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Abstract: This paper is concerned with a unified approach to estimat-
ing regression methods based on a certain divergence and its localisation.
Some past papers have demonstrated theoretically and numerically that
infusing a little localisation in the likelihood-based methods for regression
and for density estimation can actually improve the resulting estimators
with respect to suitably defined global risk measures. Thus a variety of
local likelihood methods have been suggested. We demonstrate that simi-
lar effect can also be observed in the general framework discussed in this
paper and with respect to robust estimation procedures. Localised versions
of robust regression estimation procedures perform better with respect to
global risk measures based on minimisation of Bregman divergence mea-
sures. An intricate relationship between regression model’s inadequacy and
its robustness can be better analysed by using the local approach developed
in this paper. We support our claims with a short simulation study.
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1. Introduction

This paper discusses a divergence-based method for estimating a regression func-
tion and a local version of this method. The smoothing approaches using local-
isation have been discussed in literature: most of those are based on certain
form of local likelihood, see [20], [7], [15], [8], [13], [9] and references therein. In
this paper we aim to develop a general framework of localised regression which
includes methods based on the local likelihood as special cases. The proposed
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framework naturally induces a robust version. The estimation scheme in this
paper is composed via functional Bregman divergence composed by a strictly
convex function ([4], [23]), while the parametric model for regression function
is chosen simply by exploiting a composition of linear predictor and a smooth
link function as in the generalized linear model ([16], [23] and [17]). The local-
isation is applied in the estimation scheme by slotting a kernel function, as in
[20]. Hence the proposed localised regression inference in this paper is essentially
composed by choosing the strictly convex function U in the functional Bregman
divegence, the link function G in the model, and the kernel function K for the
localisation. We claim that an appropriate choice of U and G leads to asymp-
totic risk improvement by the localised estimator over the global (non-localised)
estimator. Furthermore we show that choosing a suitable U in the functional
Bregman divergence naturally induces a robust version of the resulting localised
regression, with a similar risk improvement by the localised estimator when an
appropriate choice of G is made.

In a recent paper [18] we demonstrate theoretically and numerically that
infusing a little localisation in a robust parametric density estimation procedure
can bring benefits when the quality of the density estimator is measured by
using a global risk measure based on a minimisation of a Bregman divergence
measure. In this way, an extension in robustness context of a past results has
been delivered. These past results ([15], [13], [8]) have demonstrated similar
effects when localising likelihood-based methods. Specifically, they show that a
little localisation helps to improve the non-localised estimators when the quality
of the estimator is measured by using global risk measures.

In regression setting, the idea of localisation of the inference was pioneered
in [20]. It was presented as an extension of the idea of scatterplot smoothing
[6] to generalized linear regression models. To the best of our knowledge, there
have not been efforts to apply the localisation approach to robustify inference in
regression, neither for the simple linear regression setting, nor for the generalized
linear regression models. Our paper represents and attempt to fill this gap.
However, we stress on the fact that in the regression setting of the current
paper, even the global estimator (that we then localise for better performance)
suggested in this paper, seems to be new to the best of our knowledge.

It is well-known that likelihood-based inference is based on the idea of the
minimisation of the Kullback-Leibler (KL) divergence between an ideal and em-
pirical distribution. We illustrate below that the use of Bregman divergence (BD)
as a generalization and replacement of the KL divergence can, when properly
applied, bring about intrinsic robustification to standard likelihood-based infer-
ence when the quality of the regression fit is measured by using a suitable global
risk measure. Further point of this paper is that when coupled with a suitable
localisation, this robustification effect can be magnified, in a way similar to the
one that has been demonstrated for density estimation in [18].

From the very beginning we stress that the general setting of our paper does
allow for model misspecification. That is, we allow for the possibility that the
regression function, defined as the conditional expected value of the output
variable given the input vector, may not be equal to any of the parametric
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relationships used to model this function. Admittedly, this is the more realistic
scenario in practice. Intuitively, if we are ready to admit (parametric) model
misspecification then it is to be expected that a localisation would be helpful
in improving the performance with respect to a global risk measure as a local
estimator would be better adaptable to the unknown regression function. We
give sufficient conditions for this effect to happen asymptotically by relating the
choice of the function G to the choice of U .

The paper is structured as follows. We start with a detailed discussion of the
setup of our paper in Section 2. The global estimation scheme is firstly intro-
duced using the functional Bregman divergence [11] using the setup discussed
in [23]. Then the localisation is naturally composed by exploiting the kernel
function. Section 3 is devoted to asymptotic statements about the global and
local estimators discussed in our framework. The risk difference between the
global estimator and the local estimator is asymptotically evaluated in Section
3.3. The choice of U and G to yield the asymptotic risk improvement by the
local estimator is addressed in Section 3.4. Section 4 discusses approaches to
robustify our estimators by choosing a suitable divergence measure. It is seen
in Section 4.1 that using a suitable U and applying it on the residuals helps
us to robustify the method discussed in the previous sections. The advantage
of localisation in the sense of the risk improvement is also observed in the ro-
bustness setting in Section 4.3. Numerical implementations and simulations are
presented in Section 5. Some final discussions are presented in Section 6. Section
7 presents the proofs of our theoretical results.

2. Setup and estimators

2.1. Background

Bregman divergence was introduced in [4]. It can be defined for d-dimensional
(d ≥ 1) vectors but also for matrices or for functions. For a given strictly convex
function U : A → R, where A ⊂ Rd is a convex set, the Bregman divergence
between two points X ∈ A and Y ∈ A is defined as

dU (Y,X) = U(Y )− U(X)−∇U(X)(Y −X),

with ∇ denoting gradient-taking. This definition can be applied point wise for
positive density functions f , g defined on a common domain. The point-wise
application means that in this case d = 1, ∇ means a simple derivative U ′ and
we interpret locally, for a fixed t

dU (g(t), f(t)) = U(g(t))− U(f(t))− U ′(f(t)){g(t)− f(t)}.

Using this localised divergence measure at the point t, we then define the global
(or also called functional) Bregman divergence between the densities f and g:

DU (g, f) :=

∫
dU (g(t), f(t))v(t)dt, (2.1)



Regression using localised divergence 6547

where v is some non-negative weight function.

Suppose an exponential family of distributions in canonical form

f(x,θ) = exp{θTx− ψ(θ)}

is given, where x ∈ Rd and θ ∈ Rd is an unknown parameter vector, with the
convex function ψ(θ) being the cumulant generating function. There exists an
intimate connection between such a family of distributions and the Bregman
divergence. The latter is usually discussed via the notion of dually flat Rieman-
nian structure [1] introduced in this family by using the function ψ(θ). This
function uniquely characterizes the distribution f(x,θ). In more details, the
canonical parameter vector θ of this exponential family is used as affine coordi-
nate system. For two members of this exponential family, f(x,θ) and f(x,θ′),
say, Kullback-Leibler (KL) divergence DKL(θ,θ

′) can be written as

DKL(θ,θ
′) =

∫
Rd

f(x,θ) log

(
f(x,θ)

f(x,θ′)

)
dx

= ψ(θ′)− ψ(θ)− ∂

∂θ
ψ(θ)T (θ′ − θ)

= Dψ(θ
′,θ).

That is to say the KL divergence in this exponential family in canonical form is
tantamount the Bregman divergence defined via the convex function ψ(θ). In
addition the Riemannian metric (∂2/∂θ∂θT )ψ(θ) derived from ψ(θ) in this ex-
ponential family is easily seen to equal the Fisher information matrix (compare
also Theorem 2.1 in [1]). This intimate relation with KL divergence has been an
important push to consider applications of Bregman divergence also outside the
exponential family setting. There is still the belief that the data’s distribution
is “close to exponential family” but may “deviate slightly” as in the robustness
paradigm. In such cases it is prudent to start from the very beginning with a
proposal of a convex function U in (2.1) and proceed with it. The above diver-
gence between parameters will be replaced by functional Bregman divergence
(see [11]) when analysing the quality of the fit of such models to data.

2.2. Setup

Let (Y1,X1), . . . , (Yn,Xn) ∼i.i.d. f(y,x) = p(y|x)q(x), where (Yi,Xi) ∈ R ×
Rd, f is the joint density of (Y,X), p(·|x) is the conditional density of Y given
X = x, and q is the density of X. The support of the density q is expressed as
D which is assumed to be a compact set in Rd.

Let t ∈ D ⊂ Rd be a target point at which we want to estimate the value
of regression function μ(t) = E[Y |X = t]. Given that the precise distribution
of the pairs (Yi,Xi) is virtually never known in practice, there is a need to
approximate this ultimate function μ(t) = E[Y |X = t] and a simple well-
known approach is to approximate certain (possibly nonlinear transformation
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of it) via a function that is linear in the input observations x. As usually done
in practice, one postulates a parametric model for μ in the form

m(x,θ) = G−1
(
θT x̃

)
, (2.2)

where x̃T = [1 xT ] ∈ Rd+1 is the vector of explanatory variables and θ =
[θ0 θ1 · · · θd]

T ∈ Θ ⊂ Rd+1 is the parameter vector that also includes the com-
ponent θ0 as an intercept. The one-to-one transformation G (whose inverse is
denoted as G−1 above) represents the so-called link function.

As said in the Introduction, we allow for model misspecification. That is, we
allow for the possibility that for all θ ∈ Θ, the relationship m(x,θ) 	= μ(x)
may hold. This general setting is sometimes called approgression [5]. For the
particular case where model misspecification is excluded, some of our results in
this paper coincide with results that have been obtained in [23].

2.3. Bregman divergence

Throughout this paper we denote by U the set of strictly convex functions on
R. Now we fix a U ∈ U . Then the discrepancy between μ(·) and its parametric
model m(·,θ) = mθ(·) can be measured by the functional Bregman divergence
defined as

DU (μ,mθ)

=

∫
Rd

[U(μ(x))− U(m(x,θ))− u(m(x,θ)){μ(x)−m(x,θ)}] q(x)dx, (2.3)

where u = U ′: the derivative of U .The reason to add the term functional to
the Bregman divergence above is that it can be interpreted as a weighted form
of the point-wise Bregman divergence between μ(x) and mθ(x), with a weight
function given by the density of X.

In what follows, for the purpose of easier tractability, we prefer to utilize

DU∗(u(mθ), u(μ))

=

∫
Rd

[U∗(u(m(x,θ)))− U∗(u(μ(x))) (2.4)

−μ(x){u(m(x,θ))− u(μ(x))}] q(x)dx

=

∫
R×Rd

[U∗(u(m(x,θ)))− y · u(m(x,θ))] f(y,x)dydx (2.5)

+

∫
Rd

[−U∗(u(μ(x))) + μ(x)u(μ(x))] q(x)dx,

where U∗ is the convex conjugate of U : U∗(s) = supz∈R
{zs − U(z)}, and we

have used a fact that (U∗)′ = u−1 in (2.4). The fact that

DU (μ,mθ) = DU∗(u(mθ), u(μ)) (2.6)
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is an easy consequence of the fundamental properties of the Legendre trans-
formations. It has been derived explicitly, for example, in [1] (Equation 1.68
on page 17). The equality (2.6) implies that minimising either quantity with
respect to θ would deliver the same outcome hence we can be guided by the
simplicity of the resulting optimization problem when making a choice. Up to
terms not involving θ, it is clear that DU∗(u(mθ), u(μ)) is more tractable and
we focus on this choice from now on.

The usual parametric regression can be carried out by using a certain es-
timator θ̂ of the true value of θ. Necessary tools for this estimation scheme
are

ρ(y,x,θ) = U∗(u(m(x,θ)))− y · u(m(x,θ)), (2.7)

ψ(y,x,θ) =
∂

∂θ
ρ(y,x,θ) = −{y −m(x,θ)} u′(m(x,θ))

G′(m(x,θ))
x̃, (2.8)

by which the estimator θ̂ and the true value θ∗ of θ can be defined as

θ∗ = argmin
θ∈Θ

∫
R×Rd

ρ(y,x,θ)dF (y,x)

= solutionθ∈Θ

[∫
R×Rd

ψ(y,x,θ)dF (y,x) = 0d+1

]
, (2.9)

θ̂ = argmin
θ∈Θ

∫
R×Rd

ρ(y,x,θ)dFn(y,x)

= solutionθ∈Θ

[∫
R×Rd

ψ(y,x,θ)dFn(y,x) = 0d+1

]
, (2.10)

where Fn is the empirical distribution function based on (Y1,X1), . . . , (Yn,Xn),
F is the cumulative distribution function with its density f and 0d+1 is the zero
vector in Rd+1.

Note that θ∗ in (2.9) is the minimiser of (2.5), and the minimiser of the em-

pirical version of (2.5) is precisely θ̂ in (2.10). The regression function estimator

can be obtained by substituting θ̂ into θ in m(·,θ):

μ̂G(x) = m(x, θ̂). (2.11)

2.4. Local Bregman divergence

Now we introduce a localisation of the Bregman divergence by slotting a kernel
function K, where K(z) is a smooth unimodal integrable function, symmetric
around z = 0d and satisfying K(0d) = 1. Our proposed local version of the
Bregman divergence corresponding to (2.4) is defined as

DU∗(u(mθ), u(μ)|t)
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=

∫
R×Rd

K

(
x− t

h

)
[U∗(u(m(x,θ)))− y · u(m(x,θ))] f(y,x)dydx

+

∫
Rd

K

(
x− t

h

)
[−U∗(u(μ(x))) + μ(x)u(μ(x))] q(x)dx.

Here h > 0 is the scalar bandwidth which controls the degree of localisation.
This local divergence aims to evaluate the discrepancy between u(m(·,θ)) and
u(μ(·)) locally around the evaluation point t.

For a better adaptation along the regression curve, we now allow the param-
eter θ to vary with t and suggest a scheme to estimate θ depending on t. The
necessary functions are listed as follows:

ρ(t, y,x,θ) = K

(
x− t

h

)
ρ(y,x,θ), (2.12)

ψ(t, y,x,θ) =
∂

∂θ
ρ(t, y,x,θ). (2.13)

We note that (2.12) and (2.13) are localised version of (2.7) and (2.8) respec-
tively, with the use of the kernel K. Using these functions, we define the true
parameter θ∗(t) at t and its estimator θ̂(t) as follows:

θ∗(t) = argmin
θ∈Θ

∫
R×Rd

ρ(t, y,x,θ)dF (y,x)

= solutionθ∈Θ

[∫
R×Rd

ψ(t, y,x,θ)dF (y,x) = 0d+1

]
, (2.14)

θ̂(t) = argmin
θ∈Θ

∫
R×Rd

ρ(t, y,x,θ)dFn(y,x)

= solutionθ∈Θ

[∫
R×Rd

ψ(t, y,x,θ)dFn(y,x) = 0d+1

]
. (2.15)

This local estimator θ̂(t) of θ∗(t) also suggests us to make a regression estimator
defined as

μ̂L(x) = m(x, θ̂(x)), (2.16)

which we call the local estimator of μ(x), because the involved estimator of pa-

rameter is determined locally. Since θ̂(x) can vary depending on x, μ̂L would be
expected to be more flexible than μ̂G. On the other hand, we call the estimator
μ̂G(x) in (2.11) the global estimator of μ(x).

Let us introduce the notation

ψ(�)(t, y,x,θ) = ||x− t||�ψ(y,x,θ), � = 2, 4, (2.17)

We also define the following (d+ 1)× (d+ 1) matrices

Ψ(θ) =

∫
R×Rd

∂

∂θ
ψ(y,x,θ)T dF (y,x), (2.18)
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Ψ̂(θ) =

∫
R×Rd

∂

∂θ
ψ(y,x,θ)T dFn(y,x), (2.19)

Ψ(t,θ) =

∫
R×Rd

∂

∂θ
ψ(t, y,x,θ)T dF (y,x), (2.20)

Ψ̂(t,θ) =

∫
R×Rd

∂

∂θ
ψ(t, y,x,θ)T dFn(y,x), (2.21)

Ψ(�)(t,θ) =

∫
R×Rd

∂

∂θ
ψ(�)(t, y,x,θ)T dF (y,x), � = 2, 4, (2.22)

Ψ̂(�)(t,θ) =

∫
R×Rd

∂

∂θ
ψ(�)(t, y,x,θ)T dFn(y,x), � = 2, 4. (2.23)

The matrix (2.18) plays a role similar to the Fisher information, and (2.20) is its
local version. The matrix (2.22) is needed to develop our asymptotic statements.
The hat symbol always designates corresponding empirical version based on Fn.

Remark 1. Of course, it matters which function U do we choose in the BD
family. In [10] and in [18] the effect of this choice is discussed is more detail.
In any case, when a robustification is sought, it makes sense to choose U which
is parameterized by a parameter, r, say, whereby the parameterized function
represents some sort of distortion of the logarithmic function. Very often this is
achieved by replacing in the core definition a logarithm by the Box-Cox transfor-
mation. In such a way, the new (non-local) robust estimation procedure can be
interpreted as one that tries (empirically) to minimise “the discrepancy between
a distribution in an ideal parametric family and one that modifies the true dis-
tribution to diminish (or emphasize) the role of extreme observations” (see [10],
p. 754). Their procedure is called maximum Lr-likelihood estimation procedure
to reflect the distortion of the usual likelihood function (obtained as a limiting
case when r = 1) via the distortion function Lr(u) = {u1−r − 1}/(1− r), r > 0.
These authors have not discussed robustness issues except to mention that these
might be interesting to be discussed in a future work and they do not discuss
any effects of localisation. Our estimation procedure is different to theirs and
it can be implemented in such a way as to deliver robustification in regression
setting that is consistent with the classical requirement for a robust estimator
to have a bounded influence function.

A paper that deals explicitly with the aspects of Bregman divergence in re-
gression is [23]. It is more closely related to our own paper although again it does
not analyse any localisation effects and do not deal with model misspecification.
Further, we note that in the global setting, the Bregman divergence they use
is not the same as ours. They aim to measure the discrepancy between y and
m(x,θ), rather than between μ(x) and m(x,θ) as we do. However it can be
confirmed that, eventually, their estimation procedure (Equation (20) in p.126)
for θ coincides with ours in the no-misspecification case μ(·) = m(·,θ∗).

We should also mention that the paper [9] also deals explicitly with the model
misspecification issue in regression. It points out that a localisation bandwidth
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h controls the behaviour of the local estimator, with two distinctive effects. For
nonparametric consistency, a bandwidth h tending to zero as sample size n → ∞
is to be chosen. On the other hand, with h large, the estimator would share
asymptotic efficiency with the parametric estimator if the parametric model is
precisely correct but at the same time, it will suffer much less than the para-
metric estimator when a slight misspecification of the parametric model occurs.
However the paper assumes that the conditional density p(y|x) belongs to an
exponential family. We do not need this assumption.

The authors of [23] investigate the question of how to tune the bandwidth
h depending on the degree of model misspecification. In contrast, we focus on
investigating the gain of using the large h asymptotic approach instead of purely
parametric regression in cases where the model misspecification is small so that
we happen to be in the large h regime. In addition, in [23] the conditional
distribution of Y given X is again supposed to belong to an exponential family.
We do not need this assumption in our methodological part.

We also investigate robustness properties of the estimators constructed by
using the large h approach. Noticing the structure of the loss function Q in [10],
it becomes apparent via simple calculations that the resulting influence function
of their estimator (and hence also of our estimator), in terms of the notations
introduced in our paper, is proportional to

Ψ(θ)−1 {y −m(x,θ)} u′(m(x,θ))

G′(m(x,θ))
x̃.

Even if we assume, as we do, that the input (design) variable X could be
restricted to be in a compact set, this influence function is clearly unbounded
in general (unless the Yi observations also stay in a bounded set).

In contrast, our method, in its form presented in Section 4 can deliver robus-
tification in a classical sense, with a bounded influence function.

3. Asymptotic theory

3.1. Assumptions

We will now state the assumptions for our asymptotic statements related to μ̂G

and μ̂L to hold. In the sequel, for any (d + 1) × (d + 1) matrix A, we let Aij

denote the (i, j)-component of A.

(A0) The kernel K satisfies K(0d) = 1 and K(z) = 1 − κ2||z||2 + κ4||z||4 +
o(||z||4), as ||z|| → 0, where κ2, κ4 > 0.

(A1) As n → ∞ and h → ∞, h2 = O(
√
n).

(A2) The parameter space Θ is a bounded open subset in Rd+1, and ρ(y,x,θ)
is continuous on R×Rd ×Θc, where Θc is the closure of Θ. For almost all
(y,x), ρ(y,x,θ) is sufficiently smooth on Θ.

(A3) The parameter θ∗ ∈ Θ is the unique minimiser of∫
R×Rd

ρ(y,x,θ)dF (y,x).
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(A4) E[Y 2] < ∞, and E[ |Y | |X = x] is continuous on D.

(A5)

∫
Rd

sup
θ∈Θc

|u(m(x,θ))|2q(x)dx < ∞, and for any ε > 0, there exists L > 0

such that

sup
θ∈Θc

∫
||x||>L

|U∗(u(m(x,θ)))|q(x)dx < ε.

(A6) For any t ∈ D and any vector θ̃ satisfying ||θ̃ − θ̂|| < ||θ̂(t)− θ̂||, both

max
1≤i,j≤d+1

∣∣∣Ψ(t, θ̃)ij −Ψ(t,θ∗)ij

∣∣∣ = op

(
1

h2

)
and

max
1≤i,j≤d+1

∣∣∣Ψ̂(t, θ̃)ij − Ψ̂(t,θ∗)ij

∣∣∣ = op

(
1

h2

)
hold as n → ∞ and h → ∞.

(A7) Ψ(θ∗) is positive definite, and for any t ∈ D and any vector θ̃ satisfying

||θ̃ − θ̂|| < ||θ̂(t)− θ̂||, Ψ̂(t, θ̃) is nonsingular.

Remark 2. The following remarks should be made regarding the above as-
sumptions for our theory:

(a) (A0) relates to the shape of kernel function used for the localisation. A
typical choice is the Gaussian kernel K(z) = exp(−||z||2/2).

(b) We aim to develop asymototics for μ̂L and hence θ̂(t) under the scenario
where the bandwidth h grows as n increases. The typical order is set to
h2 = O(

√
n) in (A1), however other orders might also be possible, see [8].

We do not pursue the optimal order of h in this paper.
(c) (A2), (A3), (A4) and (A5) are necessary to demonstrate consistency of

our local estimator θ̂(t), see [14], [21] and [22].
(d) (A6) claims that the matrix Ψ(t,θ∗) is approximated well by Ψ(t, θ̃) for

θ̃ close to θ̂, and that this is also true for the estimated version Ψ̂(t,θ∗).

(e) (A7) assures the non-singularity of Ψ(θ∗) and Ψ̂(t, θ̃) for θ̃ close to θ̂.

We see from (A0), (2.17), (2.21), (2.22) and (2.23) that

ψ(t, y,x,θ) = ψ(y,x,θ)− κ2

h2
ψ(2)(t, y,x,θ) +

κ4

h4
ψ(4)(t, y,x,θ) + o

(
1

h4

)
,

Ψ(t,θ) = Ψ(θ)− κ2

h2
Ψ(2)(t,θ) +

κ4

h4
Ψ(4)(t,θ) + o

(
1

h4

)
,

Ψ̂(t,θ) = Ψ̂(θ)− κ2

h2
Ψ̂(2)(t,θ) +

κ4

h4
Ψ̂(4)(t,θ) + op

(
1

h4

)
.

3.2. Asymptotic results for estimators

Theorem 1. Assume that (A0)-(A5) hold. Then θ̂ converges in probability to

θ∗ as n → ∞. Further, for any t ∈ D, θ̂(t) converges in probability to θ∗ as
n, h → ∞.
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Theorem 2. Under Assumptions (A0)-(A7), for any t ∈ D, it follows as n, h →
∞ that

θ̂(t)− θ̂

=
κ2

h2
Ψ(θ∗)

−1

[∫
R×Rd

ψ(2)(t, y,x,θ∗)dF (y,x) +
1√
n
v̂(2)(t,θ∗)

]
+

1

h4
Ψ(θ∗)

−1

[
κ2V̂ (t,θ∗)Ψ(θ∗)

−1

∫
R×Rd

ψ(2)(t, y,x,θ∗)dF (y,x)

−κ4

∫
R×Rd

ψ(4)(t, y,x,θ∗)dF (y,x)

]
+ op

(
1

h4

)
,

where v̂(2) is given by (7.1) in Lemma 3.

Theorem 3. Under Assumptions (A0)-(A7), for any t ∈ D, it follows as n, h →
∞ that

E
[
θ̂(t)− θ̂

]
=

κ2

h2
Ψ(θ∗)

−1

∫
R×Rd

ψ(2)(t, y,x,θ∗)dF (y,x)

+
1

h4

[
κ2
2Ψ(θ∗)

−1Ψ(2)(t,θ∗)Ψ(θ∗)
−1

∫
R×Rd

ψ(2)(t, y,x,θ∗)dF (y,x)

−κ4Ψ(θ∗)
−1

∫
R×Rd

ψ(4)(t, y,x,θ∗)dF (y,x)

]
+ o

(
1

h4

)
.

Asymptotic normality of θ̂(t) and μ̂L(t) can be demonstrated as follows:

Theorem 4. Under Assumptions (A0)-(A7), for any t ∈ D,

√
n

{
θ̂(t)− θ∗ −

κ2

h2
Ψ(θ∗)

−1

∫
R×Rd

ψ(2)(t, y,x,θ∗)dF (y,x)

}
converges in distribution to a (d + 1)-dimensional Gaussian distribution with
mean vector zero and with covariance matrix

Σ∗ = Ψ(θ∗)
−1Cov[ψ(Y,X,θ∗)]Ψ(θ∗)

−1. (3.1)

Furthermore,
√
n {μ̂L(t)−m(t,θ∗)} also converges in distribution to a univari-

ate Gaussian distribution with mean b∗(t) and variance σ2
∗(t), where

b∗(t) = τκ2
∂

∂θT
m(t,θ∗)Ψ(θ∗)

−1

∫
R×Rd

ψ(2)(t, y,x,θ∗)dF (y,x),

σ2
∗(t) =

∂

∂θT
m(t,θ∗)Σ∗

∂

∂θ
m(t,θ∗)

and τ > 0 is the limit of
√
n/h2.
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3.3. Asymptotics for the risk

The effect of the localisation is revealed when the performance comparison of
the local and the global estimator is completed by using global-performance

risk measures. The risk of the global estimator μ̂G(x) = m(x, θ̂) = G−1(θ̂
T
x̃)

is defined as the expected value of its divergence:

R(μ̂G) = E [DU∗(u(μ̂G)), u(μ))] ,

where the expectation is based on the sample. The risk of the local estimator
μ̂L(x) = m(x, θ̂(x)) = G−1(θ̂(x)T x̃) is defined similarly as

R(μ̂L) = E [DU∗(u(μ̂L), u(μ))] .

The difference between the risks of the global and of the local estimators is thus
defined as

R(μ̂G, μ̂L) = R(μ̂G)−R(μ̂L). (3.2)

We have the following result for the risk difference:

Theorem 5. Under Assumptions (A0)-(A7), it follows as n, h → ∞ that

R(μ̂G, μ̂L)− E [DU∗(u(μ̂G), u(μ̂L))]

=
2κ2

h2

d∑
j=1

ηj(θ∗)
TΨ(θ∗)

−1ηj(θ∗) + o

(
1

h2

)
, (3.3)

where

ηj(θ∗) =

∫
R×Rd

xjψ(y,x,θ∗)dF (y,x) ∈ Rd+1 (3.4)

for j = 1, ..., d and xj is the j-th component of x.

From Theorem 5 it is clear that (since under Assumption (A7) the matrix
Ψ(θ∗) is positive definite) the local estimator outperforms the global one asymp-
totically. It is not always the case, however, that Assumption (A7) would hold.
In Theorem 6 below we investigate sufficient conditions for (A7) to hold. We
also note that obviously when the parametric model holds then ηj(θ∗) will be
zero. In this particular case the claim is that the risk difference (3.2) is still ap-
proximated by a positive quantity E [DU∗(u(μ̂G), u(μ̂L))] up to a smaller order
error of o(1/h2).

3.4. Efficient choice of the link function

Our methodology requires choices of the strictly convex function U ∈ U and of
the link function G. The asymptotic result in Theorem 5 suggests us an efficient
choice of the link function G for a fixed U .
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Theorem 6. Fix a strictly convex function U . The choice G ≡ u + α for a
constant α makes Ψ(θ∗) positive definite, for any μ. With this choice of G we
have

Ψ(θ∗) =

∫
Rd

1

U ′′(G−1(θT
∗ x̃))

x̃x̃T q(x)dx. (3.5)

Remark 3. We are focusing now on analyzing Σ∗ of (3.1) in Theorem 4. Con-
sider the case G(t) = u(t) + α for some constant α. Then Ψ(θ∗) is positive
definite by Theorem 6. The same result as in Theorem 6 of [23] holds for Σ∗.
That is, if U satisfies

U ′′(m(x,θ∗)) = u′(m(x,θ∗)) =
c

E[{Y −m(x,θ∗)}2]

for some constant c > 0, then the asymptotic covariance matrix Σ∗ of θ̂(t)
attains the lower bound {

E
[
t(X,θ∗)

−1X̃X̃
T
]}−1

,

where t(X,θ∗) = EY |X [{Y −m(X,θ∗)}2]U ′′(m(X,θ∗))
2. This lower bound co-

incides with that obtained in Theorem 6 of [23] provided that μ(x) = m(x,θ∗).

3.5. Remark on robustness

The influence function of θ̂ can be obtained as

IF(y,x : F ) = −Ψ(θ∗)
−1ψ(y,x,θ∗)

= Ψ(θ∗)
−1 {y −m(x,θ∗)}

u′(m(x,θ∗))

G′(m(x,θ∗))
x̃, (3.6)

which is unbounded unless y stays in a bounded set. The influence function of
θ̂(t) at t ∈ D can be obtained similarly. We do not pursue this here.

By examining (3.6) it becomes clear why the influence function can be un-
bounded. This is due to the appearance of the residual function y−m(x,θ∗) as
a multiplier in (3.6). This observation also suggest ways to implement a robust

estimator as a substitute to θ̂. The way we adopt in this paper is presented in
the next Section.

4. Choosing a divergence to yield robust estimators

4.1. Composition of the divergence

Define

U0 = {U ∈ U | u(0) = 0, |u| is bounded}. (4.1)
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A typical member of U0 is the so-called pseudo-Huber loss (see, e.g., [12])

Lδ(t) = δ2

⎧⎨⎩
√
1 +

(
t

δ

)2

− 1

⎫⎬⎭ , δ > 0. (4.2)

The pseudo-Huber loss is similar to the Huber loss, but has continuous deriva-
tives of all orders and is a strictly convex function of t for any fixed δ > 0. It
should be noted that L′

δ is bounded.
In what follows we shall denote the residual function as r(θ) = y −m(x,θ).
Now fix a U ∈ U0. To yield a robust estimator of θ, we utilize an another

feature of Bregman divegence defined as

DU (θ) =

∫
R×Rd

{U(r(θ))− U(0)− u(0){r(θ)− 0}} dF (y,x)

=

∫
R×Rd

U(y −m(x,θ))dF (y,x)− U(0). (4.3)

In particular, if the pseudo-Huber loss (4.2) is used for U then also U(0) = 0
holds. By minimising DU (θ) we aim to minimise the discrepancy between the
residual r(θ) and 0 rather than between Y and m(·,θ) as implemented in [23].
This is the key to robustification since now the influence function can be made
bounded even when the Y -observations are not, as will be seen in the discussion
that follows.

4.2. Estimators

In this setting, necessary functions corresponding to (2.7) and (2.8) are put into

ρ(y,x,θ) = U(y −G−1(θT x̃)), (4.4)

ψ(y,x,θ) =
∂

∂θ
ρ(y,x,θ) = −u(y −G−1(θT x̃))

G′(G−1(θT x̃))
x̃. (4.5)

Associated functions corresponding to local version (2.12), (2.13), (2.17) and
the matrix (2.18) can be defined in the same way, hence we will deal with these
functions as before but by using (4.4) as a starting point.

The estimator θ̂ as well as the true parameter value yielding the best approxi-
mation to Y can be defined in a same manner as in (2.10) and (2.9), respectively.

Local estimator θ̂(t) and the parameter θ(t) at t are also defined in a similar
way to (2.15) and (2.14), respectively.

Furthermore, the above parameter estimators suggest immediately the global
estimator μ̂G and the local estimator μ̂L of the regression function as given in
(2.11) and (2.16).

With the new ρ(y,x,θ) and ψ(y,x,θ) defined in (4.4) and (4.5), the influence

function of θ̂ can be derived as

IF(y,x : F ) = −Ψ(θ∗)
−1u(y −G−1(θT x̃))

G′(G−1(θT x̃))
x̃, (4.6)
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where

Ψ(θ) =

∫
R×Rd

c̃2(y,x,θ)x̃x̃
T dF (y,x) (4.7)

and

c̃2(y,x,θ)

=
1

{G′(G−1(θT x̃))}2
{
U ′′(y −G−1(θT x̃))

+u(y −G−1(θT x̃))
G′′(G−1(θT x̃))

G′(G−1(θT x̃))

}
. (4.8)

We now compare the estimator θ̂ obtained via the estimating equation based
on (4.5) with that based on another divergence.

The so-called density power divergence [2] is defined as a Bregman divergence
with Ũβ(t) = t1+β for t ≥ 0 and β > 0, see Section 9.2 of [3] as well. Robust
inference using this divergence with 0 < β < 1 was discussed in [2] and [3]. This
divergence, however, cannot be utilized in its original form in regression setting
since this Ũβ(t) is defined on t ≥ 0, though it is itself natural for the divergence
of densities.

A suitable version of Ũβ for the regression problem is Uβ(t) = |t|1+β for
β > 0. This Uβ is strictly convex on R so that it is a member of U . Hence it is
possible to consider the divergence (2.3) and (4.3) based on Uβ for inference.

However, it is easily confirmed that the inference using the divergence (4.3)
with U = Uβ is not robust, since U ′

β is not bounded. Using the form of U ′
β

and (4.6), we see that the influence function of estimator based on this power
divergence Uβ is not bounded. This is in stark contrast to the fact that the
influence function based on the divergence associated with U = Lδ is bounded,
due to the fact that u = U ′ = L′

δ is bounded.
Both Uβ and Lδ are members of U , and Lδ is also a member of U0 but Uβ

is not. This difference is essential when analysing robustness properties.

4.3. Risk improvement in the robust setting

Similarly to Theorem 5, the local regression estimator μ̂L can improve the risk
of the global estimator μ̂G also in the robust setting when using the divergence
(4.3) and the associated functions (4.4) and (4.5).

The risk of the global estimator can be defined as

R(μ̂G) = E

[∫
R×Rd

U(y −m(x, θ̂))dF (y,x)

]
whereas the risk of the local estimator is

R(μ̂L) = E

[∫
R×Rd

U(y −m(x, θ̂(x)))dF (y,x)

]
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where the expectation is based on the sample. The risk difference between global
and local estimators is therefore given as

R(μ̂G, μ̂L) = R(μ̂G)−R(μ̂L). (4.9)

The following theorem sates that, under Assumptions (A0)-(A7), the local
estimator is better than the global estimator when using the global risk (4.9) as
a measure of performance:

Theorem 7. Let U ∈ U0. Under Assumptions (A0)-(A7), it follows as n, h →
∞ that

R(μ̂G, μ̂L) ≥
2κ2

h2

d∑
j=1

ζj(θ∗)
TΨ(θ∗)

−1ζj(θ∗) + o

(
1

h2

)
,

where

ζj(θ∗) =

∫
R×Rd

xju(y −m(x,θ∗))
∂

∂θ
m(x,θ∗)dF (y,x) ∈ Rd+1

for j = 1, ..., d.

We now discuss, in a similar way as in Theorem 6, examples of sufficient
conditions for the positive definiteness of Ψ(θ∗). We claim that a choice for
G = u associated with U = Lδ, the pseudo-Huber loss in (4.2), leads to the
desired positive definiteness. To see this, we introduce the constants

M(u−1) = max{|u−1(θT x̃)| | x ∈ D,θ ∈ Θc}

and
M = max{E[ |Y | |X = x] | x ∈ D},

both of which certainly exist by the smoothness of G = u and the assumption
(A4) as well as the assumed compactness of D and Θc.

We formulate the following theorem:

Theorem 8. Let U be equal to the pseudo-Huber loss Lδ in (4.2), and let
G = u = U ′. Then Ψ(θ∗) becomes positive definite for sufficiently large δ.

Remark 4. Theorem 8 can be easily confirmed by looking at the structure of
c̃2(y,x,θ) in (4.8). By the definition of the pseudo-Huber loss (4.2) and the
setting G = U ′, it follows that

c̃2(y,x,θ) = c̃2,1(y,x,θ) +
1

δ2
c̃2,2(y,x,θ), (4.10)

where

c̃2,1(y,x,θ) =
{1 + (G−1(θT x̃)/δ)2}3

[1 + {(y −G−1(θT x̃))/δ}2]3/2
(4.11)

and

c̃2,2(y,x,θ) (4.12)
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= −3G−1(θT x̃){y −G−1(θT x̃)} {1 + (G−1(θT x̃)/δ)2}2

[1 + {(y −G−1(θT x̃))/δ}2]1/2
.

Note that c̃2,1(y,x,θ) in (4.11) is always positive for any (y,x) as well as for
any θ and any positive δ. In addition, since c̃2,2(y,x,θ) is bounded in (4.12)
for any positive δ we see that c̃2(y,x,θ) will be positive for large δ. Since the
positive definiteness of Ψ(θ∗) in (4.7) can be captured only through c̃2 in (4.10),
Ψ(θ∗) will become positive definite for large δ.

Remark 5. The claim of Theorem 8 represents a new perspective on the cost
of robustness guarantee. It is a part of the folklore that a strong robustness gen-
erally implies low efficiency of the method, and pursuing efficiency reduces the
robustness of the method. Theorem 8 suggests that large value of δ guarantees
the positive definiteness of Ψ(θ∗), and hence the positiveness of the leading term
of the risk difference in Theorem 7. Therefore, large δ guarantees the risk im-
provement by the proposed local estimator. But we note that by the definition
of the pseudo-Huber loss in (4.2), this large δ reveals a weak robustness. Hence
the dilemma between robustness and efficiency also appears in our current set-
ting when analysing the risk improvement by the local method. We also note
that our methodology, as implemented in the local estimator setting, allows us
to analyse the separate effects of model misspecification and of robustness, as
well as their interplay. Using a bandwidth h2 = O(

√
n) as in Assumption (A1)

represents a balance in the sense that using a smaller order bandwidth h will
help if model misspecification of the conditional mean prevails whereas larger
h would be helpful if there is a need for a more robustification. However, the
robustification achieved by the local estimator has its limitations. Indeed, an at-
tempt for a stronger robustification by choosing small δ may cause Ψ(θ∗) to not
be positive definite anymore. Hence, if for some reasons, a strong robustification
is aimed at then the global estimator may do a better job.

From a practical point of view, one possible drawback of the choice G = u in
Theorem 8 is that the resulting G−1 = u−1 requires |θT x̃| < δ since

G−1(t) =
δt√

δ2 − t2
=

t√
1− (t/δ)2

.

This means that m(x, θ̂) = G−1(θ̂
T
x̃) would not be defined when |θ̂T

x̃| ≥ δ.
For large δs, this does not matter theoretically, but there is nonzero probability

that θ̂
T
x̃ is bigger than δ for some x thus causing a numerical instability in

practice. A less problematic choice of G = u is the choice G = u−1. We again
achieve a risk improvement by the local estimator as shown in the following
result:

Theorem 9. Let U be equal to the pseudo-Huber loss Lδ in (4.2), and let
G = u−1 = (U ′)−1. Then Ψ(θ∗) becomes positive definite for sufficiently large
δ.
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5. Numerical implementations and simulations

The main purpose of this section is to discuss the numerical implementation
of the estimations and to compare the performance of the global and local
estimators. Furthermore, the risk reduction effect illustrated in our Theorems
will be demonstrated in a short simulation study.

5.1. Numerical implementation of the estimation algorithms

First, we discuss the numerical implementation of the regression estimators μ̂G

and μ̂L. These are obtained via plug-in once the corresponding parameter esti-
mators θ̂ and θ̂(t) are obtained. Using the obtained regression estimators, we
will be able to analyze and demonstrate the risk reduction achieved when using
μ̂L instead of μ̂G. Theoretical analysis of these improvement effects was been
presented in Theorems 5 and 7 and in this section additional numerical support
is demonstrated. Although the numerical implementations of the estimators are
standard, we discuss them here for the purpose of making our discussion self-
contained.

5.1.1. The Global Estimator

In a first step, we discuss the numerical implementation of the global estimator θ̂
for μ̂G. The Newton-Raphson iterative method is used for this purpose. Starting

with an initial guess θ̂
[0]
, the updates are obtained as follows:

θ̂
[k+1]

= θ̂
[k] −

{
Ψ̂(θ̂

[k]
)
}−1

∫
R×Rd

ψ(y,x, θ̂
[k]
)dFn(y,x), (5.1)

where k = 0, 1, 2, ... denote the iteration steps.
For independent observations (Y1,X1), . . . , (Yn,Xn) from F (y,x), we intro-

duce the n× (p+ 1) design matrix, and two n-dimensional vectors

X̃ =

⎡⎢⎢⎣
X̃

T

1
...

X̃
T

n

⎤⎥⎥⎦ , Y =

⎡⎢⎣ Y1

...
Yn

⎤⎥⎦ , m(θ) =

⎡⎢⎣ m(X1,θ)
...

m(Xn,θ)

⎤⎥⎦ . (5.2)

Here we note that X̃i = [1 XT
i ]

T . Then we see from (2.8), (5.1) and (5.2) that∫
R×Rd

ψ(y,x,θ)dFn(y,x) = − 1

n
X̃TW(θ)(Y −m(θ)), (5.3)

where
W = W(θ) = diag{w1(θ), . . . , wn(θ)}

with entries

wi(θ) =
u′(m(Xi,θ))

G′(m(Xi,θ))
, i = 1, ..., n. (5.4)
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On the other hand, by using (2.19) and (7.4) in the proof of Theorem 6, we
get

Ψ̂(θ) =
1

n
X̃TΔ(θ)X̃, (5.5)

where
Δ = Δ(θ) = diag{c2(Y1,X1,θ), . . . , c2(Yn,Xn,θ)}

and c2(y,x,θ) is that given in (7.5).
The relations (5.3) and (5.5) help us to arrive at a more convenient expression

for the update (5.1):

θ̂
[k+1]

= θ̂
[k]

+ {X̃TΔ(θ̂
[k]
)X̃}−1X̃TW(θ̂

[k]
)(Y −m(θ̂

[k]
)). (5.6)

Note that an efficient choice G = u gives W = In, the identity matrix, as
confirmed by (5.4). Furthermore the choice G = u simplifies Δ as

Δ = Δ(θ) = diag

{
1

G′(G−1(θT X̃1))
, · · · , 1

G′(G−1(θT X̃n))

}
.

Therefore (5.6) is finally simplified to

θ̂
[k+1]

= θ̂
[k]

+ {X̃TΔ(θ̂
[k]
)X̃}−1X̃T (Y −m(θ̂

[k]
)).

As long as we utilize G = u = U ′, we only need to care to update the matrix
Δ(θ) and the vector m(θ).

5.1.2. The Local Estimator

A similar algorithm can be implemented for the local estimator μ̂L(t) at t ∈ D.

Starting with an initial guess θ̂(t)[0], the k-th update of the Newton-Raphson
iterative algorithm can be written as

θ̂(t)[k+1] = θ̂(t)[k] −
{
Ψ̂(t, θ̂(t)[k])

}−1
∫
R×Rd

ψ(t, y,x, θ̂(t)[k])dFn(y,x), (5.7)

k = 0, 1, 2, . . . . The vector to which θ̂(t)[k] converges is defined as θ̂(t). Based
on (5.7), a local version for (5.3) can be obtained by introducing the matrix

K = K(t) = diag

{
K

(
X1 − t

h

)
, . . . ,K

(
Xn − t

h

)}
, t ∈ D.

In fact, we have from (2.13), (2.20) and (5.3) that∫
R×Rd

ψ(t, y,x,θ)dFn(y,x)

= − 1

n

n∑
i=1

K

(
Xi − t

h

)
ψ(Yi,Xi,θ)
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= − 1

n
X̃TK(t)1/2W(θ)K(t)1/2(Y −m(θ)), (5.8)

and

Ψ̂(t,θ) =
1

n

n∑
i=1

K

(
Xi − t

h

)
c2(Yi,Xi,θ)X̃iX̃

T

i

=
1

n
X̃TK(t)1/2Δ(θ)K(t)1/2X̃. (5.9)

The choice G = u, (5.8) and (5.9) lead to

θ̂(t)[k+1]= θ̂(t)[k]+{X̃TK(t)1/2Δ(θ̂(t)[k])K(t)1/2X̃}−1X̃TK(t)(Y −m(θ̂(t)[k])).

5.1.3. Estimators in Bernoulli Regression

Applications of above algorithm in the setting of Bernoulli regression with the
sample size n = 200 and d = 1 are exhibited in Figures 1(a) and 1(b), where
the true regression function μ(x) is

μ(x) = 0.5 + 0.4 · cosx. (5.10)

in Figure 1(a) and

μ(x) =
exp(0.2− x)

1 + exp(0.2− x)
(5.11)

in Figure 1(b). The bandwidth for the local estimator is h = 0.25 · (200)1/4. The
utilized parametric model is

m(x,θ) = G−1(θT x̃) =
exp(θT x̃)

1 + exp(θT x̃)

with x̃ = [1 x]T and θ = [θ0 θ1]
T .

We see from Figure 1(a) that the local estimator μ̂L(x) (dotted) fits to the
true μ(x), while the global estimator μ̂G(x) (dashed) cannot capture the struc-
ture of μ(x). In contrast, in Figure 1(b) the parametric model includes the true
μ(x), hence both the global and local approaches give reasonable estimators.

5.2. Simulation related to Theorem 5

Referring to the proof of Theorem 5, we need to calculate an estimate of

R(μ̂G, μ̂L)− E [DU∗(u(μ̂G), u(μ̂L))]

= E

[∫
Rd

{μ̂L(x)− μ(x)} {u(μ̂G(x))− u(μ̂L(x))} q(x)dx
]
, (5.12)
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Fig 1. Simulated data(circle); μ(x) (solid); μ̂G(x) (dashed); μ̂L(x) (dotted); (a), μ(x) in
(5.10); (b), μ(x) in (5.11).

which corresponds to the left hand side of (3.3). To calculate

d∑
j=1

ηj(θ∗)
TΨ(θ∗)

−1ηj(θ∗),

the O(h2)-term of the right hand side of (3.3), we need to obtain an approxi-
mation to Ψ(θ∗) in (2.18) and ηj(θ∗) in (3.4). The integrals involved in (5.12),
(2.18) and (3.4) do not have a closed form in general and we replace them by
Monte Carlo integral approximation.

To this end, we generate a random sample of size S drawn from F (y,x):
(y∗1 ,x

∗
1), . . . , (yS ,x

∗
S) ∼ F (y,x). Independently, we generate a data set

(y
(t)
1 ,x

(t)
1 ), . . . , (y(t)n ,x(t)

n )

from F (y,x) for t = 1, . . . , T , and calculate estimators θ̂(·)(t) and θ̂
(t)

at each
iteration t = 1, . . . , T . Using these estimators at each iteration t, we have

μ̂L(·)(t) = m(·, θ̂(·)(t)) and μ̂G(·)(t) = m(·, θ̂(t)
). We then have the estimates

of (5.12) and
∑d

j=1 ηj(θ∗)
TΨ(θ∗)

−1ηj(θ∗) defined as

L̂ =
1

T · S

T∑
t=1

S∑
s=1

[{
μ̂L(x

∗
s)

(t) − μ(x∗
s)
}{

u(μ̂G(x
∗
s)

(t))− u(μ̂L(x
∗
s)

(t))
}]
(5.13)

and

R̂(θ†) =
d∑

j=1

η̂j(θ†)
T

[
1

S

S∑
s=1

∂

∂θ
ψ(y∗s ,x

∗
s ,θ†)

]−1

η̂j(θ†), (5.14)

respectively, where

η̂j(θ) =
1

S

S∑
s=1

x∗
sjψ(y

∗
s ,x

∗
s ,θ),
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see (3.4). Here x∗
sj is the j-th component of x∗

s. The vector θ† can be chosen as
θ† = θ∗ for the parametric case μ(x) = m(x,θ∗). For the more general situation
where μ(x) differs from the parametric model (i.e., for the “approgression” case),
it is not as easy to determine the “true” vector θ∗ as the solution of (2.9). In

this case we would utilize θ† defined as θ† = T−1
∑T

t=1 θ̂
(t)
.

Under the choice of G = u, it is easily verified that (5.14) can be expressed
as

R̂(θ†)=
1

S
tr
[
X̃∗(X̃

T
∗ Δ∗X̃∗)

−1X̃T
∗
[
{μ∗−m∗(θ†)}{μ∗−m∗(θ†)}T X∗X

T
∗
]]

,

where  is the Hadamard product, see Chapter 7 in [19], X̃∗ = [1S X∗],

X∗ =

⎡⎢⎣ x∗T
1
...

x∗T
S

⎤⎥⎦ , μ∗ =

⎡⎢⎣ μ(x∗
1)

...
μ(x∗

S)

⎤⎥⎦ , m∗(θ) =

⎡⎢⎣ m(x∗
1,θ)
...

m(x∗
S ,θ)

⎤⎥⎦ ,

Δ∗ = diag{c2(y∗1 ,x∗
1,θ†), . . . , c2(y

∗
S ,x

∗
S ,θ†)} and 1S stands for the S-dimen-

sional vector of 1’s.
We can check Theorem 5 by comparing L̂ and 2κ2R̂(θ†)/h

2 for several large
values of n, where h = c · n1/4 for some constant c > 0. The Gaussian kernel
K(z) = exp(−||z||2/2) is adopted, hence κ2 = 1/2.

For simplicity d = 1 is adopted in the following experiments. Also we set
parameters to S = 200 and T = 100.

5.2.1. Normal regression example

Under the usual setting of linear regression with normal errors, we modelled the
joint density f(y, x) associated with the distribution function F (y, x) as follows:

f(y, x) = p(y|x)q(x) ≡ (0.2)−1φ((y − μ(x))/0.2) · (1/6)1(x ∈ [−3, 3]), (5.15)

i.e., the conditional distribution of Y given X = x is N(μ(x), (0.2)2). We choose
the true regression function as μ(x) = sinx in this simulation design, and we
utilize

m(x,θ) = G−1(θT x̃) = θ0 + θ1x,

as a parametric model. This example has also been used in [9]. Further we note
that U(t) = t2/2 corresponds to the normal regression.

Results of simulations are exhibited in Figures 2(a) and (b). For both simu-
lated cases c = 1, 1.4, L̂ in (5.13) is positive (dashed), which means that the local
estimator improves the risk. As h increases from h = 12 · √n to h = (1.4)2 · √n,
L̂ is getting uniformly smaller, which means that the difference between the
local estimator μ̂L(x) and the global estimator μ̂G(x) is disappearing just as
the theory in the previous section claims. The claim of Theorem 5 is clearly
illustrated especially on Figure 2(b) for c = 1.4, R̂/(1.42

√
n) (solid) is very close

to L̂ (dashed).
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Fig 2. Case of Normal: (5.14) divided by c2
√
n (solid); (5.13)(dashed); (a) c = 1.0, (b)

c = 1.4.

5.2.2. Bernoulli regression example

Next we implement a Bernoulli regression example using the following experi-
mental design:

f(y, x) = p(y|x)q(x) ≡ μ(x)y(1− μ(x))1−y · (1/6)1(x ∈ [−3, 3]), y ∈ {0, 1}.

That is, the conditional distribution of Y given X = x is the Bernoulli distribu-
tion with the probability of success equal to μ(x). The true regression function
μ(x) was chosen as in (5.10). The parametric model utilized in this case was

m(x,θ) = G−1(θT x̃) =
exp(θ0 + θ1x)

1 + exp(θ0 + θ1x)
.

Notice that the associated convex function U(t) for the Bernoulli (binomial)
regression is given as

U(t) = t(log t− 1) + (1− t){log(1− t)− 1}, 0 < t < 1.

The results of simulations are exhibited in Figure 3(a)(c = 1) and (b)(c = 1.4).
Similar tendency to the one observed in Figures 2(a) and (b) can be observed

now in Figures 3 (a) and (b): the risk difference is positive, which reveals a supe-
riority of the local estimator to the global one. Although the curve of R̂(θ†)/h

2

happens to be positioned uniformly below the risk difference curve in these two
cases, these two curves are fairly close.

5.3. Robustness of Regression Estimators

In the rest of this section, we fix U as the pseudo-Huber loss in (4.2). We aim
to check whether the global and the local estimators are robust against outliers.
To do this, we generate the data set as follows.
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Fig 3. Case of Bernoulli: (5.14) divided by c2
√
n (solid); (5.13)(dashed); (a) c = 1.0, (b)

c = 1.4.

Ordinal data (with no outliers) is generated according to the distribution
model (5.15). The data with outliers is generated according to the model

(y1, x1), . . . , (yn, xn) ∼i.i.d. h(y, x) = (1− p) · f(y, x) + p · g(y, x), (5.16)

where
g(y, x) = 1(−2 ≤ y ≤ −1)× 1(2 ≤ x ≤ 3)

and f(y, x) is that in (5.15). By (5.16), outliers will appear on the region

{(y, x)| − 2 ≤ y ≤ −1, 2 ≤ x ≤ 3} (5.17)

with a small probability p. For calculation of the estimate of the risk, we gener-
ate, in a similar manner, another independent data set

(y∗1 , x
∗
1), . . . , (y

∗
S , x

∗
S)

according to (5.15) and (5.16).
We investigate the robustness of estimators via the variation of the global

risk. According to Section 4.3, the estimate of the risk for an estimator μ̂ can
be defined as

R̂(μ̂) =
1

T

T∑
t=1

�(μ̂(t)), (5.18)

where

�(μ̂(t)) =
1

S

S∑
s=1

U(y∗s − μ̂(t)(x∗
s)),

here μ̂(t) is the estimator obtained by using t-th simulated sample of size n
drawn from (5.15) or (5.16). The risk comparison was carried out under the
setting

μ(x) = sinx
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Table 1

Comparisons by (5.18).

(5.18)×104 p = 0 p = 0.05 p = 0.10
h = 1.5 δ = 6 μ̂LSE 1131 2306 3249

μ̂G1 1122 2305 3260
μ̂G2 1139 2309 3258
μ̂L1 753 1844 2651
μ̂L2 772 1859 2662

h = 3 δ = 6 μ̂L1 1094 2245 3150
μ̂L2 1111 2253 3153

h = 1.5 δ = 12 μ̂LSE 1134 2336 3287
μ̂G1 1132 2336 3290
μ̂G2 1136 2337 3289
μ̂L1 763 1876 2682
μ̂L2 768 1880 2685

h = 3 δ = 12 μ̂L1 1103 2277 3179
μ̂L2 1108 2278 3179

n = 100, p = 0, 0.05, 0.1, T = 100, S = 200, δ = 6, 12 and h = 1.5, 3. Table 1
includes 104 times the calculated estimates of the risk (5.18) for estimators:

μ̂G1(x) = G−1(θ̂
T

1 x̃), (G = u−1),

μ̂G2(x) = G−1(θ̂
T

2 x̃), (G = u),

μ̂L1(x) = G−1(θ̂1(x)
T x̃), (G = u−1),

μ̂L2(x) = G−1(θ̂2(x)
T x̃), (G = u),

and μ̂LSE(x) = θ̂
T

LSE x̃, where θ̂LSE is the usual least squared estimator, θ̂1

and θ̂1(x) are respectively obtained via the algorithms in Section 5.1.1 and

5.1.2 respectively, with G = u−1, θ̂2 and θ̂2(x) are those obtained with G = u,
and x̃ = [1 x]T .

We observe from Table 1 that the risk of μ̂LSE is mostly affected by outliers.
For the case δ = 6, the local estimators μ̂L1 and μ̂L2 perform better than the
global estimators μ̂G1 and μ̂G2, and μ̂LSE irrespective of the value of p. The
results for using smaller h(= 1.5) are totally better than those using h = 3. The
global estimators behave almost similarly to μ̂LSE . The same tendency can be
observed for the case δ = 12. Hence, it can be claimed that the local estimators
are more robust in the sense of small values of the risk (5.18).

We further investigated the behaviour of estimators by using yet another risk
measure: the MISE. For an estimator μ̂ of μ, an estimate of integrated squared
error of t-th estimator μ̂(t) is calculated as

ÎSE(μ̂(t)) =
1

S

S∑
s=1

{μ̂(t)(x∗
s)− μ(x∗

s)}2,
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Table 2

Comparisons by (5.19).

(5.19)×104 p = 0 p = 0.05 p = 0.10
μ̂LSE 1668 2088 2885

h = 1.5 δ = 6 μ̂G1 1648 2040 2813
μ̂G2 1687 2072 2830
μ̂L1 952 1479 2641
μ̂L2 994 1509 2644

h = 3 δ = 6 μ̂L1 1574 1912 2716
μ̂L2 1615 1946 2735

h = 1.5 δ = 12 μ̂G1 1663 2076 2866
μ̂G2 1673 2084 2870
μ̂L1 970 1522 2691
μ̂L2 980 1529 2692

h = 3 δ = 12 μ̂L1 1589 1949 2771
μ̂L2 1599 1957 2776

hence the estimate of MISE of μ̂ based on T -iterations can be obtained as

M̂ISE(μ̂) =
1

T

T∑
t=1

ÎSE(μ̂(t)). (5.19)

Table 2 includes 104 times the calculated estimates of MISE of simulated
estimators.

It is seen from Table 2 that the local estimators μ̂L1 and μ̂L2 perform well
even in this comparison using an usual risk accuracy measure such as the MISE.
However there is a possibility that the local estimators might be defeated by
the global estimators for a larger p.

Next, we calculated estimators using the two sets of data: with and without
outliers, to investigate their robustness. A simple linear regression is considered
under the same setting as above, where the true regression function is now

μ(x) = 1.2 + 0.8x.

We calculated and compared the estimators μ̂G1(x), μ̂L1(x) and μ̂LSE(x). We
report in Figure 4 the results of comparison for these three regression estimators
under the setting n = 100, p = 0, 0.1, δ = 4 and h = 1.5 for μ̂L1.

Figure 4(a) illustrates the no-outliers case (p = 0). Obviously μ̂LSE (solid)
gives a good fit, while μ̂G1 (dashed) and μ̂L1 (dotted) look slightly curved when
using G−1 = u. Figure 4(b) exhibits the result where the data includes outliers
generated according to (5.16) with p = 0.1. We observe from Figure 4(b) that
all three estimators are affected by the outliers in the region (5.17), but clearly
μ̂LSE is the most affected. The local estimator μ̂L1 adjusts to some local features
of the data, hence it becomes to be more close to the outliers than the global
estimator μ̂G1. However the fit of the local estimator around −3 ≤ x ≤ 0.5 is
better than that of the global one. It becomes clear that μ̂G1 and μ̂L1 are more
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robust than μ̂LSE . The μ̂G1 seems more robust than the μ̂L1 in this particular
example which might be due to the fact that the outliers are clustered in one
cluster. We further implemented a design where the outliers were spread in more
clusters. The data with outliers is generated as

(y1, x1), . . . , (yn, xn) ∼i.i.d. h(y, x|p), (5.20)

where

h(y, x|p) =
p

2
gL(y, x) + (1− p)f(y, x) +

p

2
gU (y, x),

gL(y, x) = 1(−6 ≤ y ≤ −5)× 1(−3 ≤ x ≤ −2),

gU (y, x) = 1(−2 ≤ y ≤ −1)× 1(2 ≤ x ≤ 3)

and f(y, x) is in (5.15). The result for p = 0.1 is exhibited in Figure 4(c).
The global estimator (dashed) behaves similar to the estimator based on LSE
(solid), but the two clusters of outliers have more significant effect on the LSE
estimator. The local estimator with h = 1.5 (dotted) fits the data in the main
area −2 ≤ x ≤ 1, but also follows the outliers outside the main area. Hence the
global estimator is more robust than the local one also in this case with two
clusters of outliers.

Summarizing the results in this Section 5.3, we can say that the global and
the local estimators perform well. The local estimator may sometimes be less
competitive in comparison to the global with respect to resistance to outliers as
it has not been constructed with this goal in mind. However, it is tailored well
to minimise the combined effect of model misspecification and robustness. This
is important property of the local estimator as typically in practice there is a
need to deal with both these effects.

5.4. Simulation related to Theorem 7

We have designed a simulation to check Theorem 7 under the setting of Poisson
regression. The ordinal data (with no outliers) is generated by

(y1, x1), . . . , (yn, xn) ∼i.i.d. f(y, x) = p(y|x) · q(x), (5.21)

where

p(y|x) = exp(−μ(x))
μ(x)y

y!
,

q(x) =
1

6
1(−3 ≤ x ≤ 3),

which means that Y |X = x ∼ Poisson(μ(x)) and X ∼ U(−3, 3), a uniform
distribution on the interval [−3, 3]. The data with outliers is made as

(y1, x1), . . . , (yn, xn) ∼i.i.d. h(y, x) = (1− p)f(y, x) + pg(y, x), (5.22)
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Fig 4. Simulated data(circle); μ̂LSE(x) (solid); μ̂G1(x) (dashed); μ̂L1(x) (dotted): (a), p = 0
no outliers by (5.15); (b), p = 0.1 one cluster of outliers by (5.16); (c), p = 0.1 two clusters
of outliers by (5.20).

where

g(y, x) = 1(y = 30)× 1

2
· 1(−3 ≤ x ≤ −1).

This means that the outliers occur as Y = 30 on −3 ≤ x ≤ −1 with a small
probability p. For calculation of the risk, we generate, in a similar manner, an-
other independent data set (y∗1 , x

∗
1), . . . , (y

∗
S , x

∗
S) according to (5.21) and (5.22).

To illustrate the effect of using Theorem 7, we focus on (4.9) and on the term

d∑
j=1

ζj(θ∗)
TΨ(θ∗)

−1ζj(θ∗)

in the right hand side of the Theorem. Exploiting similar Monte Carlo integrals
to the ones we use in the previous Sections, we can compose, with refer to (5.18),
an estimate of the risk difference between μ̂G1 and μ̂L1 as

R̂D(μ̂G1, μ̂L1)



6572 K. Naito and S. Penev

= R̂(μ̂G1)− R̂(μ̂L1)

=
1

T · S

T∑
t=1

S∑
s=1

{
U(y∗s − μ̂

(t)
G1(x

∗
s))− U(y∗s − μ̂

(t)
L1(x

∗
s))
}
. (5.23)

for an estimate of (4.9), and

R̂HS(θ) =
d∑

j=1

ζ̃j(θ†)
T Ψ̃(θ†)

−1ζ̃j(θ†) (5.24)

for an estimate of
∑d

j=1 ζj(θ∗)
TΨ(θ∗)

−1ζj(θ∗), where

ζ̃j(θ†) =
1

S

S∑
s=1

x̃sju(y
∗
s −m(x∗

s ,θ†))
∂

∂θ
m(x∗

s ,θ†).

We have demonstrated the simulation to check Theorem 7 for μ̂G1 and μ̂L1 with
the setting of

μ(x) = 5 + 4 sinx,

T = 100, S = 200 and the bandwidth h = n1/4 was utilized for the local
estimator μ̂L1. Theorem 7 claims that the risk difference R̂D(μ̂G1, μ̂L1) in (5.23)

is asymptotically bounded from below by R̂HS(θ) in (5.24) divided by h2 =
n1/2:

R̂D(μ̂G1, μ̂L1) ≥
R̂HS(θ)
n1/2

. (5.25)

Here θ = θ† is determined by the mean of 100 θ̂1’s obtained by 100 iterations for
n = 300. Figures 5(a) and (b) illustrate the results for n = 100, 150, 200, 250, 300,

with contamination rate p = 0, 0.05 and δ = 12, where the solid line is R̂D(μ̂G1,

μ̂L1), and the dashed line designating R̂HS(θ†)/n1/2 in each figure.
We observe from Figures 5(a) and (b) that the risk difference is positive, which

reveals a risk improvement by the proposed local method. The risk difference
under the data including outliers (solid line in Figure 5(b)) is getting slightly
bigger than that without outliers (solid line in Figure 5(a)). It can be recognized
that the dashed line stays below the solid line in both Figures. The zigzag
shape of the solid line could be attributed to small sample fluctuation. This
demonstrates that in this example the inequality (5.25) holds not only in the
case p = 0 but also in the case p = 0.05. It also holds for p = 0.1 although we
did not include the graph for this case.

6. Discussion

This paper presents a unified way to compose a localised regression inference
method by utilising the following triplet (U,G,K): a strictly convex function
U for the estimation scheme with the functional Bregman divergence, the link
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Fig 5. The left hand side of (5.25)(solid); The right hand side of (5.25)(dashed); (a) p = 0,
(b) p = 0.05.

function G in the parametric model utilised, and the kernel function K for
localisation.

In most statistical analyses, the estimation scheme is considered separately
from the model, and the model is often suggested irrespective of the estimation
procedure: the choice of the estimation method and the construction of model
are independent. A natural question arises: is there any model that is more
suitable for the estimation scheme we would like to use? The results in Sections
3 and 4 provide an answer to this question: a specific relationship between the
choice of U (for the estimation scheme in (2.3)) and G (for the model in (2.2))
yields an advantage of the use of the local estimator associated with the kernel
K, see Theorems 5, 6, 7, 8 and 9. This suggests that it is beneficial to construct
the model with a reference to the estimation scheme to be implemented. There
is no need to care too much about the discrepancy between the model and the
underlying true structure as the localisation helps to adjust to the latter.

As the choices on U and of G are interrelated (for example: U ′ = u = G−α in
Theorem 6), it is not really important which one is chosen “first”. In practice, the
choice can be dictated by our prior information and by the degree of confidence
in this prior information. If, for example, we have a strong confidence in the
form of the global regression function, then we can start with a choice of the
link function G and then determining U from the relationship U ′ = G− α. On
the other hand, if we do not have a firm idea about the parametric form of the
regression function or we wish to perform in a robust way, then we may wish to
choose a suitable U first (for example, the pseudo-Huber loss) and then choose
G accordingly as U ′+α. As in our paper we stressed on the possibility of model
misspecification (i.e., on the case m(x,θ) 	= μ(x)) we have focused on the choice
of the function U at a first step.

In conclusion, we can say that the approgression approach that we have
adopted in this paper, seems to be the realistic practical setting. In that sense,
the paper [23] can be considered a special case of our methodology. Sensible
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asymptotic statements about the behavior of the estimators of the true regres-
sion function (i.e., of the conditional expected value of the output given the
input) in our setting can be attained when this regression function is close to
some parametric model. This type of requirement is similar to the Fisher con-
sistency in classical robustness theory. These are the types of statements that
we have derived in this paper. We have revealed that the intricate relationships
between the utilised regression model’s inadequacy and its robustness can be
analysed more conveniently by using the local approach developed in this paper.
We supported our claims with a short simulation study. There are several exten-
sions possible as a future research work. For example, additional sparseness-type
penalties can be added in the main minimisation problem. Another problem to
study is the data-driven choice of the constants c and δ in Section 5.

7. Proofs

7.1. Preliminary results

Lemma 1. Under Assumptions (A0)-(A7), for any t ∈ D and any vector θ̃

satisfying ||θ̃ − θ̂|| < ||θ̂(t)− θ̂||, it follows that

Ψ̂(t, θ̃) = Ψ(θ∗)−
1

h2
V̂ (t,θ∗) + op

(
1

h2

)
,

where

V̂ (t,θ) = κ2Ψ
(2)(t,θ)−

(
h2

√
n

)√
n
{
Ψ̂(θ)−Ψ(θ)

}
.

Lemma 2. Under Assumptions (A0)-(A7), for any t ∈ D and any vector θ̃

satisfying ||θ̃ − θ̂|| < ||θ̂(t)− θ̂||, it follows that

Ψ̂(t, θ̃)−1 = Ψ(θ∗)
−1 +

1

h2
Ψ(θ∗)

−1V̂ (t,θ∗)Ψ(θ∗)
−1 + op

(
1

h2

)
.

Lemma 3. Under Assumptions (A0)-(A7), it follows that∫
R×Rd

ψ(�)(t, y,x, θ̂)dFn(y,x)

=

∫
R×Rd

ψ(�)(t, y,x, θ∗)dF (y,x) +
1√
n
v̂(�)(t,θ∗) + op

(
1√
n

)
,

for � = 2, 4, where

v̂(�)(t,θ)

=
√
n

{∫
R×Rd

ψ(�)(t, y,x,θ)dFn(y,x)−
∫
R×Rd

ψ(�)(t, y,x,θ)dF (y,x)

}
+Ψ(�)(t,θ)

√
n(θ̂ − θ). (7.1)
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7.2. Proof of Theorem 1

Proof Define

F = {ρ(·, ·,θ)| θ ∈ Θ},

Fn(t) =

{(
1−K

(
· − t

hn

))
ρ(·, ·,θ)| θ ∈ Θ

}
Theorem 1 can be proven in almost the same way as the proof of Theorems
1 and 2 in [14], using the notions of Glivenko-Cantelli class of functions and
bracketing numbers. First we note that

sup
θ∈Θ

∣∣∣∣∫
R×Rd

ρ(y,x,θ)dFn(y,x)−
∫
R×Rd

ρ(y,x,θ)dF (y,x)

∣∣∣∣
= sup

g∈F

∣∣∣∣∫
R×Rd

g(y,x)d(Pn − P )(y,x)

∣∣∣∣ . (7.2)

And, by assumptions (A2)-(A5), the bracketing number N[](ε,F , L1(P )) is finite
for any ε > 0, see Lemma 6.1 in [22]. This reveals that F is a Glivenko-Cantelli
class and hence, the right hand side of (7.2) tends to zero as n grows. Further,

with the use of (A3), we conclude that θ̂ converges in probability to θ∗, see
Theorem 2.4.1 in [21] and also Theorem 1 in [14].

Next our focus is on θ̂(t). It is easily confirmed that

sup
θ∈Θ

∣∣∣∣∫
R×Rd

K

(
x− t

hn

)
ρ(y,x,θ)dFn(y,x)−

∫
R×Rd

ρ(y,x,θ)dF (y,x)

∣∣∣∣
≤ sup

θ∈Θ

∣∣∣∣∫
R×Rd

ρ(y,x,θ)d(Pn − P )(y,x)

∣∣∣∣
+ sup

θ∈Θ

∣∣∣∣∫
R×Rd

(
1−K

(
x− t

hn

))
ρ(y,x,θ)d(Pn − P )(y,x)

∣∣∣∣
+ sup

θ∈Θ

∣∣∣∣∫
R×Rd

(
1−K

(
x− t

hn

))
ρ(y,x,θ)dF (y,x)

∣∣∣∣
= sup

g∈F

∣∣∣∣∫
R×Rd

g(y,x)d(Pn − P )(y,x)

∣∣∣∣
+ sup

g∈Fn(t)

∣∣∣∣∫
R×Rd

g(y,x)d(Pn − P )(y,x)

∣∣∣∣
+ sup

θ∈Θ

∣∣∣∣∫
R×Rd

(
1−K

(
x− t

hn

))
ρ(y,x,θ)dF (y,x)

∣∣∣∣ . (7.3)

The first term in the right hand side in (7.3) appears in (7.2), hence it tends
to zero. It can be proven by using Lemmas 1 to 5 in [14] that the second and
third terms also tend to zero. This together with (A3) leads the convergence in

probability of θ̂(t) to θ. �
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7.3. Proof of Theorem 2

Theorem 2 can be proven by almost the same way as Theorem 1 in [18].

7.4. Proof of Theorem 3

Theorem 3 can be obtained in a similar manner to Theorem 2 in [18].

7.5. Proof of Theorem 4

Proof It is easily confirmed from Theorem 1 that

√
n

{
θ̂(t)− θ∗ −

κ2

h2
Ψ(θ∗)

−1

∫
R×Rd

ψ(2)(t, y,x,θ∗)dF (y,x)

}
=

√
n

{
θ̂(t)− θ̂ − κ2

h2
Ψ(θ∗)

−1

∫
R×Rd

ψ(2)(t, y,x,θ∗)dF (y,x)

}
+
√
n{θ̂ − θ∗}

=
√
n{θ̂ − θ∗}+

κ2

h2
Ψ(θ∗)

−1

{
v̂(2)(t,θ∗) +Op

(√
n

h4

)}
=

√
n{θ̂ − θ∗}+Op

(
1

h2

)
.

Hence the result follows by the asymptotic normality of θ̂. A simple application
of delta method immediately yields the result for μ̂L(t). �

7.6. Proof of Theorem 5

Proof By the definition of Bregman divergence, it is easily confirmed that

R(μ̂G, μ̂L)

= E [DU∗(u(μ̂G), u(μ̂L))]

+E

[∫
Rd

{μ̂L(x)− μ(x)} {u(μ̂G(x))− u(μ̂L(x))} q(x)dx
]
,

here we note that the first term of the right hand side is nonnegative. By referring
to Theorem 2, we can put

θ̂(x) = θ̂ +
κ2

h2
Ψ(θ∗)

−1

∫
R×Rd

ψ(2)(x, y, z,θ∗)dF (y, z) +OP

(
1

h2
√
n

)
.

Using this, we can expand u(μ̂G)− u(μ̂L) as

u(μ̂G(x))− u(μ̂L(x))
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= u(G−1(θ̂
T
x̃))− u(G−1(θ̂(x)T x̃))

= −κ2

h2
· u

′(G−1(θ̂
T
x̃))

G′(G−1(θ̂
T
x̃))

[∫
R×Rd

ψ(2)(x, y, z,θ∗)dF (y, z)

]T
Ψ(θ∗)

−1x̃

+oP

(
1

h2

)
.

Further, since θ̂ converges in probability to θ∗, Theorem 2 yields

μ̂L(x)− μ(x) = G−1(θT
∗ x̃)− μ(x) + oP (1).

By also noting (2.8), (2.17) and (2.9), the latter calculations lead us to

E

[∫
Rd

{μ̂L(x)− μ(x)} {u(μ̂G(x))− u(μ̂L(x))} q(x)dx
]

= −κ2

h2

∫
Rd

∫
Rd

||z − x||2ψ(μ(x),x,θ∗)
TΨ(θ∗)

−1ψ(μ(z), z,θ∗)q(x)q(z)dxdz

+ o

(
1

h2

)
=

2κ2

h2

∫
Rd

∫
Rd

zTxψ(μ(x),x,θ∗)
TΨ(θ∗)

−1ψ(μ(z), z,θ∗)q(x)q(z)dxdz

+ o

(
1

h2

)
=

2κ2

h2

d∑
j=1

ηj(θ∗)
TΨ(θ∗)

−1ηj(θ∗) + o

(
1

h2

)
.

This completes the proof. �

7.7. Proof of Theorem 6

Proof We start with the notation ψ(y,x,θ) = c1(y,x,θ)x̃, where

c1(y,x,θ) =
{
G−1(θT x̃)− y

} u′(G−1(θT x̃))

G′(G−1(θT x̃))
,

see (2.8). Hence, by (2.18), the partial derivative of c1(y,x,θ) w.r.t. θ is essential
to obtain Ψ(θ∗). A straightforward calculation yields

∂2

∂θ∂θT
ρ(y,x,θ) = c2(y,x,θ)x̃x̃

T , (7.4)

where

c2(y,x,θ)
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=

{
G−1(θT x̃)− y

}
G′(G−1(θT x̃))

{
u′′(G−1(θT x̃))

G′(G−1(θT x̃))
− u′(G−1(θT x̃))G′′(G−1(θT x̃))

{G′(G−1(θT x̃))}2

}

+
u′(G−1(θT x̃))

G′(G−1(θT x̃))2
. (7.5)

This notation (7.4) enables us to express

Ψ(θ∗) =

∫
R×Rd

∂

∂θ
ψ(y,x,θ∗)

T dF (y,x)

=

∫
R×Rd

∂2

∂θ∂θT
ρ(y,x,θ∗)f(y,x)dydx

=

∫
Rd

c2(μ(x),x,θ∗)x̃x̃
T q(x)dx.

Therefore Ψ(θ∗) is positive definite, provided that c2(μ(x),x,θ∗) is positive for
any x.

Now we see by a careful calculation and by referring to (7.5) that

c2(μ(x),x,θ) =

{
G−1(θT x̃)− μ(x)

}
G′(G−1(θT x̃))

· d

dt

(
u′(t)

G′(t)

) ∣∣
t=G−1(θT x̃)

+
u′(G−1(θT x̃))

G′(G−1(θT x̃))2
,

which becomes positive by the choice of G ≡ u+α, without any dependence on
μ. Under this choice we get (3.5). �

7.8. Proof of Theorem 7

Proof Since U is strictly convex, it follows that

R(μ̂G, μ̂L) ≥ E

[∫
R×Rd

u(y −m(x, θ̂(x))){m(x, θ̂(x))−m(x, θ̂)}dF (y,x)

]
.

(7.6)
By a repeated use of Theorems 2 and 3 and the fact (induced from (4.4) and
(4.5)) that

ψ(y,x,θ) = u(y −m(x,θ))

(
− ∂

∂θ
m(x,θ)

)
,

the right hand side of (7.6) can be evaluated as

E

[∫
R×Rd

u(y −m(x, θ̂(x))){m(x, θ̂(x))−m(x, θ̂)}dF (y,x)

]
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=

∫
R×Rd

u(y −m(x,θ∗))
∂

∂θ
m(x,θ∗)

TE[θ̂(x)− θ̂]dF (y,x) + o

(
1

h2

)
= −κ2

h2

∫
R×Rd

[
ψ(y,x,θ∗)

TΨ(θ∗)
−1

∫
R×Rd

ψ(2)(x, w, z,θ∗)dF (w, z)

]
dF (y,x)

+ o

(
1

h2

)
= −κ2

h2

∫
R×Rd

∫
R×Rd

||z − x||2ψ(y,x,θ∗)Ψ(θ∗)
−1ψ(w, z,θ∗)dF (w, z)dF (y,x)

+ o

(
1

h2

)
,

which is the claim of Theorem 7. �

7.9. Proof of Theorem 8

Proof It is easily confirmed that

u(t) = U ′(t) =
δt

(δ2 + t2)1/2
=

t√
1 + (t/δ)2

, (7.7)

U ′′(t) =
δ3

(δ2 + t2)3/2
=

1

(
√

1 + (t/δ)2)3
, (7.8)

U ′′′(t) =
−3δ3t

(δ2 + t2)5/2
=

−3t

δ2(
√

1 + (t/δ)2)5
. (7.9)

Now we focus on c̃2(y,x,θ∗) in (4.8). Clearly, from the form of Ψ(θ∗) in (4.7),
it is seen that it is positive definite provided that

E[c̃2(Y,X,θ∗)|X = x] =
1

{G′(G−1(θT x̃))}2
E[J(Y,X,θ∗)|X = x] > 0

for almost all x ∈ D, where

J(Y,X,θ∗) = U ′′(Y −G−1(θT X̃)) + U ′(Y −G−1(θT X̃))
U ′′′(u−1(θT X̃))

U ′′(u−1(θT X̃))

Noting that U ′′ > 0, it suffices to show that for any x ∈ D

J̃(θ∗) = E[U ′′(Y − t)]U ′′(t) + E[U ′(Y − t)]U ′′′(t) > 0

holds for sufficiently large δ > 0, where we have put t = G−1(θT
∗ x̃) = u−1(θT

∗ x̃).
Using (7.7), (7.8) and (7.9), we see that

J̃(θ∗)
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=
δ6

(δ2 + t2)3/2
E

[
1

{δ2 + (Y − t)2}3/2

]
− 3δ4t

(δ2 + t2)5/2
E

[
Y − t

{δ2 + (Y − t)2}1/2

]
≥ δ6

(δ2 + t2)3/2
E

[
1

{δ2 + (Y − t)2}3/2

]
− 3δ4t

(δ2 + t2)5/2
E

[
Y

{δ2 + (Y − t)2}1/2

]
≥ δ6

(δ2 + t2)3/2
E

[
1

{δ2 + (Y − t)2}3/2

]
− 3δ4|t|

(δ2 + t2)5/2

∣∣∣∣E [
Y

{δ2 + (Y − t)2}1/2

]∣∣∣∣
≥ δ6

(δ2 + t2)3/2
E

[
1

{δ2 + (Y − t)2}3/2

]
− 3δ4|t|

(δ2 + t2)5/2
E

[
|Y |

{δ2 + (Y − t)2}1/2

]
≥ δ6

(δ2 + t2)3/2
E

[
1

{δ2 + (Y − t)2}3/2

]
− 3δ4|t|

(δ2 + t2)5/2
E

[
|Y |
δ

]
=

δ3

(δ2 + t2)3/2

[
E

[
δ3

{δ2 + (Y − t)2}3/2

]
− 3|t|

(δ2 + t2)
E[|Y |]

]
=

3δ3

(δ2 + t2)5/2

[
(δ2 + t2)

3
E

[
δ3

{δ2 + (Y − t)2}3/2

]
− |t|E[|Y |]

]
≥ 3δ3

(δ2 + t2)5/2

[
δ5

3
E

[
1

{δ2 + (Y − t)2}3/2

]
− |t|E[|Y |]

]
=

3δ3

(δ2 + t2)5/2

[
δ2

3
E

[
1

{1 + {(Y − t)/δ}2}3/2

]
− |t|E[|Y |]

]
≥ 3

(1 + (t/δ)2)5/2

[
1

3
E

[
1

{1 + {(Y − t)/δ}2}3/2

]
− |t| · E[|Y |]

δ2

]
.

Since ∣∣∣∣ 1

{1 + {(y − t)/δ}2}3/2

∣∣∣∣ ≤ 1,

the dominated convergence theorem yields that

E

[
1

{1 + {(Y − t)/δ}2}3/2

]
= E

[
1

{1 + {(Y − u−1(θT
∗ x̃))/δ}2}3/2

]
→ 1

(7.10)
for any x ∈ D as δ increases. Furthermore,

|t| · E[|Y |]
δ2

=
|u−1(θT

∗ x̃)| · E[ |Y | |X = x]

δ2
≤ M(u−1)M

δ2
→ 0, (7.11)

as δ increases. Hence, by (7.10) and (7.11), for arbitrary 0 < ε < 1/3, there
exists δ0 > 0 such that

1

3
E

[
1

{1 + {(Y − u−1(θT
∗ x̃))/δ}2}3/2

]
− M(u−1)M

δ2
>

(
1

3
− ε

3

)
− ε

3
>

1

9

when δ > δ0. This implies for δ > δ0 that

J̃(θ∗)

≥ 3

(1 + (u−1(θT
∗ x̃)/δ)

2)5/2
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×
[
1

3
E

[
1

{1 + {(Y − u−1(θT
∗ x̃))/δ}2}3/2

]
− M(u−1) ·M

δ2

]
≥ 3

(1 + (u−1(θT
∗ x̃)/δ)

2)5/2

(
1

9

)
=

1

3(1 + (u−1(θT
∗ x̃)/δ)

2)5/2

≥ 1

3(1 + (M(u−1)/δ)2)5/2

which is positive for any x ∈ D. �

7.10. Proof of Theorem 9

Proof For a given U ∈ U0, we choose the link function G = u−1 = (U ′)−1. By
observing the form (4.8), we need to derive the following equalities:

G′(t) = (u−1)′(t) =
1

u′(u−1(t))

G′′(t) = (u−1)′′(t) =

(
1

u′(u−1(t))

)′
= − u′′(u−1(t))

{u′(u−1(t))}3 ,

from which it follows that

G′(G−1(η)) = (u−1)′(u(η)) =
1

u′(u−1(u(η)))
=

1

u′(η)
=

1

U ′′(η)
, (7.12)

G′′(G−1(η)) = G′′(u(η)) = − u′′(η)

u′(η)3
= − U ′′′(η)

U ′′(η)3
, (7.13)

G′′(G−1(η))

G′(G−1(η))
= − U ′′′(η)

U ′′(η)2
, (7.14)

where η = θT x̃. By substituting (7.12), (7.13) and (7.14) into (4.8), we have

c̃2(y,x,θ) =

(
1

U ′′(η)

)−2{
U ′′(y − u(η)) + u(y − u(η))

(
− U ′′′(η)

U ′′(η)2

)}
= U ′′(η)2

{
U ′′(y − u(η))− U ′(y − u(η))

(
U ′′′(η)

U ′′(η)2

)}
= U ′′(η)2U ′′(y − u(η))− U ′(y − u(η))U ′′′(η). (7.15)

Now we start to deal with the pseudo-Huber loss defined in (4.2). Substituting
(7.7), (7.8) and (7.9) into (7.15) we get

c̃2(y,x,θ)
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=
1

(
√

1 + (η/δ)2)6
1

[
√

1 + {(y − u(η))/δ}2]3

− (y − u(η))√
1 + {(y − u(η))/δ}2

−3η

δ2(
√

1 + (η/δ)2)5

=
1

(
√

1 + (η/δ)2)6
1

[
√

1 + {(y − u(η))/δ}2]3

+
3η(y − u(η))

δ2
√
1 + {(y − u(η))/δ}2

1

(
√

1 + (η/δ)2)5
.

Hence, noting η = θT x̃ again, we have the evaluation

E[c̃2(Y,X,θ)|X = x]

=
1

(
√

1 + (η/δ)2)6
E

[
1

[
√
1 + {(Y − u(η))/δ}2]3

]

+
1

δ2(
√
1 + (η/δ)2)5

E

[
3η(Y − u(η))√

1 + {(Y − u(η))/δ}2

]

≥ 1

(
√

1 + (η/δ)2)6

[
E

[
1

[
√
1 + {(Y − u(η))/δ}2]3

]

−
√

1 + (η/δ)2

δ2
E

[
3|η(Y − u(η))|√

1 + {(Y − u(η))/δ}2

]]

≥ 1

(
√

1 + (η/δ)2)6

[
E

[
1

[
√
1 + {(Y − u(η))/δ}2]3

]

−3
√

1 + (η/δ)2

δ2
E [|η(Y − u(η))|]

]

≥ 1

(
√

1 + (η/δ)2)6

[
E

[
1

[
√
1 + {(Y − u(η))/δ}2]3

]

−3
√

1 + (η/δ)2 · |η| · {E[|Y |] + |u(η)|}
δ2

]
. (7.16)

Since ∣∣∣∣ 1

{1 + {(y − u(η))/δ}2}3/2

∣∣∣∣ ≤ 1,

the dominated convergence theorem yields that

E

[
1

{1 + {(Y − u(η))/δ}2}3/2

]
= E

[
1

{1 + {(Y − u(θT
∗ x̃))/δ}2}3/2

]
→ 1

(7.17)
for any x ∈ D as δ increases. On the other hand, the compact support D of X,
the assumptions (A2) and (A4) guarantee that there exist constants L, M(u)
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and M such that

|η| = |θT
∗ x̃| ≤ L, |u(η)| = |u(θT

∗ x̃)| ≤ M(u), E[|Y ||X = x] ≤ M (7.18)

uniformly on x. By combining (7.17) and (7.18), for any ε satisfying 0 < ε < 3−1,
there exists δ0 such that

E

[
1

[
√
1 + {(Y − u(η))/δ}2]3

]
> 1− ε, (7.19)

3
√
1 + (η/δ)2 · |η| · {E[|Y |] + |u(η)|}

δ2
≤ 3

√
1 + L2 · L · {M +M(u)}

δ2

< ε (7.20)

for any δ > δ0. Evaluations (7.16), (7.19) and (7.20) furnish to reach, for δ > δ0,

E[c̃2(Y,X,θ)|X = x] ≥ 1

(
√

1 + (η/δ)2)6
[(1− ε)− ε]

≥ 1− 2ε

(
√
1 + L2)6

≥ 1

3(
√
1 + L2)6

,

which is positive for any x ∈ D. This confirms that the matrix (4.7) is positive
definite for sufficiently large δ. �

7.11. Proof of Lemmas

Lemmas 1, 2 and 3 can be established in a similar way as in Lemmas 1, 2 and
3 of [18].
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