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Abstract: Population quantiles are important parameters in many appli-
cations. Enthusiasm for the development of effective statistical inference
procedures for quantiles and their functions has been high for the past
decade. In this article, we study inference methods for quantiles when multi-
ple samples from linked populations are available. The research problems we
consider have a wide range of applications. For example, to study the evolu-
tion of the economic status of a country, economists monitor changes in the
quantiles of annual household incomes, based on multiple survey datasets
collected annually. Even with multiple samples, a routine approach would
estimate the quantiles of different populations separately. Such approaches
ignore the fact that these populations are linked and share some intrinsic
latent structure. Recently, many researchers have advocated the use of the
density ratio model (DRM) to account for this latent structure and have
developed more efficient procedures based on pooled data. The nonpara-
metric empirical likelihood (EL) is subsequently employed. Interestingly,
there has been no discussion in this context of the EL-based likelihood ra-
tio test (ELRT) for population quantiles. We explore the use of the ELRT
for hypotheses concerning quantiles and confidence regions under the DRM.
We show that the ELRT statistic has a chi-square limiting distribution un-
der the null hypothesis. Simulation experiments show that the chi-square
distributions approximate the finite-sample distributions well and lead to
accurate tests and confidence regions. The DRM helps to improve statisti-
cal efficiency. We also give a real-data example to illustrate the efficiency
of the proposed method.
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1. Introduction

Suppose we have m + 1 independent random samples from population distri-
butions G0, G1, . . . , Gm. Let their respective density functions with respect to
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some σ-finite measure be gk(·). If there exist a vector-valued function q(x) and
unknown vector-valued parameters θk of dimension d such that

gk(x) = exp{θ�
k q(x)}g0(x), (1)

then they define a density ratio model (DRM) as introduced by Anderson [1]. By
convention, we call G0 the base distribution and q(x) the basis function. There
is a symmetry in the DRM: any one of G0, . . . , Gm may serve as the base distri-
bution. We require the first element of q(x) to be 1 so that the corresponding
coefficient is a normalization constant, and the elements of q(x) must be linearly
independent. The linear independence is a natural requirement: otherwise, some
elements of q(x) are redundant.

When data are collected from a DRM, the whole data set can be utilized to
estimate G0, which leads to efficiency gain. The nonparametric G0 assumption
in the DRM is nonrestrictive. Combined with a moderate-sized q(x), a single
DRM contains a broad range of parametric distribution families. Thus, the DRM
has a low risk of model misspecification. There is a growing interest in the DRM
in statistics [28, 15, 13, 42] as well as in the machine learning community [34].
In this paper, we study the inference problem for population quantiles under
the DRM. Population quantiles and their functions are important parameters in
many applications. For example, government agents gauge the overall economic
status of a country based on annual surveys of household income distribution.
The trend in the quantiles of the income distribution is indicative [2, 24]. In
forestry, the lower quantiles of the mechanical strength of wood products are
vital design values [39]. Other examples include Chen and Hall [7], Yang and He
[41], Chen and Liu [8], Chen et al. [11], Koenker et al. [22], Gonçalves, Migon
and Bastos [17], Chen and Liu [9].

The data from DRMs are a special type of biased sample [37, 38, 28, 29].
The empirical likelihood (EL) of Owen [26] is an ideal platform for statistical
inference under the DRM. The EL retains the effectiveness of likelihood methods
and does not impose a restrictive parametric assumption. The ELRT statistic
has a neat chi-square limiting distribution, much like the parametric likelihood
ratio test given independent and identically distributed (i.i.d.) observations [25,
30]. The EL has already been widely used for data analysis under the DRM
[27, 31, 8, 5]. However, there has been limited discussion of the ELRT in the
biased sampling context. Both Qin [27] and Cai, Chen and Zidek [5] permit no
additional equations. Although the classical Wald method remains effective for
both hypothesis tests and confidence regions [28, 8, 11], it must be aided by a
consistent and stable variance estimate. In addition, its confidence regions are
oval-shaped regardless of the shape of the data cloud. Thus, an ELRT has the
potential to push the boundary of the DRM much further.

This paper establishes the limiting chi-square distribution of the ELRT for
quantiles under the DRM. We prove that the ELRT statistic has a chi-square
limiting distribution under certain conditions. The resulting confidence regions
have data-driven shapes, more accurate coverage probabilities, and smaller vol-
umes. In Section 2, we state the problem of interest and the proposed ELRT
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under the DRM. In Section 3, we study the limiting distribution of the ELRT
statistic and some other useful asymptotic results. We illustrate the superiority
of the ELRT and the associated confidence regions through simulated data in
Section 4 and for real-world data in Section 5. We illustrate the power property
of the ELRT in Section 6. Technical details and the proofs of the main theorems
are given in Appendices A and B.

2. Research problem and proposed approach

Let {xkj : 1 ≤ j ≤ nk, 0 ≤ k ≤ m} be m + 1 independent i.i.d. samples from a
DRM defined by (1). Let n =

∑m
k=0 nk be the total sample size. Denote by ξk

the τk quantile of the kth population for some τk ∈ (0, 1) and k = 0, 1, . . . ,m.
Let ξ = {ξk : k ∈ I} be the quantiles at some levels of populations in an index
set I ⊆ {0, 1, . . . ,m} of size l. We study the ELRT under the DRM for the
following hypothesis:

H0 : ξ = ξ∗ against H1 : ξ �= ξ∗, (2)

for some given ξ∗ of dimension l.

The hypothesis formulated in (2) has many applications. In socio-economic
studies, when studying the distributions of household disposable incomes, eco-
nomists and social scientists often divide the collected survey data into five
groups. These groups are famously known as quintile groups. The first group
consists of the lowest 20% of the data, the second group consists of the next 20%,
and so on. Many studies have shown that the quintiles are important for explain-
ing the economy and consumer behaviour [6, 40, 21, 12]. In statistics, the cut-off
points of these quintile groups are the quantiles of the populations: for example,
the 20th percentile separates the first and second quintile groups. Governments
may, therefore, consider this 20th percentile as key for determining which fam-
ilies should receive a special subsidy to help society’s less fortunate. Moreover,
when new policies are implemented, the evolution of the quantiles of household
income over time may reflect the impact of the policies. As a consequence, these
quantiles are of particular interest to social scientists and politicians as a way
to measure the effects of policy changes. In statistical inference, these types of
tasks can most appropriately be carried out using a hypothesis testing proce-
dure, which can be naturally extended to the construction of confidence regions.
Hence, the research problem we study here is of scientific significance in many
applications. In the real-data analysis, we study confidence regions for quantiles
of household incomes based on US Consumer Expenditure Surveys.

We use an ELRT to test the hypothesis in (2). Let pkj = dG0(xkj) = P (X =
xkj ;G0) for all applicable k, j. The EL function is the probability of observing
the data. Under the DRM, it is given by

Ln(G0, . . . , Gm) =
∏
k,j

dGk(xkj) =
{∏

k,j

pkj
}{∏

k,j

exp(θ�
k q(xkj))

}
. (3)
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For notational convenience, we have dropped the ranges of the indices in the
expressions. Observe that the EL in (3) is 0 if G0 is a continuous distribution.
Surprisingly, this seemingly devastating property does little harm to the useful-
ness of the EL. Since the EL in (3) can also be regarded as a function of the
parameters θ := {θr : 1 ≤ r ≤ m} and the base distribution G0, we may write
its logarithm as

�n(θ, G0) = logLn(G0, . . . , Gm) =
∑
k,j

log pkj +
∑
k,j

θ�
k q(xkj),

where we define θ0 = 0 by convention.
Let Er be the expectation operation under Gr, and let

hr(x,θ) = exp(θ�
r q(x))

be the density of Gr with respect to G0 for r = 0, 1, . . . ,m. Clearly, h0(x,θ) = 1.
This also implies that

E0[hr(X,θ)] = E0

[
exp(θ�

r q(X))
]
= 1. (4)

The τr population quantile ξr of Gr satisfies or is defined to be a solution of

Er

[
1(X ≤ ξr)− τr

]
= E0 [hr(X,θ){1(X ≤ ξr)− τr}] = 0. (5)

Let
ϕr(x,θ, ξ) = hr(x,θ)[1(x ≤ ξr)− τr].

Following Owen [26] and Qin and Lawless [30], we introduce the profile log-EL
of the population quantiles ξ:

�̃n(ξ) = sup
θ,G0

{
�n(θ, G0) |

∑
k,j

pkjhr(xkj ,θ) = 1, r = 0, 1, . . . ,m,

∑
k,j

pkjϕr(xkj ,θ, ξ) = 0, r ∈ I
}

(6)

and

sup
θ,G0

{�n(θ, G0)} = sup
θ,G0

{�n(θ, G0)|
∑
k,j

pkjhr(xkj ,θ) = 1, r = 0, 1, . . . ,m}.

An ELRT statistic for the hypothesis in (2) is defined as

Rn = 2

[
sup
θ,G0

{�n(θ, G0)} − �̃n(ξ
∗)

]
.

We call Rn the ELRT statistic hereafter. Clearly, the larger the value of Rn,
the stronger the evidence for departure from the null hypothesis in the direction
of the alternative hypothesis. We reject H0 when Rn exceeds some critical value
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that is decided based on the distributional information of Rn under H0. The
limiting distribution of Rn and other related properties are given in the next
section.

We observe that the approach needs no change for a set of quantiles from
the same population. For notational simplicity, the presentation is given for
quantiles from different populations.

3. Asymptotic properties of Rn and other quantities

The distributional information of Rn is vital to the implementation of the ELRT
in applications. In this section, we show that it is asymptotically chi-square
distributed. We also present some secondary but useful asymptotic results.

3.1. A dual function

The profile log-EL function �̃n(ξ
∗) is defined to be the solution of an opti-

mization problem that can be solved by the Lagrange multiplier method. Let
t = (t0, . . . , tm) and λ = {λr : r ∈ I} be Lagrange multipliers. Define a La-
grangian as

L(t,λ,θ, G0) =�n(θ, G0) +

m∑
r=0

tr
{
1−
∑
k,j

pkjhr(xkj ,θ)
}

−
∑
r∈I

nλr

{∑
k,j

pkjϕr(xkj ,θ, ξ
∗)
}
.

In Appendix B, we will show that under mild conditions that are easy to
verify, there always exists some θ such that a solution in G0 to (4) and (5)
exists. With this promise, according to the Karush–Kuhn–Tucker theorem [3],
the solution to the constrained optimization problem in (6) satisfies

∂L(t,λ,θ, G0)

∂(t,λ,θ, pkj)
= 0.

Let (t̂, λ̂, θ̂, p̂kj) be the solution. Some simple algebra gives t̂r = nr and

p̂kj = n−1

{
m∑
r=0

ρrhr(xkj , θ̂) +
∑
r∈I

λ̂rϕr(xkj , θ̂, ξ
∗)

}−1

,

where ρr = nr/n.
We now introduce another set of notation:

h̄(x,θ) =

m∑
r=0

ρrhr(x,θ),

h(x,θ) = (ρ1h1(x,θ)/h̄(x,θ), . . . , ρmhm(x,θ)/h̄(x,θ))�,
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ψr(x,θ) = ϕr(x,θ, ξ
∗)/h̄(x,θ),

ψ(x,θ) = {ψr(x,θ) : r ∈ I}.

To aid our memory, we note that h̄(x,θ) is a mixture density with mixing
proportions ρ0, . . . , ρm; h(x,θ) is a vector of density functions with respect to
the mixture h̄(x,θ) combined with the mixing proportions; and ψ(x,θ) is a
vector of normalized ϕr(x,θ, ξ

∗). With the help of this notation, we define a
dual function

D(λ,θ) =
∑
k,j

θ�
k q(xkj)−

∑
k,j

log h̄(xkj ,θ)

−
∑
k,j

log
{
1 +
∑
r∈I

λrψr(xkj ,θ)
}
. (7)

The dual function has some easily verified mathematical properties. We can
show that

�̃n(ξ
∗) = D(λ̂, θ̂)− n logn, (8)

and that (λ̂, θ̂) is a saddle point of D(λ,θ) satisfying

∂D(λ,θ)

∂(λ,θ)
= 0. (9)

In the following section, we study some of the properties of �̃n(ξ
∗) through

the dual function D(λ,θ).

3.2. Asymptotic properties

We discuss the asymptotic properties under the following nonrestrictive condi-
tions on the sampling plan and the DRM.
Conditions:

(i) The sample proportions ρk = nk/n have limits in (0, 1) as n → ∞;
(ii) The matrix E0[q(X)q�(X)] is positive definite;
(iii) For each k = 0, 1, . . . ,m and θk in a neighbourhood of the true parameter

value θ∗
k, we have

E0

[
exp(θ�

k q(X))
]
= E0[hk(X,θ)] < ∞.

Here are some implications of the above conditions.

1. Under Condition (iii), the moment generating function of q(X) with re-
spect to Gk exists in a neighbourhood of 0. Hence, all finite-order moments
of ‖q(X)‖ are finite.

2. When n is large enough and (λ,θ) is in a small neighbourhood of (0,θ∗),
the derivatives of the dual function D(λ,θ) are all bounded by some poly-
nomials of ‖q(x)‖. Hence, they are all integrable.
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3. Under Condition (ii), the sample version ofE0[q(X)q�(X)] is also positive
definite when n is very large.

We now state the main results; the proofs are given in Appendix A.

Lemma 3.1. Under Conditions (i) to (iii), as n → ∞,

n−1 ∂2D(λ,θ)

∂(λ,θ)∂(λ,θ)�

∣∣∣∣
λ=0,θ=θ∗

→ S,

almost surely for some full-rank square matrix S of dimension (dm+ l) that has
the expression

S =

m∑
k=0

ρkEk

[
∂2Dk(X,0,θ∗)

∂(λ,θ)∂(λ,θ)�

]
.

The second derivative of the dual function D(λ,θ) is not negative definite in
comparison to a usual likelihood function. This is understandable because λ is
not a model parameter. However, it has full rank and plays an important role
in localizing θ̂.

The next result implies that the dual function D(λ,θ) resembles the log-
likelihood function under regularity conditions in an important way: its first
derivative is an unbiased estimating function.

Lemma 3.2. Under Conditions (i) to (iii), we have

E

[
∂D(λ,θ)

∂(λ,θ)

]∣∣∣∣
λ=0,θ=θ∗

= 0,

where the expectation is calculated by regarding xkj as a random variable with
distribution Gk.

Furthermore, as n → ∞, we have

n−1/2 ∂D(λ,θ)

∂(λ,θ)

∣∣∣∣
λ=0,θ=θ∗

d→ N(0, V ),

where V is a square matrix of dimension (dm+ l).

A key step in the asymptotic study of θ̂ and the ELRT statistic Rn is lo-
calization. That is, θ̂ is in a small neighbourhood of the true value θ∗ as the
sample size n goes to infinity. The following lemma asserts that θ̂ is almost
surely located in the O(n−1/3)-neighbourhood of θ∗.

Lemma 3.3. Under Conditions (i) to (iii), as n → ∞, the saddle point (λ̂, θ̂)
of the dual function D(λ,θ) is in the n−1/3-neighbourhood of (0,θ∗) with prob-
ability 1.

In addition,
√
n(λ̂, θ̂ − θ∗) is asymptotically multivariate normal.

The results in the previous lemma shed light on the asymptotic properties of
the EL under the DRM. At the same time, they pave the way for the following
celebrated conclusion in the EL literature.
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Theorem 3.4. Under Conditions (i) to (iii) and the null hypothesis (2), as
n → ∞, the ELRT statistic

Rn = 2

[
sup
θ,G0

{�n(θ, G0)} − �̃n(ξ
∗)

]
d→ χ2

l .

Theorem 3.4 enables us to determine an approximate rejection region for
the ELRT. We reject the null hypothesis at the significance level α when the
observed value of Rn is larger than the upper α quantile of the chi-square dis-
tribution χ2

l . This also provides a foundation for the construction of confidence
regions of ξ. Let

Rn(ξ) = 2

[
sup
θ,G0

{�n(θ, G0)} − �̃n(ξ)

]
.

An ELRT-based (1− α) approximate confidence region for ξ is

{ξ : Rn(ξ) ≤ χ2
l (1− α)}, (10)

where χ2
l (1− α) is the (1− α) quantile of χ2

l .

4. Simulation studies

In this section, we report some simulation results. We conclude that the chi-
square approximation to the sample distribution of Rn is very accurate. The
corresponding confidence regions have a data-driven shape and accurate cover-
age probabilities. In almost all cases considered, the Rn-based confidence regions
outperform those based on the Wald method in terms of the average areas and
coverage probabilities. The DRM markedly improves the statistical efficiency,
and the details are as follows.

4.1. Numerical implementation and methods included

Recall that the ELRT statistic Rn is defined to be

Rn = 2

[
sup
θ,G0

{�n(θ, G0)} − �̃n(ξ
∗)

]
.

In data analysis, we must solve the optimization problem supθ,G0
{�n(θ, G0)}.

As Cai, Chen and Zidek [5] suggest, it can be transformed into an optimization
problem of a convex function, and it has a simple solution. We further turn this
optimization problem into the problem of solving a system of equations that are
formed by equating the derivatives of the induced convex function to 0. The
numerical implementation can be efficiently carried out by a root solver in the
R [35] package nleqslv [20] for nonlinear equations. It uses either the Newton
or Broyden iterative algorithms.
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To compute �̃n(ξ
∗), we can solve (9), as (8) suggests. This leads to a system

of dm+l nonlinear equations in (λ,θ), with d being the dimension of the vector-
valued basis function q(x) and l the number of population quantiles of interest
specified in ξ∗. In most applications, a q(x) with dimension 4 or less is suitable.
For a system of this size, the R package nleqslv for roots is very effective even
when m is as large as 20. The existence of the solution to (4) and (5) is proved in
Appendix B. Guided by this proof, our choice of the initial λ and θ guarantees
numerical success.

As is typical for DRM examples, we simulate data from the normal and
gamma distributions and examine the ELRT-based hypothesis tests and confi-
dence regions for the population quantiles. For comparison, we include Wald-
based and nonparametric inference on the same quantiles. To make the article
self-contained, we now briefly review the Wald and nonparametric methods.

Wald method. The Wald method for confidence region construction of ξ
was given in Chen and Liu [8]. Let (θ̃, G̃0) be the argument maximizer of
supθ,G0

{�n(θ, G0)}, and also let

G̃r(x) =
∑
k,j

1(xkj ≤ x)hr(xkj , θ̃)dG̃0(xkj),

for r = 1, . . . ,m, where dG̃0(x) = G̃0(x)−G̃0(x−). The maximum EL estimator
(MELE) of the τr quantile of Gr is then given by

ξ̃r = inf{x : G̃r(x) ≥ τr}.

Let ξ̃ = {ξ̃r : r ∈ I}. We have, as n → ∞,

√
n(ξ̃ − ξ∗) → N(0,Ω),

for some matrix Ω that is a function of Gr and θ. A plug-in estimate Ω̃ of Ω
was suggested by Chen and Liu [8], and an R package drmdel [4] by the authors
of Cai, Chen and Zidek [5] includes the MELE ξ̃ and Ω̃ in its output. A level
(1− α) approximate confidence region for ξ based on the Wald method is then
given by

{ξ : n(ξ̃ − ξ)�Ω̃−1(ξ̃ − ξ) ≤ χ2
l (1− α)}. (11)

The Wald method can also be used for hypothesis tests on quantiles. We refer
to the confidence region in (11) as the one based on the Wald method.

Nonparametric method. Suppose Ĝr(x) = n−1
r

∑nr

j=1 1(xrj ≤ x) is the em-

pirical distribution based on a sample from the distribution Gr, and ξ̂r is the
sample quantile. The sample quantile is asymptotically normal [32] with asymp-
totic variance τr(1− τr)/(ρrg

2
r(ξr)) as n → ∞ and nr/n → ρr. In view of this,

the Wald method remains applicable with the help of a nonparametric consistent
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density estimator. We follow the literature and let

ĝr(x) =
1

nrbr

nr∑
j=1

K

(
xrj − x

br

)
,

for some kernel function K(·) and bandwidth br. Under mild conditions on gr(·)
and proper choices of K(·) and br, ĝr(x) is consistent [33]. We set K(·) to the
density function of the standard normal distribution, and we use a rule-of-thumb
bandwidth suggested by Silverman [33]:

br = 0.9min{σ̂r, ÎQRr/1.34}n−1/5
r ,

where σ̂r is the standard deviation of Ĝr and ÎQRr is the interquartile range.
With these, we obtain a plug-in estimate

T̂ := diag{τr(1− τr)/(ρr ĝ
2
r(ξ̂r)) : r ∈ I},

and subsequently a (1− α) approximate confidence region for ξ:

{ξ : n(ξ̂ − ξ)�T̂−1(ξ̂ − ξ) ≤ χ2
l (1− α)}, (12)

where ξ̂ = {ξ̂r : r ∈ I}. This nonparametric Wald method can also be employed
for hypothesis tests on quantiles. We refer to the confidence region in (12) as
the one based on the nonparametric method.

When constructing the confidence region in (12), density estimation is re-
quired as an intermediate step to obtain a variance estimate T̂ . One may also
use bootstrap method as an alternative nonparametric method to construct con-
fidence regions for quantiles. We do not think these two nonparametric methods
will lead to significantly different results, and hence we use (12) as a nonpara-
metric competitor in this article.

The proposed ELRT method apparently has the highest computational cost,
yet it takes a negligible second for each simulation repetition. This renders
recording the computational times unnecessary in simulation.

4.2. Data generated from normal distributions

Normality is routinely assumed but unlikely strictly valid in real-world applica-
tions. When multiple samples are available, we include all normal distributions
without a normality assumption via a DRM coupled with q(x) = (1, x, x2)�.
In this simulation, we generate data from m+ 1 = 6 normal distributions with
sample sizes nr = 100. Their means and standard deviations are chosen to be
(0, 0, 1, 1, 2, 2) and (1, 1.2, 1.3, 1.5, 2, 1.5). In the simulation experiment, we gen-
erate 1000 sets of samples of size nr = 100 and compute the Rn values for the
hypothesis on the medians of G0 and G5:

H0 : (ξ0, ξ5) = (ξ∗0 , ξ
∗
5) versus H1 : (ξ0, ξ5) �= (ξ∗0 , ξ

∗
5)
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Fig 1. Q-Q plot of Rn values against χ2
2 based on normal data of equal sample size nr = 100.

where ξ∗0 , ξ
∗
5 are the true values. Note that although we simulate data from

normal distributions, the parametric information does not play any role in the
data analysis.

Because H0 is true, Rn has a χ2
2 limiting distribution. Figure 1 gives a

quantile-quantile (Q-Q) plot of the 1000 simulated Rn values against the χ2
2

distribution. Over the range from 0 to 6 that matters in most applications, the
points are close to the red 45-degree line. Clearly, the chi-square distribution is
a good approximation of the sampling distribution of Rn, demonstrating good
agreement with Theorem 3.4.

In Figure 2, we depict the 95% confidence regions of ξ = (ξ0, ξ5) based on the
ELRT in (10), the Wald method in (11), and the nonparametric method in (12)
based on a typical simulated data set with the true ξ∗ marked as a red diamond.
The ELRT contour is not smooth because Rn(ξ) is not smooth at data points.
Clearly, the ELRT confidence region has the smallest area and is therefore the
most efficient. In Table 1, we make direct quantitative comparisons between the
three methods in terms of the coverage probabilities and areas of the 90% and
95% confidence regions. We remark that the ELRT confidence region can be
approximated by triangles all pointing to the MELE. We add up the areas of
these triangles to get the total area. Both the LRT and Wald methods under
the DRM have empirical coverage probabilities close to the nominal levels; the
nonparametric method has overcoverage. In general, the ELRT outperforms.

In applications, the sample sizes from different populations are unlikely to be
equal. Does the superiority of the ELRT require equal sample sizes from these
populations? We also simulated data from the same distributions with unequal
sample sizes. We set the sizes of populations G0, G1, G4, G5 to 100 and 200,
and the sizes of populations G2, G3 to 50 and 100, respectively. We constructed
confidence regions for the 90th percentile of G2 and the 95th percentile of G3,



6202 A. Zhang et al.

Fig 2. Confidence regions of (ξ0, ξ5) by ELRT (solid), Wald (dashed), and nonparametric
(dotted) methods, based on a simulated normal data set of equal sample size nr = 100. The
true quantiles are marked with a diamond. The level of confidence is 95%.

Table 1

Empirical coverage probabilities and average areas based on normal data of equal sample
size.

Method
90% 95%

Coverage probability Area Coverage probability Area

nr = 100

ELRT 89.1% 0.250 95.8% 0.323
Wald 90.8% 0.266 95.4% 0.347

Nonparametric 91.7% 0.374 95.9% 0.487

nr = 200

ELRT 89.7% 0.126 95.0% 0.164
Wald 90.5% 0.132 95.2% 0.171

Nonparametric 90.3% 0.183 95.3% 0.239

where both populations have the smaller sample sizes. Figure 3 shows the three
95% confidence regions based on a simulated data set; we see that the ELRT
is superior. Admittedly, this is one of the more extreme cases. Table 2 gives
the average areas and empirical coverage probabilities of the three confidence
regions, based on 1000 repetitions. The ELRT confidence regions have the most
accurate coverage probabilities, while the other two methods have low coverage.
The ELRT confidence regions have larger average areas that are not excessive.
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Fig 3. Confidence regions of (ξ2, ξ3) by ELRT (solid), Wald (dashed), and nonparametric
(dotted) methods, based on a simulated normal data set of unequal sample sizes. The true
quantiles are marked with a diamond. The level of confidence is 95%.

Table 2

Empirical coverage probabilities and average areas based on normal data of unequal sample
sizes.

Method
90% 95%

Coverage probability Area Coverage probability Area

n2 = n3 = 50, n0 = n1 = n4 = n5 = 100

ELRT 90.1% 1.307 94.5% 1.741
Wald 83.7% 1.096 88.9% 1.427

Nonparametric 73.6% 1.439 80.0% 1.873

n2 = n3 = 100, n0 = n1 = n4 = n5 = 200

ELRT 90.1% 0.642 94.5% 0.843
Wald 86.7% 0.572 91.8% 0.744

Nonparametric 81.3% 0.804 86.7% 1.046

4.3. Data generated from gamma distributions

In applications, income, lifetime, expenditure, and strength data are positive
and skewed. Gamma or Weibull distributions are often used for statistical in-
ference in such applications. In the presence of multiple samples, replacing the
parametric model by a DRM with q(x) = (1, x, log x)� is an attractive option
to reduce the risk of model misspecification. We generate 1000 sets of m+1 = 6
independent samples of sizes nr = 100 and 200 from gamma distributions with
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Fig 4. Q-Q plot of Rn values against χ2
2 based on gamma data of equal sample size nr = 100.

shape parameters (5, 5, 6, 6, 7, 7) and scale parameters (2, 1.9, 1.8, 1.7, 1.6, 1.5).
We test the hypothesis on the medians of G1 and G2:

H0 : (ξ1, ξ2) = (ξ∗1 , ξ
∗
2) versus H1 : (ξ1, ξ2) �= (ξ∗1 , ξ

∗
2),

where ξ∗1 , ξ
∗
2 are the true medians of Gamma(5, 1.9) and Gamma(6, 1.8), re-

spectively. Note that although we simulate data from gamma distributions, the
parametric information does not play any role in the data analysis.

Figure 4 shows the Q-Q plot based on 1000 Rn values against the theo-
retical limiting distribution χ2

2. The points in the Q-Q plot are close to (but
slightly above) the 45-degree line in the range from 0 to 6. This implies that
the corresponding tests will have close to nominal levels. Overall, the chi-square
approximation is satisfactory.

In Figure 5, we depict the 95% confidence regions of ξ = (ξ1, ξ2) using the
ELRT in (10), the Wald method in (11), and the nonparametric method in
(12), based on a typical simulated data set with ξ∗ marked as a red diamond.
Clearly, the ELRT-based confidence region has a smaller area and is therefore
more efficient. In Table 3 we make direct quantitative comparisons of the cover-
age probabilities and areas. Both the ELRT and Wald methods under the DRM
have empirical coverage probabilities very close to the nominal levels. The non-
parametric confidence regions have overcoverage and inflated sizes. We again
conclude that the ELRT is superior to the nonparametric method.

We also study the confidence regions for a pair of lower quantiles: the 5th
percentile of G4 and the 10th percentile of G5. Figure 6 shows the three 95%
confidence regions based on a simulated data set. Table 4 gives the average areas
and coverage probabilities of the three confidence regions, based on 1000 repe-
titions. The ELRT method is still the most efficient. Maintaining the accurate
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Fig 5. Confidence regions of (ξ1, ξ2) by ELRT (solid), Wald (dashed), and nonparametric
(dotted) methods, based on a simulated gamma data set of equal sample size nr = 100. The
true quantiles are marked with a diamond. The level of confidence is 95%.

Table 3

Empirical coverage probabilities and average areas based on gamma data of equal sample
size.

Method
90% 95%

Coverage probability Area Coverage probability Area

nr = 100

ELRT 88.3% 2.808 94.2% 3.665
Wald 89.9% 2.953 95.3% 3.843

Nonparametric 92.1% 4.264 95.2% 5.547

nr = 200

ELRT 88.6% 1.395 94.4% 1.822
Wald 89.7% 1.451 95.3% 1.889

Nonparametric 89.3% 2.111 94.3% 2.747

coverage probabilities, the ELRT confidence regions still have satisfactory areas
that are comparable to the Wald confidence regions.

5. Real-data analysis

In the previous simulations, we chose the most suitable basis function q(x)
in each case because the population distributions were known to us. This is
not possible in real-world applications. In this section, we create a simulation
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Fig 6. Confidence regions of (ξ4, ξ5) by ELRT (solid), Wald (dashed), and nonparametric
(dotted) methods, based on a simulated gamma data set of equal sample size nr = 100. The
true quantiles are marked with a diamond. The level of confidence is 95%.

Table 4

Empirical coverage probabilities and average areas based on gamma data of equal sample
size.

Method
90% 95%

Coverage probability Area Coverage probability Area

nr = 100

ELRT 88.4% 2.312 93.7% 3.022
Wald 86.5% 2.236 92.0% 2.910

Nonparametric 82.8% 3.250 88.7% 4.229

nr = 200

ELRT 90.8% 1.139 95.3% 1.486
Wald 90.4% 1.114 95.4% 1.449

Nonparametric 87.0% 1.684 92.6% 2.191

population based on the US Consumer Expenditure Surveys data concerning
US expenditure, income, and demographics. The data set is available on the
US Bureau of Labor Statistics website (https://www.bls.gov/cex/pumd.htm).
The data are collected by the Census Bureau in the form of panel surveys,
in which approximately 5000 households are contacted each quarter. After a
household has been surveyed it is dropped from subsequent surveys and replaced
by a new household. The response variable is the annual sum of the wages
or salary income received by all household members before any deductions.

https://www.bls.gov/cex/pumd.htm
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Household income is a good reflection of economic well-being. The data files
include some imputed values to replace missing values due to non-response.

We study a six-year period from 2013 to 2018, and we log-transform the
response values to make the scale more suitable for numerical computation.
Note that the quantiles are transformation equivariant. We exclude households
that have no recorded income even after imputation, and there remain 4919,
5304, 4641, 4606, 4475, and 4222 households from 2013 to 2018. The histograms
shown in Figure 7 indicate that it is difficult to determine a suitable parametric
model for these data sets, but a DRM may work well enough. We take the basis
function q(x) = (1, x, x2)�; it may not be the best choice, but as a result the
simulation results for the DRM analysis are more convincing.

Fig 7. Histograms of log-transformed annual household incomes.

In this simulation, we form 6 populations based on the yearly data sets.
We test hypotheses on the 20th and 50th percentiles based on independent
samples of size 100, which are obtained by sampling with replacement from the
respective populations. To test the size of a single quantile of a single population,
the limiting distribution of Rn is χ2

1. Figures 8 and 9 contain a few Q-Q plots
of Rn versus χ2

1 for H0 : ξr = ξ∗r with τr = 20% or τr = 50%. In all the plots,
the points of Rn are close to the 45-degree line. Thus, the precision of the chi-
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square approximation is satisfactory. The plots for other levels or populations
are similar and not presented.

Fig 8. Q-Q plots of Rn values against χ2
1, based on real data of equal sample size nr = 100.

Quantile levels are 20%.

Fig 9. Q-Q plots of Rn values against χ2
1, based on real data of equal sample size nr = 100.

Quantile levels are 50%.
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The Wald method (11) may be regarded as being derived from an asymptotic
χ2
1 distributed statistic:

Wn = n(ξ̃r − ξ∗r )
�Ω̃−1(ξ̃r − ξ∗r ).

We also obtain Wn values and construct Q-Q plots, and a selected few are given
in Figures 10 and 11. These plots show that the chi-square approximation is
not as satisfactory. There are many possible explanations, but a major factor
could be the unstable variance estimator Ω̃ that the Wald method must rely on,
especially for lower quantiles. One of the most valued properties of the likelihood
ratio test approach is that there is no need to estimate a scale factor.

Fig 10. Q-Q plots of Wald statistic values against χ2
1, based on real data of equal sample size

nr = 100. Quantile levels are 20%.

A direct consequence of the poor chi-square approximation could be under-
coverage of the confidence intervals. Table 5 gives the coverage probabilities and
average lengths of the confidence intervals based on three methods: ELRT in
(10), Wald in (11), and nonparametric in (12). The improved efficiency of the
DRM is best reflected in the average lengths of the confidence intervals. It can
be seen that the DRM-based methods achieve on average about 15% and 25%
improvement over the nonparametric method for the 20th and 50th percentiles
respectively. Comparing the ELRT and Wald methods, both done under DRM,
we find that the ELRT is comparable to the Wald method for the 20th percentile
and clearly more efficient for the 50th percentile.

In the next simulation, we focus on the confidence region of the first quan-
tiles of the household incomes in the years 2013 and 2018, namely the 20th
percentiles for these two years. Figure 12 shows the 95% confidence regions us-
ing the three methods based on simulated real data of size nr = 100. Table 6
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Fig 11. Q-Q plots of Wald statistic values against χ2
1, based on real data of equal sample size

nr = 100. Quantile levels are 50%.

gives the average coverages and areas of the three confidence regions, based on
1000 repetitions. The ELRT produces the most satisfactory confidence regions.
The ELRT confidence regions improve the Wald confidence regions by rightfully
increased area to achieve more accurate coverage probabilities. They are much
more efficient than the nonparametric confidence regions.

6. Power property and comparison

Due to the linkage between the confidence region and the hypothesis test, we
are certain that the ELRT has superior power property based on the simulation
studies already done. At the same time, different tests have different higher
power regions in the space of the alternative hypotheses. A generally inferior
test can outperform other tests in specific regions. We now use simulation to
examine the power properties of the three tests. We find the power properties
do not vary much across different data types. To save space, we only present
the simulation results based on real data.

Consider the null hypothesis on values of the 20th percentiles of years 2013
and 2018 with true values being ξ0 = (10.01, 10.21). We examine the power
of the three tests against a range of false null hypotheses. One of them, for
instance, is

H0 : (ξ1, ξ2) = ξ∗ = ξ0 × (0.99, 1.01) = (9.91, 10.31).

We either inflate to deflate the true value by 1% or 2% leading to 8 false null
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Table 5

Average lengths and empirical coverage probabilities of the individual confidence intervals,
based on real data of equal sample size nr = 100.

Year
ELRT Wald Nonparametric

90% 95% 90% 95% 90% 95%

Average lengths

quantile levels all = 20%

2013 0.465 0.563 0.440 0.524 0.513 0.611
2014 0.464 0.559 0.437 0.520 0.528 0.630
2015 0.459 0.553 0.432 0.515 0.519 0.619
2016 0.461 0.558 0.435 0.519 0.527 0.628
2017 0.459 0.557 0.434 0.518 0.539 0.642
2018 0.438 0.529 0.416 0.496 0.523 0.623

average 0.458 0.553 0.433 0.515 0.525 0.626

quantile levels all = 50%

2013 0.307 0.364 0.315 0.376 0.383 0.457
2014 0.306 0.366 0.316 0.376 0.379 0.452
2015 0.304 0.364 0.314 0.374 0.374 0.446
2016 0.305 0.364 0.315 0.375 0.382 0.455
2017 0.304 0.364 0.316 0.376 0.390 0.465
2018 0.300 0.357 0.311 0.371 0.373 0.444

average 0.304 0.363 0.315 0.375 0.380 0.453

Empirical coverage probabilities

quantile levels all = 20%

2013 88.0% 94.0% 88.7% 93.2% 87.7% 92.3%
2014 90.1% 95.1% 88.7% 94.7% 87.9% 92.6%
2015 89.8% 94.6% 88.6% 93.6% 89.5% 94.3%
2016 89.7% 95.1% 88.6% 94.1% 87.7% 94.2%
2017 90.0% 94.6% 87.8% 93.3% 86.6% 91.7%
2018 90.4% 95.6% 87.5% 91.7% 89.0% 93.1%

average 89.7% 94.8% 88.3% 93.4% 88.1% 93.0%

quantile levels all = 50%

2013 89.8% 94.2% 89.3% 95.2% 88.5% 93.3%
2014 89.2% 95.3% 90.4% 95.4% 89.4% 94.8%
2015 91.7% 96.0% 92.3% 95.7% 92.4% 95.9%
2016 90.0% 95.5% 90.9% 95.5% 90.9% 94.9%
2017 88.9% 95.2% 90.1% 96.0% 91.7% 95.9%
2018 89.6% 94.9% 89.8% 95.4% 90.0% 95.4%

average 89.9% 95.2% 90.5% 95.5% 90.5% 95.0%

hypotheses. We report the powers against these false H0 in Table 7 when the
nominal levels are 5% and 10% and the sample sizes are nr = 100 and nr = 200.

We observe that the rejection probabilities of all three tests are above the
corresponding nominal levels. They increase when the sample size increases from
nr = 100 to nr = 200. These observations suggest the unbiasedness and con-
sistency of the three tests. We restrain from reading too much into some small
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Fig 12. Confidence regions of the 20th percentiles of years 2013 and 2018 by ELRT (solid),
Wald (dashed), and nonparametric (dotted) methods, based on a simulated real data set of
equal sample size nr = 100. The true quantiles are marked with a diamond. The level of
confidence is 95%.

differences as the sample size is not sufficiently large. The power of ELRT is
around 50% when the assumed quantiles are 2% off from the truth and the
sample size is nr = 100 at level 5%.

Direct power comparison is most meaningful when tests under consideration
have the same size. Because we use the asymptotic distributions for all three
methods, there are non-ignorable differences in their null rejection rates (see
Table 6). For each test, level, and sample size combination, we calculate the
average rejection rate. The nonparametric test has lower power in general. Yet
the nonparametric test has higher rejection rates than ELRT 2 out of 8 times
when nr = 100 at 5% level. However, the type I errors are 5.8% and 8.4% for
ELRT and nonparametric in this case. If this 44.8% inflation factor in type I
error is applied to their powers, then ELRT would have higher powers in all 8
cases. This general comment is applicable to all the other 3 combinations.
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Table 6

Empirical coverage probabilities and average areas for 20th percentiles of the years 2013 and
2018, based on real data of equal sample size.

Method
90% 95%

Coverage probability Area Coverage probability Area

nr = 100

ELRT 89.00% 0.284 94.20% 0.379
Wald 86.30% 0.245 91.80% 0.319

Nonparametric 87.20% 0.358 91.60% 0.466

nr = 200

ELRT 88.20% 0.130 93.40% 0.171
Wald 86.10% 0.120 92.30% 0.156

Nonparametric 88.80% 0.183 93.80% 0.238

The Wald test seems to have higher power than the ELRT on average in all 4
sample size and level combinations. However, its gain in lower type II error is at
the cost of higher type I error. When nr = 200 and at level 10%, Table 6 shows
the ratio of their type I errors is 1.178. Once we adjust the power of ELRT by
this factor, the conclusion will be reversed. This is the same for the other sample
size and level combinations.

Although the three tests have different high power regions, the ELRT is
overall a better one. The similar observations extend to unreported simulation
results based on data generated from normal and gamma distributions.

Appendix A: Proofs of the main results

This Appendix provides the proofs of the technical results. In the following
proofs, without loss of generality, we proceed as if the sample proportions nk/n
do not depend on n and equal their limits ρk. Our results are applicable as long
as none of the populations have comparatively very small sample sizes. Also, for
the sake of convenience, with a generic function f(y) we use

∂f(y∗)

∂y
=

∂f(y)

∂y

∣∣∣∣
y=y∗

,
∂2f(y∗)

∂y∂y� =
∂2f(y)

∂y∂y�

∣∣∣∣
y=y∗

.

Moreover, the DRM parameters θ are arranged in the order

(θ11, θ21, . . . , θm1, . . . , θ12, θ22, . . . , θm2, . . . , θ1d, θ2d, . . . , θmd),

where θis is the sth component of the vector-valued parameter θi. This order
is needed for the expressions of the second derivative of D(λ,θ) in the proof of
Lemma 3.1 and for the covariance matrix of the first derivative in the proof of
Lemma 3.2.
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Table 7

Powers (in %) for testing null hypotheses for the 20th percentiles of years 2013 and 2018.

True value of the percentiles: ξ0 = (10.01, 10.21).

ELRT Wald Nonparametric

Level of the test → 10% 5% 10% 5% 10% 5%

Change in scale ↓ ξ∗ value in H0 ↓ Rejection rates

nr = 100

(−1,−1)% (9.91, 10.11) 24.6 15.5 31.2 23.5 28.5 21.0
(−1,+1)% (9.91, 10.31) 23.1 14.0 25.0 15.2 20.6 13.4
(+1,−1)% (10.12, 10.11) 30.1 20.3 32.3 22.8 23.3 15.3
(+1,+1)% (10.12, 10.31) 26.6 15.0 18.0 9.30 12.3 6.40
(−2,−2)% (9.81, 10.01) 50.3 39.0 64.7 54.5 57.7 48.0
(−2,+2)% (9.81, 10.41) 51.7 40.7 62.3 49.5 46.5 34.7
(+2,−2)% (10.22, 10.01) 71.1 60.2 69.4 59.5 53.4 39.1
(+2,+2)% (10.22, 10.41) 62.9 52.5 56.9 41.4 37.4 22.9

average 42.6 32.2 45.0 34.5 35.0 25.1

nr = 200

(−1,−1)% (9.91, 10.11) 35.9 24.4 48.1 35.7 40.2 27.6
(−1,+1)% (9.91, 10.31) 34.8 23.3 41.6 27.9 28.0 18.6
(+1,−1)% (10.12, 10.11) 46.8 34.4 47.7 37.9 32.0 21.4
(+1,+1)% (10.12, 10.31) 40.7 28.5 33.9 20.9 22.9 13.4
(−2,−2)% (9.81, 10.01) 79.8 69.8 84.3 79.3 76.0 68.9
(−2,+2)% (9.81, 10.41) 80.1 71.0 85.1 79.7 73.2 62.3
(+2,−2)% (10.22, 10.01) 93.5 88.6 91.1 84.4 74.5 63.4
(+2,+2)% (10.22, 10.41) 90.4 82.5 85.4 76.8 69.9 56.3

average 62.8 52.8 64.7 55.3 52.1 41.5

A.1. Proof of Lemma 3.1

This lemma asserts that the second derivative matrix of D(λ,θ) has a finite and
full-rank matrix as a limit.

Proof. We first recognize that D(λ,θ) can be written as a sum of m+ 1 sets of
i.i.d. random variables:

D(λ,θ) =
∑
k,j

Dk(xkj ,λ,θ), (13)

with

Dk(x,λ,θ) = θ�
k q(x)− log h̄(x,θ)− log

{
1 +
∑
r∈I

λrψr(x,θ)
}
.

Therefore, we may write

n−1 ∂2D(0,θ∗)

∂(λ,θ)∂(λ,θ)�
=

m∑
k=0

ρk

⎡⎣n−1
k

nk∑
j=1

∂2Dk(xkj ,0,θ
∗)

∂(λ,θ)∂(λ,θ)�

⎤⎦ .
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By the law of large numbers [14], as n → ∞,

n−1

⎛⎜⎝∂2D(0,θ∗)
∂λ∂λ�

∂2D(0,θ∗)
∂λ∂θ�

∂2D(0,θ∗)
∂θ∂λ�

∂2D(0,θ∗)
∂θ∂θ�

⎞⎟⎠→
(
Sλλ Sλθ

Sθλ Sθθ

)
,

for some block matrix S given by

S =

m∑
k=0

ρkEk

[
∂2Dk(X,0,θ∗)

∂(λ,θ)∂(λ,θ)�

]
.

Here we remark again that we assume that the sample proportions nk/n do not
change with n and always equal their limits ρk.

Next, we show that S has full rank. We first give the following expressions:

∂2Dk(x,0,θ
∗)

∂λ∂λ� = ψ(x,θ∗)ψ�(x,θ∗),

∂2Dk(x,0,θ
∗)

∂θ∂θ� = [q(x)q�(x)]⊗
[
h(x,θ∗)h�(x,θ∗)− diag{h(x,θ∗)}

]
,

∂2Dk(x,0,θ
∗)

∂λ∂θ� = q�(x)⊗
[
ψ(x,θ∗)h�(x,θ∗)

−diag{ψ(x,θ∗)}
(
eI1 · · · eIl

)�]
,

where ⊗ is the Kronecker product, ei is a vector of length m that has 1 in
the ith entry and 0 elsewhere (we define e0 = 0 by convention), and Ij is the
population index of the jth quantile of interest.

Based on the above expressions, we first note that

Sθθ = −
m∑

k=0

ρkEk

[
{q(X)⊗ [ek − h(X,θ∗)]}{q(X)⊗ [ek − h(X,θ∗)]}�

]
,

which is clearly negative semidefinite. We now strengthen the conclusion to
negative definite. By Condition (ii), E0[q(X)q�(X)] is positive definite. Since
hr(x,θ

∗) = exp(θ�
r q(x)), we have that

Ek

[
{ek − h(X,θ∗)}{ek − h(X,θ∗)}�

]
is positive definite. Simple algebra leads to the negative definiteness of Sθθ. For
the same reason, Sλλ is positive definite if ψ(x,θ∗) does not degenerate, which
is assured because

ϕr(x,θ, ξ) = hr(x,θ)[1(x ≤ ξr)− τr].

From(
I −SλθS

−1
θθ

0 I

)
×
(
Sλλ Sλθ

Sθλ Sθθ

)
=

(
Sλλ − SλθS

−1
θθ Sθλ 0

Sθλ Sθθ

)
,

we conclude that S has full rank if Sλλ − SλθS
−1
θθ S

�
λθ does. Because Sλλ is

positive definite and S−1
θθ is negative definite, Sλλ−SλθS

−1
θθ S

�
λθ must be positive

definite, and so it has full rank. This completes the proof that S has full rank.
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A.2. Proof of Lemma 3.2

Proof. The first conclusion of this lemma is that the first derivative of D(λ,θ)
in (7) has zero expectation when evaluated at (0,θ∗). Recall that

D(λ,θ) =
∑
k,j

θ�
k q(xkj)−

∑
k,j

log h̄(xkj ,θ)−
∑
k,j

log
{
1 +
∑
r∈I

λrψr(xkj ,θ)
}
.

For any r ∈ I, the partial derivative of D(λ,θ) with respect to λr is given by

∂D(λ,θ)

∂λr
= −

∑
k,j

ψr(xkj ,θ)

1 +
∑

i∈I λiψi(xkj ,θ)
.

At λ∗ = 0 and θ = θ∗, this reduces to

∂D(0,θ∗)

∂λr
= −

∑
k,j

ψr(xkj ,θ
∗).

Hence, we have

E

[
∂D(0,θ∗)

∂λr

]
= −

∑
k,j

∫
ψr(x,θ

∗)dGk(x)

= −
∫

ψr(x,θ
∗)
{ m∑

k=0

nkhk(x,θ
∗)
}
dG0(x)

= −n

∫
ϕr(x,θ

∗, ξ∗)dG0(x) = 0. (14)

For each i = 1, 2, . . . ,m, s = 1, 2, ..., d, and at λ = 0 and θ = θ∗, we have

∂D(0,θ∗)

∂θis
=

ni∑
j=1

qs(xij)−
∑
k,j

ρiqs(xkj)hi(xkj ,θ
∗)/h̄(xkj ,θ

∗).

For the first term, it can be seen that

E
[ ni∑
j=1

qs(xij)
]
= ni

∫
qs(x)hi(x,θ

∗)dG0(x).

At the same time, for the second term, we have

E
[∑

k,j

ρiqs(xkj)hi(xkj ,θ
∗)/h̄(xkj ,θ

∗)
]
= ni

∫
qs(x)hi(x,θ

∗)dG0(x).

Therefore, we find that

E
[∂D(0,θ∗)

∂θis

]
= 0. (15)
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Combining (14) and (15), we conclude that

E
[∂D(0,θ∗)

∂(λ,θ)

]
= 0.

The second conclusion of this lemma is the asymptotic normality of the first
derivative. Despite its complex expression, we can see that ∂D(λ,θ)/∂(λ,θ) is
a sum of m+ 1 sets of i.i.d. random variables of sizes nr = nρr with mean zero
and finite second moment in the matrix sense. Recall (13) from the proof of
Lemma 3.1 that

D(λ,θ) =
∑
k,j

Dk(xkj ,λ,θ),

where

Dk(x,λ,θ) = θ�
k q(x)− log h̄(x,θ)− log

{
1 +
∑
r∈I

λrψr(x,θ)
}
.

We may write

∂D(λ,θ)

∂(λ,θ)
=

m∑
k=0

⎧⎨⎩
nk∑
j=1

[
∂Dk(xkj ,λ,θ)

∂(λ,θ)
−Ek

(
∂Dk(X,λ,θ)

∂(λ,θ)

)]⎫⎬⎭ .

For each k = 0, 1, . . . ,m, as nk → ∞,

Tk := n
−1/2
k

nk∑
j=1

[
∂Dk(xkj ,0,θ

∗)

∂(λ,θ)
−Ek

(
∂Dk(X,0,θ∗)

∂(λ,θ)

)]
has a limiting distribution of normal with mean zero and finite second moment
in the matrix sense, by the multivariate central limit theorem for triangular
arrays [14]. Because T0, T1, . . . , Tm are independent of each other, the targeted
quantity

n−1/2 ∂D(0,θ∗)

∂(λ,θ)
=

m∑
k=0

ρ
1/2
k Tk

is asymptotically normal with mean zero.
We now give the expression V for the covariance matrix in the limiting dis-

tribution. Let Vk be the asymptotic covariance matrix of Tk, then we have

V =

m∑
k=0

ρkVk.

The expression for Vk is given by

Vk =Ek

[(
∂Dk(X,0,θ∗)

∂(λ,θ)

)(
∂Dk(X,0,θ∗)

∂(λ,θ)

)�]
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−Ek

[
∂Dk(X,0,θ∗)

∂(λ,θ)

]
Ek

[
∂Dk(X,0,θ∗)

∂(λ,θ)

]�
.

After some algebra, we find that

∂Dk(x,0,θ
∗)

∂λ
= −ψ(x,θ∗),

∂Dk(x,0,θ
∗)

∂θ
= q(x)⊗ [ek − h(x,θ∗)],

where ek is a unit vector with the kth element being 1 (e0 = 0 by convention).
We have

m∑
k=0

ρkEk

[(
∂Dk(X,0,θ∗)

∂(λ,θ)

)(
∂Dk(X,0,θ∗)

∂(λ,θ)

)�]
=

(
Sλλ 0
0 −Sθθ

)
.

Let

W =

(
ρ−1
0 1m1�

m + diag{ρ−1
1 , . . . , ρ−1

m } 0
0 0

)
,

where 1m is an m-dimensional vector of ones; we then also have

m∑
k=0

ρkEk

[
∂Dk(X,0,θ∗)

∂(λ,θ)

]
Ek

[
∂Dk(X,0,θ∗)

∂(λ,θ)

]�
= S

(
0 0
0 W

)
S.

Finally, we get

V =

(
Sλλ 0
0 −Sθθ

)
− S

(
0 0
0 W

)
S.

This completes the proof that n−1/2∂D(0,θ∗)/∂(λ,θ) is asymptotically normal.

A.3. Proof of Lemma 3.3

Proof. Given θ, let λ(θ) be the solution to∑
k,j

ψ(xkj ,θ)

1 + λ�ψ(xkj ,θ)
= 0.

We first prove that uniformly for any θ in the n−1/3-neighbourhood of θ∗, λ(θ)
is O(n−1/3). For notational convenience, in this section we omit θ in λ(θ) if this
does not cause any confusion.

Following the typical proof in Owen [26], the claim is true if uniformly for θ
such that ‖θ − θ∗‖ ≤ n−1/3 we have

(i)
∑

k,j ψ(xkj ,θ) = O(n2/3);

(ii) n−1
∑

k,j ψ(xkj ,θ)ψ
�(xkj ,θ) has a positive definite limit.
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We omit other details but prove the above results. Note that little o and big O
without p in the subscript are orders in the sense of almost surely.

Recall that
∑

kEk[ψ(X,θ∗)] = 0 as shown in Lemma 3.2. We have∑
k,j

ψ(xkj ,θ
∗) =

∑
k

{∑
j

ψ(xkj ,θ
∗)−Ek[ψ(X,θ∗)]

}
=
∑
k

{O(
√

n log log n)} = O(n2/3), (16)

applying the law of the iterated logarithm to each k.
For θ in a small neighbourhood of θ∗, there is a generic nonrandom constant

C such that ∑
k,j

‖∂ψ(xkj ,θ)/∂θ‖ ≤ C
∑
k,j

‖q(xkj)‖ = O(n), (17)

with the order in the last step derived from the finite moment assumption on
q(X). Applying (16) and (17), with θ̄ being a value between θ and θ∗, we get∑

k,j

ψ(xkj ,θ) =
∑
k,j

ψ(xkj ,θ
∗) +

∑
k,j

∂ψ(xkj , θ̄)

∂θ
(θ − θ∗)

=
∑
k,j

∂ψ(xkj , θ̄)

∂θ
(θ − θ∗) +O(n2/3) = O(n2/3).

This proves (i).
Recall that ψ(x,θ) = {ψr(x,θ) : r ∈ I} and observe

|ψr(x,θ)| =
∣∣∣∣ hr(x,θ)∑m

r=0 ρrhr(x,θ)
[1(x ≤ ξr)− τr]

∣∣∣∣ ≤ ρ−1
r = O(1).

By focusing on θ in an n−1/3-neighbourhood of θ∗, we have

nk∑
j=1

{ψ(xkj ,θ)ψ
�(xkj ,θ)−ψ(xkj ,θ

∗)ψ�(xkj ,θ
∗)}

=

nk∑
j=1

[
ψ(xkj ,θ

∗){ψ(xkj ,θ)−ψ(xkj ,θ
∗)}�

+ {ψ(xkj ,θ)−ψ(xkj ,θ
∗)}ψ�(xkj ,θ)

]
≤ {max

k,j
sup
θ

ψ(xkj ,θ)}
nk∑
j=1

‖ψ(xkj ,θ)−ψ(xkj ,θ
∗)‖

= O(n2/3) = o(n).

Therefore, we have

n−1
∑
k,j

{ψ(xkj ,θ)ψ
�(xkj ,θ)} = n−1

∑
k,j

{ψ(xkj ,θ
∗)ψ�(xkj ,θ

∗)}+ o(1)
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→ Sλλ,

which is clearly positive definite. This proves (ii).
As we have remarked, the validity of (i) and (ii) implies that uniformly for

θ − θ∗ = O(n−1/3),

λ(θ) = O(n−1/3). (18)

Following the same line of the proof, we also have a stronger order for λ(θ) when
θ = θ∗:

λ(θ∗) = o(n−1/3). (19)

The next stage of the proof is dedicated to showing that θ̂− θ∗ = O(n−1/3).
We consider a function of θ:

L(θ) = D(λ(θ),θ).

It can easily be seen that θ̂ is a maximizer of L(θ). Since L(θ) is a smooth
function, there must be a maximizer of L(θ) in the compact set {θ : ‖θ−θ∗‖ ≤
n−1/3}. We prove that this maximizer is attained in the interior of the compact
set by showing that L(θ) < L(θ∗) uniformly for θ on the boundary of the
compact set. For any unit vector a and θ = θ∗ +n−1/3a, expanding L(θ) at θ∗

yields (see Folland [16])

L(θ) = L(θ∗) + n−1/3 ∂L(θ
∗)

∂θ
a+ n−2/3a� ∂2L(θ∗)

∂θ∂θ� a+ εn, (20)

where εn is the Lagrange remainder term in obvious notation:

εn =
1

6
n−1

∑
|α|=3

∂αL(θ) aα,

for some θ between θ∗ and θ. By the uniform boundedness of the third-order
derivatives of L(θ), we have εn = O(1) uniformly over a.

For the first term in the expansion, we note that λ(θ∗) = o(n−1/3) as given
in (19), and this implies

∂D(λ(θ∗),θ∗)

∂θ
=

∂D(0,θ∗)

∂θ
+O(n)(λ(θ∗)− 0) = o(n2/3),

with the order of ∂D(0,θ∗)/∂θ implied by Lemma 3.2. Therefore,

∂L(θ∗)

∂θ
=

∂D(λ(θ∗),θ∗)

∂λ

∂λ(θ∗)

∂θ
+

∂D(λ(θ∗),θ∗)

∂θ

=0+
∂D(λ(θ∗),θ∗)

∂θ
= o(n2/3).
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For the second term in the expansion, we proceed as follows. With λ(θ∗) =
o(n−1/3) as given in (19) and Lemma 3.1, we first note that

∂2D(λ(θ∗),θ∗)

∂(λ,θ)∂(λ,θ)�
=

∂2D(0,θ∗)

∂(λ,θ)∂(λ,θ)�
+ o(n2/3) = n[S + o(1)].

Taking derivatives with respect to θ on both sides of the identity

∂D(λ(θ),θ)

∂λ
= 0,

and then setting θ = θ∗, we further have

∂λ(θ∗)

∂θ
= −

[
∂2D(λ(θ∗),θ∗)

∂λ∂λ�

]−1 [
∂2D(λ(θ∗),θ∗)

∂λ∂θ�

]
.

Hence,

∂2L(θ∗)

∂θ∂θ� =
∂2D(λ(θ∗),θ∗)

∂θ∂λ�
∂λ(θ∗)

∂θ
+

∂2D(λ(θ∗),θ∗)

∂θ∂θ�

=−
[
∂2D(λ(θ∗),θ∗)

∂λ∂θ�

]� [
∂2D(λ(θ∗),θ∗)

∂λ∂λ�

]−1 [
∂2D(λ(θ∗),θ∗)

∂λ∂θ�

]
+

∂2D(λ(θ∗),θ∗)

∂θ∂θ�

=n[−S�
λθS

−1
λλSλθ + Sθθ + o(1)].

Therefore, the expansion of L(θ) in (20) becomes

L(θ)− L(θ∗) = n1/3a�{−S�
λθS

−1
λλSλθ + Sθθ}a+ o(n1/3).

The matrix in the quadratic form is negative definite, following the line of an
argument in the proof of Lemma 3.1. Hence, as n → ∞, with probability 1,

L(θ∗ + n−1/3a) < L(θ∗),

uniformly over all unit vector a. This proves

θ̂ − θ∗ = O(n−1/3),

and together with (18) further implies that

λ̂ = O(n−1/3).

We are now ready to prove the asymptotic normality of (λ̂, θ̂). Expanding

∂D(λ̂, θ̂)/∂(λ,θ) at (0,θ∗), we get

0 =
∂D(λ̂, θ̂)

∂(λ,θ)
=

∂D(0,θ∗)

∂(λ,θ)
+

∂2D(0,θ∗)

∂(λ,θ)∂(λ,θ)�

(
λ̂− 0

θ̂ − θ∗

)
+O(n1/3).

By Lemmas 3.1 and 3.2, we get

√
n

(
λ̂− 0

θ̂ − θ∗

)
= −S−1

[
n−1/2 ∂D(0,θ∗)

∂(λ,θ)

]
+ op(1)

d→ N(0, S−1V S−1), (21)

as n → ∞.
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A.4. Proof of Theorem 3.4

Proof. We notice that, as shown in Cai, Chen and Zidek [5],

sup
θ,G0

{�n(θ, G0)} = sup
θ

D(0,θ)− n log n.

From (8) we also have

�̃n(ξ
∗) = D(λ̂, θ̂)− n logn.

These relations lead to

Rn = 2

[
sup
θ

D(0,θ)−D(λ̂, θ̂)

]
= 2

[
sup
θ

D(0,θ)−D(0,θ∗)

]
− 2
[
D(λ̂, θ̂)−D(0,θ∗)

]
. (22)

Cai, Chen and Zidek [5] show in the proof of their Theorem 1 that

sup
θ

D(0,θ)−D(0,θ∗)=−1

2

[
n−1/2 ∂D(0,θ∗)

∂θ

]�
S−1
θθ

[
n−1/2 ∂D(0,θ∗)

∂θ

]
+op(1),

for the same Sθθ given in the proof of Lemma 3.1.
For the second term in (22), utilizing the expansion of λ̂ and θ̂− θ∗ given in

(21), we have

D(λ̂, θ̂)−D(0,θ∗)

=
∂D(0,θ∗)

∂(λ,θ)

(
λ̂− 0

θ̂ − θ∗

)
+

1

2

(
λ̂− 0

θ̂ − θ∗

)�
∂2D(0,θ∗)

∂(λ,θ)∂(λ,θ)�

(
λ̂− 0

θ̂ − θ∗

)
+ op(1)

=− 1

2

[
n−1/2 ∂D(0,θ∗)

∂(λ,θ)

]�
S−1

[
n−1/2 ∂D(0,θ∗)

∂(λ,θ)

]
+ op(1).

Let

ν1 = n−1/2

[
∂D(0,θ∗)

∂λ

]
, ν2 = n−1/2

[
∂D(0,θ∗)

∂θ

]
,

Λ = Sλλ − SλθS
−1
θθ S

�
λθ, D =

(
I, −SλθS

−1
θθ

)
,

with D and the identity matrix I with proper sizes. We then get

Rn = −ν�
2 S

−1
θθ ν2 + (ν�

1 ,ν
�
2 )S

−1

(
ν1

ν2

)
+ op(1)

=
{
ν1 − SλθS

−1
θθ ν2

}�
Λ−1

{
ν1 − SλθS

−1
θθ ν2

}
+ op(1)

=

(
ν1

ν2

)�
(D�Λ−1D)

(
ν1

ν2

)
+ op(1),
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where the middle step can be obtained via some typical matrix algebra or The-
orem 8.5.11 in Harville [19].

As given in the proof of Lemma 3.2, the asymptotic variance of (ν1,ν2) is
V . We also have

DVD� = D

[(
Sλλ 0
0 −Sθθ

)
− S

(
0 0
0 W

)
S

]
D�

= D

(
Sλλ 0
0 −Sθθ

)
D� − 0

= Sλλ − SλθS
−1
θθ S

�
λθ

= Λ.

Hence,
V (D�Λ−1D)V (D�Λ−1D)V = V (D�Λ−1D)V.

By the result on quadratic forms of the multivariate normal (section 3.5, Serfling
[32]), the limiting distribution of Rn is chi-square with the degrees of freedom
being the trace of (D�Λ−1D)V , which is l as claimed in this theorem. This
completes the proof.

Appendix B: Definability of the profile log-EL

Discussions of the properties of the ELRT statistic are not meaningful if the
profile log-EL �̃n(ξ) is not well defined. In fact, in some situations, the con-
strained maximization has no solution [18]. Such an “empty-set” problem can
be an issue, but there are methods in the literature to overcome this obstacle
[10, 23, 36]. In this Appendix, we show that our �̃n(ξ) does not suffer from the
“empty-set” problem under two additional mild conditions. The first condition
restricts our attention to quantile values {ξr : r ∈ I} in the range

min
j

xrj < ξr < max
j

xrj .

The second requires one of the components of q(x) to be monotone in x, in
addition to a component being 1. All of our examples satisfy these conditions.

To define the profile log-EL �̃n(ξ), we must have some pkj > 0 and θr such
that ∑

k,j

pkj exp(θ
�
r q(xkj)) = 1, r = 0, 1, . . . ,m,

∑
k,j

pkj exp(θ
�
r q(xkj))[1(xkj ≤ ξr)− τr] = 0, r ∈ I.

We work on the most general case where I contains all populations, and without
loss of generality let d = 2. The above expressions are equivalent to (including
r = 0 and allowing θ0 �= 0)∑

k,j

pkj exp(θ
�
r q(xkj))[1(xkj ≤ ξr)] = τr,
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k,j

pkj exp(θ
�
r q(xkj))[1(xkj > ξr)] = 1− τr.

Let θ�
r = (θr1, θr2), and q�(x) = (q1(x), q2(x)) where q1(x) ≡ 1 and q2(x) is

monotone in x. We can rewrite the equations as∑
k,j

pkj exp {θ′r1 + θr2[q2(xkj)− q2(ξr)]} [1(xkj ≤ ξr)] = τr,∑
k,j

pkj exp {θ′r1 + θr2[q2(xkj)− q2(ξr)]} [1(xkj > ξr)] = 1− τr,

with θ′r1 = θr1 + θr2q2(ξr). For notational simplicity, we retain the notation θr1
instead of θ′r1 in what follows.

Let p∗kj be any set of non-negative values such that
∑

k,j p
∗
kj = 1. Define

Ar(θr2) =
∑
k,j

p∗kj exp {θr2[q2(xkj)− q2(ξr)]} [1(xkj ≤ ξr)]

Br(θr2) =
∑
k,j

p∗kj exp {θr2[q2(xkj)− q2(ξr)]} [1(xkj > ξr)].

Since q2(x) is a monotone increasing function in x, Ar(θr2) is decreasing in
θr2 and Br(θr2) is increasing in θr2. Thus, we have

lim
θr2→−∞

Ar(θr2) = ∞, lim
θr2→∞

Ar(θr2) = 0;

lim
θr2→−∞

Br(θr2) = 0, lim
θr2→∞

Br(θr2) = ∞.

These imply that the ratio Ar(θr2)/Br(θr2) is decreasing in θr2 and that

lim
θr2→−∞

Ar(θr2)/Br(θr2) = ∞, lim
θr2→∞

Ar(θr2)/Br(θr2) = 0.

By the intermediate value theorem, there must exist a value θ∗r2 such that

Ar(θ
∗
r2)/Br(θ

∗
r2) = τr/(1− τr).

Let θ∗r1 = − log {Ar(θ
∗
r2) +Br(θ

∗
r2)}. We note that p∗kj and θ∗

r = (θ∗r1, θ
∗
r2)

�

form a solution to the system. Hence, a solution to the system always exists.
We may shift the solution to set θ0 = 0 if required. Validity in the general case

of d > 2 is implied by setting the other entries of θr to the value 0. Therefore, we
have shown that our profile log-EL �̃n(ξ) does not suffer from the “empty-set”
problem under mild conditions.
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