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Abstract: The Horseshoe is a widely used and popular continuous shrink-
age prior for high-dimensional Bayesian linear regression. Recently, regu-
larized versions of the Horseshoe prior have also been introduced in the
literature. Various Gibbs sampling Markov chains have been developed
in the literature to generate approximate samples from the corresponding
intractable posterior densities. Establishing geometric ergodicity of these
Markov chains provides crucial technical justification for the accuracy of
asymptotic standard errors for Markov chain based estimates of posterior
quantities. In this paper, we establish geometric ergodicity for various Gibbs
samplers corresponding to the Horseshoe prior and its regularized variants
in the context of linear regression. First, we establish geometric ergodicity of
a Gibbs sampler for the original Horseshoe posterior under strictly weaker
conditions than existing analyses in the literature. Second, we consider the
regularized Horseshoe prior introduced in [18], and prove geometric ergod-
icity for a Gibbs sampling Markov chain to sample from the corresponding
posterior without any truncation constraint on the global and local shrink-
age parameters. Finally, we consider a variant of this regularized Horseshoe
prior introduced in [15], and again establish geometric ergodicity for a Gibbs
sampling Markov chain to sample from the corresponding posterior.
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1. Introduction

Consider the linear model y = Xβ + σε, where y ∈ R
n is the response vector,

X is the n × p design matrix, β ∈ R
p is the vector of regression coefficients, ε

is the error vector with i.i.d. standard normal components, and σ2 is the error
variance. The goal is to estimate the unknown parameters (β, σ2). In modern
applications, datasets where the number of predictors p is much larger than the
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sample size n are commonly encountered. A standard approach for meaningful
statistical estimation in these over-parametrized settings is to assume that only
a few of the signals are prominent (the others are small/insignificant). This is
mathematically formalized by assuming that the underlying regression coeffi-
cient vector is sparse. In the Bayesian paradigm, this assumption of sparsity is
accommodated either by choosing spike-and-slab priors (mixture of point mass
at zero and an absolutely continuous density) or absolutely continuous shrinkage
priors which selectively shrink the small/insignificant signals.

A variety of useful shrinkage priors have been proposed in the literature (see
[2, 4, 19] and the references therein), and the Horseshoe prior ([4]) is a widely
used and highly popular choice. The Horseshoe prior for linear regression is
specified as follows.

β | λ, σ2, τ2 ∼ Np(0, σ
2τ2Λ)

λi ∼ C+(0, 1) independently for i = 1, 2, · · · , p
τ2 ∼ πτ (·) σ2 ∼ Inverse-Gamma(a, b) (1.1)

where Nd denotes the d-variate normal density, Λ is a diagonal matrix with
diagonal entries given by the entries

{
λ2
j

}p
j=1

, Inverse-Gamma(a, b) denotes the

Inverse-Gamma density with shape parameter a and rate parameter b, C+(0, 1)
is the half-Cauchy density on R+, and πτ refers to the marginal prior density of
τ . The vector λ = (λ2

j )
p
j=1 is referred to as the vector of local (component-wise)

shrinkage parameters, while τ2 is referred to as the global shrinkage parameter.
The resulting posterior distribution for (β, σ2) is intractable in the sense that

closed form computations or i.i.d. sampling from this distribution are not feasi-
ble. Several Gibbs sampling Markov chains have been proposed in the literature
to generate approximate samples from the Horseshoe posterior, see for example
([1, 7, 13]).

The fact that parameter values which are far away from zero are not regu-
larized at all due to the heavy tails is considered to be a key strength of the
Horseshoe prior. However, as pointed out in [18], this can be undesirable when
the parameters are only weakly identified. To address this issue, [18] introduced
the regularized Horseshoe prior, given by

βi | λ, σ2, τ2 ∼ Np

(
0,

(
1

c2
+

1

λ2
i τ

2

)−1

σ2

)
independently for i = 1, 2, · · · , p

λi ∼ C+(0, 1)independently for i = 1, 2, · · · , p
τ2 ∼ πτ (·) σ2 ∼ Inverse-Gamma(a, b)

Here c is a finite constant which controls additional regularization of all regres-
sion parameters (large and small). The original Horseshoe prior can be recovered
by letting c → ∞. [18] use a Hamiltonian Monte Carlo (HMC) based approach
to generate approximate samples from the corresponding regularized Horseshoe
posterior distribution. Also, any Gibbs sampler for the Horseshoe posterior can
be suitably adapted in the regularized setting.
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For any practitioner using Markov chain Monte Carlo, it is crucial to under-
stand the accuracy of the resulting MCMC based estimates by obtaining valid
standard errors for these estimates. The notion of geometric ergodicity plays an
important role in this endeavor, as explained below. Let (βm, σ2

m)m≥0 denote a
Harris ergodic Markov chain with the Horseshoe or regularized Horseshoe pos-
terior density, denoted by πH(· | y), as its stationary density. The Markov chain
is said to be geometrically ergodic if∥∥∥Km

β0,σ
2
0
−ΠH

∥∥∥
TV

≤ C
(
β0, σ

2
0

)
γm

for positive constants C
(
β0, σ

2
0

)
and γ ∈ [0, 1). Here Km

β0,σ
2
0
denotes the distri-

bution of the Markov chain started at (β0, σ
2
0) after m steps, ΠH denotes the

stationary distribution, and ‖ · ‖TV denotes the total variation norm. Suppose
we wish to evaluate the posterior expectation

EπH(·|y)g =

∫ ∫
g
(
β, σ2

)
πH

(
β, σ2 | y

)
dβdσ2

for a real-valued measurable function g of interest. Harris ergodicity guarantees
that the Markov chain based estimator

ḡm :=
1

m+ 1

m∑
i=0

g
(
βi, σ

2
i

)

is strongly consistent for Eπ(·|y)g. An estimate by itself, however, is not quite
useful without an associated standard error. All known methods to compute
consistent estimates (see for example [8, 6]) of the standard error for ḡm require
the existence of a Markov chain Central Limit Theorem (CLT) which establishes

√
m
(
ḡm − EπH(·|y)g

)
→ N (0, σ2

g),

for σ2
g ∈ (0,∞). In turn, the standard approach for establishing a Markov chain

CLT requires proving geometric ergodicity of the underlying Markov chain. To
summarize, proving geometric ergodicity helps rigorously establish the asymp-
totic validity of CLT based standard error estimates used by MCMC practition-
ers.

Establishing geometric ergodicity for continuous state space Markov chains
encountered in most statistical applications is in general a very challenging
task. For a significant majority of Markov chains in statistical applications,
the question of whether they are geometrically ergodic or not has not been re-
solved, although there have been some success stories. In the context of Markov
chains arising in Bayesian shrinkage, geometric ergodicity of Gibbs samplers
corresponding to various shrinkage priors such as the Bayesian lasso, Normal-
Gamma, Dirichlet-Laplace and double Pareto priors has been recently estab-
lished in ([10, 17, 16]).

Results for the Horseshoe prior remained elusive until very recently. The
marginal Horseshoe prior on entries of β (integrating out λ, given τ2) has an
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infinite spike near zero and significantly heavier tails than the shrinkage priors
mentioned above. This structure, while making it very attractive for sparsity se-
lection, implicitly creates a lot of complications and challenges in the geometric
ergodicity analysis using drift and minorization techniques. Recently, the au-
thors in [7] derived a two-block Gibbs sampler for the Horseshoe posterior (the
‘exact algorithm’ in [7, Section 2.1], henceforth referred to as the JOB Gibbs
sampler), and established geometric ergodicity ([7, Theorem 14]). However, the
truncation assumptions needed for this result are rather restrictive, requiring all
the local shrinkage parameters λ2

i to be bounded above by a finite constant, and
also requiring the global shrinkage parameter τ2 to be bounded above and below
by finite positive constants. In parallel work ([3], uploaded on arXiv less than a
month prior to our submission) geometric ergodicity for the JOB Gibbs sampler
has now been established without requiring truncation of the local shrinkage pa-
rameters. However, the requirement of the global shrinkage parameter τ2 to be
bounded above and below remains.

Contribution #1: The first contribution of this paper is the proof of ge-
ometric ergodicity for a Horseshoe Gibbs sampler (see Theorem 2.1) with no
truncation assumptions on the local shrinkage parameters, and with the global
shrinkage parameter only required to be truncated below by a finite positive con-
stant and to have a finite δth prior moment for some δ > 0.00081. Hence, the
conditions required for our geometric ergodicity result are strictly weaker than
those in [7] and [3]. In fact, as discussed in Remark 2.1, the assumption of trun-
cation below by a positive constant can be further relaxed to existence of the
negative (p+ δ)/2th prior moment for some δ > 0.00162.

The Gibbs sampler analyzed in Theorem 2.1 is a slight modification of the
JOB Gibbs sampler with latent variables introduced to simplify conditional
sampling of the local shrinkage parameters in the Markov chain (see Section 2
for more details). There are also important differences in the technical arguments
compared to [7, 3]. We focus on the λ-block of the Gibbs sampler and establish
a drift condition (Lemma 2.1) using a drift function which is ‘unbounded off
compact sets’, and that directly leads to geometric ergodicity. On the other
hand, the approaches in [7, 3] use other drift functions (using all the parameters
or a different parameter block than λ) which are not unbounded off compact
sets, and hence need an additional minorization argument.

Next we move to the regularized Horseshoe setting of [18]. As mentioned
previously, [18] use a Hamiltonian Monte Carlo (HMC) based approach to gen-
erate approximate samples from the corresponding regularized Horseshoe pos-
terior distribution, but do not investigate geometric ergodicity of the proposed
Markov chain. It is not clear whether the intricate sufficient conditions needed
for geometric ergodicity of HMC chains in [11] apply to the HMC chain in [18].
Given the variety of efficient Gibbs samplers available for the original Horseshoe
posterior, it is natural to consider an appropriately adapted version of any of
these samplers for the regularized Horseshoe posterior.

Contribution #2: As the second main contribution of this paper, we estab-
lish geometric ergodicity for one such Gibbs sampler for the regularized Horse-
shoe posterior (see Theorem 3.1) with no truncation assumptions on the global
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and local shrinkage parameters at all. The seemingly minor change in the prior
structure (compared to the original Horseshoe), leads to crucial changes in our
convergence analysis. For example, we need a different drift function for this
analysis (Lemma 3.1) compared to the original Horseshoe analysis. This drift
function is not ‘unbounded off compact sets’, and hence we need an additional
minorization condition (Lemma 3.2) to establish geometric ergodicity.

Recently, [15] construct a further variant of the regularized Horseshoe prior
of [18] by changing the algebraic form of the conditional prior density of β for
computational simplicity. Their prior specification is as follows.

π
(
βj , λ

2
j | τ2, σ2

)
∝ 1√

τ2λ2
j

exp

[
−

β2
j

2σ2

(
1

c2
+

1

τ2λ2
j

)]
π� (λj)

independently for j = 1, 2, · · · , p
τ2 ∼ πτ (·) σ2 ∼ Inverse-Gamma(a, b)

The algebraic modification, in particular removal of the (c−2 + (λiτ)
−2)1/2 in

the conditional prior for βi simplifies posterior computation (see Section 3.3 for
more details). [15] prove geometric ergodicity for the related but structurally
different setting of Polya-Gamma logistic regression assuming that the global
shrinkage parameter τ2 is bounded above and below by finite positive constants.
However, as discussed in Remark 3.1, several details of this analysis break down
in the linear regression setting.

Contribution #3: We focus on the linear regression setting, and leverage
our analysis in the original Horseshoe setting to prove geometric ergodicity
of a Gibbs sampler corresponding to [15]’s regularized variant with the global
shrinkage parameter only required to be bounded below by a finite positive
constant and to have a finite (p+ δ)/2th moment for some δ > 0.00162.

The rest of the paper is structured as follows. We introduce the modified
version of the JOB Gibbs sampler in Section 2.1. Geometric ergodicity of this
Gibbs sampler is established in Section 2.2. The simulation study in Section 2.3
compares the computational time and other metrics for the JOB Gibbs sam-
pler and the proposed modification in a variety of settings. An adaptation of the
Horseshoe Gibbs sampler for the regularized Horseshoe posterior is developed in
Section 3.1. The geometric ergodicity of this regularized Horseshoe Gibbs sam-
pler is established in Section 3.2. A related Gibbs sampler for the regularized
Horseshoe variant of [15] is discussed and analyzed in Section 3.3. Another sim-
ulation study in Section 3.4 examinies the computational feasibility/scalability
of the Gibbs samplers analyzed in Sections 3.1 and 3.3. The proofs of several
technical results used in the analysis are contained in an Appendix.
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2. Geometric ergodicity of a Horseshoe Gibbs sampler

2.1. A modified version of the JOB Gibbs sampler

In this section, we describe in detail the Horseshoe Gibbs sampler that will be
analyzed in subsequent sections. As pointed out in [13], if

λ2
j | νj ∼ Inverse-Gamma(1/2, 1/νj)

and νj ∼ Inverse-Gamma(1/2, 1), then λj ∼ C+(0, 1). Using this fact, with
ν = (ν1, ν2, · · · , νp), the Horseshoe prior in (1.1) can be alternatively written as

β | λ, σ2, τ2 ∼ Np(0, σ
2τ2Λ)

λ2
i | ν ∼ Inverse-Gamma(1/2, 1/νi) independently for i = 1, 2, · · · , p

νi ∼ Inverse-Gamma(1/2, 1) independently for i = 1, 2, · · · , p
τ2 ∼ πτ (·), σ2 ∼ Inverse-Gamma(a, b) (2.1)

Using the prior above and after straightforward calculations, various conditional
posterior distributions can be derived as follows.

β|σ2, τ2,λ, ν, y ∼ Np(A
−1XTy, σ2A−1)

σ2
∣∣ τ2,λ, ν, y ∼ Inverse-Gamma

⎛
⎝a+

n

2
,
yT

(
In − P̃X

)
y

2
+ b

⎞
⎠

λ2
j

∣∣ν, σ2, τ2,β,y ∼ Inverse-Gamma

(
1,

1

νj
+

β2
j

2σ2τ2

)
indep. for j=1, 2, · · · , p

νj |λ, τ2,y ∼ Inverse-Gamma

(
1, 1 +

1

λ2
j

)
indep. for j=1, 2, · · · , p

τ2
∣∣λ, y ∼ π

(
τ2
∣∣λ, y) ∝

(
yT (In−P̃X)y

2 + b

)−(a+n
2 )

√
|Ip +XTX.Λ∗|

· πτ (τ
2) (2.2)

where Λ∗ = τ2Λ; A = XTX+Λ−1
∗ and P̃X = XA−1XT .

Consider a two-block Gibbs sampling Markov chain with transition ker-
nel Kaug (with blocks (β, σ2,ν, τ2) and λ) whose one-step transition from
(β0, σ

2
0 ,ν0, τ

2
0 ,λ0) to (β, σ2,ν, τ2,λ) is given as follows.

1. Draw (β, σ2,ν, τ2) from π(β, σ2,ν, τ2 | λ0,y). This can be done by se-
quentially drawing β, then σ2, then ν, and then τ2 from appropriate
conditional posterior densities in (2.2).

2. Draw λ from π(λ | β, ν, σ2, τ2,y). This can be done by independently
drawing the components of λ from the appropriate full conditional poste-
rior density in (2.2).
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The JOB Gibbs sampler from [7] is very similar to the above two-block Gibbs
sampler Kaug. The difference is that the latent variables ν are not used, and
the two blocks used in the JOB Gibbs sampler are (β, σ2, τ2) and λ. While the
sampling steps for β, σ2, τ2 are exactly the same as above, the components of λ
are sampled differently. In particular, each λj is sampled from the conditional
density given βj , σ

2, τ2,y (no conditioning on νj). This conditional density is not
a standard density, and draws are made using a rejection sampler. To summarize,
by considering the latent variables ν, we replace the p rejection sampler based
draws from a non-standard density in the JOB Gibbs sampler (for components
of λ) with 2p draws from standard Inverse-Gamma densities (for components
of λ and ν).

The Gibbs sampler Kaug can essentially be considered a hybrid of the JOB
Gibbs sampler and the Gibbs sampler in [13], which uses a latent variable ξ (in
addition to ν) to replace the draws from the non-standard π(τ2 | λ,y) den-
sity with two draws from standard Inverse-Gamma densities. As mentioned in
the introduction, the geometric ergodicity result for the JOB Gibbs sampler in
[7, Theorem 14] has been established by assuming that the local shrinkage pa-
rameters in λ are all bounded above, and the global shrinakge parameter τ2 is
bounded above and below. In very recent follow-up work [3], the authors estab-
lish geometric ergodcity for a class of Half-t Gibbs samplers of which the JOB
Gibbs sampler is a member. In this work, the truncation assumption on the local
shrinkage parameters has been removed, but the global shrinkage parameter is
still assumed to be truncated above and below. However, we show below that
geometric ergodicity for the hybrid Gibbs sampler Kaug can be established with
no truncation at all on the local shrinkage parameters in λ, and only assuming
that the global shrinkage parameter τ2 is truncated below.

The reasons for this improved analysis of the hybrid chain Kaug lie in the
intricacies of drift and minorization approach ([21]), which is the state of the
art technique for proving geometric ergodicity for general state space Markov
chains. The introduction of the latent variables ν, the resulting Inverse-Gamma
posterior conditionals for entries of λ and ν, and avoiding the latent variable
ξ for the global shrinkage parameter τ2 provide just the right ingredients for
establishing a geometric drift condition in Section 2.2 which is then leveraged
to establish geometric ergodicity. Even a minor deviation in the structure of the
Markov chain (such as in the JOB Gibbs sampler or the Gibbs sampler of [13])
leads to a breakdown of the intricate argument.

Before proceeding further, we note that geometric ergodicity of a two-block
Gibbs sampler can be established by showing that any of its two marginal chains
is geometrically ergodic (see for example [20]). Hence, we focus on the marginal
λ-chain corresponding toKaug. The one-step transition dynamics of this Markov
chain from λm to λm+1 is given as follows:

1. Draw τ2 from π
(
τ2
∣∣λm,y

)
2. Draw ν from π

(
ν|λm, τ2,y

)
=
∏p

j=1 Inverse-Gamma
(
1, 1 + 1

λ2
j;m

)
3. Draw σ2 from π

(
σ2
∣∣ τ2,λm,ν,y

)
= Inverse-Gamma

(
a + n

2 ,
yT (In−P̃X)y

2
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+ b

)
4. Draw β from π

(
β|σ2, τ2,λm,ν,y

)
= Np(A

−1XTy, σ2A−1)
5. Finally draw λm+1 from

π
(
λ|β, ν, σ2, τ2,y

)
=

p∏
j=1

Inverse-Gamma

(
1,

1

νj
+

β2
j

2σ2τ2

)

The Markov transition density (MTD) corresponding to the marginal λ-chain
is given by

k (λ0,λ)=

∫
R+

∫
R+

∫
Rp

∫
R

p
+

π
(
λ|β, ν, σ2, τ2,y

)
π
(
β, ν, σ2, τ2

∣∣λ0,y
)
dνdβdσ2dτ2

=

∫
R+

∫
R+

∫
Rp

∫
R

p
+

π
(
λ|β, ν, σ2, τ2,y

)
π
(
β|σ2, τ2,λ0,ν,y

)
× π

(
σ2
∣∣ τ2,λ0,ν,y

)
π
(
ν|λ0, τ

2,y
)
π
(
τ2
∣∣λ0,y

)
dνdβdσ2dτ2 (2.3)

We now establish a drift condition for the marginal λ-chain, which will then
be used to establish geometric ergodicity for the two-block Horseshoe Gibbs
sampler Kaug.

2.2. A drift condition for the λ-chain

Consider the function V : Rp
+ 
→ [0,∞) given by

V (λ) =

p∑
j=1

(
λ2
j

) δ0
2 +

p∑
j=1

(
λ2
j

)− δ1
2 , (2.4)

where δ0, δ1 ∈ (0, 1) are some constants. The next result establishes a geometric
drift condition for the marginal λ-chain using the function V with appropriately
small values of δ0 and δ1.

Lemma 2.1. Suppose the prior density πτ for the global shrinkage parameter
is truncated below i.e., πτ (u) = 0 for u < T for some T > 0 and satisfies∫ ∞

T

uδ/2πτ (u)du < ∞

for some δ ∈ (0.00162, 0.22176). Then, there exist δ0, δ1 ∈ (0, 1) such that for
every λ0 ∈ R

p
+ we have

E [V (λ)|λ0] =

∫
R

p
+

k (λ0,λ)V (λ)dλ ≤ γ∗V (λ0) + b∗ (2.5)

with 0 < γ∗ = γ∗ (δ0, δ1) < 1 and b∗ = b∗ (δ0, δ1) < ∞.
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Proof. Note that by linearity

E [V (λ)|λ0] =

p∑
j=1

E

[(
λ2
j

) δ0
2

∣∣∣∣λ0

]
+

p∑
j=1

E

[(
λ2
j

)− δ1
2

∣∣∣∣λ0

]
(2.6)

We first consider terms in the second sum in (2.6). Fix j ∈ {1, 2, · · · , p} arbi-
trarily. It follows from the definition of the MTD (2.3) that

E

[(
λ2
j

)− δ1
2

∣∣∣∣λ0

]
= E[E[E[E[E[

(
λ2
j

)− δ1
2 | β, ν, σ2, τ2,y] | σ2, τ2,λ0,ν,y]

| τ2,λ0,ν,y] | λ0, τ
2,y] | λ0,y]. (2.7)

The five iterated expectations correspond to the five conditional densities in
(2.3). Starting with the innermost expectation, and using the fact that 1/λ2

j

(conditioned on β, ν, σ2, τ2,y) follows a Gamma distribution with shape pa-
rameter 1 and rate parameter 1/νj + β2

j /(2σ
2τ2), we obtain

E

[(
λ2
j

)− δ1
2

∣∣∣∣β, ν, σ2, τ2,y

]
= Γ

(
1 +

δ1
2

)(
1

νj
+

β2
j

2σ2τ2

)− δ1
2

= Γ

(
1 +

δ1
2

)⎛⎜⎜⎜⎝ 1

νj
+

1{
(2σ2τ2)

δ1
2

|βj |δ1

} 2
δ1

⎞
⎟⎟⎟⎠

− δ1
2

Note that the function y 
→
(
c+ y−

2
δ1

)−δ1/2

on (0,∞) is concave for c > 0, δ1 ∈
(0, 1). Applying the second iterated expectation, and using Jensen’s inequality,
it follows that

E

[
E

[(
λ2
j

)− δ1
2

∣∣∣∣β, ν, σ2, τ2,y

]∣∣∣∣σ2, τ2,λ0,y

]

≤ Γ

(
1 +

δ1
2

)⎛⎜⎜⎜⎝ 1

νj
+

1{
E

[
(2σ2τ2)

δ1
2

|βj |δ1

∣∣∣∣σ2, τ2, λ0,ν,y

]} 2
δ1

⎞
⎟⎟⎟⎠

− δ1
2

(2.8)

Note that the conditional distribution of βj given σ2, τ2,λ0,ν,y is a Gaussian

distribution with variance σ2
j

def
= σ2eTj A

−1ej ≥ σ2
(
ω̄ + 1

τ2λ2
j;0

)−1

. Here ω̄ is the

maximum eigenvalue of XTX and ej is the p × 1 vector with jth entry 1 and
other entries equal to 0. Using Proposition A1 from [16] regarding the negative
moments of a Gaussian random variable and choosing δ1 ∈ (0, 1), it follows that

E

⎡
⎣ (2σ2τ2

) δ1
2

|βj |δ1

∣∣∣∣∣∣σ2, τ2,λ0,ν,y

⎤
⎦ ≤

(
2σ2τ2

) δ1
2
Γ
(
1−δ1
2

)
2

1−δ1
2

√
2πσδ1

j
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≤
Γ
(
1−δ1
2

)
√
π

(
ω̄τ2 +

1

λ2
j;0

) δ1
2

(2.9)

Combining (2.8) and (2.9), we obtain

E

[
E

[(
λ2
j

)− δ1
2

∣∣∣∣β, ν, σ2, τ2,y

]∣∣∣∣σ2, τ2,λ0,y

]

≤ Γ

(
1 +

δ1
2

)
⎛
⎜⎜⎜⎜⎜⎝

1

νj
+

1{
Γ( 1−δ1

2 )√
π

(
ω̄τ2 + 1

λ2
j;0

) δ1
2

} 2
δ1

⎞
⎟⎟⎟⎟⎟⎠

− δ1
2

.

Using the fact (u+ v)
δ ≤ uδ + vδ for δ ∈ (0, 1) and u, v ≥ 0, it follows that

E

[
E

[(
λ2
j

)− δ1
2

∣∣∣∣β, ν, σ2, τ2,y

]∣∣∣∣σ2, τ2,λ0,y

]

≤ Γ

(
1 +

δ1
2

)⎛⎜⎜⎜⎝ 1

νj
+

1{
Γ( 1−δ1

2 )√
π

(
ω̄

δ1
2 (τ2)

δ1
2 +

(
λ2
j;0

)− δ1
2

)} 2
δ1

⎞
⎟⎟⎟⎠

− δ1
2

.(2.10)

Note that the bound in (2.10) does not depend on σ2. Again, using the fact

that y 
→
(
c+ y−

2
δ1

)−δ1/2

on (0,∞) is concave for c > 0, δ1 ∈ (0, 1), along with

Jensen’s inequality, we get

E

⎡
⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎝ 1

νj
+

1{
Γ( 1−δ1

2 )√
π

(
ω̄

δ1
2 (τ2)

δ1
2 +

(
λ2
j;0

)− δ1
2

)} 2
δ1

⎞
⎟⎟⎟⎠

− δ1
2

∣∣∣∣∣∣∣∣∣∣
τ2,λ0,y

⎤
⎥⎥⎥⎥⎦

≤

⎛
⎜⎜⎜⎝ 1{

E

[
ν

δ1
2

j

∣∣∣∣ τ2, λ0,y

]} 2
δ1

+
1{

Γ( 1−δ1
2 )√
π

(
ω̄

δ1
2 (τ2)

δ1
2 +

(
λ2
j;0

)− δ1
2

)} 2
δ1

⎞
⎟⎟⎟⎠

− δ1
2

Since νj (given τ2, λ0,y) has an Inverse-Gamma distribution with shape param-
eter 1 and rate parameter 1 + 1/λ2

j;0, it follows that
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E

⎡
⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎝ 1

νj
+

1{
Γ( 1−δ1

2 )√
π

(
ω̄

δ1
2 (τ2)

δ1
2 +

(
λ2
j;0

)− δ1
2

)} 2
δ1

⎞
⎟⎟⎟⎠

− δ1
2

∣∣∣∣∣∣∣∣∣∣
τ2,λ0,y

⎤
⎥⎥⎥⎥⎦ =

⎛
⎜⎜⎜⎜⎜⎝

1{
Γ
(
1− δ1

2

) (
1+ 1

λ2
j;0

) δ1
2

} 2
δ1

+
1{

Γ( 1−δ1
2 )√
π

(
ω̄

δ1
2 (τ2)

δ1
2 +

(
λ2
j;0

)− δ1
2

)} 2
δ1

⎞
⎟⎟⎟⎟⎟⎠

− δ1
2

.

(2.11)

Let us now take the expectation of the expression in (2.11) with respect to the
conditional distribution of τ2 given λ0,y. Using for a third time the fact that

y 
→
(
c+ y−

2
δ1

)−δ1/2

on (0,∞) is concave for c > 0, δ1 ∈ (0, 1), along with

Jensen’s inequality, we get

E

⎡
⎢⎢⎢⎣
⎛
⎜⎜⎝ 1{

Γ(1−δ1
2 )

(
1+ 1

λ
δ1
j;0

)} 2
δ1

+ 1{
Γ( 1−δ1

2 )
√

π

(
ω̄

δ1
2 (τ2)

δ1
2 +(λ2

j;0)
−δ1

2

)} 2
δ1

⎞
⎟⎟⎠

− δ1
2

∣∣∣∣∣∣∣∣∣
λ0,y

⎤
⎥⎥⎥⎦

≤

⎛
⎜⎜⎝ 1{

Γ(1−δ1
2 )

(
1+ 1

λ
δ1
j;0

)} 2
δ1

+ 1{
Γ( 1−δ1

2 )
√

π

(
ω̄

δ1
2 E

[
(τ2)

δ1
2

∣∣∣∣λ0,y

]
+(λ2

j;0)
−δ1

2

)} 2
δ1

⎞
⎟⎟⎠

− δ1
2

(�)

≤

⎛
⎜⎜⎝ 1{

Γ(1−δ1
2 )

(
1+ 1

λ
δ1
j;0

)} 2
δ1

+ 1{
Γ( 1−δ1

2 )
√

π

(
ω̄

δ1
2 C1+

1

λ
δ1
j;0

)} 2
δ1

⎞
⎟⎟⎠

− δ1
2

≤
(
C0+

1

λ
δ1
j;0

)(
1

{Γ(1−δ1
2 )}

2
δ1

+
√
π

2
δ1

{Γ( 1−δ1
2 )}

2
δ1

)− δ1
2

; C0 = max
{
1, ω̄

δ1
2 C1

}
(2.12)

where (�) follows from Proposition B.1, and C1 is as defined in Proposition
B.1. Combining (2.7), (2.8), (2.10), (2.11) and (2.12), we get

E

⎡
⎣ p∑

j=1

(
λ2
j

)− δ1
2

∣∣∣∣∣∣λ0

⎤
⎦ ≤ γ (δ1)

p∑
j=1

(
λ2
j;0

)− δ1
2 + b1 (2.13)



12 S. Bhattacharya et al.

where

γ (δ1) = Γ

(
1 +

δ1
2

)⎛⎝ 1{
Γ
(
1− δ1

2

)} 2
δ1

+

√
π

2
δ1{

Γ
(
1−δ1
2

)} 2
δ1

⎞
⎠

− δ1
2

and
b1 = p · C0 · γ (δ1) .

Next consider E

[∑p
j=1

(
λ2
j

) δ0
2

∣∣∣∣λ0

]
. Fix a j ∈ {1, 2, · · · , p} arbitrarily. Since

δ0 ∈ (0, 1), using the fact that (u+ v)δ0 ≤ uδ0 + vδ0 for u, v ≥ 0 we get

E

[(
λ2
j

) δ0
2

∣∣∣∣β, ν, σ2, τ2,y

]
= Γ

(
1− δ0

2

)(
1

νj
+

β2
j

2σ2τ2

) δ0
2

≤ Γ

(
1− δ0

2

)⎛⎝ 1

ν
δ0
2

j

+
|βj |δ0

(2σ2τ2)
δ0
2

⎞
⎠ .

For j = 1, 2, · · · , p, we denote

μj = eTj A
−1
0 XTy (2.14)

where A0 = XTX+ (τ2Λ0)
−1.

It follows that

E

[
E

[(
λ2
j

) δ0
2

∣∣∣∣β, ν, σ2, τ2,y

]∣∣∣∣σ2, τ2,λ0,y

]

≤Γ

(
1− δ0

2

)
E

⎡
⎣
⎛
⎝ 1

ν
δ0
2

j

+
|βj |δ0

(2σ2τ2)
δ0
2

⎞
⎠
∣∣∣∣∣∣σ2, τ2,λ0,y

⎤
⎦

=Γ

(
1− δ0

2

)⎛⎝E

⎡
⎣ 1

ν
δ0
2

j

∣∣∣∣∣∣σ2, τ2,λ0,y

⎤
⎦+E

[
|βj |δ0

(2σ2τ2)
δ0
2

∣∣∣∣∣σ2, τ2,λ0,y

]⎞⎠

≤Γ

(
1− δ0

2

)(
Γ

(
1 +

δ0
2

)
+E

[
|βj − μj |δ0

(2σ2τ2)
δ0
2

∣∣∣∣∣σ2, τ2,λ0,y

]
+

|μj |δ0

(2σ2τ2)
δ0
2

)
;

≤Γ

(
1− δ0

2

)(
Γ

(
1 +

δ0
2

)
+

Γ
(
1+δ0
2

)
√
π

λδ0
j;0 +

|μj |δ0

(2σ2τ2)
δ0
2

)

(��)

≤ Γ

(
1− δ0

2

)(
Γ

(
1 +

δ0
2

)
+

Γ
(
1+δ0
2

)
√
π

λδ0
j;0 +

T ∗

(2σ2)
δ0
2

)
,

for some T ∗ > 0. Here (��) follows from Proposition A.5 (see Appendix A)
and the fact that τ2 is supported on [T,∞). Hence,

E

[(
λ2
j

) δ0
2

∣∣∣∣λ0

]
= E

[
E

[
E

[(
λ2
j

) δ0
2

∣∣∣∣β, ν, σ2, τ2,y

]∣∣∣∣σ2, τ2,λ0,y

]∣∣∣∣λ0,y

]
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≤Γ

(
1− δ0

2

)(
Γ

(
1 +

δ0
2

)
+

Γ
(
1+δ0
2

)
√
π

λδ0
j;0 +E

[
T ∗

(2σ2)
δ0
2

∣∣∣∣∣λ0,y

])

=Γ

(
1− δ0

2

)
×(

Γ

(
1 +

δ0
2

)
+

Γ
(
1+δ0
2

)
√
π

λδ0
j;0 +E

[
E

[
T ∗

(2σ2)
δ0
2

∣∣∣∣∣ τ2,λ0,y

]∣∣∣∣∣λ0,y

])

≤Γ

(
1− δ0

2

)(
Γ

(
1 +

δ0
2

)
+

Γ
(
1+δ0
2

)
√
π

λδ0
j;0 +

T ∗

(2b)
δ0
2

·
Γ
(
a+ n+δ0

2

)
Γ
(
a+ n

2

)
)

It follows that

E

⎡
⎣ p∑

j=1

(
λ2
j

) δ0
2

∣∣∣∣∣∣λ0

⎤
⎦ ≤ γ (δ0)

p∑
j=1

(
λ2
j;0

) δ0
2 + b2 (2.15)

where

γ (δ0) = Γ

(
1− δ0

2

)
Γ
(
1+δ0
2

)
√
π

and

b2 = p · Γ
(
1− δ0

2

)
Γ

(
1 +

δ0
2

)
T ∗

(2b)
δ0
2

·
Γ
(
a+ n+δ0

2

)
Γ
(
a+ n

2

) .

The result follows by combining (2.13) and (2.15) with

γ∗ = max {γ (δ0) , γ (δ1)}

and
b∗ = b1 + b2.

Note that γ∗ = max {γ (δ0) , γ (δ1)} < 1 for small enough choices of δ0 and δ1,
for example δ0, δ1 ∈ (0.00162, 0.22176).

Remark 2.1. Note that the only place in the proof of Lemma 2.1 where we

need τ2 to be truncated below is to show that E

[(
τ2
)− δ0

2 | λ0,y

]
is uniformly

bounded in λ0. In Proposition B.2, we show this follows by assuming the weaker
condition that the prior negative (p+ δ0)/2

th moment for τ2 is finite.

We now explain why the geometric drift condition established in Theorem 2.1
for the marginal λ-chain implies geometric ergodicity of the two-block Horseshoe
Gibbs sampler Kaug. Note that for every d ∈ R, the set

B (V, d) =

⎧⎨
⎩λ ∈ R

p
+ : V (λ) =

p∑
j=1

(
λ2
j

) δ0
2 +

p∑
j=1

(
λ2
j

)− δ1
2 ≤ d

⎫⎬
⎭
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is a compact set. Since k(λ0,λ) is continuous in λ0, a standard argument using
Fatou’s lemma along with Theorem 6.0.1 of [14] can be used to establish that
the marginal λ-chain is unbounded off petite sets. Lemma 15.2.8 of [14] then
implies geometric ergodicity of the marginal λ-chain. Using Lemma 2.4 in [5]
now gives the following result.

Theorem 2.1. Suppose the prior density πτ for the global shrinkage parameter
is truncated below i.e., πτ (u) = 0 for u < T for some T > 0 and satisfies∫ ∞

0

uδ/2πτ (u) du < ∞

for some δ ∈ (0.00162, 0.22176). Then the two-block Horseshoe Gibbs sampler
with transition kernel Kaug is geometrically ergodic. The assumption of trunca-
tion below (i.e., T > 0) can be replaced by the weaker assumption that T = 0 and
that the prior negative (p+δ)/2th moment for τ2 is finite for some δ > 0.00162.

Note that the above result establishes geometric ergodicity, which as de-
scribed earlier, helps rigorously establish the asymptotic validity of Markov
chain CLT based standard error estimates. However, if quantitative bounds on
the distance to stationarity are needed, then an additional minorization con-
dition needs to be established. For the sake of completeness, we derive such a
condition in Appendix C (see Lemma C.1).

Note that for Kaug, an exact sample from the conditional posterior density of
τ2 given λ needs to be drawn. However, π(τ2 | λ,y) is not a standard density.
Since we are looking at just a univariate draw, and it can be easily shown using
(2.2) that π(τ2 | λ,y) ≤ Cπτ (τ

2), one straightforward option is to use a re-
jection sampler. In high-dimensional settings, however, the rejection probability
might become too high. Another alternative is to use a simple discretization
based sample by transforming to a bounded range such as [0, 1] (for example by

using τ2 → τ2

τ2+1 ), but this again might become computationally expensive.
In their experiments, [7] consider neither of the above two alternatives for

the conditional sampling of τ2. Instead, they use a version where a Metropo-
lis sampler is used for the sampling of τ2. The geometric ergodicity of their
JOB sampler (using this Metropolis update), however, is established under the
restrictive assumption that each element of λ is bounded away from zero in
addition to τ2 being bounded above and below. More recently in [3], geometric
ergodicity for the JOB sampler is established without the lower bound constraint
on elements of λ, but with exact sampling of τ2 instead of the Metropolis step
(and τ2 bounded both above and below). Since changing from an exact to a
Metropolis draw for τ2 changes the structure of the underlying transition den-
sity, there is a gap between the geometric ergodicity results and the numerical
illustrations.

In our high-dimensional numerical illustrations (Section 2.3) we also use the
Metropolis update for τ2 for a direct comparison with the approach in [7] and
for computational simplicity. Hence, it is important to understand if the variant
of Kaug with a Metropolis update for τ2 is also geometrically ergodic.
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In particular, consider the two-block Metropolis-within-Gibbs chain with
transition kernel KMG,q with proposal density q whose transition from
(β0, σ

2
0 ,ν0, τ

2
0 ,λ0) to (β, σ2,ν, τ2,λ) is given as follows.

1. Draw λ from π(λ | β0,ν0, σ
2
0 , τ

2
0 ,y). This can be done by independently

drawing the components of λ from the appropriate full conditional poste-
rior density in (2.2).

2. • (Metropolis draw for τ2) Draw τ2
′ ∼ q(· | τ20 ) and U ∼ Uniform[0, 1]

independently. If

U ≤ π(τ2
′ | λ,y)q(τ20 | τ2′)

π(τ20 | λ,y)q(τ2′ | τ20 )

set τ2 = τ2
′
, else set τ2 = τ20 .

• Draw (β, σ2,ν) from π(β, σ2,ν, | τ2,λ0,y). This can be done by
sequentially drawing ν, then σ2, and then β from appropriate con-
ditional posterior densities in (2.2).

The next theorem first establishes a condition on the Metropolis proposal den-
sity q under which the Metropolis-within-Gibbs chain with kernel KMG,q is
geometrically ergodic. The next part of the theorem shows this condition is sat-
isfied for three natural choices of the proposal density, including the one used
by [7] in their experiments.

Theorem 2.2. Assume that the conditions in Theorem 2.1 hold, i.e., πτ (u) = 0
for u < T for some T > 0 and satisfies∫ ∞

0

uδ/2πτ (u) du < ∞

for some δ ∈ (0.00162, 0.22176).

(a) The Metropolis-within-Gibbs sampler with transition kernel KMG,q is geo-
metrically ergodic if

sup
τ2
curr,τ

2′∈[T,∞)

πτ (τ
2′)

q(τ2′ | τ2curr)
< ∞.

(b) The condition in part (a) is satisfied if

(i) q(τ2
′ | τ2) = πτ (τ

2′) (independence Metropolis).

(ii) Random walk Metropolis for ξ = 1
τ2 , where the proposal ξ′ = 1/τ2

′

is drawn from N(ξcurr, v
2). Here ξcurr = 1/τ2curr, τ

2
curr is the current

value of τ2, v2 is an arbitrary positive constant, and πξ (prior density
for ξ = 1/τ2) is chosen to be the N(0, v2) density truncated to (0, 1/T ]
(so that πτ is truncated to [T,∞)).

(iii) Random walk Metropolis for ζ = log(τ2), where the proposal ζ ′ =

log(τ2
′
) is drawn from the N

(
ζ∗curr, v

2
)
distribution (where ζ∗curr =
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log
(
(τ2curr ∨ 1) ∧ (1/T )

)
). Here τ2curr is the current value of τ2, v2 is

an arbitrary positive constant, and πτ is chosen to be the Lognormal(0,
v2) density (truncated to [T,∞)).

Proof :

(a) We start by adapting the arguments in [9] to the current more general
setting, and showing that geometric ergodicity of KMG,q follows if an (in-
termediate) supremum is shown to be finite. Let θ = (β, σ2,ν, τ2) and Θ
denote the corresponding parameter space. Consider the marginal transi-
tion kernel Kθ

MG,q whose transition from (β0, σ
2
0 ,ν0, τ

2
0 ) to (β, σ2,ν, τ2)

is obtained by drawing λ as in Step 1 of the KMG,q transition, and then
drawing (β, σ2,ν, τ2) as in Step 2 of the KMG,q transition. It follows that
Kθ

MG,q is de-initializing for KMG,q (see [20]). Hence, it is enough to show

that Kθ
MG,q is geometrically ergodic. It follows from the definition of KMG,q

(in particular the Metropolis step for τ2) that

Kθ
MG,q(θ0, A) ≥

∫
Θ

h(θ0,θ)dθ

where

h(θ0,θ) =

∫
R

p
+

π(λ | θ0,y)min

(
π(τ2 | λ,y)q(τ20 | τ2)
π(τ20 | λ,y)q(τ2 | τ20 )

, 1

)
q(τ2 | τ20 )×

π(β, σ2,ν | λ, τ2,y)dλ.

Denote w
(
τ2, τ20 ,λ

)
= π(τ2|λ,y)

q(τ2|τ2
0 )

. Using the definition of h, we get that

h(θ0,θ)

=

∫
R

p
+

π(λ | θ0,y)min

(
1

w (τ20, τ2,λ)
,

1

w (τ2, τ20,λ)

)

×π(τ2 | λ,y)π(β, σ2,ν | λ, τ2,y)dλ

≥ 1

sup
τ2
0 ,τ

2∈[T,∞),λ∈R
p
+

w (τ2, τ20 ,λ)
×

∫
R

p
+

π(λ | θ0,y)π(τ
2 | λ,y)π(β, σ2,ν | λ, τ2,y)dλ

for all θ0,θ ∈ Θ. The second factor in the last equation is the transition
density of the θ-marginal kernel for Kaug (which is de-initializing for Kaug).
By Theorem 2.1, it follows that the θ-marginal kernel for Kaug is geometri-
cally ergodic. Finally, since the θ-marginal kernels for Kaug and KMG,q are
both reversible, by Theorem 1 in [9], it is enough to show

sup
τ2,τ2

0∈[T,∞),λ∈R
p
+

w
(
τ2, τ20 ,λ

)
< ∞
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to establish geometric ergodicity of KMG,q. Note that for arbitrary τ2curr, τ
2′

≥ T and λ ∈ R
p
+, we have

q(τ2
′ | τ2curr)w

(
τ2

′
, τ2curr,λ

)
πτ (τ2

′)

≤
(

b

yTy + b

)−(a+n
2 )

1√
|Ip+XTX·τ2′Λ|

I[τ2′≥T ]

∞∫
T

1√
|Ip+XTX·τ2Λ|

πτ (τ2) dτ2

≤
(

b

yTy + b

)−(a+n
2 )

1√
|Λ−1+τ2′·XTX|

I[τ2′≥T ]

T ′∫
T

1√
|Λ−1+τ2·XTX|

πτ (τ2) dτ2
; for any T ′ ∈ (T,∞)

≤
(

b

yTy + b

)−(a+n
2 )

1√
|Λ−1+T ·XTX|

T ′∫
T

1√
|Λ−1+T ′·XTX|

πτ (τ2) dτ2

= K̃

√
| Λ−1 + T ′ ·XTX |
| Λ−1 + T ·XTX |

; K̃ =

(
b

yTy+b

)−(a+n
2 )

T ′∫
T

πτ (u)du

= K̃

√
| In + T ′ ·XΛXT |
| In + T ·XΛXT | ; by the Matrix determinant formula

= K̃

√√√√ n∏
j=1

(
1 + T ′ · wj

1 + T · wj

)
; w′

js are eigenvalues of XΛXT

≤ K̃

√(
T ′

T

)n

< ∞;

since the function w 
→ 1+T ′·w
1+T ·w is increasing on (0,∞) for T < T ′ and

limw→∞
1+T ′·w
1+T ·w = T ′

T . This establishes part (a) of the result.
(b) (i) For independent Metropolis the ratio in (a) becomes 1 and the condi-

tion is trivially satisfied.

(ii) In this setting, straightforward calculations show that

q(τ2
′ | τ2curr) =

1

(τ2′)2
√
2πv2

exp

(
− 1

2v2

(
1

(τ2′)2
− 1

(τ2curr)2

)2
)

and

πτ (τ
2′) =

1

(τ2′)2
√
2πv2

exp

(
− 1

2v2

(
1

(τ2′)2

)2
)
T ∗1{τ2′≥T}
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where T ∗ = (Φ(1/T ) − 1/2)−1 and Φ is the standard normal cdf. It
follows that

sup
τ2
curr,τ

2′∈[T,∞)

πτ (τ
2′)

q(τ2′ | τ2curr)

= T ∗ sup
τ2
curr,τ

2′∈[T,∞)

exp

(
1

2v2(τ2curr)
2
− 1

v2τ2′τ2curr

)

≤ T ∗ exp

(
1

2v2T 2

)
< ∞.

(iii) In this setting, straightforward calculations show that

q(τ2
′ | τ2curr) =

1

τ2′
√
2πv2

exp

(
−
(log(τ2

′
)− log

(
(τ2curr ∨ 1) ∧ T

)
)2

2v2

)

and

πτ (τ
2′) =

1

τ2′
√
2πv2

exp

(
− (log(τ2

′
))2

2v2

)
T ∗∗1{τ2′≥T};

where T ∗∗ = (1− Φ(log T ))−1. It follows that

sup
τ2
curr,τ

2′∈[T,∞)

πτ (τ
2′)

q(τ2′ | τ2curr)

= T ∗∗ sup
τ2
curr,τ

2′∈[T,∞)

exp

(
(log

(
(τ2curr ∨ 1) ∧ (1/T )

)
)2

2v2

)
×

exp

(
−
log(τ2

′
) log

(
(τ2curr ∨ 1) ∧ (1/T )

)
v2

)

≤ T ∗∗ exp

(
3(log T )2

2v2

)
< ∞.

2.3. A simulation study

The objective of this study is to examine the practical feasibility/scalability of
the Gibbs sampler described and analyzed in Sections 2.1 and 2.2 by comparing
its computational performance with the JOB Gibbs sampler. Following [7], we
will use the Metropolis-within-Gibbs version of both chains. We consider two
simulation settings for our numerical illustration/study. In Setting 1, we use a
random walk Metropolis step (as specified in Theorem 2.2 part (b) (iii)) for
log(τ2) for both the proposed sampler and the JOB sampler. The sample size n
is set to be 100 and the number of predictors p is set to be 500. In Setting 2, we



Geometric ergodicity for the Horseshoe 19

use an independence Metropolis step (as specified in Theorem 2.2 part (b) (i))
for τ2 for both the proposed sampler and the JOB sampler. The sample size n
is set to be 100 and the number of predictors p is set to be 750.

For both settings, the first 10 entries of the “true” regression coefficient vector
β0 := (β0

1 , . . . , β
0
p) are specified as β0

j = 2sj where s′js are a sequence of equally
spaced values in the interval (−1, 3), and the other entries are set to zero. The
entries of the design matrix X are generated independently from N (0, 1). Then,
we generate the response vector y from the model y = Xβ0+ ε where the error
vector ε has i.i.d. normal entries with mean 0 and standard deviation 0.1.

We generate 10 data sets from each of the above simulation settings (so 20
datasets in all), and run both the Gibbs samplers on each of these 10 data sets.
For a fair comparison, both algorithms were implemented in R. The simula-
tions were run on a machine with a 64 bit macOS Catalina operating system,
8 GB RAM and a 1.6 GHz processor. Note that from a computational point
of view, the only difference between the proposed Gibbs sampler and the JOB
sampler is that the former uses 2p draws from a standard (Gamma) distribution
(for λ and ν), whereas the latter uses p rejection sampling based draws from a
non-standard distribution (for λ). Hence, one would expect the proposed Gibbs
sampler to be faster than the JOB sampler (per iteration). For an R implemen-
tation in particular, the 2p Gamma draws can be performed really efficiently
using just two rgamma commands (one for the p components of λ and another
for the p components of ν). This is indeed borne out by our simulation results.
To complete 6000 iterations (for Setting 1), the proposed sampler needed 541
seconds wall clock time on average (over the 10 data sets), while the JOB sam-
pler needed 721 seconds wall clock time on average. For Setting 2, the average
wall clock time for 6000 iterations were roughly 810 seconds (proposed sampler)
and 1025 seconds (JOB sampler).

The faster speed of the proposed sampler, however, might come at the cost
of higher autocorrelation due to the introduction of the augmented parameter
ν. Hence, for a balanced comparison we looked at the performance of these two
algorithms (in terms of the essential sample size and MCMC standard error)
under the same computational budget. For Setting 1, both algorithms are eval-
uated over a wall clock time window of 540 seconds each for all 10 data sets.
In the allotted time, the proposed Gibbs sampler was able to complete roughly
6000 iterations, and the JOB sampler is able to complete roughly 4600 itera-
tions for each of the 10 datasets. In the given time window, the essential sample
sizes and MCMC standard errors for the first ten components of β (which are
the only non-zero components in the true β0) for both algorithms are provided
in Table 1 and Table 2 respectively. For Setting 2, both algorithms are alloted
a wall clock time of 810 seconds, and corresponding essential sample size and
MCMC standard error values are provided in Table 3 and Table 4 respectively.

Note that both samplers aim to generate samples from the same posterior
distribution. It can be seen that in a large majority of the situations, the pro-
posed sampler leads to a higher effective sample size and lower standard error
than the JOB sampler with the same computational budget. To conclude, the
proposed sampler has asymptotic convergence/standard error guarantees under
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Table 1

EFFECTIVE SAMPLE SIZE COMPARISON

β1 β2 β3 β4 β5 β6 β7 β8 β9 β10

Dataset 1 (Prop.) 423 763 605 545 502 1078 280 255 73 473
Dataset 1 (JOB) 298 626 515 204 525 521 223 205 121 674
Dataset 2 (Prop.) 1067 1093 954 323 677 737 143 1178 151 817
Dataset 2 (JOB) 738 682 826 795 708 943 124 1041 175 1258
Dataset 3 (Prop.) 467 398 209 713 224 324 164 105 176 956
Dataset 3 (JOB) 336 167 233 376 217 224 159 116 220 482
Dataset 4 (Prop.) 989 1119 1323 1195 1008 1371 343 950 189 1071
Dataset 4 (JOB) 1012 748 790 801 473 740 678 799 186 967
Dataset 5 (Prop.) 261 175 618 652 402 581 312 119 188 218
Dataset 5 (JOB) 243 234 413 346 356 364 217 114 123 256
Dataset 6 (Prop.) 2101 986 259 565 786 606 859 129 2364 1928
Dataset 6 (JOB) 786 935 386 555 456 530 448 186 1637 1528
Dataset 7 (Prop.) 648 561 820 479 725 514 651 153 906 137
Dataset 7 (JOB) 459 531 564 448 358 486 171 147 966 138
Dataset 8 (Prop.) 861 382 662 1049 691 753 812 532 575 1193
Dataset 8 (JOB) 578 455 347 334 507 427 491 301 82 1155
Dataset 9 (Prop.) 533 384 494 290 413 853 670 609 481 1108
Dataset 9 (JOB) 445 244 502 320 224 823 410 788 393 1002
Dataset 10 (Prop.) 203 818 613 611 324 712 651 621 425 1169
Dataset 10 (JOB) 260 373 650 396 250 566 302 537 116 637

Effective sample size for the first 10 regression coefficients for the proposed sampler (Prop.)
and the JOB sampler (JOB) for 10 simulated datasets with n = 100 and p = 500. Both
algorithms are provided the same computational budget of 540 seconds (wall clock time)

each. All datasets are simulated from a ‘true’ linear regression model where only the first 10
regression coefficients are non-zero, and the entries of the design matrix X and the error
vector are all independent Gaussian (both the design matrix and the error vector are

generated separately for each dataset).

weaker conditions than the JOB sampler, and at the same time can provide
computationally competitive or superior performance as compared to the JOB
sampler.

3. Geometric ergodicity for regularized Horseshoe Gibbs samplers

3.1. A Gibbs sampler for the regularized Horseshoe

Recall from the introduction that the regularized Horseshoe prior developed in
[18] is given by

βi | λ2
i , σ

2, τ2 ∼ Np

(
0,

(
1

c2
+

1

λ2
i τ

2

)−1

σ2

)
independently for i = 1, 2, · · · , p

λi ∼ C+(0, 1)independently for i = 1, 2, · · · , p
τ2 ∼ πτ (·) σ2 ∼ Inverse-Gamma(a, b)

(3.1)

The only difference between this prior and the original Horseshoe prior in (1.1)
is the additional regularization introduced in the prior conditional variance of
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Table 2

MCMC STANDARD ERROR COMPARISON

β1 β2 β3 β4 β5 β6 β7 β8 β9 β10

Dataset 1 (Prop.) .012 .0083 .0094 .0125 .0103 .0067 .0180 .0147 .0482 .0047
Dataset 1 (JOB) .014 .009 .0101 .0211 .0098 .0098 .0217 .0185 .0363 .0036
Dataset 2 (Prop.) .0072 .0073 .0083 .0175 .0101 .0110 .0297 .0074 .0164 .0024
Dataset 2 (JOB) .0082 .0093 .0089 .0106 .0094 .0094 .0327 .0079 .0167 .0017
Dataset 3 (Prop.) .0106 .0137 .0181 .0097 .0166 .0173 .0207 .0340 .0208 .0033
Dataset 3 (JOB) .0121 .0208 .0171 .0131 .0167 .02 .0205 .0313 .0173 0.0053
Dataset 4 (Prop.) .0068 .0063 .0064 .0076 .0066 .0060 .0154 .0073 .0197 .0023
Dataset 4 (JOB) .0066 .0077 .0085 .0094 .0103 .0084 .0101 .0079 .0192 .0024
Dataset 5 (Prop.) .0174 .0198 .0104 .0099 .0131 .0104 .015 .0316 .0234 .0096
Dataset 5 (JOB) .0183 .0167 .0128 .0135 .0140 .0137 .0187 .0317 .0270 .0093
Dataset 6 (Prop.) .005 .008 .0176 .0113 .0092 .0108 .003 .0298 .0013 0.0014
Dataset 6 (JOB) .0083 .0082 .0141 .0110 .0119 .0116 .004 .0223 .0015 .0015
Dataset 7 (Prop.) .0087 .0099 .008 .0113 .0079 .0124 .0105 .0256 .0027 .0246
Dataset 7 (JOB) .0103 .0102 .0096 .0118 .0112 .0126 .0210 .0265 .0023 .0240
Dataset 8 (Prop.) .0066 .0101 .0085 .0058 .0073 .0087 .0072 .0101 .0106 .0016
Dataset 8 (JOB) .0084 .0094 .0121 .0106 .0088 .0115 .0096 .0141 .0352 .0019
Dataset 9 (Prop.) .0100 .0124 .0101 .0150 .0122 .0092 .0090 .0102 .0041 .0024
Dataset 9 (JOB) .0113 .0156 .0101 .0141 .0167 .0094 .0112 .0086 .0056 .0022
Dataset 10 (Prop.) .0152 .0071 .0075 .0075 .0109 .006 .0073 .0073 .0103 .0021
Dataset 10 (JOB) .0137 .0106 .0071 .0092 .0126 .0066 .0108 .0080 .0214 .0029

MCMC standard error for the first 10 regression coefficients for the proposed sampler
(Prop.) and the JOB sampler (JOB) for 10 simulated datasets with n = 100 and p = 500.
Both algorithms are provided the same computational budget of 540 seconds (wall clock

time) each. All datasets are simulated from a ‘true’ linear regression model where only the
first 10 regression coefficients are non-zero, and the entries of the design matrix X and the
error vector are all independent Gaussian (both the design matrix and the error vector are

generated separately for each dataset).

the βis through the constant c. As c → ∞ in (3.1), then one reverts back to the
original Horseshoe specification in (1.1).

Note that one of the salient features of the Horseshoe prior is the lack of
shrinkage/regularization of parameter values that are far away from zero. The
authors in [18] argue that while this feature is one of the key strengths of the
Horseshoe prior in many situations, it can be a drawback in settings where the
parameters are weakly identified. We refer the reader to [18] for a thorough
motivation and discussion of the properties and performance of this prior vis-
a-vis the Horseshoe prior. Our focus in this paper is to look at Markov chains
to sample from the resulting intractable regularized Horseshoe posterior, and
investigate properties such as geometric ergodicity.

The authors in [18] use Hamiltonian Monte Carlo (HMC) to generate sam-
ples from the posterior distribution. Geometric ergodicity of this HMC chain,
however, is not established. In recent work [11], sufficient conditions for geo-
metric ergodicity (or lack thereof) for general HMC chains have been provided.
However, these conditions, namely Assumptions A1, A2, A3 in [11], are rather
complex and intricate, and at least to the best of our understanding it is unclear
and hard to verify if these conditions are satisfied by the HMC chain in [18].

Given the host of Gibbs samplers available in the literature for the original
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Table 3

EFFECTIVE SAMPLE SIZE COMPARISON

β1 β2 β3 β4 β5 β6 β7 β8 β9 β10

Dataset 1 (Prop.) 727 521 164 116 329 729 95 1567 1131 2358
Dataset 1 (JOB) 544 418 693 662 202 467 158 926 590 2063
Dataset 2 (Prop.) 967 470 639 233 150 160 343 218 2538 2316
Dataset 2 (JOB) 267 293 285 240 115 96 728 126 1784 1143
Dataset 3 (Prop.) 1091 149 4043 783 370 429 487 145 3235 538
Dataset 3 (JOB) 347 487 525 507 402 376 634 99 2683 345
Dataset 4 (Prop.) 217 241 160 266 104 146 37 398 462 2400
Dataset 4 (JOB) 204 170 255 321 153 90 66 490 2295 2074
Dataset 5 (Prop.) 933 758 390 185 368 120 88 1787 660 639
Dataset 5 (JOB) 587 207 411 387 92 150 103 1198 571 393
Dataset 6 (Prop.) 316 645 591 265 197 150 462 2876 1121 1294
Dataset 6 (JOB) 204 440 264 160 210 138 286 694 613 1446
Dataset 7 (Prop.) 297 463 285 230 189 74 347 1446 1862 1142
Dataset 7 (JOB) 216 390 188 178 108 72 288 2684 3165 490
Dataset 8 (Prop.) 2471 1669 208 440 117 242 1565 2881 2392 1060
Dataset 8 (JOB) 688 895 247 278 69 136 309 2130 2832 2289
Dataset 9 (Prop.) 732 353 360 429 90 835 64 1376 3030 2347
Dataset 9 (JOB) 597 445 302 481 89 507 84 2231 2425 1471
Dataset 10 (Prop.) 783 595 620 44 129 143 1504 1130 1621 627
Dataset 10 (JOB) 384 257 251 197 144 63 721 1361 1283 601

Effective sample size for the first 10 regression coefficients for the proposed sampler (Prop.)
and the JOB sampler (JOB) for 10 simulated datasets with n = 100 and p = 750. Both
algorithms are provided the same computational budget of 810 seconds (wall clock time)

each. All datasets are simulated from a ‘true’ linear regression model where only the first 10
regression coefficients are non-zero, and the entries of the design matrix X and the error
vector are all independent Gaussian (both the design matrix and the error vector are

generated separately for each dataset).

Horseshoe posterior, it is natural to consider a Gibbs sampler to sample from
the regularized Horseshoe posterior as well. In fact, after introducing the aug-
mented variables {νj}pj=1, the following conditional posterior distributions can
be obtained after straightforward computations:

β|σ2, τ2,λ,y ∼ N
(
A−1

c XTy, σ2A−1
c

)

σ2
∣∣ τ2,λ,y ∼ Inverse-Gamma

(
a+

n

2
,
yT

(
In −XA−1

c XT
)
y

2
+ b

)

νj |λ2
j ,y ∼ Inverse-Gamma

(
1, 1 +

1

λ2
j

)
, independently for j = 1, 2, · · · , p

π
(
λ|β, ν, σ2, τ2,y

)
=

p∏
j=1

g
(
λ2
j

∣∣ νj , βj , σ
2, τ2,y

)
τ2
∣∣λ,y ∼ π

(
τ2
∣∣λ,y) (3.2)

where

g
(
λ2
j

∣∣ νj , βj , σ
2, τ2,y

)
∝
(

1

c2
+

1

τ2λ2
j

) 1
2 (

λ2
j

)− 3
2 exp

[
− 1

λ2
j

(
1

νj
+

β2
j

2σ2τ2

)]
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Table 4

MCMC STANDARD ERROR COMPARISON

β1 β2 β3 β4 β5 β6 β7 β8 β9 β10

Dataset 1 (Prop.) 0.0252 0.0148 0.0164 0.0496 0.0157 0.0171 0.0017 0.0053 0.0017 0.0019

Dataset 1 (JOB) 0.0112 0.0137 0.0093 0.0093 0.0207 0.0039 0.022 0.0019 0.0029 0.0012

Dataset 2 (Prop.) 0.0252 0.0148 0.0164 0.0496 0.0157 0.0171 0.0017 0.0053 0.0017 0.0019

Dataset 2 (JOB) 0.0132 0.0135 0.0135 0.014 0.0242 0.0316 0.0029 0.0152 0.0012 0.0014

Dataset 3 (Prop.) 0.0252 0.0148 0.0164 0.0496 0.0157 0.0171 0.0017 0.0053 0.0017 0.0019

Dataset 3 (JOB) 0.0153 0.0129 0.0105 0.0119 0.0119 0.0113 0.0027 0.0281 8e-04 0.0038

Dataset 4 (Prop.) 0.0252 0.0148 0.0164 0.0496 0.0157 0.0171 0.0017 0.0053 0.0017 0.0019

Dataset 4 (JOB) 0.0193 0.0199 0.0173 0.0142 0.0273 0.0219 0.0356 0.0028 9e-04 9e-04

Dataset 5 (Prop.) 0.0252 0.0148 0.0164 0.0496 0.0157 0.0171 0.0017 0.0053 0.0017 0.0019

Dataset 5 (JOB) 0.0103 0.018 0.0128 0.0114 0.0286 0.0168 0.0337 0.0016 0.0032 0.0039

Dataset 6 (Prop.) 0.0252 0.0148 0.0164 0.0496 0.0157 0.0171 0.0017 0.0053 0.0017 0.0019

Dataset 6 (JOB) 0.016 0.0096 0.0143 0.0201 0.0189 0.0147 0.0071 0.002 0.0031 0.0014

Dataset 7 (Prop.) 0.0252 0.0148 0.0164 0.0496 0.0157 0.0171 0.0017 0.0053 0.0017 0.0019

Dataset 7 (JOB) 0.0175 0.013 0.0176 0.0217 0.0255 0.0334 0.0095 8e-04 7e-04 0.003

Dataset 8 (Prop.) 0.0252 0.0148 0.0164 0.0496 0.0157 0.0171 0.0017 0.0053 0.0017 0.0019

Dataset 8 (JOB) 0.0088 0.0081 0.019 0.0148 0.042 0.0219 0.0047 0.001 8e-04 0.001

Dataset 9 (Prop.) 0.0252 0.0148 0.0164 0.0496 0.0157 0.0171 0.0017 0.0053 0.0017 0.0019

Dataset 9 (JOB) 0.0107 0.0125 0.0134 0.0104 0.0336 0.004 0.0365 0.0012 0.001 0.0012

Dataset 10 (Prop.) 0.0252 0.0148 0.0164 0.0496 0.0157 0.0171 0.0017 0.0053 0.0017 0.0019

Dataset 10 (JOB) 0.0145 0.0167 0.0177 0.0222 0.0204 0.0448 0.0029 0.0016 0.0017 0.0037

MCMC standard error for the first 10 regression coefficients for the proposed sampler (Prop.) and the JOB

sampler (JOB) for 10 simulated datasets with n = 100 and p = 750. Both algorithms are provided the

same computational budget of 810 seconds (wall clock time) each. All datasets are simulated from a ‘true’

linear regression model where only the first 10 regression coefficients are non-zero, and the entries of the

design matrix X and the error vector are all independent Gaussian (both the design matrix and the error

vector are generated separately for each dataset).

for j = 1, 2, · · · , p,

π
(
τ2
∣∣λ,y)

∝ |Ac|−
1
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⎩
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) 1
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(
yT

(
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c XT
)
y

2
+ b
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2 )

πτ

(
τ2
)

and Ac = XTX+
(
τ2Λ

)−1
+c−2Ip. Most of the above densities are standard and

can be easily sampled from. Very efficient rejection samplers based on mixtures
of two Inverse Gamma densities can be used to sample from the one-dimensional
non-standard densities g

(
λ2
j

∣∣ νj , βj , σ
2, τ2,y

)
(see Appendix D). The density

π
(
τ2
∣∣λ,y) is algebraically more complicated compared to the conditional λ2

j

density, and obtaining a Metropolis draw is computationally more attractive
and feasible than a direct rejection sampling based draw. Similar to the analysis
in the previous section, we will first analyze the setting where an exact sample
is generated from π

(
τ2
∣∣λ,y). We will then leverage this analysis to analyze the

Metropolis draw based setting.
Hence, we consider a two-block Gibbs sampler, whose one step-transition

from (β0, σ
2
0 ,ν0, τ

2
0 ,λ0) to (β, σ2,ν, τ2,λ) is given by sampling sequentially

from π(β, σ2,ν, τ2 | λ0,y) and π(λ | β, σ2,ν, τ2,y), can be used to generate
approximate samples from the regularized Horseshoe posterior. We will denote
the transition kernel of this two-block Gibbs sampler by Kaug,reg (analogous to
Kaug in the original Horseshoe setting).

Our goal now is to establish geometric ergodicity forKaug,reg. We will achieve
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this by focusing on the marginal λ-chain corresponding to Kaug,reg. The one-
step transition dynamics of this Markov chain from λm to λm+1 is given as
follows:

1. Draw τ2 from π
(
τ2
∣∣λm,y

)
2. Draw ν from π (ν|λm,y) =

∏p
j=1 Inverse-Gamma

(
1, 1 + 1

λ2
j;m

)
3. Draw σ2 from

π
(
σ2
∣∣ τ2,λm,y

)
= Inverse-Gamma

(
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n

2
,
yT

(
In −XA−1

c XT
)
y

2
+ b

)

4. Draw β from π
(
β|σ2, τ2,λm,y

)
= Np(A

−1
c XTy, σ2A−1

c )

5. Finally draw λm+1 from π
(
λ|β, ν, σ2, τ2,y

)
=

∏p
j=1 g

(
λ2
j

∣∣ νj , βj , σ
2,

τ2,y
)
.

The Markov transition density (MTD) corresponding to the marginal λ-chain
is given by

k (λ0,λ)

=

∫
R+

∫
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∫
Rp

∫
R

p
+

π
(
λ|β, ν, σ2, τ2,y

)
π
(
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∣∣λ0,y
)
dνdβdσ2dτ2

=

∫
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∫
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∫
R

p
+

π
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×
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)
π
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2,y
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π
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)
dνdβdσ2dτ2 (3.3)

3.2. Drift and minorization analysis for the regularized Horseshoe
λ-chain

The geometric ergodicity of the λ-chain will be established using a drift and mi-
norization analysis. However, given the modifications in the regularized Horse-
shoe posterior, the drift function V (λ) (see (2.4)) used for the original Horseshoe
does not work in this case. We will instead use another drift function Ṽ (λ) de-
fined by

Ṽ (λ) =

p∑
j=1

(
λ2
j

)− δ
2 ; for some constant δ ∈ (0, 1). (3.4)

As discussed previously, the function V (λ) is unbounded off petite sets and the
V -based drift condition in Lemma 2.1 is enough to guarantee geometric ergod-
icity for the original Horseshoe Gibbs sampler Kaug. A minorization condition
is only needed if one also wants to get quantitative convergence bounds for dis-
tance to stationarity. The function Ṽ however, is not unbounded off petite sets
since

B
(
Ṽ , d

)
=
{
λ ∈ R

p
+ : Ṽ (λ) ≤ d

}
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is not a compact subset of Rp
+ for d > 0. Hence, a drift condition with Ṽ needs

to be complemented with a minorization condition in order to establish geomet-
ric ergodicity (Theorem 3.1). We establish these two conditions respectively in
Sections 3.2.1 and 3.2.2 below. As opposed to the original Horseshoe setting, we
do not require that the prior density πτ is truncated below away from zero. Only
the existence of the δ/2th-moment is assumed for some δ ∈ (0.00162, 0.22176):
a very mild condition, satisfied for example by the commonly used half-Cauchy
density.

3.2.1. Drift condition

Lemma 3.1. Suppose
∫
R+

uδ/2πτ (u)du < ∞ for some δ ∈ (0.00162, 0.22176).

Then, there exist constants 0 < γ∗ = γ∗ (δ) < 1 and b∗ < ∞ such that

E
[
Ṽ (λ)

∣∣∣λ0

]
≤ γ∗Ṽ (λ0) + b∗ (3.5)

for every λ0 ∈ R
p
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Proof. Note that by linearity
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Fix j ∈ {1, 2, · · · , p} arbitrarily. It follows from the definition of the MTD (3.3)
that
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[
− 1

λ2
j

(
1
νj

+
β2
j

2σ2τ2

)]
dλ2

j

∞∫
0

(
1
c2 + 1

τ2λ2
j

) 1
2 (

λ2
j

)− 3
2 exp

[
− 1

λ2
j

(
1
νj

+
β2
j

2σ2τ2

)]
dλ2

j

+

∞∫
0

(
λ2
j

)− δ
2
(
λ2
j

)−2
exp

[
− 1

λ2
j

(
1
νj

+
β2
j

2σ2τ2

)]
dλ2

j

∞∫
0

(
λ2
j

)−2
exp

[
− 1

λ2
j

(
1
νj

+
β2
j

2σ2τ2

)]
dλ2

j

. (3.8)

The first term in the last inequality of (3.8) can be expressed as(
τ2
) δ

2

|c|
E
[
Xδ

]
E
[√

1
c2 +X2

]

where τ2X2 ∼ Gamma
(

1
2 ,

1
νj

+
β2
j

2σ2τ2

)
. Using Young’s inequality, it follows

that the first term is bounded above by

max {1, |c|}
|c|

√
δ
(
τ2
) δ

2 .

The second term in the last inequality of (3.8) is basically an Inverse-Gamma
expectation, and is exactly equal to

Γ
(
1 + δ

2

)
(

1
νj

+
β2
j

2σ2τ2

) δ
2

.

Hence, we get

E
[(

λ2
j

)− δ
2

∣∣∣β, ν, σ2, τ2,y
]
≤ max {1, |c|}

|c|
√
δ
(
τ2
) δ

2 +
Γ
(
1 + δ

2

)
(

1
νj

+
β2
j

2σ2τ2

) δ
2

.

Note that the conditional distribution of βj given σ2, τ2,λ0,ν,y is a Gaussian

distribution with variance σ2
j

def
= σ2eTj A

−1
c ej ≥ σ2

(
ω̄ + 1

c2 + 1
τ2λ2

j;0

)−1

. Here ω̄

is the maximum eigenvalue of XTX. Now, proceeding exactly with the analysis
from (2.9) to (2.13) in the proof of Lemma 2.1 with ω̄ replaced by ω̄ + c−2 and
using Proposition B.3 instead of Proposition B.1 yields

E

⎡
⎣ p∑

j=1

(
λ2
j

)− δ1
2

∣∣∣∣∣∣λ0

⎤
⎦ ≤ γ∗ (δ)

p∑
j=1

(
λ2
j;0

)− δ1
2 + b∗

with

γ∗ (δ) = Γ

(
1 +

δ

2

)⎛⎝ 1{
Γ
(
1− δ

2

)} 2
δ

+

√
π

2
δ{

Γ
(
1−δ
2

)} 2
δ

⎞
⎠

− δ
2



Geometric ergodicity for the Horseshoe 27

and

b∗ = p
max {1, |c|}

|c|
√
δC2 + p ·max

{
1, (ω̄ + c−2)

δ
2C2

}
· γ∗ (δ) .

Here C2 is as in Proposition B.3. It can be shown that γ∗ (δ) < 1 for δ ∈
(0.00162, 0.22176).
Hence, the required geometric drift condition has been established.

3.2.2. Minorization condition

As discussed previously, the drift function Ṽ is not unbounded off compact sets,
and the drift condition in Lemma 3.1 needs to be complemented by an associated
minorization condition to establish geometric ergodicity. Fix a d > 0. Define

B
(
Ṽ , d

)
=
{
λ ∈ R

p
+ : Ṽ (λ) ≤ d

}
(3.9)

We now establish the following minorization condition associated to the geo-
metric drift condition in Lemma 3.1.

Lemma 3.2. There exists a constant ε∗ = ε∗
(
Ṽ , d

)
> 0 and a density function

h on R
p
+ such that

k (λ0,λ) ≥ ε∗h (λ) (3.10)

for every λ0 ∈ B
(
Ṽ , d

)
.

Proof. Fix a λ0 ∈ B
(
Ṽ , d

)
arbitrarily. In order to prove (3.10) we will demon-

strate appropriate lower bounds for the conditional densities appearing in (3.3).
From (3.2) we have the following:

π
(
τ2
∣∣λ0,y

)
≥ ba+

n
2 ω

− p
2∗

(
1 +

1

τ2

)− p
2

|c|−p
(
yTy + b

)−(a+n
2 ) πτ

(
τ2
)
;

where ω∗ = max
{
ω̄ + c−2, d

2
δ

}
; (recall that ω̄ denotes the maximum eigenvalue

of XTX),

π
(
β|σ2, τ2,λ0,y

)
≥

(
2πσ2

)− p
2 |c|−p

× exp

[
−
(
β − Ω−1XTy

)T
Ω
(
β − Ω−1XTy

)
+ yTX

(
c2Ip − Ω−1

)
XTy

2σ2

]
;

where Ω = ω∗
(
1 + 1

τ2

)
Ip,

π
(
λ|β, ν, σ2, τ2,y

)
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=

p∏
j=1

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
1
c2 + 1

τ2λ2
j

) 1
2 (

λ2
j

)− 3
2 exp

[
− 1

λ2
j

(
1
νj

+
β2
j

2σ2τ2

)]
∞∫
0

(
1
c2 + 1

τ2λ2
j

) 1
2 (

λ2
j

)− 3
2 exp

[
− 1

λ2
j

(
1
νj

+
β2
j

2σ2τ2

)]
dλ2

j

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

≥
p∏

j=1

⎧⎪⎨
⎪⎩
(
τ2
)− 1

2
(
λ2
j

)−2
exp

[
− 1

λ2
j

(
1
νj

+
β2
j

2σ2τ2

)]
k∗
(√

νj +
σ2

√
τ2

β2
j

)
⎫⎪⎬
⎪⎭ ;

where k∗ = max
{√

π|c|−1, 2
}
, and

π (ν|λ0,y) ≥
p∏

j=1

{
ν−2
j exp

[
− 1

νj

(
1 + d

2
δ

)]}

π
(
σ2
∣∣ τ2,λ0,y

)
≥ ba+

n
2

Γ
(
a+ n

2

) (σ2
)−(a+n

2 )−1
exp

[
− 1

σ2

(
yTy

2
+ b

)]
.

(3.11)

Combining all the lower bounds provided above, it follows from (3.3) that

k (λ0,λ)

≥
(2π)

− p
2 b2(a+

n
2 )
(√

ω∗k
∗c2

)−p

(yTy + b)
a+n

2 Γ
(
a+ n

2

)
∫
R+

∫
R+

∫
Rp

∫
R

p
+

(
σ2
)−(a+n+p

2 )−1
p∏

j=1

⎧⎨
⎩

ν−2
j exp

[
− 1

νj

(
1 + d

2
δ + 1

λ2
j

)]
√
νj +

σ2
√
τ2

β2
j

⎫⎬
⎭

exp

[
−
(
β − Ω−1XTy

)T
Ω
(
β − Ω−1XTy

)
+ βT

(
τ2Λ

)−1
β

2σ2

]

p∏
j=1

{(
λ2
j

)−2
}
exp

[
− 1

σ2

(
yTy + yTX

(
c2Ip − Ω−1

)
XTy

2
+ b

)]

(
1 + τ2

)− p
2 πτ

(
τ2
)
dνdβdσ2dτ2

Now for the inner most integral wrt ν, substituting the lower bounds given in
Proposition B.6, induce the following lower bound on k (λ0,λ):

k (λ0,λ)

≥
(2π)

− p
2 b2(a+

n
2 )αp

(√
ω∗k

∗c2
)−p

(yTy + b)
a+n

2 Γ
(
a+ n

2

)
∫
R+

∫
R+

∫
Rp

(
σ2
)−(a+n+p

2 )−1
p∏

j=1

{(
λ2
j

)−2
}
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exp

[
−
(
β − Ω−1XTy

)T
Ω
(
β − Ω−1XTy

)
+ βT

(
τ2Λ

)−1
β

2σ2

]

p∏
j=1

⎧⎪⎨
⎪⎩
(
1 + 1

λ2
j

)−2

1 + σ2
√
τ2

β2
j

⎫⎪⎬
⎪⎭

exp

[
− 1

σ2

(
yTy + yTX

(
c2Ip − Ω−1

)
XTy

2
+ b

)](
1 + τ2

)− p
2

πτ

(
τ2
)
dβdσ2dτ2

where α is some positive constant (see Proposition B.6). For the inner most
integral wrt β we use the lower bound in Proposition B.7 and get the following:

k (λ0,λ)

≥
b2(a+

n
2 )αp

(√
ω∗k

∗|c|3
)−p

(yTy + b)
a+n

2 Γ
(
a+ n

2

)
∫
R+

∫
R+

(
σ2
)−(a+n

2 )−1
exp

[
− 1

σ2

(
yTy + 2yTX

(
c2Ip −M−1

τ2

)
XTy

2
+ b

)]

p∏
j=1

(
1 + λ2

j

)−2 × |Mτ2 |−1

(
1 +

√
τ2

c2

)−p (
1 + τ2

)− p
2 πτ

(
τ2
)
dσ2dτ2;

where Mτ2 is as in Proposition B.7. It follows that

k (λ0,λ)

≥
b2(a+

n
2 )αp

(√
ω∗k

∗|c|3
)−p

(yTy + b)
a+n

2 Γ
(
a+ n

2

) ∫
R+

∫
R+

(
σ2
)−(a+n

2 )−1

exp

[
− 1

σ2

(
yTy + 2c2yTXXTy

2
+ b

)]
p∏

j=1

(
1 + λ2

j

)−2 × |Mτ2 |−1

(
1 +

√
τ2

c2

)−p (
1 + τ2

)− p
2 πτ

(
τ2
)
dσ2dτ2,

since yTXM−1
τ2 XTy/σ2 ≥ 0. Next by virtue of the inverse-gamma integral, we

have ∫
R+

(
σ2
)−(a+n

2 )−1
exp

[
− 1

σ2

(
yTy + 2c2yTXXTy

2
+ b

)]
dσ2

=
Γ
(
a+ n

2

)
(

yTy+2c2yTXXTy
2 + b

)a+n
2
.
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This together with the fact that | Mτ2 |≤
(
1 + 1

τ2

)p∏p
j=1

(
ω∗ +

1
λ2
j

)
gives the

following lower bound:

k (λ0,λ)

≥
b2(a+

n
2 )αp

(√
ω∗k

∗|c|3
)−p

(yTy + b)
a+n

2

(
yTy+2c2yTXXTy

2 + b
)(a+n

2 )

p∏
j=1

⎧⎨
⎩(1 + λ2

j

)−2

(
ω∗ +

1

λ2
j

)−1
⎫⎬
⎭

∞∫
0

(
1 +

1

τ2

)−p
(
1 +

√
τ2

c2

)−p (
1 + τ2

)− p
2 πτ

(
τ2
)
dτ2

Further denoting η = max {1, ω∗} we get

k (λ0,λ) ≥ ε∗h (λ)

where

ε∗ =
b2(a+

n
2 )αp

(
2η2

√
ω∗k

∗|c|3
)−p

(yTy + b)
a+n

2

(
yTy+2c2yTXXTy

2 + b
)(a+n

2 )

Eπτ (τ2)

⎡
⎣(1 + 1

τ2

)−p
(
1 +

√
τ2

c2

)−p (
1 + τ2

)− p
2

⎤
⎦ ,

and h is a probability density on R
p
+ given by

h (λ) =

p∏
j=1

{
2η2λ2

j(
1 + ηλ2

j

)3 I(0,∞)

(
λ2
j

)}
,

and this completes the proof of minorization condition for the MTD k corre-
sponding to the regularized Horseshoe λ-chain.

The drift and minorization conditions in Lemma 3.1 and Lemma 3.2 can
be combined with Theorem 12 of [21] to establish geometric ergodicity of the
regularized Horseshoe Gibbs sampler which is stated as follows:

Theorem 3.1. Suppose the prior density πτ (·) for the global shrinkage param-
eter satisfies ∫

R+

uδ/2πτ (u)du < ∞

for some δ ∈ (0.00162, 0.22176). Then, the regularized Horseshoe Gibbs sampler
with transition kernel Kaug,reg is geometrically ergodic.

Similar to the original Horseshoe setting, it might be desirable in high-dimen-
sional settings to generate the conditional τ2 draws using a Metropolis-Hastings
step instead of a direct rejection sampling step. Hence, one might be interested
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in understanding the properties of the transition kernel KMGR,q which can be
defined by replacing the exact τ2 draw forKaug,reg with a Metropolis draw based
on a proposal density q (analogous to the definition of the Metropolis kernel
KMG,q for the original Horseshoe). The next theorem (similar to Theorem 2.2)
first establishes a condition on the Metropolis proposal density q under which
the Metropolis-within-Gibbs chain with kernel KMGR,q is geometrically ergodic.
The next part of the theorem shows this condition is satisfied for three natural
choices of the proposal density q.

Theorem 3.2. Assume that the conditions in Theorem 3.1 hold.

(a) The Metropolis-within-Gibbs sampler with transition kernel KMGR,q is ge-
ometrically ergodic if

sup
τ2
curr,τ

2′∈(0,∞)

πτ (τ
2′)

q(τ2′ | τ2curr)
< ∞.

(b) The condition in part (a) is satisfied if

(i) q(τ2
′ | τ2) = πτ (τ

2′) (independence Metropolis).

(ii) Random walk Metropolis for ξ = 1
τ2 , where the proposal ξ′ = 1/τ2

′

is drawn from N(ξ∗curr, v
2). Here ξ∗curr = 1/τ2curr ∨ T for any T > 0,

τ2curr is the current value of τ2, v2 is an arbitrary positive constant,
and πξ is chosen to be the N(0, v2) density (truncated to (0,∞)).

(iii) Random walk Metropolis for ζ = log(τ2), where the proposal ζ ′ =

log(τ2
′
) is drawn from the N

(
ζ∗curr, v

2
)
distribution. Here ζ∗curr =

log
(
(τ2curr ∨ 1) ∧ (1/T )

)
for any T > 0, τ2curr is the current value of

τ2, v2 is an arbitrary positive constant, and πτ is chosen to be the
Lognormal(0, v2) density (truncated to [T,∞)).

Note that unlike the original Horseshoe chain with kernel Kaug, the regularized
Horseshoe chain with kernel Kaug,reg does not require πτ to be truncated away
from 0 for proving geometric ergodicity. Theorem 3.2 shows that such a trunca-
tion is still not required for establishing geometric ergodicity of KMGR,q when
using a πτ based independence Metropolis draw or the random walk Metropolis
for 1/τ2. However, truncation of πτ away from zero is required to prove geo-
metric ergodicity of KMGR,q for the log-scale random walk Metropolis proposal
considered in Theorem 3.2.

Proof of Theorem 3.2: By exactly following the steps in the proof of part (a) of
Theorem 2.2, it is enough to show that

sup
τ2′,τ2

curr∈(0,∞),λ∈R
p
+

w
(
τ2

′
, τ2curr,λ

)
< ∞.

where w
(
τ2

′
, τ2curr,λ

)
= π(τ2′|λ,y)

q(τ2′|τ2
curr)

. Let D(τ2,λ) denote a diagonal matrix
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whose jth diagonal entry is given by c−2 + (τ2λj)
−1. It follows that

(
c−2

c−2 + eigmax(X
TX)

)p/2

≤
√
| D(τ2,λ) |√

| D(τ2,λ) +XTX |
≤ 1

for all τ2 ∈ (0,∞) and λ ∈ R
p
+, where eigmax(X

TX) denotes the maximum

eigenvalue of XTX. Hence, for arbitrary τ2curr, τ
2′ ∈ (0,∞) and λ ∈ R

p
+ we get

q(τ2
′ | τ2curr)w

(
τ2

′
, τ2curr,λ

)
πτ (τ2

′)
≤
(

b

yTy + b

)−(a+n
2 )

√
|D(τ2′,λ)|√

|D(τ2′,λ)+XTX|
∞∫
0

√
|D(τ2λ)|√

|D(τ2,λ)+XTX|
πτ (τ2) dτ2

≤
(

b

yTy + b

)−(a+n
2 )(c−2 + eigmax(X

TX)

c−2

)p/2

<∞.

The proof of part (b) follows is almost identical to that of Theorem 2.2 part (b)
with trivial adjustments.

3.3. Geometric ergodicity of a Gibbs sampler for the regularized
Horseshoe variant in [15]

The following variant of regularized Horseshoe shrinkage prior has been intro-
duced in [15].

π
(
βj , λj | τ2, σ2

)
∝ 1√

τ2λ2
j

exp

[
−

β2
j

2σ2

(
1

c2
+

1

τ2λ2
j

)]
π� (λj) ;

independently for j = 1, 2, · · · , p
σ2 ∼ Inverse-Gamma (a, b) ; τ2 ∼ πτ (·) (3.12)

where π� and πτ are probability densities. Note that based on the above speci-
fication

βj | λ2
j , τ

2, σ2 ∼ N

(
0,

(
1

c2
+

1

τ2λ2
j

))

identical to the specification in [18]. The difference is that instead λ, τ2 and σ2

having independent priors, we now have

π(λj | τ2, σ2) = c(τ2)

(
1 +

τ2λ2
j

c2

)−1/2

π�(λj), (3.13)

where

1/c(τ2) =

∫ ∞

0

(
1 +

τ2λ2
j

c2

)−1/2

π�(λj)dλj . (3.14)
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The principal motivation for the algebraic modification of the prior as compared
to that of [18] is the resulting simplification of the posterior computation, al-
though an alternative interpretation using fictitious data is also discussed in [15].
In fact, using π� to be the half-Cauchy density and using its representation in
terms of a mixture of Inverse-Gamma densities ([13]) the following conditional
posterior distributions can be obtained from straightforward computations after
augmenting the latent variables {νj}pj=1.

β|σ2, τ2,λ,y ∼ N
(
A−1

c XTy, σ2A−1
c

)
σ2|τ2,λ,y ∼ Inverse-Gamma

(
a+

n

2
,
yT

(
In −XA−1

c XT
)
y

2
+ b

)

νj |λ2
j ,y ∼ Inverse-Gamma

(
1, 1 +

1

λ2
j

)
, independently for j = 1, 2, · · · , p

τ2|λ,y ∼ π
(
τ2
∣∣λ,y)

λ2
j |νj , βj , σ

2, τ2,y ∼ Inverse-Gamma

(
1,

1

νj
+

β2
j

2σ2τ2

)
,

independently for j = 1, 2, · · · , p
(3.15)

where

π
(
τ2
∣∣λ,y) ∝ ∣∣τ2Ac

∣∣− 1
2

(
yT

(
In −XA−1

c XT
)
y

2
+ b

)−(a+n
2 )

πτ

(
τ2
)
c(τ2)p

and Ac = XTX+
(
τ2Λ

)−1
+c−2Ip. Most of the above conditional posterior den-

sities, including that for the local shrinkage parameters
{
λ2
j

}p
j=1

are standard

probability distributions (as opposed to the non-standard ones in the regular-
ized Horseshoe posterior in (3.2)) and can be easily sampled from. An efficient
Metropolis sampler for the non-standard (one-dimensional) density π

(
τ2
∣∣λ,y)

can be constructed similar to the one provided in Appendix D. Hence, a two-
block Gibbs sampler, whose one step-transition from
(β0, σ

2
0 ,ν0, τ

2
0 ,λ0) to (β, σ2,ν, τ2,λ) is given by sampling sequentially from

π(β, σ2,ν, τ2 | λ0,y) and π(λ | β, σ2,ν, τ2,y), can be used to generate approx-
imate samples from the regularized Horseshoe posterior in (3.15). We will denote
the Markov transition kernel of this two-block Gibbs sampler by K̃aug,reg (anal-
ogous to Kaug,reg in the regularized Horseshoe setting). The transition density
can be obtained by substituting the appropriate conditional posterior densities
in the expression (3.3).

Note that the above conditional posterior distributions are very similar to
that for the original Horseshoe Gibbs sampler Kaug given by (2.2) in Section 2.
The only differences are
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1. the matrix A appearing in (2.2) has been replaced by Ac (which is the
matrix A plus the added regularization introduced in the prior conditional
variance of β through the constant c) in (3.15), and

2. the form of the posterior conditional density of the global shrinkage pa-
rameter, namely, π

(
τ2
∣∣λ,y) is different due to the additional term c(τ2)p.

Theorem 3.3. Suppose the prior density of the global shrinkage parameter is
truncated below away from zero; that is, πτ (u) = 0 for u < T for some T > 0
and satisfies ∫ ∞

T

u
p+δ
2 πτ (u)du < ∞

for some δ ∈ (0.00162, 0.22176). Then, the regularized Horseshoe Gibbs sampler
corresponding to the transition kernel K̃aug,reg is geometrically ergodic.

The above theorem can be proved by essentially following verbatim the proof
of Lemma 2.1 (which establishes geometric ergodicity for Kaug) with the same
geometric drift function as in Lemma 2.1, and replacing the matrix A by the
matrix Ac at relevant places. However, appropriate modifications are needed
using the following two facts.

1. In the original Horseshoe setting, a uniform upper bound for the condi-
tional posterior means of β′

js (see (2.14) for definition) was established
in Proposition A.5 in Appendix A. However, in the current context, the
added regularization of c−2Ip in Ac immediately provides the uniform up-
per bound without need for additional analysis.

2. The conditional posterior density π
(
τ2
∣∣λ0,y

)
is different from the origi-

nal Horseshoe setting. Hence, the upper bound for the δ0/2
th moment of

this density for some δ0 ∈ (0.00162, 0.22176) (see (2.12)) needs to be in-
dependently established. We have provided this bound in Proposition B.4
of Appendix B. Due to the presence of the additional term c(τ2)p in the
conditional density, a stronger assumption of the existence of (p+ δ0)/2

th

moment is required (as compared to the δ0/2
th moment in Theorem 2.1

and Theorem 3.1).

Remark 3.1. In [15], the authors focus on Bayesian logistic regression for their
geometric ergodicity analysis. They use the regularized Horseshoe prior in (3.12)
without the parameter σ2 as their is no need for an error variance parameter
for the Binomial likelihood. However, for computational purposes, additional
parameters ω = {ωj}pj=1 with Polya-Gamma prior distributions are introduced.

A two-block Gibbs sampler with blocks (β,λ) and (ω, τ2) is then constructed and
its geometric ergodicity is then established assuming that the global shrinkage
parameter τ2 is bounded away from zero and infinity [15, Theorem 4.6].

Many details of this analysis break down when translating to the Bayesian
linear regression framework considered in our paper. The parameters ω are now
replaced by the error variance parameter σ2. One can still construct a two-block
Gibbs sampler with blocks (β,λ) and (σ2, τ2), but many conditional indepen-
dence and other algebraic niceties involving ω which are crucial in establishing
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the minorization condition in the logistic regression context, do not hold anal-
ogously with σ2 in the linear regression context. The structural differences also
imply that the drift condition with the function

∑p
j=1 |βj |−δ does not work out

in the linear regression setting.

Remark 3.2. The geometric ergodicity result (Theorem 3.3) corresponding to
the regularized Horseshoe variant in [15] requires truncation of the global shrink-
age parameter τ2 below away from zero. Such an assumption is not required for
the geometric ergodicity result (Theorem 3.1) corresponding to the regularized
Horseshoe of [18]. Also, due to the presence of the additional term (c(τ2))p in
π
(
τ2
∣∣λ0,y

)
, a stronger moment assumption is required for Theorem 3.3 as

compared to Theorem 3.1.

Remark 3.3. (Variant with Metropolis step for τ2): The transition ker-
nel KMGN,q, where the exact sampling step for τ2 in K̃aug,reg is replaced by a
Metropolis-Hastings step with proposal density q, is of interest in high-dimen-
sional settings. Geometric ergodicity of the Markov chain corresponding to
K̃MGN,q under the conditions in Theorem 3.3 and those on q in Theorem 3.2
can be established by essentially following the arguments in the proof of Theorem
3.2 with minor adjustments. The only additional complication is the presence
of the c(τ2)p term in π

(
τ2
∣∣λ,y). This can be dealt with by observing that

1 ≤ c(τ2) ≤ Cmax(1, τ) for an appropriate constant C, and using either (sym-
metrized) Generalized Inverse Gaussian choices for πξ, πζ in Part (b)(ii,iii) of
Theorem 3.2 or by truncating πτ above.

3.4. A simulation study

The primary objective of this study is to examine the practical feasibility/scala-
bility of the two regularized Horseshoe Gibbs samplers described in Sections
3.1 and 3.3. We consider a simulation setting with n = 100 samples and p =
750 variables. We generate 10 replicated datasets following exactly the same
procedure as outlined in Section 2.3. For each of these 10 datasets, we run four
Gibbs samplers each: the Gibbs sampler for the regularized Horseshoe in [18]
with c = 1 and c = 100, and the Gibbs sample for the regularized Horseshoe
variant in [15] with c = 1 and c = 100. For all samplers, for computational
convenience, we used a Metropolis step for sampling τ2 as described in Part
(b)(iii) of Theorem 3.1 (see also Remark 3.3).

All Markov chains were run for 5000 iterations. Cumulative average plots
and trace plots were used to monitor and confirm sufficient mixing of all the
Markov chains. In all the settings, and across all the replications, the Gibbs
samplers roughly needed 1000 seconds to complete the required 5000 iterations.
The essential sample sizes and MCMC standard errors based on 5000 iterations
for the first ten components of β (which are the only non-zero components in the
true β0) for various Gibbs samplers are provided in Tables 5, 6, 7, 8 and Tables
9, 10, 11, 12 respectively. Note that all the four Gibbs samplers considered here
correspond to different targeted posterior distributions.
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Table 5

EFFECTIVE SAMPLE SIZES: REGULARIZED HORSESHOE WITH c=1

β1 β2 β3 β4 β5 β6 β7 β8 β9 β10

Dataset 1 2008 2121 1368 1399 465 934 227 3824 2049 5618
Dataset 2 1813 215 687 208 61 88 306 320 2063 1414
Dataset 3 1211 750 1726 1760 625 55 502 177 3390 1631
Dataset 4 1337 2352 2497 1582 116 754 296 818 5015 3209
Dataset 5 1627 1600 1771 395 47 418 105 4368 1591 704
Dataset 6 441 1452 1075 159 118 50 742 545 2342 2007
Dataset 7 1084 1877 1588 2126 167 205 237 2848 5970 1555
Dataset 8 2399 3828 1232 1696 91 222 941 6634 1779 4801
Dataset 9 1975 1697 1369 1713 131 1909 133 3119 2530 4980
Dataset 10 3462 2532 2739 2294 373 264 1264 4109 1770 2347

Effective sample size for the first 10 regression coefficients for the proposed regularized
sampler with c = 1 for 10 simulated datasets with n = 100 and p = 750. A burn in of 200
was applied before calculating the effective sample sizes. All datasets are simulated from a

‘true’ linear regression model where only the first 10 regression coefficients are non-zero, and
the entries of the design matrix X and the error vector are all independent Gaussian (both

the design matrix and the error vector are generated separately for each dataset).

Table 6

EFFECTIVE SAMPLE SIZES: REGULARIZED HORSESHOE WITH c=100

β1 β2 β3 β4 β5 β6 β7 β8 β9 β10

Dataset 1 296 526 314 355 90 295 106 944 1560 1879
Dataset 2 560 303 253 272 237 131 343 147 2566 1314
Dataset 3 610 716 534 496 505 223 539 152 2899 1301
Dataset 4 250 104 152 314 66 144 46 303 1506 2211
Dataset 5 681 464 424 649 271 98 58 2232 747 386
Dataset 6 229 381 379 562 239 50 299 117 543 1954
Dataset 7 529 530 517 377 92 128 322 2832 3626 1332
Dataset 8 950 733 322 476 73 211 824 1638 990 945
Dataset 9 807 374 235 335 53 699 66 1167 1015 2574
Dataset 10 501 932 1064 508 56 106 1066 1213 1480 612

Effective sample size for the first 10 regression coefficients for the proposed regularized
sampler with c = 100 for 10 simulated datasets with n = 100 and p = 750. A burn in of 200
was applied before calculating the effective sample sizes. All datasets are simulated from a

‘true’ linear regression model where only the first 10 regression coefficients are non-zero, and
the entries of the design matrix X and the error vector are all independent Gaussian (both

the design matrix and the error vector are generated separately for each dataset).

We also tried to use the Hamiltonian Monte Carlo based algorithm for the
regularized Horseshoe in [18], as implemented in the R package hsstan. How-
ever, the maximum treedepth (set to 10) is exceeded in all of the 5000 iterations.
This issue persists even after warming up for up to 7000 iterations, and then
running for 5000 more iterations. As we understand, this indicates poor adap-
tation, and raises questions about adequate posterior exploration and mixing
of the Markov chain. A proposed remedy in this setting (Chapter 15.2 of the
Stan reference manual on mc-stan.org) is to increase the tree depth. The hsstan
function, however, did not allow us to pass the max treedepth or max depth as
a parameter and change its value. Anyway, from the point of view of scalability,
the time taken per iteration with maximum treedepth 10 was roughly one-third
as compared to the various Gibbs samplers. When the maximum treedepth is
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Table 7

EFFECTIVE SAMPLE SIZES: REGULARIZED HORSESHOE (NISHIMURA) WITH
c=1

β1 β2 β3 β4 β5 β6 β7 β8 β9 β10

Dataset 1 73 106 182 144 174 95 884 1034 2602 1061
Dataset 2 82 86 139 365 119 161 2767 227 1073 538
Dataset 3 65 75 61 288 41 82 342 403 1463 292
Dataset 4 91 95 137 247 104 97 2178 1519 2521 5093
Dataset 5 119 132 176 101 114 420 1452 926 990 2265
Dataset 6 102 87 124 198 111 481 249 2262 1453 489
Dataset 7 68 98 154 93 94 385 2965 721 1314 1770
Dataset 8 58 69 195 124 63 578 688 1767 188 12578
Dataset 9 103 141 268 257 196 93 1077 503 623 4821
Dataset 10 71 110 117 176 112 102 297 13000 4239 384

Effective sample size for the first 10 regression coefficients for the for the regularized sampler
proposed by Nishimura et.el. with c = 1 for 10 simulated datasets with n = 100 and p = 750.

All datasets are simulated from a ‘true’ linear regression model where only the first 10
regression coefficients are non-zero, and the entries of the design matrix X and the error
vector are all independent Gaussian (both the design matrix and the error vector are

generated separately for each dataset).

Table 8

EFFECTIVE SAMPLE SIZES: REGULARIZED HORSESHOE (NISHIMURA) WITH
c=100

β1 β2 β3 β4 β5 β6 β7 β8 β9 β10

Dataset 1 476 547 204 546 85 371 110 240 3320 4372
Dataset 2 455 217 347 263 68 97 84 1461 224 1025
Dataset 3 1890 338 708 719 392 149 990 571 2570 974
Dataset 4 855 737 442 686 338 671 455 2843 1655 2270
Dataset 5 570 468 883 563 316 372 1143 728 1282 801
Dataset 6 372 175 244 218 64 52 530 337 1732 901
Dataset 7 495 440 226 329 105 120 77 972 1848 422
Dataset 8 631 1011 613 325 227 126 2665 4139 2605 1293
Dataset 9 1176 447 497 329 113 140 784 629 3614 662
Dataset 10 246 130 154 224 687 96 768 268 2693 318

Effective sample size for the first 10 regression coefficients for the for the regularized sampler
proposed by Nishimura et.el. with c = 100 for 10 simulated datasets with n = 100 and

p = 750. All datasets are simulated from a ‘true’ linear regression model where only the first
10 regression coefficients are non-zero, and the entries of the design matrix X and the error

vector are all independent Gaussian (both the design matrix and the error vector are
generated separately for each dataset).

increased appropriately to resolve the issue pointed out above, it is very likely
that the time taken per iteration will be more than those of the Gibbs sam-
plers (increasing the tree-depth by 1 in the No U-turn HMC sampler effectively
doubles the computation time).

To conclude, the Gibbs samplers described in Sections 3.1 and 3.3 provide
practically feasible approaches which are computationally competitive with the
HMC based approach. The geometric ergodicity results in Theorems 3.1 and
3.3 help provide the practitioner with asymptotically valid standard error esti-
mates for corresponding MCMC based approximations to posterior quantities
of interest.
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Table 9

MCMC STANDARD ERRORS: REGULARIZED HORSESHOE WITH c=1

β1 β2 β3 β4 β5 β6 β7 β8 β9 β10

Dataset 1 0.0058 0.0056 0.0071 0.0066 0.0145 0.002 0.0106 4e-04 8e-04 5e-04
Dataset 2 0.0054 0.0187 0.0092 0.0184 0.0525 0.0398 0.0046 0.0061 0.0011 0.001
Dataset 3 0.0078 0.011 0.0059 0.0067 0.0118 0.048 0.0032 0.024 7e-04 0.0011
Dataset 4 0.0074 0.005 0.0055 0.0071 0.0274 0.0023 0.0084 0.0023 5e-04 7e-04
Dataset 5 0.0068 0.0068 0.007 0.0128 0.0706 0.0044 0.0243 6e-04 0.0013 0.0027
Dataset 6 0.0128 0.0066 0.0078 0.0246 0.0281 0.0538 0.0023 0.0036 8e-04 7e-04
Dataset 7 0.0072 0.0056 0.0066 0.0058 0.0253 0.0174 0.008 7e-04 5e-04 0.0011
Dataset 8 0.0049 0.0041 0.0089 0.006 0.03 0.0132 0.0015 4e-04 9e-04 4e-04
Dataset 9 0.0058 0.0064 0.0067 0.006 0.0169 0.0011 0.021 6e-04 7e-04 5e-04
Dataset 10 0.0049 0.0052 0.0052 0.0064 0.0064 0.0122 0.0016 6e-04 0.0011 9e-04

MCMC standard error for the first 10 regression coefficients for the proposed regularized
sampler with c = 1 for 10 simulated datasets with n = 100 and p = 750. A burn in of 200
was applied before calculating the effective sample sizes. All datasets are simulated from a

‘true’ linear regression model where only the first 10 regression coefficients are non-zero, and
the entries of the design matrix X and the error vector are all independent Gaussian (both

the design matrix and the error vector are generated separately for each dataset).

Table 10

MCMC STANDARD ERRORS: REGULARIZED HORSESHOE WITH c=100

β1 β2 β3 β4 β5 β6 β7 β8 β9 β10

Dataset 1 0.0135 0.01 0.0134 0.0121 0.032 0.0064 0.0264 0.0017 0.0015 0.0011
Dataset 2 0.0083 0.0129 0.0127 0.0131 0.0163 0.0283 0.005 0.0148 8e-04 0.0013
Dataset 3 0.0095 0.0091 0.0091 0.0111 0.0101 0.0147 0.0037 0.0208 8e-04 0.0014
Dataset 4 0.015 0.0218 0.0191 0.0139 0.0489 0.0199 0.044 0.0039 0.0011 9e-04
Dataset 5 0.0094 0.0108 0.0128 0.0085 0.015 0.021 0.0436 0.0011 0.0025 0.004
Dataset 6 0.0155 0.0119 0.0122 0.0093 0.0136 0.0454 0.005 0.0125 0.0027 8e-04
Dataset 7 0.0093 0.0094 0.0101 0.0127 0.0326 0.0238 0.0078 7e-04 7e-04 0.0014
Dataset 8 0.0068 0.0083 0.0155 0.0102 0.0415 0.0155 0.0024 9e-04 0.0015 0.0015
Dataset 9 0.0076 0.0114 0.015 0.0119 0.0457 0.003 0.04 0.0013 0.0014 8e-04
Dataset 10 0.0122 0.008 0.0075 0.0125 0.0325 0.0268 0.002 0.0015 0.0014 0.003

MCMC standard error for the first 10 regression coefficients for the proposed regularized
sampler (Prop.) with c = 100 for 10 simulated datasets with n = 100 and p = 750. A burn in
of 200 was applied before calculating the effective sample sizes. All datasets are simulated

from a ‘true’ linear regression model where only the first 10 regression coefficients are
non-zero, and the entries of the design matrix X and the error vector are all independent
Gaussian (both the design matrix and the error vector are generated separately for each

dataset).

Appendix A: Uniform bound on μj

The goal of this subsection is to show that μj = eTj A
−1
0 XTy defined in (2.14)

is uniformly bounded in λ0 (even when n < p). This result will be established
through a sequence of five propositions.

Proposition A.1. Let Λ ∈ R
p×p be any diagonal matrix with positive diago-

nal elements λ1, λ2, . . . , λp. Let X ∈ R
n×p be any matrix with rank r. Let the

singular value decomposition of X is X = UDV T where D ∈ R
r×r is diagonal

matrix with positive diagonal elements d1, . . . dr while U ∈ R
n×r and V ∈ R

p×r

are such that UTU = I and V TV = I. If λ ≤ min{λ1, . . . , λp} be any positive
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Table 11

MCMC STANDARD ERRORS: REGULARIZED HORSESHOE (NISHIMURA) WITH
c=1

β1 β2 β3 β4 β5 β6 β7 β8 β9 β10

Dataset 1 0.0665 0.0374 0.0277 0.0332 0.0325 0.0427 0.0035 0.0025 0.001 0.0019
Dataset 2 0.0567 0.0474 0.0301 0.0161 0.039 0.019 9e-04 0.0051 0.0013 0.0043
Dataset 3 0.0685 0.0519 0.0573 0.0169 0.0682 0.0379 0.0037 0.0032 0.0012 0.0078
Dataset 4 0.0573 0.0495 0.0305 0.0223 0.0491 0.026 0.0011 0.0014 0.0011 7e-04
Dataset 5 0.0454 0.0347 0.0278 0.0414 0.0469 0.0049 0.0017 0.0021 0.0021 0.001
Dataset 6 0.0473 0.0421 0.0323 0.0215 0.0376 0.0038 0.0052 0.0012 0.0012 0.0025
Dataset 7 0.0591 0.0432 0.0316 0.0347 0.0416 0.0079 7e-04 0.0027 0.0014 9e-04
Dataset 8 0.0813 0.049 0.0219 0.0287 0.0351 0.0025 0.0019 0.001 0.0054 4e-04
Dataset 9 0.0496 0.0339 0.0208 0.0188 0.025 0.0307 0.0019 0.0043 0.0042 6e-04
Dataset 10 0.0614 0.0394 0.0338 0.0241 0.0348 0.0286 0.0102 0.0003 0.0009 0.003

MCMC standard error for the first 10 regression coefficients for the regularized sampler
proposed by Nishimura et. al. [15] with c = 1 for 10 simulated datasets with n = 100 and

p = 750. All datasets are simulated from a ‘true’ linear regression model where only the first
10 regression coefficients are non-zero, and the entries of the design matrix X and the error

vector are all independent Gaussian (both the design matrix and the error vector are
generated separately for each dataset).

Table 12

MCMC STANDARD ERRORS: REGULARIZED HORSESHOE WITH c=100

β1 β2 β3 β4 β5 β6 β7 β8 β9 β10

Dataset 1 0.0173 0.011 0.0208 0.0099 0.0349 0.0041 0.0257 0.0089 7e-04 7e-04
Dataset 2 0.0138 0.0219 0.0131 0.0153 0.0427 0.0341 0.0365 0.0017 0.009 0.0015
Dataset 3 0.0065 0.0164 0.0079 0.0076 0.0115 0.0296 0.0016 0.0034 8e-04 0.0012
Dataset 4 0.0094 0.0101 0.0112 0.0078 0.0126 0.0027 0.0042 7e-04 0.0013 9e-04
Dataset 5 0.0117 0.0149 0.0091 0.011 0.0164 0.0051 0.0016 0.0026 0.0017 0.0017
Dataset 6 0.0165 0.0227 0.018 0.0174 0.0361 0.0453 0.0038 0.0066 0.0012 0.0016
Dataset 7 0.0146 0.013 0.017 0.0142 0.0285 0.0259 0.0457 0.002 0.0013 0.0046
Dataset 8 0.0163 0.0079 0.0101 0.0135 0.018 0.0247 7e-04 7e-04 0.001 0.0013
Dataset 9 0.0096 0.0162 0.0131 0.0179 0.0288 0.0188 0.0028 0.003 9e-04 0.0032
Dataset 10 0.0248 0.0386 0.0295 0.0233 0.009 0.0298 0.0027 0.0056 9e-04 0.0063

MCMC standard error for the first 10 regression coefficients for the regularized sampler
proposed by Nishimura et. al. [15] with c = 100 for 10 simulated datasets with n = 100 and
p = 750. All datasets are simulated from a ‘true’ linear regression model where only the first
10 regression coefficients are non-zero, and the entries of the design matrix X and the error

vector are all independent Gaussian (both the design matrix and the error vector are
generated separately for each dataset).

number then for arbitrary y ∈ R
n

yTX(XTX + Λ)−1XT y ≤ yT y − ‖PU⊥y‖2 −
r∑

i=1

λũ2
i

d2i + λ
,

where ũi is the ith component of the vector ũ = UT y and PU⊥ is the orthogonal
projection matrix for the orthogonal complement of the column space of U .

Proof. Without loss of generality we assume that the matrix Λ is diagonal ma-
trix with diagonal elements λ1, λ2, . . . , λp where 0 < λ1 ≤ λ2 ≤ . . . ≤ λp.
According to the condition of the result λ ≤ λ1. Now we define a set of diagonal
matrices {Λ(1), . . . ,Λ(j), . . . ,Λ(p)} in the following manner. For j = 1, . . . (p−1),
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the matrix Λ(j) has first j diagonal elements to be identical and equal to λ while
rest of the (p− j) diagonal elements are identical as that of the matrix Λ. Also
let Λ(p) = λIp×p and Λ(0) = Λ. The above set of matrices satisfy the following
relation

Λ(j−1) = Λ(j) + (λj − λ)eje
T
j for j = 1, . . . , p

where ej ∈ R
p denotes the jth elementary vector. Now using the Sherman-

Woodbury formula for inverting matrices we get that(
XTX + Λ(j−1)

)−1

=
(
XTX + Λ(j) + (λj − λ)eje

T
j

)−1

=
(
XTX + Λ(j)

)−1 −
(λj − λ)

(
XTX + Λ(j)

)−1
eje

T
j

(
XTX + Λ(j)

)−1

1− (λj − λ)eTj
(
XTX + Λ(j)

)−1
ej

.

Consequently, (
XTX + Λ(j−1)

)−1 −
(
XTX + Λ(j)

)−1

= − (λj−λ)(XTX+Λ(j))
−1

eje
T
j (X

TX+Λ(j))
−1

1−(λj−λ)eTj (XTX+Λ(j))
−1

ej
, (A.1)

Aggregating the equations (A.1) over j = 1, . . . p, we get that

(
XTX + Λ

)−1

=
(
XTX + λI

)−1 −
p∑

j=1

(λj − λ)
(
XTX + Λ(j)

)−1
eje

T
j

(
XTX + Λ(j)

)−1

1− (λj − λ)eTj
(
XTX + Λ(j)

)−1
ej

,

(A.2)

where we have used the fact that Λ(0) = Λ and Λ(p) = λI. If y ∈ R
n be arbitrary

vector then it follows from (A.2) that

yTX
(
XTX + Λ

)−1
XT y

= yTX
(
XTX + λI

)−1
XT y

−
p∑

j=1

(λj − λ)yTX
(
XTX + Λ(j)

)−1
eje

T
j

(
XTX + Λ(j)

)−1
XT y

1− (λj − λ)eTj
(
XTX + Λ(j)

)−1
ej

= yTX
(
XTX + λI

)−1
XT y −

p∑
j=1

(λj − λ)‖eTj
(
XTX + Λ(j)

)−1
XT y‖2

1− (λj − λ)eTj
(
XTX + Λ(j)

)−1
ej

≤ yTX
(
XTX + λI

)−1
XT y, (A.3)

because λj ≥ λ. Now consider the singular value decomposition of the matrix
X = UDV T where D is a diagonal matrix with positive diagonal elements
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d1, . . . , dr, U ∈ R
n×r, V ∈ Rp×r such that UTU = V TV = I. Also let V ⊥ ∈

R
p×(p−r) be such that the matrix

[
V, V ⊥] ∈ R

p×p is a orthogonal matrix, i.e. the
columns of V ⊥ constitutes a orthonormal basis for the orthogonal complement
of the column space of V . Now consider the fact that

(XTX + λI)−1 =
[
V DUTUDV T + λI

]−1

=
[
V D2V T + λV V T + λV ⊥(V ⊥)T

]−1

=
[
V (D2 + λI)V T + λV ⊥(V ⊥)T

]−1

= V (D2 + λI)−1V T +
1

λ
V ⊥(V ⊥)T .

Note that (V ⊥)TV = 0. Thus

yTX
(
XTX + λI

)−1
XT y (A.4)

= yTX

[
V (D2 + λI)−1V T +

1

λ
V ⊥(V ⊥)T

]
V DUT y

= yT (UDV T )V (D2 + λI)−1V TV DUT y

= yTUD(D2 + λI)−1DUT y

=

r∑
i=1

d2i ũ
2
i

d2i + λ
, (A.5)

where d1, . . . dr > 0 are the diagonal elements of the matrix D and ũi is the
ith entry of the vector UT y. Let U⊥ refers to the orthogonal completion of the
matrix U then

r∑
i=1

ũ2
i = yTUUT y = yT y − yTU⊥(U⊥)T y = yT y − ‖PU⊥y‖2, (A.6)

where PU⊥ denotes the orthogonal projection for the column space of U⊥. Fi-
nally, it follows from (A.3), (A.4) and (A.6) that

yTX
(
XTX + Λ

)−1
XT y ≤

r∑
i=1

ũ2
i −

r∑
i=1

λũ2
i

d2i + λ
= yT y−‖PU⊥y‖2−

r∑
i=1

λũ2
i

d2i + λ
.

Note that ‖PU⊥y‖2 +
∑r

i=1
λũ2

i

d2
i+λ

> 0 beacuse
∑r

i=1 ũ
2
i + ‖PU⊥y‖2 = yT y >

0.

Proposition A.2. Let X = [x1, . . . ,xp] ∈ R
n×p and X2 = [x2, . . . ,xp]. Assume

X2 = UDV T be the singular value decomposition where d1, . . . dr > 0 are the
diagonal elements of D. Let δ1 > 0 and Δp−1 be any diagonal matrix with
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positive diagonal elements δ2, . . . , δp. If T := (‖x1‖2 + δ1) − xT
1 X2(X

T
2 X2 +

Δp−1)
−1X2x1 then for any 0 < δ ≤ min{δ1, . . . , δp},

T ≥ δ1 + ‖PU⊥x1‖2 +
r∑

i=1

δũ2
i

d2i + δ
,

where ũi is the ith component of the vector ũ = UTx1 and PU⊥ is the orthogonal
projection matrix for the orthogonal complement of the column space of U .

Proof. Using Result A.1, for any δ ≤ min{δ1, . . . , δp}, we get that

xT
1 X2(X

T
2 X2 +Δp−1)

−1X2x1 ≤ xT
1 x1 − ‖PU⊥x1‖2 −

r∑
i=1

δũ2
i

d2i + δ

Consequently T = (xT
1 x1+δ1)−xT

1 X2(X
T
2 X2+Δp−1)

−1X2x1 ≥ δ1+‖PU⊥x1‖2+∑r
i=1

δũ2
i

d2
i+δ

.

.

Proposition A.3. Let X ∈ R
n×p be arbitrary matrix and Δp ∈ R

p×p be any di-
agonal matrix with positive diagonal elements δ1, . . . , δp. Consider the following
partition of the matrix

XTX +Δp =

[
‖x1‖2 + δ1 xT

1 X2

XT
2 x1 XT

2 X2 +Δp−1

]
,

where Δp−1 is the diagonal matrix with diagonal elements δ2, . . . , δp. If (X
T
2 X2+

Δp−1)
−1Δp−1 is uniformly bounded, then the first column of the matrix

(
XTX +Δp

)−1
Δp

is uniformly bounded. The notations x1 and X2 are as they are defined in the
Result A.2.

Proof. If we consider the partition of

XTX +Δp =

[
‖x1‖2 + δ1 xT

1 X2

XT
2 x1 XT

2 X2 +Δp−1

]
,

then the Schur complement of the first block of the matrix is given as

T = (‖x1‖2 + δ1)− xT
1 X2(X

T
2 X2 +Δp−1)

−1XT
2 x1.

Employing the inversion formula of the block matrices [12], we get that

(XTX+Δp)
−1 =[
1
T

xT
1 X2(X

T
2 X2+Δp−1)

−1

T
(XT

2 X2+Δp−1)
−1XT

2 x1

T
(XT

2 X2+Δp−1)
−1+

(XT
2 X2+Δp−1)

−1XT
2 x1x

T
1 X2(X

T
2 X2+Δp−1)

−1

T

]
.
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In the next two bullet points, we are going to show if (XT
2 X2 +Δp−1)

−1Δp−1

is uniformly bounded then so is all the entries of the vector[
δ1
T

δ1(X
T
2 X2+Δp−1)

−1XT
2 x1

T

]T
,

which is the first column of the matrix (XTX +Δp)
−1Δp.

• To show 0 < δ1
T ≤ 1 :

It is evident from the Result A.2 that T > 0. Therefore δ1
T > 0 as δ1 > 0

as well. On the other hand, a direct implication of Result A.2 is that for
0 < δ ≤ min{δ1, . . . , δp},

δ1
T

≤ δ1

δ1 + ‖PU⊥x1‖2 +
∑r

i=1
δũ2

i

d2
i+δ

≤ 1. (A.7)

where the details about the notations ũi, PU⊥ , di can be found in Re-
sult A.2.

• To show
δ1(X

T
2 X2+Δp−1)

−1XT
2 x1

T uniformly bounded:
Let v1,v2 be such that x1 = v1 + v2 where v1 belongs to the column
space of X2 and v2 belongs to the orthogonal complement of the column
space of X2. Therefore v1 = X2l for some vector l ∈ R

p−1. Consequently,

(XT
2 X2 +Δp−1)

−1XT
2 x1 = (XT

2 X2 +Δp−1)
−1XT

2 (X2l + v2)

= (XT
2 X2 +Δp−1)

−1XT
2 X2l

=
[
I − (XT

2 X2 +Δp−1)
−1Δp−1

]
l,

is uniformly bounded as we are assuming that the matrix (XT
2 X2 +

Δp−1)
−1Δp−1 is uniformly bounded. Combining this fact along with (A.7),

we conclude that all the entries of the vector
δ1(X

T
2 X2+Δp−1)

−1XT
2 x1

T are also
uniformly bounded.

Proposition A.4. Let X ∈ R
n×p be arbitrary matrix and Δp ∈ R

p×p be any
diagonal matrix with positive diagonal elements δ1, . . . , δp. Then for arbitrary p

and n the matrix
(
XTX +Δp

)−1
Δp is uniformly bounded. Specifically

sup
δ1,...,δp>0

∣∣∣eTi (XTX +Δp

)−1
Δpej

∣∣∣ < C

where C is a finite constant that does not depend on δ1, . . . , δp.

Proof. We will show the result by induction on the integer k where the hypoth-
esis of induction is as follows,

H(k) : Let n be arbitrary positive integer. Then for any positive integer k,

the matrix
(
XTX +Δk

)−1
Δk is uniformly bounded for all X ∈ R

n×k and ar-
bitrary diagonal matrix with positive diagonal elements Δk ∈ R

k×k.
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Initial step: The hypothesis trivially holds for k = 1. We will show that

H(k) is true for the case k = 2. Let X = [x1,x2] ∈ R
n×2 and Δ2 =

[
δ1 0
0 δ2

]
,

δ1, δ2 > 0 be arbitrary. Define A :=

[
a1,1 a1,2
a2,1 a2,2

]
:= XTX and then

(A+Δ2)
−1 Δ2

=
1

(a1,1a2,2 − a1,2a2,1) + δ1a2,2 + δ2a1,1 + δ1δ2

[
δ1(a2,2 + δ2) −δ2a2,1

−δ1a1,2 δ2(a1,1 + δ1)

]

• Note that

sup
δ1,δ2>0

∣∣∣eT1 (A+Δ2)
−1 Δ2e1

∣∣∣
= sup

δ1,δ2>0

δ1(a2,2 + δ2)

(a1,1a2,2 − a1,2a2,1) + δ1(a2,2 + δ2) + δ2a1,1
≤ 1

because (a1,1a2,2 − a1,2a2,1) ≥ 0 as XTX is nonnegative definte matrix.
Additionally a1,1 = ‖x1‖2 ≥ 0 and a2,2 = ‖x2‖2 ≥ 0, where X = [x1,x2].

•

sup
δ1,δ2>0

∣∣∣eT1 (A+Δ2)
−1

Δ2e2

∣∣∣
= sup

δ1,δ2>0

|a2,1δ2|
(a1,1a2,2 − a1,2a2,1) + δ1(a2,2 + δ2) + δ2a1,1

(A.8)

≤ |a2,1|
a1,1

for the case when a1,1 �= 0. On the contrary, if a1,1 = 0 then it follows
from (A.8) that

sup
δ1,δ2>0

∣∣∣eT1 (A+Δ2)
−1

Δ2e2

∣∣∣ = 0, (A.9)

because a1,1 = ‖x1‖2 = 0 implies that a2,1 = xT
2 x1 = 0.

In a similar fashion we can show that the absolute value of the other two entries
of the matrix

(
XTX +Δ2

)−1
Δ2 can be bounded above by numbers that does

not depend on δ1, δ2. Consequently H(k) holds for k = 2.

Induction step: Let H(k) holds for k = 1, 2, . . . , (p− 1). We will show that
the result holds for k = p as well. Let X ∈ R

n×p be arbitrary matrix and
Δp for diagonal matrix with positive diagonal elements δ1, . . . , δp. Consider the
partition of the matrices XTX +Δp as follows

XTX +Δp =

[
‖x1‖2 + δ1 xT

1 X2

XT
2 x1 XT

2 X2 +Δp−1

]
, (A.10)
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where X2,x1,Δp−1 are as it is in Result A.2. As it satisfies the conditions
of the induction hypothesis H(p− 1), the matrix (XT

2 X2 + Δp−1)
−1Δp−1 is

uniformly bounded. Therefore using Result A.3, the first column of the matrix
(XTX +Δp)

−1Δp is uniformly bounded.
In remaining of the proof, we show that the mth column of (XTX+Δp)

−1Δp

is uniformly bounded for any m > 1. Consider the permutation matrix P1,m =
[em, e2 . . . , em−1, e1 . . . , ep]. Note that P1,m can be generated by exchanging the
1st and mth columns of an identity matrix. P1,m is a symmetric and orthogonal
matrix, i.e. PT

1,m = P1,m and PT
1,mP1,m = P 2

1,m = I. Now consider

P1,m(XTX +Δp)
−1ΔpP1,m = P1,m(XTX +Δp)

−1P1,mP1,mΔpP1,m

= (PT
1,mXTXP1,m + P1,mΔpP1,m)−1P1,mΔpP1,m

= (X∗TX∗ +Δ∗
p)

−1Δ∗
p, (A.11)

where the X∗ := XP1,m is obtained by exchanging the first and mth columns of
X while Δ∗

p := P1,mΔpP1,m is the diagonal matrix where the first and the mth

diagonal elements of Δp are exchanged. We can represent X∗TX∗ +Δ∗
p as[

‖x∗
1‖2 + δ∗1 x∗

1
TX∗

2

X∗
2
Tx∗

1 X∗
2
TX2 +Δ∗

p−1

]
,

where the notations are equivalent to that of the ones in (A.10). The matrix
(X∗

2
TX∗

2 + Δ∗
p−1)

−1Δ∗
p−1 satisfies the conditions of the induction hypothesis

H(p− 1), thus it is uniformly bounded. Therefore using Result A.3, the first
column of the matrix (X∗TX∗ + Δ∗

p)
−1Δ∗

p is uniformly bounded as well. It

follows from (A.11) that the permuted version of the first column of (X∗TX∗ +
Δ∗

p)
−1Δ∗

p is

P1,m

[
(X∗TX∗ +Δ∗

p)
−1Δ∗

pe1

]
= P1,mP1,m(XTX +Δp)

−1ΔpP1,me1

=
[
(XTX +Δp)

−1Δp

]
em,

which is the mth column of (XTX +Δp)
−1Δp. Therefore, we infer that all the

columns of the matrix (XTX +Δp)
−1Δp are uniformly bounded and conclude

that H(k) holds for the case k = p.

Proposition A.5. Let X ∈ R
n×p be arbitrary matrix and Δp ∈ R

p×p be any
diagonal matrix with positive diagonal elements δ1, . . . , δp. Then for arbitrary p
and n

1. The matrix
(
XTX +Δp

)−1
XTX is uniformly bounded. Specifically

sup
δ1,...,δp>0

∣∣∣eTi (XTX +Δp

)−1
XTXej

∣∣∣ < C

where C is a finite constant that does not depend on δ1, . . . , δp.
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2. The vector
(
XTX +Δp

)−1
XT y is uniformly bounded.

Proof. part(1): Note that
(
XTX +Δp

)−1
XTX = I −

(
XTX +Δp

)−1
Δp. Us-

ing Result A.4 we know that the matrix
(
XTX +Δp

)−1
Δp is uniformly bound-

ed. Consequently
(
XTX +Δp

)−1
XTX is also uniformly bounded.

part(2):
Let y = v1 + v2 where v1 belongs to the column space of X and v2 belongs

to the perpendicular to the column space of X. Therefore v1 = Xl for some
vector l ∈ R

p−1. Consequently,

(XTX +Δp)
−1XT y = (XTX +Δp)

−1XT (v1 + v2)

= (XTX +Δp)
−1XT (Xl + v2)

=
[
(XTX +Δp)

−1XTX
]
l.

Therefore part(a) of the result ensures that the (XTX+Δp)
−1XT y is uniformly

bounded.

Appendix B: Other technical results

Proposition B.1. Let δ be chosen as in Lemma 2.1. Then for any ε > 0 there
exists C1 > 0 (not depending on λ0) such that

E
[(

τ2
) δ

2

∣∣∣λ0,y
]
≤ C1

.

Proof. For any ε > 0, note that

E

[ (
τ2) δ

2

∣∣∣∣λ0,y

]
= E

[ (
τ2) δ

2 I[τ2<ε]

∣∣∣∣λ0,y

]
+E

[ (
τ2) δ

2 I[τ2≥ε]

∣∣∣∣λ0,y

]

≤ ε
δ
2 +E

[ (
τ2) δ

2 I[τ2≥ε]

∣∣∣∣λ0,y

]
(B.1)

Next we demonstrate an upper bound to the second term in (B.1).

E

[ (
τ2) δ

2 I[τ2≥ε]

∣∣∣∣λ0,y

]

=

∞∫
ε

(
τ2) δ

2 π
(
τ2
∣∣λ0,y

)
dτ2

=

∞∫
ε

(
τ2
) δ

2

(
yT (In−XA−1

0 XT )y
2

+ b

)−(a+n
2 ) πτ (τ2)

|Ip+τ2XTX·Λ0|
1
2
dτ2

∞∫
0

(
yT (In−XA−1

0 XT )y
2

+ b

)−(a+n
2 ) πτ (τ2)

|Ip+τ2XTX·Λ0|
1
2
dτ2
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≤
(
1 +

yTy

b

)a+n
2

∞∫
ε

(
τ2
) δ

2
πτ (τ2)

|Ip+τ2XTX·Λ0|
1
2
dτ2

ε∫
0

πτ (τ2)

|Ip+τ2XTX·Λ0|
1
2
dτ2

≤
(
1 +

yTy

b

)a+n
2

∞∫
ε

(
τ2
) δ

2
πτ (τ2)

|Ip+εXTX·Λ0|
1
2
dτ2

ε∫
0

πτ (τ2)

|Ip+εXTX·Λ0|
1
2
dτ2

≤

(
1 + yT y

b

)a+n
2

ε∫
0

πτ (τ2) dτ2

∞∫
ε

(
τ2) δ

2 πτ

(
τ2) dτ2

< ∞. (B.2)

This completes the proof with C1 = ε
δ
2 +

(
1+yT y

b

)a+n
2∫ ε

0
πτ (τ2)dτ2

∫∞
ε

(
τ2
) δ

2 πτ

(
τ2
)
dτ2.

Proposition B.2. Suppose there exists a δ > 0.00162 such that∫ ∞

0

(τ2)−
p+δ
2 πτ (τ

2)dτ2 < ∞.

Then for any ε > 0 there exists C̃1 > 0 (not depending on λ0) such that

E

[(
τ2
)−δ

2

∣∣∣∣λ0,y

]
≤ C̃1.

Proof. For any ε > 0, note that

E

[ (
τ2)− δ

2

∣∣∣∣λ0,y

]
= E

[(
τ2)− δ

2 I[τ2<ε]

∣∣∣∣λ0,y

]
+E

[ (
τ2) δ

2 I[τ2≥ε]

∣∣∣∣λ0,y

]

≤ ε−
δ
2 +E

[ (
τ2)− δ

2 I[τ2≤ε]

∣∣∣∣λ0,y

]
(B.3)

Next we demonstrate an upper bound to the second term in (B.3).

E
[(

τ2
)− δ

2 I[τ2≤ε]

∣∣∣λ0,y
]

=

ε∫
0

(
τ2
)− δ

2 π
(
τ2
∣∣λ0,y

)
dτ2

=

ε∫
0

(
τ2
)− δ

2

(
yT (In−XA−1

0 XT )y
2 + b

)−(a+n
2 ) πτ(τ2)

|Ip+τ2XTX·Λ0|
1
2
dτ2

∞∫
0

(
yT (In−XA−1

0 XT )y
2 + b

)−(a+n
2 )

πτ (τ2)

|Ip+τ2XTX·Λ0|
1
2
dτ2
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≤
(
1 +

yTy

b

)a+n
2

ε∫
0

(
τ2
)− δ

2
πτ(τ2)

|Ip+τ2XTX·Λ0|
1
2
dτ2

∞∫
ε

πτ (τ2)

|Ip+τ2XTX·Λ0|
1
2
dτ2

=

(
1 +

yTy

b

)a+n
2

ε∫
0

(
τ2
)− p+δ

2
πτ(τ2)

|τ−2Ip+XTX·Λ0|
1
2
dτ2

∞∫
ε

(τ2)
− p

2 πτ (τ2)

|τ−2Ip+XTX·Λ0|
1
2
dτ2

≤
(
1 +

yTy

b

)a+n
2

ε∫
0

(
τ2
)− p+δ

2
πτ(τ2)

|ε−1Ip+XTX·Λ0|
1
2
dτ2

∞∫
ε

(τ2)
− p

2 πτ (τ2)

|ε−1Ip+XTX·Λ0|
1
2
dτ2

≤
(
1 +

yTy

b

)a+n
2

ε∫
0

(
τ2
)− p+δ

2 πτ

(
τ2
)

∞∫
ε

(τ2)
− p

2 πτ (τ2) dτ2

< ∞. (B.4)

Proposition B.3. Refer to (3.2) and Lemma 3.1. Then for any ε > 0 and for
any δ > 0, there exists C2 > 0 such that

E
[(

τ2
) δ

2

∣∣∣λ0,y
]
≤ C2

.

Proof. Fix an ε > 0 and a δ > 0.

E
[(

τ2
) δ

2

∣∣∣λ0,y
]

= E
[(

τ2
) δ

2 I[τ2<ε]

∣∣∣λ0,y
]
+E

[(
τ2
) δ

2 I[τ2≥ε]

∣∣∣λ0,y
]

≤ ε
δ
2 +E

[(
τ2
) δ

2 I[τ2≥ε]

∣∣∣λ0,y
]

(B.5)

Next we demonstrate an upper bound to the second term in (B.5).

E
[(

τ2
) δ

2 I[τ2≥ε]

∣∣∣λ0,y
]

=

∞∫
ε

(
τ2
) δ

2 π
(
τ2
∣∣λ0,y

)
dτ2

=

∞∫
ε

(
τ2
) δ

2

(
yT (In−XA−1

0 XT )y
2 + b

)−(a+n
2 )

∣∣∣c−2Ip+(τ2Λ0)
−1
∣∣∣1/2

|XTX+c−2Ip+(τ2Λ0)
−1|1/2πτ

(
τ2
)
dτ2

∞∫
0

(
yT (In−XA−1

0 XT )y
2 + b

)−(a+n
2 ) |c−2Ip+(τ2Λ0)

−1|1/2
|XTX+c−2Ip+(τ2Λ0)

−1|1/2πτ (τ2) dτ2
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≤
(
1 +

yTy

b

)a+n
2

∞∫
ε

(
τ2
) δ

2

∣∣∣c−2Ip+(τ2Λ0)
−1
∣∣∣1/2

|XTX+c−2Ip+(τ2Λ0)
−1|1/2πτ

(
τ2
)
dτ2

ε∫
0

|c−2Ip+(τ2Λ0)
−1|1/2

|XTX+c−2Ip+(τ2Λ0)
−1|1/2 πτ (τ2) dτ2

(B.6)

≤

(
1 + yTy

b

)a+n
2

ε∫
0

πτ (τ2) dτ2

∞∫
0

(
τ2
) δ

2 πτ

(
τ2
)
dτ2

<∞,

Note that the ratio of two determinants inside the integral in the numerator
and denominator in (B.6) can be represented in the form

|B1 + τ−2Ip|
|B1 +B2 + τ−2Ip|

=

∏p
k=1(sk(B1) + τ−2)∏p

k=1(sk(B1 +B2) + τ−2)

for appropriate symmetric non-negative definite matrices B1 and B2, and their
respective eigenvalues denoted by sk(·). Since every eigenvalue of B1 is bounded
above by the corresponding eigenvalue of B1 + B2, it follows that the ratio of
determinants is a decreasing function of τ2, and can be replaced by the value
at τ2 = ε in both places with the inequality going in the right direction. This
completes the proof with

C2 = ε
δ
2 +

(
1 + yTy

b

)a+n
2

ε∫
0

πτ (τ2) dτ2

∞∫
0

(
τ2
) δ

2 πτ

(
τ2
)
dτ2

.

Proposition B.4. Let δ be chosen as in Theorem 3.3. Then for any ε > 0 there
exists C3 > 0 (not depending on λ0) such that

E
[(

τ2
) δ

2

∣∣∣λ0,y
]
≤ C3.

Proof. For any ε > 0 note that

E
[(

τ2
) δ

2

∣∣∣λ0,y
]

= E
[(

τ2
) δ

2 I[τ2<ε]

∣∣∣λ0,y
]
+E

[(
τ2
) δ

2 I[τ2≥ε]

∣∣∣λ0,y
]

≤ ε
δ
2 +E

[(
τ2
) δ

2 I[τ2≥ε]

∣∣∣λ0,y
]
. (B.7)

Next we demonstrate an upper bound to the second term in (B.7).

E
[(

τ2
) δ

2 I[τ2≥ε]

∣∣∣λ0,y
]

=

∞∫
ε

(
τ2
) δ

2 π
(
τ2
∣∣λ0,y

)
dτ2
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=

∞∫
ε

(
τ2
) δ

2

(
yT (In−XA−1

0 XT )y
2 + b

)−(a+n
2 ) πτ(τ2)c(τ2)p

|τ2(XTX+c−2Ip)+Λ−1
0 | 12

dτ2

∞∫
T

(
yT (In−XA−1

0 XT )y
2 + b

)−(a+n
2 )

πτ (τ2)c(τ2)p

|τ2(XTX+c−2Ip)+Λ−1
0 | 12

dτ2

≤
(
1 +

yTy

b

)a+n
2

∞∫
ε

(
τ2
) δ

2
πτ(τ2)c(τ2)p

|τ2(XTX+c−2Ip)+Λ−1
0 | 12

dτ2

ε∫
T

πτ (τ2)c(τ2)p

|τ2(XTX+c−2Ip)+Λ−1
0 | 12

dτ2

≤
(
1 +

yTy

b

)a+n
2

∞∫
ε

(
τ2
) δ

2
πτ(τ2)c(τ2)p

|ε(XTX+c−2Ip)+Λ−1
0 | 12

dτ2

ε∫
T

πτ (τ2)c(τ2)p

|ε(XTX+c−2Ip)+Λ−1
0 | 12

dτ2

≤ C̃
p
2

(
1 + yTy

b

)a+n
2

ε∫
T

πτ (τ2) dτ2

∞∫
T

(
τ2
) δ

2
(
1 + τ2

) p
2 πτ

(
τ2
)
dτ2. (B.8)

The last inequality follows from the fact that

1 ≤ c(τ2) ≤ C̃
√

1 + τ2

for an appropriate constant C̃.

Proposition B.5. f : R
p 
→ [0,∞) and g : R

p 
→ (0,∞) be two functions

such that
∫
Rp f(x)dx < ∞ and 0 <

∫
Rp f(x)g(x)dx < ∞. Then

∫
Rp

f(x)
g(x)dx ≥

(
∫
Rp

f(x)dx)
2∫

Rp
f(x)g(x)dx

.

Proof. Follows from Cauchy-Schwarz inequality.

Proposition B.6. For any j ∈ {1, 2, · · · , p} and any d > 0, there exists some
α > 0 such that

∞∫
0

ν−2
j exp

[
− 1

νj

(
1 + d

2
δ + 1

λ2
j

)]
√
νj +

σ2
√
τ2

β2
j

dνj ≥ α

(
1 + 1

λ2
j

)−2

(
1 + σ2

√
τ2

β2
j

) .

Proof. Follows from Proposition B.5 with

f (νj) = ν−2
j exp

[
− 1

νj

(
1 + d

2
δ + 1

λ2
j

)]
,

g (νj) =
√
νj +

σ2
√
τ2

β2
j

,

and α =
(
1 + d2/δ

)−2
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Proposition B.7. There exists a positive definite matrix Mτ2 such that

∫
Rp

exp

[
− (β−Ω−1XTy)

T
Ω(β−Ω−1XTy)+βT (τ2Λ)

−1
β

2σ2

]
p∏

j=1

(
1 + σ2

√
τ2

β2
j

) dβ

≥
(
2πσ2

) p
2 |c|−p | Mτ2 |−1

(
1 +

√
τ2

c2

)−p

× exp

[
−
yTX

(
c2Ip +Ω−1 − 2M−1

τ2

)
XTy

2σ2

]

Proof. Follows from Proposition B.5 with

f (β) = exp

[
− (β−Ω−1XTy)

T
Ω(β−Ω−1XTy)+βT (τ2Λ)

−1
β

2σ2

]
,

g (β) =
∏p

j=1

(
1 + σ2

√
τ2

β2
j

)
,

and Mτ2 = Ω+
(
τ2Λ

)−1

Appendix C: Minorization condition for Horseshoe Gibbs sampler

Lemma C.1. For every d > 0, there exists a constant ε∗ = ε∗ (V, d) > 0 and a
density function h on R

p
+ such that

k (λ0,λ) ≥ ε∗h (λ) (C.1)

for every λ0 ∈ B (V, d) (see Section 2.2 for definition).

Proof : Fix a λ0 ∈ B (V, d). In order to prove (C.1) we will demonstrate appro-
priate lower bounds to the conditional densities appearing in (2.3). From (2.2)
we have the following:

π
(
τ2
∣∣λ0,y

)
≥
(

b

yTy/2 + b

)a+n
2

ω
−p/2
∗

(
1 + τ2

)−p/2
πτ

(
τ2
)

where ω∗ = max
{
1, ω̄ · d2/δ0

}
(recall that ω̄ is the maximum eigenvalue of XTX

and that the prior density πτ is truncated below at some T > 0).

π (ν|λ0,y) ≥
p∏

j=1

{
ν−2
j exp

[
− 1

νj

(
1 + d

2
δ1

)]}

π
(
σ2
∣∣ τ2,λ0,y

)
≥ ba+

n
2

Γ
(
a+ n

2

) (σ2
)−(a+n

2 )−1
exp

[
− 1

σ2

(
yTy

2
+ b

)]

π
(
β|σ2, τ2,λ0,y

)
≥
(
2πσ2

)− p
2 d−p/δ0

(
τ2
)−p/2
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× exp

[
−
(
β −M−1XTy

)T
M
(
β −M−1XTy

)
+ yT

(
I −XM−1X

)
y

2σ2

]

since, (
β −A−1

0 XTy
)T

A0

(
β −A−1

0 XTy
)

= βTA0β − 2βTXTy + yTXA−1
0 XTy

≤ βTMβ − 2βTXTy + yTy

=
(
β −M−1XTy

)T
M
(
β −M−1XTy

)
+ yT

(
I −XM−1XT

)
y

where M = ω∗ (1 + 1
τ2

)
Ip and ω∗ = max

{
ω̄, d2/δ1

}
. Finally,

π
(
λ|β, ν, σ2, τ2,y

)
≥

p∏
j=1

{
β2
j

2σ2τ2

(
λ2
j

)−2
exp

[
− 1

λ2
j

(
1

νj
+

β2
j

2σ2τ2

)]}
(C.2)

Putting all lower bounds in (C.2) in the equation of MTD (2.3) we have:

k (λ0,λ)

≥ (2π)−
p
2 (ω∗)

−p/2 d−p/δ0

(
b

yTy/2 + b

)a+n
2 ba+

n
2

Γ
(
a+ n

2

)
×
∫
[T,∞)

∫
R+

∫
Rp

∫
R
p
+

p∏
j=1

{
ν−2
j exp

[
− 1

νj

(
1 + d

2
δ1 +

1

λ2
j

)]}

× exp

[
−
(
β −M−1XTy

)T
M
(
β −M−1XTy

)
+ βT

(
τ2Λ

)−1
β

2σ2

]

× exp

[
−
yT

(
I −XM−1XT

)
y + yTy + 2b

2σ2

]

×
(
σ2)−(a+n+p

2 )−1
p∏

j=1

{
β2
j

2σ2τ2

(
λ2
j

)−2
} (

1 + τ2)−p/2 (
τ2)−p/2

πτ

(
τ2) dνdβdσ2dτ2

Next we perform the inner integral wrt ν and noting that 1 + d
2
δ1 + 1

λ2
j
≤(

1 + d
2
δ1

)(
1 + 1

λ2
j

)
we have:

k (λ0,λ)

≥ (2π)
− p

2 (ω∗)
−p/2

d−p/δ0
(
1 + d

2
δ1

)−p
(

b

yTy/2 + b

)a+n
2 ba+

n
2

Γ
(
a+ n

2

)
×
∫
[T,∞)

∫
R+

∫
Rp

p∏
j=1

{
β2
j

2σ2

}

× exp

[
−
(
β −M−1XTy

)T
M
(
β −M−1XTy

)
+ βT

(
τ2Λ

)−1
β

2σ2

]
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×
(
σ2
)−(a+n+p

2 )−1
exp

[
−
yT

(
I −XM−1XT

)
y + yTy + 2b

2σ2

]

×
p∏

j=1

⎧⎨
⎩
(
1 +

1

λ2
j

)−1 (
λ2
j

)−2

⎫⎬
⎭(

1 + τ2
)−p/2 (

τ2
)−3p/2

πτ

(
τ2
)
dβdσ2dτ2

Now recall that M = ω∗ (1 + 1
τ2

)
Ip. Hence(

β −M−1XTy
)T

M
(
β −M−1XTy

)
+ βT

(
τ2Λ

)−1
β

= βT
(
M +

(
τ2Λ

)−1
)
β − 2βTXTy + yTXM−1XTy

≤ βTQβ − 2βTXTy + yTXM−1XTy

=
(
β −Q−1XTy

)T
Q
(
β −Q−1XTy

)
+ yTX

(
M−1 −Q−1

)
XTy

where Q = ω∗ (1 + 1
τ2

) (
Ip +Λ−1

)
. Hence it follows that

k (λ0,λ) ≥ (ω∗)
−p/2 d−p/δ0

(
1 + d

2
δ1

)−p
(

b

yTy/2 + b

)a+n
2 ba+

n
2

Γ
(
a+ n

2

)
×
∫
[T,∞)

∫
R+

∫
Rp

p∏
j=1

{
β2
j

2σ2

} (
2πσ2)− p

2 | Q |1/2

× exp

[
−
(
β −Q−1XTy

)T
Q
(
β −Q−1XTy

)
2σ2

]

× | Q |−1/2 (σ2)−(a+n
2 )−1

exp

[
−
yT

(
I −XQ−1XT

)
y + yTy + 2b

2σ2

]

×
p∏

j=1

{(
1 +

1

λ2
j

)−1 (
λ2
j

)−2

} (
1 + τ2)−p/2 (

τ2)−3p/2
πτ

(
τ2) dβdσ2dτ2

Note that if β ∼ N
(
Q−1XTy, σ2Q−1

)
then the inner most integral wrt β is

equal to

E

⎡
⎣ p∏
j=1

{
β2
j

2σ2

}⎤⎦ =
(
2σ2

)−p
p∏

j=1

{
E
[
β2
j

]}
; since Q is a diagonal matrix,

β′
js are indep.

≥
(
2σ2

)−p
p∏

j=1

{Var [βj ]}

= (2ω∗)−p

(
1 +

1

τ2

)−p p∏
j=1

⎧⎨
⎩
(
1 +

1

λ2
j

)−1
⎫⎬
⎭

Also, noting that | Q |= (ω∗)p
(
1 + 1

τ2

)p∏p
j=1

(
1 + 1

λ2
j

)
we have the following

lower bound:

k (λ0,λ) ≥ 2−p (ω∗)
−p/2 (ω∗)

−3p/2
d−p/δ0

(
1 + d

2
δ1

)−p
(

b

yTy/2 + b

)a+n
2 ba+

n
2

Γ
(
a+ n

2

)
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×
∫
[T,∞)

∫
R+

(
σ2)−(a+n

2 )−1
exp

[
−
yT

(
I −XQ−1XT

)
y + yTy + 2b

2σ2

]

×
p∏

j=1

{(
1 +

1

λ2
j

)−5/2 (
λ2
j

)−2

} (
1 + τ2)−2p

πτ

(
τ2) dσ2dτ2

Further noting that yT
(
I −XQ−1XT

)
y ≤ yTy we have:

k (λ0,λ)

≥ 2−p (ω∗)
−p/2

(ω∗)−3p/2
d−p/δ0

(
1 + d

2
δ1

)−p
(

b

yTy/2 + b

)a+n
2 ba+

n
2

Γ
(
a+ n

2

)
×
∫
[T,∞)

∫
R+

(
σ2
)−(a+n

2 )−1
exp

[
− 1

σ2
(yTy + b)

]

×
p∏

j=1

⎧⎨
⎩
(
1 +

1

λ2
j

)−5/2 (
λ2
j

)−2

⎫⎬
⎭(

1 + τ2
)−2p

dσ2dτ2

Integrating wrt σ2 we have:

k (λ0,λ) ≥ 2−p (ω∗)
−p/2

(ω∗)−3p/2
d−p/δ0

(
1 + d

2
δ1

)−p
(

b

yTy + b

)2a+n

×
p∏

j=1

⎧⎨
⎩

√
λ2
j(

1 + λ2
j

)5/2
⎫⎬
⎭
∫ ∞

T

(
1 + τ2

)−2p
πτ

(
τ2
)
dτ2

= ε∗h (λ)

where

ε∗ = 3−p (ω∗)
−p/2

(ω∗)−3p/2
d−p/δ0

(
1 + d

2
δ1

)−p
(

b

yTy + b

)2a+n

×
∫ ∞

T

(
1 + τ2

)−2p
πτ

(
τ2
)
dτ2

and h is a probability density on R
p
+ given by

h (λ) =

p∏
j=1

⎧⎨
⎩3

2
·

√
λ2
j(

1 + λ2
j

)5/2 · I(0,∞)

(
λ2
j

)⎫⎬⎭
Hence, the minorization condition for the MTD (2.3) is established.

Appendix D: Samplers for conditional posterior distributions of λ
and τ 2 for Kaug,reg

D.1. Rejection sampler for λ

Recall that the target distribution g
(
·| ν, β, σ2, τ2,y

)
has density proportion to

the function φ(·) where
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φ(x) =

(
1

c2
+

1

τ2x

) 1
2

x− 3
2 exp

[
− 1

x

(
1

ν
+

β2
j

2σ2τ2

)]

Consider a probability density function ψ on R+ as follows:

ψ(x) =

√
π/ujc

−1√
π/ujc−1 + (τuj)−1

√
uj

π
x−3/2 exp

[
−uj

x

]

+
(τuj)

−1√
π/ujc−1 + (τuj)−1

ujx
−2 exp

[
−uj

x

]
,

where uj = 1/νj +β2
j /(2σ

2τ2). Note that the above is a convex combination of
two Inverse-Gamma densities and is easy to sample from. After simple algebraic
manipulations based on the inequality

1

2

(
c−1 + (τ2x)−1/2

)
≤
√
c−2 + (τ2x)−1 ≤

(
c−1 + (τ2x)−1/2

)
,

it can be established that

1

2
≤ inf

x∈(0,∞)

φ(x)

Mψ(x)
sup

x∈(0,∞)

φ(x)

ψ(x)
≤ M,

where

M =
√
π/ujc

−1 + (τuj)
−1.

We apply the following Accept-Reject algorithm to generate samples from (nor-
malized version of) the density φ. For i = 1, 2, · · ·

1. sample Xi from ψ(·)
2. sample Ui from the uniform distribution over (0, 1)
3. Accept Xi if

Ui ≤
φ (Xi)

Mψ (Xi)

for all i; otherwise, we reject Xi.
4. Repeat the above three steps until we reach a predetermined maximum

number of iterations.

Since the acceptance probability φ(x)/Mψ(x) is always greater than 1/2, the
above rejection sampler is very efficient.

D.2. Metropolis sampler for τ2

Recall that the target distribution π ( ·|λ,y) has density proportion to the func-
tion φ(·) where

φ(x)= |Ac|−
1
2

p∏
j=1

⎧⎨
⎩
(

1

c2
+

1

xλ2
j

) 1
2

⎫⎬
⎭
(
yT

(
In −XA−1

c XT
)
y

2
+ b

)−(a+n
2 )

πτ (x) ,
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Ac = XTX + (xΛ)
−1

+ c−2Ip and πτ (·) is a probability density function
supported on R+. We will also need to pick what is called a “proposal distribu-
tion” that changes location at each iteration in the algorithm. We will call this
q (u | x). Then the algorithm is:

1. Choose some initial value x0.
2. For i = 1, · · · , p

(a) sample x∗
i from q (u | xi−1).

(b) Set xi = x∗
i with probalility

α = min

(
φ(x∗

i )q (xi−1 | x∗
i )

φ(xi−1)q (x∗
i | xi−1)

, 1

)

otherwise set xi = xi−1.

Often times we choose q to be a N (x, 1) distribution. This has the convenient
property of symmetry. Which means that q (u | x) = q (x | u), so the quantity α
can be simplified to

α = min

(
φ(x∗

i )

φ(xi−1)
, 1

)
which is much easier to calculate.
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