≤ x − y ≤ b, which in turn
implies that φ is convex on I. If S is strictly consistent, then S(x, y) > 0 for all
non-identical x and y in I, whence a similar argument shows that φ is strictly
convex.

Proof of Theorem 5.3. Suppose that a > 0, b > 0 and φ ∈ C. Define the function
Φ : R2 → R by

Φ(x, y) = φ(y)− φ(κa,b(x− y) + y) + κa,b(x− y)φ′(x) , x, y ∈ R .

We will show that

Φ(x, y) = 2

∫ ∞

−∞
SH
1/2,a,b,θ(x, y) dφ

′(θ) , (A.5)

from whence follows the mixture representation (5.6), the fact that dM(θ) =
dφ′(θ) and the relationship M(x)−M(y) = ∂2S(x, y)/(1− α) whenever x > y.
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To show (A.5), we break into five cases. For the case x− y < −a,

Φ(x, y) = φ(y)− φ(y − a)− aφ′(x)

= a(φ′(y − a)− φ′(x)) + (y − θ)φ′(θ)
∣∣∣y
θ=y−a

+

∫ y

y−a

φ′(θ) dθ

=

∫ y−a

x

a dφ′(θ) +

∫ y

y−a

(y − θ) dφ′(θ)

=

∫ y

x

min(y − θ, a) dφ′(θ)

= 2

∫ ∞

−∞
SH
1/2,a,b,θ(x, y) dφ

′(θ) .

The case x−y > b is handled analogously. The case −a ≤ x−y < 0 is essentially
the same as the proof of the case x < y for expectiles (Ehm et al., 2016, p. 529),
and the case 0 < x− y ≤ b is analogous. The final case x = y is trivial.

Finally, note that the increments ofM are determined by S and so the mixing
measure is unique.

Remark A.1. We show how the mixture representations for the consistent scor-
ing functions of quantiles and expectiles (Theorem 5.2) emerge as limiting cases
of Theorem 5.3. Consider the case for expectiles first. For fixed x, y and θ we
have

SE
α,θ(x, y) = lim

a→∞
SH
α,a,a,θ(x, y) .

Using the notation and limits following the statement of Theorem 4.5,

SE,φ
α (x, y) = lim

a→∞
SH,φ
α,a (x, y)

= lim
a→∞

∫ ∞

−∞
SH
α,a,a,θ(x, y) dM(θ)

=

∫ ∞

−∞
SE
α,θ(x, y) dM(θ) ,

where the interchange of limits and integration in the final equality is justified by
the dominated convergence theorem and where dM(θ) = dφ′(θ). This recovers
the mixture representation for expectiles. Turning now to quantiles, for fixed x,
y and θ we have

lim
a↓0

1
aS

H
α,a,a,θ(x, y) =

⎧⎪⎨
⎪⎩
1− α , y < θ < x

α , x ≤ θ < y

0 otherwise,

and so lima↓0
1
aS

H
α,a,a,θ(x, y) = SQ

α,θ(x, y) for almost every θ (differing only when
θ = y). Hence, using the notation and limits following Theorem 4.5 and the
dominated convergence theorem,

SQ,φ′

α (x, y) = lim
a↓0

1
aS

H,φ
α,a (x, y)
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= lim
a↓0

∫ ∞

−∞

1
aS

H
α,a,a,θ(x, y) dM(θ)

=

∫ ∞

−∞
SQ
α,θ(x, y) dM(θ) ,

where dM(θ) = dφ′(θ). This recovers the mixture representation for quantiles.
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