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Abstract: Let X be a random variable with unknown mean and finite
variance. We present a new estimator of the mean of X that is robust with
respect to the possible presence of outliers in the sample, provides tight
sub-Gaussian deviation guarantees without any additional assumptions on
the shape or tails of the distribution, and moreover is asymptotically effi-
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sessed by the self-normalized sums. Theoretical findings are supplemented
by numerical simulations highlighting strong performance of the proposed
estimator in comparison with previously known techniques.
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1. Introduction.

Let X be a random variable with mean EX = μ and variance Var(X) = σ2,
where both μ and σ2 are unknown; in what follows, P will denote the distribu-
tion ofX and P2,σ – the class of all distributions possessing 2 finite moments and
having variance σ2. We will be interested in robust estimators μ̂ of μ constructed
from the data X1, . . . , XN generated as follows: the initial non-corrupted sample
X1, . . . , XN ′ of independent, identically distributed copies of X is merged with
a set of O < N ′ outliers that are independent from the initial sample, and the
combined sample of cardinality N := N ′+O is given as an input to an algorithm
responsible for construction of the estimator. This contamination framework is
more general than Huber’s contamination model [Hub64, CGR16] where the
outliers are assumed to be identically distributed, but weaker than the frame-
work allowing adversarial outliers [KL93, Val85] that may for instance depend
on the initial sample. Robustness will be quantified by two properties: first, in
the situation when O = 0, the estimators should admit tight non-asymptotic
deviation bounds of the form

|μ̂− μ| ≤ Cσ

√
s

N
(1.1)

with probability at least 1 − 2e−s, where C > 0 is an absolute constant. In
particular, we will be interested in the estimators that attain such deviation
guarantees uniformly over 0 < s < ψP (N) where ψP (N) is an increasing func-
tion that might depend on the law of X 1; guarantees of type (1.1) can be infor-
mally labeled as “robustness to heavy tails.” Second, the estimators of interest
should perform optimally with respect to the degree of outlier contamination
characterized by the quantity ε := O

N .
Another important property that we focus on is asymptotic efficiency. Infor-

mally speaking, efficiency measures how “wasteful” an estimator is: an efficient

1It follows from results in [DLLO16] that the function ψP (N) can not be chosen to be
independent of P , no matter how slow its growth is. At the same time, our results show that
for every σ > 0 and P ∈ P2,σ, such a function exists.
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estimator will capture all the information available in the sample; alternatively,
in many cases it is possible to conclude that the confidence intervals centered at
an efficient estimator will have (at least asymptotically) smallest possible diam-
eter. It is difficult to quantify efficiency using only finite-sample guarantees of
type (1.1) as the constants in these bounds are rarely sharp, at least, for prac-
tical considerations, and therefore a common approach is to take an asymptotic
viewpoint. Specifically, we will be looking for the estimators that are asymptot-
ically normal and have asymptotic variance that is as small as possible in the

minimax sense, that is,
√
N (μ̂− μ)

d−→ N (0, ν2) as N → ∞, where
d−→ denotes

convergence in distribution and ν2 := ν2(μ̂, P ) is such that

sup
P∈P2,σ

ν2(μ̂, P ) = inf
μ̃

sup
P∈P2,σ

ν2(μ̃, P ).

Here, the infimum is taken over all asymptotically normal (after rescaling by√
N) estimators μ̃ of μ. It is easy to see that inf μ̃ supP∈P2,σ

ν2(μ̃, P ) = σ2

(for reader’s convenience, the proof of this simple fact is given in Lemma 6.5),

therefore, it suffices to find a robust estimator that satisfies
√
N (μ̂− μ)

d−→
N (0, σ2) for all P ∈ P2,σ. For instance, the sample mean is an example of
the estimator with required asymptotic properties that is not robust, while the
popular median-of-means estimator [NY83] is robust but not asymptotically
efficient [Min19].

In this paper we construct the first, to the best of our knowledge, example of
an estimator of the mean that is provably (a) robust to the heavy tails of the
data-generating distribution P ; (b) admits optimal error bounds with respect to
the outlier contamination proportion ε = O

N ; (c) is asymptotically efficient and
(d) is almost tuning-free, meaning that it does not require information about
any parameters of the distribution besides the upper bound for the contamina-
tion proportion ε. We also show how to make our procedure fully adaptive. Our
construction is novel and is inspired by the properties of self-normalized sums.

The rest of the paper is organized as follows: section 2 introduces the esti-
mator and explains the main ideas behind its construction; the key results are
presented in section 3, while comparison of our estimator with existing robust
estimation techniques in the context of properties (a) - (d) is presented in sec-
tion 3.4. Finally, a fully adaptive procedure is outlined in section 4 while the
supporting numerical simulations are included in section 5. The proofs of the
main results are contained in section 6. All notation and auxiliary results will
be introduced on demand.

2. Construction of the estimator.

We restrict our attention to the estimators that are obtained via aggregating
the sample means evaluated over disjoint subsets (also referred to as “blocks”)

of the data. Specifically, assume that {1, . . . , N} =
⋃k

j=1 Gj where Gi ∩Gj = ∅
for i 
= j and |Gj | = n = N/k is an integer, and let μ̄j :=

1
|Gj |
∑

i∈Gj
Xi be the
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sample mean of the observations indexed by Gj . We consider estimators μ̂N of
the form

μ̂N =

k∑
j=1

αj μ̄j (2.1)

for some (possibly random and data-dependent) nonnegative weights α1, . . . , αk

such that
∑k

j=1 αj = 1. For example, the well known median-of-means esti-

mator [NY83, AMS96, LO11] corresponds to the case αĵ = 1 for ĵ such that

μ̄ĵ = median (μ̄1, . . . , μ̄k) and αĵ = 0 otherwise. Construction proposed in this
paper starts with an observation that it is natural to choose the weights that
are inversely proportional to some increasing function of the standard deviation
of each block. Indeed, the estimation error of the sample mean μ̄j in each block
of the data is essentially controlled by the corresponding sample standard devi-

ation σ̂j :=
√

1
|Gj |
∑

i∈Gj
(Xi − μ̄j)2. To understand why, consider the following

obvious identity:

|μ̄j − μ| =
∣∣∣∣ μ̄j − μ

σ̂j

∣∣∣∣ σ̂j .

The random variable
μ̄j−μ
σ̂j

, which is equal up to normalization to the Student’s

t-statistic, is known to be tightly concentrated around 0: namely, it is bounded

by
∣∣∣√ t

n

∣∣∣ with probability at least 1 − e−ct for t ≤ c′n where c, c′ are positive

constants, even if data are heavy-tailed (a more precise version of this fact is

stated below). Therefore, |μ̄j − μ| is bounded by a multiple of
σ̂j√
n

with high

probability. And, while the error |μ̄j − μ| is unknown, the quantity σ̂j is fully
data-dependent. This motivates the choice of the weights of the form

αj =
1/σ̂p

j∑k
i=1 1/σ̂

p
i

(2.2)

for some p ≥ 1; in what follows, the estimator (2.1) with weights (2.2) will be
denoted μ̂N,p. When we need to emphasize the specific value of k used in the
construction, we will write μ̂N,p(k). Observe that when p = 1, the estimation
error satisfies

μ̂N,1 − μ =

1
k

∑k
j=1

μ̄j−μ
σ̂j

1
k

∑k
j=1

1
σ̂j

, (2.3)

which is proportional to the average of t-statistics evaluated over k independent
subsamples. It is therefore natural to expect that μ̂N,1 − μ will satisfy strong
deviation guarantees.

Let us present now an example where the weights corresponding to p = 2 arise
naturally. Observe that one can model outliers by assuming that the variances of
the data differ across k groups, where large variance corresponds to a corrupted
subsample: Xi, i ∈ Gj ∼ N(μ, σ2

j ) for some μ ∈ R and positive but unknown
σ1, . . . , σk. The maximum likelihood estimator μ̃ in this model is easily seen to
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satisfy μ̃ = argminz∈R

∑k
j=1 |Gj | log

(∑
i∈Gj

(Xi − z)
2
)
. Equivalently, μ̃ can be

defined via

μ̃ = argminz∈R

k∑
j=1

|Gj | log
(
1 +

(
μ̄j − z

σ̂j

)2
)
.

An approximate solution can be obtained via minimizing the first-order approx-

imation of the loss function z 
→
∑k

j=1 |Gj |
(

μ̄j−z
σ̂j

)2
that attains its minimum

at the point
k∑

j=1

μ̄j

|Gj |/σ̂2
j∑k

i=1 |Gi|/σ̂2
i

=

k∑
j=1

μ̄j

1/σ̂2
j∑k

i=1 1/σ̂
2
i

,

which is the estimator (2.1) with weights defined in (2.2) for p = 2. In the follow-
ing sections we will present non-asymptotic deviation bounds for the estimator
μ̂N,p for all values of p ≥ 1 and will establish its asymptotic efficiency in the
absence of outliers.

3. Main results.

The goal of this section is to prove the deviation inequality for the estimation
error μ̂N,p − μ for any p ≥ 1, where the estimator μ̂N,p corresponds to the
weights defined by (2.2).

3.1. Preliminaries.

In this section, we consider the simple framework of i.i.d data without out-
liers. We will start with a brief review of concentration inequalities for the
self-normalized sums. It is known (for example, see the book [PLS08]) that the
properties of the t-statistics

Tj :=

{
μ̄j−μ
σ̂j

, σ̂j > 0,

0, σ̂j = 0
(3.1)

evaluated over subsamples indexed by G1, . . . , Gk are closely related to the be-
havior of the self-normalized sumsQj :=

μ̄j−μ
Vj

where V 2
j := 1

|Gj |
∑

i∈Gj
(Xi−μ)2.

Indeed, it is easy to see that Tj = f(Qj) where f(z) = z√
1−z2

. The following

inequality is well known (cf. Theorem 2.16 [PLS08]): for any j = 1, . . . , k and
any x > 0, 2

|Qj | ≤
x√
|Gj |

(
1 +

4σ

Vj

)
(3.2)

with probability at least 1 − 4e−x2/2, as long as E(X − μ)2 < ∞. In order to
deduce a non-random upper bound from (3.2), it suffices to control the ratio

2Since |Qj | ≤ 1, the inequality is nontrivial only for x <
√

|Gj |.
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1
Vj
. To this end, define

ζ(X) := inf
{
a > 0 : E

(
|X − μ|21{|X − μ| ≤ σ · a}

)
≥ σ2/2

}
.

As long as Var(X) is finite, it is clear that ζ(X) < ∞.

Lemma 3.1. With probability at least 1− e
− n

40ζ2(X)∨6 , Vj ≥ σ
2 .

Combining this inequality with the bound (3.2), we deduce that for any 1 ≤
j ≤ k and any x > 0,

|Qj | ≤
9x√
n
, (3.3)

with probability at least 1 − 4e−x2/2 − e
− n

40ζ2(X)∨6 . If moreover x ≤ √
n/18,

then the relation Tj = f(Qj) immediately implies that t-statistics Tj satisfy the
bound

|Tj | ≤
11x√
n

(3.4)

with probability at least 1− 4e−x2/2 − e
− n

40ζ2(X)∨6 for each 1 ≤ j ≤ k. Alterna-
tively, the previous argument also implies that the random variables Tj1{|Qj | ≤
1/2, Vj ≥ σ/2} satisfy the deviation inequality

Pr

(
|Tj1{|Qj | ≤ 1/2, Vj ≥ σ/2}| ≥ 11x√

n

)
≤ 4e−x2/2.

Therefore, we conclude that the random variable Tj , truncated at the right level,
behaves like a sub-Gaussian random variable.3 This fact is formalized in Lemma
6.1 and is one of the key ingredients used to show that proposed estimators have
sub-Gaussian deviations.

3.2. Non-asymptotic deviation inequalities.

In the simplest case p = 1, equation (2.3) suggests that in order to bound the

estimation error μ̂N,p − μ, it suffices to control the average 1
k

∑k
j=1

μ̄j−μ
σ̂j

and

the harmonic mean
(

1
k

∑k
j=1

1
σ̂j

)−1

separately. Similar intuition holds for other

values of p as well. In what follows, we will always assume that O ≤ Ck for
some C < 1, where O is the number of outliers in the sample. Define the event

Ep :=

⎧⎪⎨⎪⎩
⎛⎝1

k

k∑
j=1

1

σ̂p
j

⎞⎠−1

≤
(

4σ

1− C

)p

⎫⎪⎬⎪⎭ . (3.5)

Ep holds whenever the harmonic mean of the (powers of) sample variances does
not exceed the corresponding power of the true variance σ2 by too much. In

3X has sub-Gaussian distribution if ∃K > 0 such that ∀p ≥ 1 E(|X − μ|p)1/p ≤ K
√
p).

See section 2.5 in [Ver18] for the details.
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particular, in the absence of outliers, we can replace C by 0 in the previous
event. Informally speaking, the harmonic mean of a set of numbers is controlled
by its smallest elements, therefore, it is natural to expect that the event Ep holds
with overwhelming probability; this claim will be formalized in the following
lemma whose proof is deferred to Section 6.3.

Lemma 3.2. Recall the contamination framework defined in Section 1. Suppose
that E|X − μ|1+δ < ∞ for some 1 ≤ δ ≤ 2 and that O ≤ Ck for some C < 1.
Then

Pr(Ep) ≥ 1− e−ck(1−C)(1+(δ−1) logn)

for some constant c > 0 that depends on δ and E|X−μ|1+δ. Moreover, if X has
sub-Gaussian distribution, then

Pr(Ep) ≥ 1− e−c(1−C)N

for some constant c > 0 that depends on the distribution of X.

Note that the condition O < Ck only requires C to be smaller than 1: it
means that for our technique to reliably estimate the true mean, it suffices that
any constant positive fraction of subsamples indexed by G1, . . . , Gk are free from
the outliers, while the popular median-of-means estimator requires at least 50%
of the subsamples to be “clean”. In practical applications, this difference can be
substantial, and our simulation results (see section 5) confirm this observation.

Our first result presents non-asymptotic deviation bounds for the case when
the sample does not contain outliers.

Theorem 3.1. Suppose that E|X − μ|1+δ < ∞ for some 1 ≤ δ ≤ 2. Then with
probability at least 1− 2e−s − ke−cn − Pr(Ec

p),

|μ̂N,p − μ| ≤ Cpσ

(√
s+ 1

N
+ φ(δ, n)

)
(3.6)

where c > 0 depends only on ζ(X), Cp > 0 depends only on p, and

φ(δ, n) =

{
o(n−δ/2), δ < 2,

O(n−1), δ = 2

as n → ∞.

Combination of Theorem 3.1 with Lemma 3.2 readily implies that μ̂N,p admits

sub-Gaussian deviation guarantees for s = k �
√

N/ logN . Indeed, in that case
we get with probability at least 1− 3e−k that

|μ̂N,p − μ| ≤ C ′
pσ

√
k + 1

N
.

As we explain in the remark below, if k is chosen appropriately, this statement
can often be strengthened to yield uniform deviation guarantees holding in the
range 0 ≤ s ≤ k.
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Remark 3.1. Dependence of the constant c on ζ(X) is inherited from Lemma
3.1. The constant ζ(X) can be arbitrary large, therefore the inequality of Theo-
rem 3.1 does not hold with overwhelming probability uniformly over the class of
distributions P2,σ. To achieve uniformity, we need to assume slightly more about
the distribution of X – for example, one may impose the “small ball” condition
Q(u) := Pr(|X − EX| ≥ u) ≥ c̃ > 0, or the equivalence of moments of order 2
and 2 + δ for some δ > 0, namely that E|X − EX|2+δ ≤ C̃(E|X − EX|2)1+δ/2

for some fixed C̃ > 0. Then our bounds will depend on the constant c̃ or C̃
instead, and dependence on ζ(X) can be suppressed: for instance, when the mo-
ments of order 2 and 2+ δ are equivalent, we have that E(|X − μ|21{|X − μ| ≥
σ(2C)1/δ}) ≤ σ2/2 in view of Markov’s inequality, thus ζ(X) ≤ (2C)1/δ. This
justifies the claim that assuming ζ(X) to be “small” is a relatively mild require-
ment. In simple terms, we ask that the distributions in question assign non-
trivial mass to a fixed neighborhood of their means. It is also interesting to take
a viewpoint that assumes the distribution of X to be fixed while the parameters
n, k → ∞: in this case, one can establish stronger claims about mean estimation
– for instance, the deviations in (1.1) can be shown to be uniform over a range
of values of parameter s.

Remark 3.2. A more precise bound for the “bias term” φ(δ, n) has the form

φ(δ, n) = n−δ/2 ·
(
n− 2−δ

4 ∨ g
2−δ
2+δ (n1/4)

)
,

where g(u) = E
(
|X − μ|1+δ1{|X−μ|≥u}

)
. It is therefore easy to see that whenever

k = o
(
N

δ−1
δ

)
, the term φ(δ, n) is o(N−1/2) and the sub-Gaussian deviation

guarantees (3.6) hold uniformly over s � k (the latter restriction appears due to
the fact that the probability of event Ep depends on k as e−ck).

In the case when δ = 1, φ(δ, n) = o

(√
k
N

)
so that sub-Gaussian deviation

guarantees hold with s = k � n. However, if k is large enough, namely, if

k
(
n− 1

4 ∨ g
1
3 (n1/4)

)2
= O(1), we can still achieve the situation when φ(δ, n) =

O
(
N−1/2

)
. In this case, deviation guarantees hold uniformly over s � k. The

price that we have pay however is the fact that k can grow arbitrarily slowly as
a function of N , but this is unavoidable in general as shown in [DLLO16].

Next, we discuss the more general contamination framework described in the
introduction. For each block Gj , we denote by Wj the number of outliers in
Gj and by μ̄I

j (respectively μ̄C
j ) the sample mean corresponding to the inliers

(respectively outliers) within Gj . For every set of outliers O we define

α(O) := 1 + min
j:Wj �=0

Wj(μ̄
I
j − μ̄C

j )
2

nσ2
. (3.7)

Informally speaking, α(O) can be viewed as a proxy for the magnitude of the
outliers. The following extension of Theorem 3.1 holds.
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Theorem 3.2. Suppose that E|X−μ|1+δ < ∞ for some 1 ≤ δ ≤ 2, and O ≤ Ck
for some C < 1. Then with probability at least 1− 2e−s − ke−cn − Pr(Ec

p),

|μ̂N,p − μ| ≤ Cpσ

(1− C)p

(√
s+ 1

N
+ φ(δ, n) + α(O)−(p−1)/2 O

k
√
n

)
for c > 0 depending only on ζ(X), Cp > 0 depending only on p, α(O) defined
via (3.7), and φ(δ, n) defined as in Theorem 3.1.

One may notice that α(O)−(p−1)/2 ≤ 1, and this quantity gets smaller as
p grows, suggesting that the estimator μ̂N,p is more robust to the outliers of
large magnitude as p increases. Next, let us discuss the term O

k
√
n
= ε

√
n that

quantifies dependence of the estimation error on the fraction of outliers ε = O
N .

It is easy to see that the “best” choice of k for which the terms φ(δ, n) and O
k
√
n

are of the same order is k ∝ Nε
2

1+δ yielding the error rate of ε
δ

1+δ that is known
to be optimal with respect to δ (e.g. see section 1.2 in [SCV17] or Lemma 5.4 in
[Min18]). However, as the upper bound depends explicitly on the magnitude of
outliers through α(O), in some scenarios it can be much smaller than the worst
case given by O

k
√
n
.

3.3. Asymptotic efficiency.

The following result establishes asymptotic efficiency (in a sense defined in sec-
tion 1) of the estimator μ̂N,p for any p ≥ 1 in the absence of outliers, implying
that the estimator can not be uniformly improved in general.

Theorem 3.3. Suppose that E|X − μ|1+δ < ∞ for some 1 ≤ δ ≤ 2. Let
{kj}j≥1 ⊂ N, {nj}j≥1 ⊂ N be two non-decreasing, unbounded sequences satisfy-
ing
√

Njφ(δ, nj) = o(1) as j → ∞, where Nj := kjnj and φ(δ, n) was defined
in remark 3.2. Then for any p ≥ 1,√

Nj

(
μ̂Nj ,p − μ

) d−→ N
(
0, σ2

)
as j → ∞.

Condition
√
Njφ(δ, nj) = o(1) is essentially a requirement that the bias of

estimator μ̂Nj ,p is asymptotically of order o
(
N

−1/2
j

)
. It is not difficult to check

that the sequences {kj}j≥1, {nj}j≥1 with required properties exist for any dis-
tribution P ∈ P2,σ, see remark 3.2 for the details. For example, if E|X−μ|3 < ∞,
it suffices to require that kj = o(nj).

Together, results of section 3 imply that the estimator μ̂N,p can be viewed as a
true robust alternative to the sample mean – it preserves its desirable properties
such as asymptotic efficiency while being robust at the same time.

3.4. Comparison with existing techniques.

One of the most well-known consistent, robust estimators of the mean in the
class P2,σ is the median-of-means estimator [NY83, AMS96, LO11]. While it
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is robust to heavy tails, adversarial contamination, and is tuning-free, it is not
asymptotically efficient: indeed, according to Theorem 4 in [Min19], the asymp-
totic variance of the median-of-means estimator is π

2σ
2. This fact is illustrated

in our numerical experiments in section 5. Another family of estimators belong-
ing to the broad class defined via equation (2.1) is discussed in section 2.4 in
[Min19] and is defined via

μ̃N = argminz∈R

k∑
j=1

ρ

(√
n

Δ
(μ̄j − z)

)

where ρ is Huber’s loss ρ(z) = min
(

z2

2 , |z| − 1
2

)
and Δ > 0. The asymptotic

variance of this estimator can be made arbitrarily close to σ2, however, achieving
this requires σ2 to be known.

Construction of Catoni’s estimator [Cat12] again requires knowledge of σ2

(or its tight upper bound), moreover, it is not robust to adversarial contami-
nation. Finally, deviation bounds for the trimmed mean estimator obtained in
[LM19b] are not uniform with respect to the confidence parameter s (meaning
that different choices of s require the estimator to be re-computed), and its
asymptotic efficiency, while plausible, has not been formally established. More-
over, construction employed in [LM19b] requires sample splitting. Recently, Lee
and Valiant [LV20] showed that it is possible to construct a mean estimator
that achieves sub-Gaussian guarantees with essentially optimal constants, how-
ever, their estimator explicitly depends on the desired confidence level, and its
asymptotic behavior is not discussed.

The only other robust, tuning free estimator that is asymptotically efficient,
albeit only for a subclass of P2,σ, is a permutation-invariant version of the
median-of-means estimator (which is also the higher order Hodges-Lehmann es-

timator). It is defined as follows: let A(n)
N := {J : J ⊆ {1, . . . , N},Card(J) = n}

be a collection of all distinct subsets of {1, . . . , N} of cardinality n, θ̄J :=
1
n

∑
j∈J Xj , and μ̃U := median

(
θ̄J , J ∈ A(n)

N

)
. We note that Card

(
A(n)

N

)
=(

N
n

)
, so that for large N and n exact evaluation of μ̃U is not computation-

ally feasible. The following result was established recently in [DR20]: assume
that Nj = njkj is the sample size where nj , kj → ∞ as j → ∞ such that
nj = o

(√
Nj

)
. Moreover, suppose that X is normally distributed with mean

μ and variance σ2. Then
√
N (μ̃U − μ)

d−→ N
(
0, σ2

)
. While is likely that the

result still holds for other symmetric distributions, the condition nj = o
(√

Nj

)
is restrictive: for example, for non-symmetric distribution possessing 3 finite
moments, the bias of the estimator μ̃U is of order n−1

j , and the requirement

nj = o
(√

Nj

)
implies that this bias is asymptotically larger than N

−1/2
j .

Finally, there is a growing body of literature related to sub-Gaussian mean
estimators in R

d, for example see the papers [DM20, LM19a, Hop20], and ref-
erences therein. These works are mainly concerned with rate optimality, and
questions related to asymptotic efficiency have not been investigated in detail.
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4. Adaptation to the contamination proportion ε.

The number of outliers O is usually unknown in practice, therefore, it is desirable
to have a procedure that can adapt to this unknown quantity. Fortunately, the
proposed method admits a natural adaptive version. This extension is based
on the following observation: assume that p = 1, and consider the estimation

error μ̂N,1 −μ =
1
k

∑k
j=1

μ̄j−μ

σ̂j
1
k

∑k
j=1

1
σ̂j

. Then the numerator of this expression admits an

upper bound
∣∣∣ 1k∑k

j=1
μ̄j−μ
σ̂j

∣∣∣ ≤ Cpσ
(√

s
N +

√
O
N

)
that holds for all choices of

k with probability at least 1− 2e−s − ke−cn, as shown in the proof of Theorem
3.2. Therefore, it suffices to choose k such that the harmonic mean k∑k

j=1
1
σ̂j

is

a good, in a relative sense, estimator of σ. Fortunately, the harmonic mean of
standard deviations is a fully data-dependent quantity that can be evaluated
for any k; similar intuition holds for other values of p as well.

Based on the previous observation, we propose an adaptive estimator μ̃p

defined as follows. We will choose k as the smallest integer, on a logarithmic
scale, which guarantees that k∑k

j=1
1

σ̂
p
j

is not too large compared to σp, in a

sense defined by (3.5). To this end, we only need to obtain a good preliminary
estimator of σ that we can compare the harmonic means to. Assume that we
are already given an estimator σ̃ such that

1/20 ≤ σ̃

σ
≤ 4 (4.1)

with large probability. The above assumption is not restrictive since, as we will
show in section 6.8, one can construct σ̃ such that (4.1) holds with probability
at least 1− e−cN for some absolute c > 0, under mild conditions. Next, for each
positive integer k, set

Ẽp(k) :=

⎧⎪⎨⎪⎩
⎛⎝1

k

k∑
j=1

1

σ̂p
j

⎞⎠−1

≤
(

80σ̃

1− C

)p

⎫⎪⎬⎪⎭ .

Finally, define k̃ via log2 k̃ := inf
{
i ∈ {1, . . . , �log2 N�} : Ẽp(2i) holds

}
∨ 1,

4 and the corresponding estimator μ̃p(s) := μ̂N,p(k̃ ∨ �s� + 1). The following
bound is the main result of this section; essentially, it states that μ̃p(s) is a
robust estimator that is fully adaptive and provides sub-Gaussian deviation
guarantees.

Theorem 4.1. Suppose that E|X − μ|2 < ∞. Assume that 2 ≤ O ≤ N/4 and
that σ̃ satisfies (4.1). Then with probability at least 1 − 2 log2 (3O)e−s − (O ∨
s)e−cN/(O∨s),

|μ̃p(s)− μ| ≤ Cpσ

(√
s

N
+

√
O

N

)
,

4We assume that the infimum over the empty set is equal to −∞.
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where c > 0 depends only on the distribution of X and Cp > 0 depends only on
p.

5. Numerical simulation results.

The goal of this section is to compare performance of the estimators μ̂N,p for
different values of p ≥ 1, as well as evaluate their performance against the bench-
marks given by other popular techniques such as the median-of-means estimator
and the “oracle” trimmed mean (labeled “trim” in the figures) estimator that
takes the contamination proportion ε as its input.

Our simulation setup was defined as follows: N = 2500 observations from
half-t distribution5 with 4 degrees of freedom (d.f.). This distribution is asym-
metric, therefore, results allow us to evaluate the degree to which the bias affects
performance of different robust estimators; linear transformation has been ap-
plied so that the mean and variance of generated data are 0 and 1 respectively.
Next, O ∈ {0, 50, 100, 150} randomly selected observations have been replaced
by the outliers given by the point mass at x0 = 103; this type of outliers appears
to be most challenging for the trimmed mean estimator as it creates bias due
to “inliers” being removed only from one of the tails of the distribution. We
compared 4 estimators: the median-of-means (MOM) estimator defined after
equation (2.1), estimators μ̂N,1 and μ̂N,2 corresponding to the choice of weights
(2.2) with p = 1 and p = 2, as well as the “oracle” trimmed mean estimator
[LM19b] that knows the number of outliers. Specifically, trimmed mean was
computed by removing the smallest �εN�+ 5 and well as largest �εN�+ 5 ob-
servations, where 5 was added to account for the outliers due to the heavy tails,
and averaging over the rest. Estimators μ̂N,1, μ̂N,2 as well as MOM were evalu-
ated for various values of parameter k ∈ {25, 50, 75, 100, 125, 150, 175, 200} that
controls the number of subgroups.

For each combination of values of O and k, simulation was repeated 1000
times; we present 3 summary statistics in the plots below: the average error
(Figure 1), the standard deviation (Figure 2) and the maximal (over 1000 rep-
etitions) absolute error (Figure 3).

Overall, numerical experiments confirm our theoretical findings. Here is the
summary of our simulation results:

1. In the setup with no contamination (O = 0), all estimators showed good
performance, with μ̂N,1 slightly but consistently beating μ̂N,2 on average,
but μ̂N,2 had the smallest maximal error among all estimators; empir-
ical standard deviations of μ̂N,1 and μ̂N,2 were consistent with theory-
predicted values;

2. as O increased, μ̂N,2 was performing better that μ̂N,1, while both estima-
tors were significantly better than MOM;

5X has half-t distribution with ν d.f. if X = |Y | where Y has Student’s t-distribution with
ν d.f.
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Fig 1. Average estimation error over 1000 runs of the experiment; large values were truncated
to show results on appropriate scale.

3. both μ̂N,1 and μ̂N,2 showed consistent performance as the number of blocks
k increased; moreover, unlike MOM, the estimators performed well even
in the challenging setup where O � k.

6. Proofs.

This section contains detailed proofs of the main results of the paper.

6.1. Results related to the deviations of self-normalized sums.

6.1.1. Proof of Lemma 3.1.

Let Zi :=
Xi−μ

σ , and observe that

Pr

(
n∑

i=1

Z2
i ≤ n

4

)
≤ Pr

(
n∑

i=1

Z2
i 1{|Zi| ≤ ζ(X)} ≤ n

4

)

= Pr

(
n∑

i=1

(
Z2
i 1{|Zi| ≤ ζ(X)} − EZ2

i 1{|Zi| ≤ ζ(X)}
)
≤ n

4
− nH

)

≤ Pr

(
n∑

i=1

(
Z2
i I{|Zi| ≤ ζ(X)} − EZ2

i 1{|Zi| ≤ ζ(X)}
)
≤ −n

4

)
,

where H = EZ21{|Z| ≤ ζ(X)}. The last inequality follows from the inequality
H = EZ21{|Z| ≤ ζ(X)} ≥ 1/2 implied by the definition of ζ(X). The right
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Fig 2. Standard deviation (rescaled by
√
N) over 1000 runs of the experiment; large values

were truncated to show results on appropriate scale.

side of the previous display can be upper bounded via Bernstein’s inequality by

e
− n

32(ζ2(X)+ζ(X)/12) once we notice that

E
(
Z41(|Z| ≤ ζ(X)

)
≤ ζ2(X).

The claim follows from an algebraic inequality 12ζ2(X) + ζ(X) ≤ 15ζ2(X) ∨ 2

entailing that e
− n

32(ζ2(X)+ζ(X)/12) ≤ e
− n

40ζ2(X)∨6 .

6.1.2. Bounds for the moment generating function of the t-statistic.

Recall that Tj :=
μ̄j−μ
σ̂j

and Qj :=
μ̄j−μ
Vj

where V 2
j = 1

|Gj |
∑

i∈Gj
(Xi − μ)2,

j = 1, . . . , k. For all p ≥ 1 define

wj =
σp−1Tj

σ̂p−1
j

1{Ej} − E

(
σp−1Tj

σ̂p−1
j

1{Ej}
)

where Ej = {|Qj | ≤ 1/2} ∩ {Vj ≥ σ/2}.

Lemma 6.1. There exists cp > 0 such that, for all λ ∈ R. we have

E(eλw1) ≤ ecpλ
2/(2n).

Proof. We start by observing that on event E1, σ̂1 = V1

√
1−Q2

1 ≥
√
3σ
4 . Hence

for all t > 0, the discussion following (3.4) and the inequality |T11{E1}| ≤
√
3
3
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Fig 3. Maximal absolute error over 1000 runs of the experiment; large values were truncated
to show results on appropriate scale.

imply that

Pr

(∣∣∣∣∣σp−1T1

σ̂p−1
1

1{E1}
∣∣∣∣∣ ≥ t

)
≤ Pr

⎛⎝|T11{E1}| ≥ t

(√
3

4

)p−1
⎞⎠ ≤ 4e−c′pnt

2

where c′p = 1
2·112

(√
3
4

)2p−2

. Next, let w̃1 be an independent copy of w1, and

note that

Pr (|w1 − w̃1| ≥ t) ≤ 8e−c′pnt
2/4. (6.1)

It follows from Jensen’s inequality that

Eeλw1 ≤ Eeλ(w1−w̃1).

Finally, is well-known that, in view of (6.1), the latter is bounded by eλ
2cp/(2n)

for some cp > 0 only depending on p (for instance, this follows from Proposition
2.5.2 in [Ver18]).

6.2. Auxiliary technical results.

Lemma 6.2. Let p ≥ 1 and δ ≥ 1. Assume that E(|X − μ|1+δ) < ∞. Then for
any 1 ≤ j ≤ k

σp−1
E

(
μ̄j − μ

V p
j

1{V 2
j ≥ σ2/4}

)
= o

(
1

nδ/2

)
,
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for δ < 2. At the same time, for δ ≥ 2, we have

σp−1
E

(
μ̄j − μ

V p
j

1{V 2
j ≥ σ2/4}

)
= O

(
1

n

)
.

Proof. Due to homogeneity, we can assume that σ = 1 without loss of generality.
We will also assume that μ = 0, otherwise Xj should be replaced by Xj − μ for
all j. Observe that

σp−1
E

(
μ̄j − μ

V p
j

1{V 2
j ≥ σ2/4}

)
= np/2

E

(
X1

(X2
1 + Z2)p/2

1{X2
1 + Z2 ≥ n/4}

)
,

(6.2)
where Z =

√∑n
i=2 X

2
i . Consider the event O1 = {Z2 ≥ n/4}, and recall that

in view of Lemma 3.1

Pr(Oc
1) ≤ e−cn

for some c = c(P ) > 0 that depends on the distribution P of X. Consider the
event

O2 = {|X1| ≤ αn

√
n/2},

where the sequence {αn}n≥1 is defined as follows: consider a non-increasing
function g(u) = E(|X|1+δ1{|X|≥u}), and observe that lim

u→∞
g(u) = 0. Therefore,

taking αn := g(n1/4)1/(2+δ) ∨ n−1/4, we get that αn → 0, and moreover

lim
n→∞

g(αn
√
n)

α1+δ
n

≤ lim
n→∞

g(n1/4)

α1+δ
n

≤ lim
n→∞

g
1

2+δ (n1/4) = 0.

It is easy to see that

Pr(Oc
2) = o

(
1

n(1+δ)/2

)
,

and that

E(|X1|1{Oc
2}) = o

(
1

nδ/2

)
.

Indeed, Markov’s inequality implies that

Pr(Oc
2) ≤

21+δ
E(|X|1+δ1{Oc

2})

α1+δ
n n(1+δ)/2

=
21+δg(αn

√
n/2)

α1+δ
n n(1+δ)/2

,

and

E(|X1|1{Oc
2}) ≤

2δE(|X|1+δ1{Oc
2})

αδ
nn

δ/2
=

2δg(αn
√
n/2)

αδ
nn

δ/2

≤ 2δ
(
g(n1/4)

)2/(2+δ)

n−δ/2,



6052 S. Minsker and M. Ndaoud

where we used Hölder’s inequality. Next, we will reduce the problem to the
case where X and Z are bounded. Define the event Õ := O1 ∩ O2. Then 1 =
1Õ + 1O1\O2

+ 1O2\O1
, and∣∣∣∣E( X1

(X2
1 + Z2)p/2

1{X2
1 + Z2 ≥ n/4}

)∣∣∣∣
≤
∣∣∣∣E( X1

(X2
1 + Z2)p/2

1{Õ}

)∣∣∣∣+ (n/4)−p/2

(
E(|X1|1{Oc

2}+
αn

√
n

2
Pr(Oc

1)

)
≤
∣∣∣∣E( X1

(X2
1 + Z2)p/2

1{Õ}

)∣∣∣∣+ o

(
1

n(p+δ)/2

)
. (6.3)

Letting F be the distribution function of X, we deduce that conditionally on Z∣∣∣∣E( X1

(X2
1 + Z2)p/2

1{Õ}

)∣∣∣∣ =
∣∣∣∣∣
∫ αn

√
n/2

−αn
√
n/2

x

(x2 + Z2)p/2
1{O1}dF (x)

∣∣∣∣∣
≤
∣∣∣∣∣
∫ αn

√
n/2

−αn
√
n/2

(
x

(x2 + Z2)p/2
− x

Zp

)
1{O1}dF (x)

∣∣∣∣∣+
(

2√
n

)p

E
(
|X1|1{Oc

2}
)

≤
∣∣∣∣∣
∫ αn

√
n/2

−αn
√
n/2

xZp(1− (1 + x2/Z2)p/2)

(x2 + Z2)p/2Zp
1{O1}dF (x)

∣∣∣∣∣+ o

(
1

n(p+δ)/2

)

≤
∫ αn

√
n/2

−αn
√
n/2

p|x|3
2Zp+2

1{O1}dF (x) + o

(
1

n(p+δ)/2

)
≤ C(p)E|X|1+δ α2−δ

n

n(p+δ)/2
+ o

(
1

n(p+δ)/2

)
. (6.4)

In the derivation above, we used the elementary inequality

(1 + t)p/2 − 1

(1 + t)p/2
=

∫ 1+t

1
p
2y

p/2−1dy

(1 + t)p/2
≤ pt

2

(1 + t)p/2−1

(1 + t)p/2
≤ pt/2 (6.5)

for 0 < t := x2

Z2 and the fact that E|X|1+δ < ∞. Combining (6.4) with
(6.2), (6.3), we see that

σp−1
E

(
μ̄j − μ

V p
j

1{V 2
j ≥ σ2/4}

)
= o

(
1

nδ/2

)
whenever δ < 2 and that

σp−1
E

(
μ̄j − μ

V p
j

1{V 2
j ≥ σ2/4}

)
= O

(
1

n

)
,

for δ = 2 (in fact, in this case all the terms are of order o
(
n−1
)
besides

C(p)np/2
E|X|1+δ α2−δ

n

n(p+δ)/2 which is O
(
n−1
)
).
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Remark 6.1. It follows from the previous argument that the term o
(

1
nδ/2

)
takes

the form

n−δ/2 ·
(
n− 2−δ

4 ∨ g
2−δ
2+δ (n1/4)

)
.

Remark 6.2. The key quantity of interest in the previous proof is given by the
expression ∣∣∣∣E( X1

(X2
1 + Z2)p/2

1{X2
1 + Z2 ≥ n/4}

)∣∣∣∣
that was then estimated from above. Let us present a counterexample showing
that one cannot improve the result of Lemma 6.2 when δ ≥ 2 for p = 1. To
this end, let X be a random variable such that Pr(X = a) = 1/(1 + a2) and
Pr(X = −1/a) = a2/(a2 + 1) for some 1 < a2 ≤ 2 and assume that n ≥ 8.
Observe that X is a.s. bounded by a, centered, and has variance 1.

Given x, y > 0, we say that x � y when c ≤ x/y ≤ C for some absolute
constants c, C > 0. Let EZ denote the conditional expectation with respect to Z.
It is easy to check that on the event A := {Z2 ≥ n/4} we have

EZ

(
X1√

X2
1 + Z2

1{X2
1 + Z2 ≥ n/4}1{A}

)
= EZ

(
X1√

X2
1 + Z2

)
1{A}

=
a√

a2 + Z2

1

1 + a2
1{A} − 1

a
√
1/a2 + Z2

a2

1 + a2
1{A}

=
a

1 + a2

√
1/a2 + Z2 −

√
a2 + Z2

√
a2 + Z2

√
1/a2 + Z2

1{A}

=
a

1 + a2
1/a2 − a2√

a2 + Z2
√
1/a2 + Z2(

√
1/a2 + Z2 +

√
a2 + Z2)

1{A}

� a

1 + a2
a2 − 1/a2

Z3
1{A} � 1

n3/2
1{A},

where we have used that on A both a2 and 1/a2 are smaller than Z2 and that
Z2 � n. Since a does not depend on n, X is a.s. bounded by an absolute constant,
and Pr(A) ≥ 1− e−cn for some absolute constant c > 0. Hence

E

(
X1√

X2
1 + Z2

1{X2
1 + Z2 ≥ n/4}

)
� 1

n3/2
Pr(A) + Pr(Ac) � 1

n3/2
.

It follows that, for p = 1, we have

E

(
μ̄j − μ

Vj
1{V 2

j ≥ σ2/4}
)

= n1/2
E

(
X1

(X2
1 + Z2)1/2

1{X2
1 + Z2 ≥ n/4}

)
� n−1.

Although X admits infinitely many moments, the previous bound cannot be im-
proved beyond three moments due to the asymmetry of the distribution of X.
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Lemma 6.3. Let p ≥ 1. If Var(X) < ∞, then

lim
n→∞

σ2p−2nE

(
μ̄1 − μ

V p
1

)2

1{V 2
1 ≥ σ2/4} = 1.

Proof. Again, we can assume without loss of generality that σ2 = 1 and that
EX = 0. Observe that

nE

(
μ̄1 − μ

V p
1

)2

1{V 2
1 ≥ σ2/4} = np

E

(
X2

1

(X2
1 + Z2)p

1{X2
1 + Z2 ≥ n/4}

)
+ np

E

(
X1Y

(X2
1 + Z2)p

1{X2
1 + Z2 ≥ n/4}

)
,

where Y =
∑n

i=2 Xi and Z =
√∑n

i=2 X
2
i . It is clear that

np X2
1

(X2
1 + Z2)p

1{X2
1 + Z2 ≥ n/4} → X2

1 in probability.

Indeed, 1{X2
1 + Z2 ≥ n/4} → 1 in probability in view of Lemma 3.1, while(

X2
1+Z2

n

)p
→ 1 in probability by the Law of Large Numbers.

Moreover, np X2
1

(X2
1+Z2)p

1{X2
1 + Z2 ≥ n/4} ≤ 4pX2

1 . Therefore

np
E

(
X2

1

(X2
1 + Z2)p

1{X2
1 + Z2 ≥ n/4}

)
n→∞−−−−→ 1.

It remains to prove that

np
E

(
X1Y

(X2
1 + Z2)p

1{X2
1 + Z2 ≥ n/4}

)
n→∞−−−−→ 0.

Consider the event O1 = {Z2 ≥ n/4}, and recall that Pr(Oc
1) ≤ e−cn for some

c > 0 that depends on the distribution of X as given in Lemma 3.1. We will
also need to consider the event

O2 = {|X1| ≤ αn

√
n/2}

where (αn)n is defined as in Lemma 6.2 with δ = 1. Namely, consider the non-
increasing function g(u) = E(|X|21{|X|≥u}), and define αn = g(n1/4)1/3∨n−1/4,
so that αn → 0 and

lim
n→∞

g(αn
√
n)

α2
n

≤ lim
n→∞

g(n1/4)

α2
n

= 0.

As in the proof of Lemma 6.2, we deduce that Pr(Oc
2) = o

(
1
n

)
and that

E(|X1|1{Oc
2}) = o

(
1√
n

)
. (6.6)
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Next, we will reduce the problem to the case where X and Z are bounded. Let
Õ := O1 ∩ O2. Then

np

∣∣∣∣E X1Y

(X2
1 + Z2)p

1{X2
1 + Z2 ≥ n/4}

∣∣∣∣
≤ np

∣∣∣∣E( X1Y

(X2
1 + Z2)p

1{Õ}

)∣∣∣∣+ c1(p)
√
nE(|X1|1Oc

2
)

+ c2(p)n (Pr(Oc
1))

1/2
. (6.7)

Indeed, 1 = 1Õ + 1O1\O2
+ 1O2\O1

, and∣∣∣∣E X1Y

(X2
1 + Z2)p

1{X2
1 + Z2 ≥ n/4}1{O1\O2}

∣∣∣∣
≤
(
4

n

)p−1/2

E

∣∣∣∣X11{Oc
2}

2Y√
n

∣∣∣∣
=

(
4

n

)p−1/2

E
∣∣X11{Oc

2}
∣∣E ∣∣∣∣ 2Y√n

∣∣∣∣
≤ 2

(
4

n

)p−1/2

E
∣∣X11{Oc

2}
∣∣ := c1(p)

np−1/2
E
∣∣X11{Oc

2}
∣∣

as E
∣∣∣ Y√

n

∣∣∣ ≤ E
1/2Y 2
√
n

≤ 1. Moreover,

∣∣∣∣E X1Y

(X2
1 + Z2)p

1{X2
1 + Z2 ≥ n/4}1{O2\O1}

∣∣∣∣ ≤ ( 4

n

)p−1/2
αn

√
n

2
E

∣∣∣∣ 2Y√n
1Oc

1

∣∣∣∣
≤ 2

(
4

n

)p−1/2
αn

√
n

2
(Pr(Oc

1))
1/2

:=
c2(p)

np−1
(Pr(Oc

1))
1/2

,

thus (6.7) follows. Next, letting F be the distribution function of X, we deduce
that conditionally on (Y, Z),∣∣∣∣E [ X1Y

(X2
1 + Z2)p

1{Õ}
∣∣Y, Z]∣∣∣∣ =

∣∣∣∣∣
∫ αn

√
n/2

−αn
√
n/2

xY

(x2 + Z2)p
1{O1}dF (x)

∣∣∣∣∣
=

∣∣∣∣∣
∫ αn

√
n/2

−αn
√
n/2

(
xY

(x2 + Z2)p
− xY

Z2p

)
1{O1}dF (x)

∣∣∣∣∣
+

(
4

n

)p−1/2 |Y |1O1

Z
E(|X1|1{Oc

2})

≤
∣∣∣∣∣
∫ αn

√
n/2

−αn
√
n/2

xY Z2p(1− (1 + x2/Z2)p)

(x2 + Z2)pZ2p
1{O1}dF (x)

∣∣∣∣∣
+

(
4

n

)p−1/2 |Y |1O1

Z
E(|X1|1{Oc

2})
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≤
∫ αn

√
n/2

−αn
√
n/2

p|x|3|Y |
Z2p+2

1{O1}dF (x)

+

(
4

n

)p−1/2 |Y |1O1

Z
E(|X1|1{Oc

2}).

In the derivation above, we used the bound∣∣∣∣∣
∫ αn

√
n/2

−αn
√
n/2

xY

Z2p
1{O1}dF (x)

∣∣∣∣∣
≤
(
4

n

)p−1/2 |Y |1O1

Z

∣∣∣∣∣
∫
R

xdF (x)−
∫ αn

√
n/2

−αn
√
n/2

xdF (x)

∣∣∣∣∣
=

(
4

n

)p−1/2 |Y |1O1

Z

∣∣EX11Oc
2

∣∣
and relation∣∣∣∣xY Z2p(1− (1 + x2/Z2)p)

(x2 + Z2)pZ2p

∣∣∣∣ = ∣∣∣∣xY (1− (1 + x2/Z2)p)

(x2/Z2 + 1)pZ2p

∣∣∣∣ ≤ p|x|3|Y |
Z2p+2

,

where the last inequality follows from an elementary bound (6.5). Moreover,

E

(∫ αn
√
n/2

−αn
√
n/2

p|x|3|Y |
Z2p+2

1{O1}dF (x)

)

≤ 2p

(
4

n

)p+1/2

E

(
|Y |√
n

)∫ αn
√
n/2

−αn
√
n/2

|x|3dF (x)

≤ 4pαn

(
4

n

)p ∫
R

x2dF (x) = o

(
1

np

)
and

E

((
4

n

)p−1/2 |Y |1O1

Z

)
E
(
|X1|1{Oc

2}
)

≤
(
4

n

)p

E

(
|Y |√
n

)√
nE(|X1|1{Oc

2}) = o

(
1

np

)
in view of (6.6). Therefore, we see that

lim
n→∞

np

∣∣∣∣E X1Y

(X2
1 + Z2)p

1{X2
1 + Z2 ≥ n/4}

∣∣∣∣ = 0,

concluding the proof.
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Lemma 6.4. Let p ≥ 1, assume that E|X−μ|1+δ < ∞ for some δ ≥ 1. Consider

the event Õ = {|Q1| ≤ 1/2} ∩ {V1 ≥ σ/2}. Then

σp−1

∣∣∣∣E( μ̄1 − μ

σ̂p
1

1{Õ}
)∣∣∣∣ ≤ φ(δ, n) + 2p−1

√
ke−cn

N
,

where c > 0 depends only on ζ(X), φ(δ, n) = o(n−δ/2) for δ < 2 and φ(δ, n) =
O(n−1) otherwise. Moreover, if Var(X) < ∞, then

Var

(√
nσp−1(μ̄1 − μ)

σ̂p
1

1{Õ}
)

n→∞−−−−→ 1.

Proof. We will prove the two claims separately. Recall the algebraic identity
σ̂1 = V1

√
1−Q2

1. To deduce the first inequality, observe that∣∣∣∣ μ̄1 − μ

σ̂p
1

− μ̄1 − μ

V p
1

∣∣∣∣1{Õ}

=
|μ̄1 − μ|

V p
1

∣∣∣(1−Q2
1)

−p/2 − 1
∣∣∣1{Õ} ≤ p4pσ1−p|Q1|31{V 2

1 ≥ σ2/4},

where we have used the elementary inequality

(1−t2)−p/2−1 =

(
1 +

t2

1− t2

)p/2

−1 ≤
∫ 4

3 t
2

0

p

2
(1+u)p/2−1du ≤ 2pp

3p/2
t2 (6.8)

that holds for all 0 ≤ t ≤ 1/2. Taking (3.2) into account, we get that

E(|Q1|31{V 2
1 ≥ σ2/4}) ≤ C

n3/2

for an absolute constant C > 0. Indeed, it directly follows from the inequality

Pr

(
|Q1|1{V 2

1 ≥ σ2/4} ≥ 9x√
n

)
≤ 4e−x2

(6.9)

that is valid for all x ≥ 0. As a consequence,∣∣∣∣E( μ̄1 − μ

σ̂p
1

1{Õ}
)∣∣∣∣ ≤ ∣∣∣∣E( μ̄1 − μ

V p
1

1{Õ}
)∣∣∣∣+ C

p4pσ1−p

n3/2
. (6.10)

Moreover, we have that∣∣∣∣E( μ̄1 − μ

V p
1

1{Õ}
)∣∣∣∣ ≤ ∣∣∣∣E( μ̄1 − μ

V p
1

1{V 2
1 ≥ σ2/4}

)∣∣∣∣
+ 2p−1σ1−p

E(|Q1|1{|Q1| ≥ 1/2} ∩ {V 2
1 ≥ σ2/4})

≤
∣∣∣∣E( μ̄1 − μ

V p
1

1{V 2
1 ≥ σ2/4}

)∣∣∣∣
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+ 2p−1σ1−p
√

E(Q2
11{V 2

1 ≥ σ2/4}) Pr({|Q1| ≥ 1/2} ∩ {V 2
1 ≥ σ2/4})

≤
∣∣∣∣E( μ̄1 − μ

V p
1

1{V 2
1 ≥ σ2/4}

)∣∣∣∣+ 2p−1σ1−p

√
ke−cn

N
, (6.11)

where we have used (6.9) in the last inequality. We conclude using Lemma 6.2
as long as (6.10) and (6.11) that∣∣∣∣E( μ̄1 − μ

σ̂p
1

1{Õ}
)∣∣∣∣ ≤ σ1−p

(
φ(δ, n) + 2p−1

√
ke−cn

N

)
. (6.12)

The first claim is a consequence of both (6.10) and (6.12) since n−3/2 is always
less than φ(δ, n).

Next, we establish the second claim of the lemma. Since, due to the first

inequality of the lemma,
√
n
∣∣∣Eσp−1(μ̄1−μ)

σ̂p
1

1{Õ}
∣∣∣ vanishes as n goes to infinity,

it is enough to prove that the second moment converges to 1. We follow the
same steps as in the first part to deduce that

nσ2p−2
E

∣∣∣∣∣
(
μ̄1 − μ

σ̂p
1

)2

−
(
μ̄1 − μ

V p
1

)2
∣∣∣∣∣1{Õ}

= nσ2p−2 |μ̄1 − μ|2

V 2p
1

∣∣(1−Q2
1)

−p − 1
∣∣1{Õ}

≤ 2p8pnE
(
|Q1|41{V 2

1 ≥ σ2/4}
)
≤ pC8p

n
, (6.13)

where we have used (6.8) in the first inequality and (6.9) in the second one.
Moreover, we also have that

nσ2p−2
E

∣∣∣∣∣∣
(
μ̄j − μ

V p
j

)2

1{Õ} −
(
μ̄j − μ

V p
j

)2

1{V 2
j ≥ σ2/4}

∣∣∣∣∣∣
≤ n4p−1

E(Q2
11{|Q1| ≥ 1/2} ∩ {V 2

1 ≥ σ2/4})

≤ n4p−1
√

E(Q4
11{V 2

1 ≥ σ2/4}) Pr({|Q1| ≥ 1/2} ∩ {V 2
1 ≥ σ2/4})

≤ 4p−1e−c′n, (6.14)

where we again used (6.9). Combining (6.13) and (6.14), we get that

lim
n→∞

Var

(√
nσp−1(μ̄1 − μ)

σ̂p
1

1{Õ}
)

= lim
n→∞

nσ2p−2
E

⎛⎝( μ̄j − μ

V p
j

)2

1{V 2
j ≥ σ2/4}

⎞⎠ .

The conclusion follows immediately from Lemma 6.3.



Robust mean estimation 6059

Lemma 6.5. In the framework of section 1,

inf
μ̃

sup
P∈P2,σ

ν2(μ̃, P ) = σ2.

Proof. Let P̃ be the family of normal distributions
{
N(μ, σ2), μ ∈ R

}
. Then

we deduce from the almost-everywhere convolution theorem (Theorem 8.9 in
[VdV00]) that for any μ̃, supP∈P2,σ

ν2(μ̃, P ) ≥ σ2. On the other hand, let-

ting μ̃ be the sample mean μ̃ = 1
N

∑N
j=1 Xj , we obtain the reverse inequality

inf μ̃ supP∈P2,σ
ν2(μ̃, P ) ≤ σ2.

6.3. Proof of Lemma 3.2.

We will first consider the outlier-free case, meaning that O = 0. It is easy to see
that ⎛⎝1

k

k∑
j=1

1

σ̂p
j

⎞⎠−1

≤ 2median (σ̂p
1 , . . . , σ̂

p
k) .

Hence, Bennett’s inequality yields that

Pr

⎛⎝1

k

k∑
j=1

1

σ̂p
j

≤ 1

(4σ)p

⎞⎠ ≤ Pr (median (σ̂1, . . . , σ̂k) ≥ 2σ)

≤ Pr

⎛⎝ k∑
j=1

(1{σ̂2
j ≥ 4σ2} − π) ≥ k/4

⎞⎠ ≤ e−ck(log 1
π+1), (6.15)

for some absolute constant c > 0, where π := Pr
(
σ̂2
1 ≥ 4σ2

)
≤ Pr

(
V 2
1 ≥ 4σ2

)
≤

1
4 . Alternatively, if X possesses more than 2 moments, we can apply von Bahr-
Esseen inequality [vBE+65] to deduce that

π ≤ E|X − μ|1+δ/σ1+δ

n
δ−1
2

,

for any δ ≥ 1. It yields that

Pr

⎛⎝1

k

k∑
j=1

1

σ̂p
j

≤ 1

(4σ)p

⎞⎠ ≤ e−c′k(1+(δ−1) logn), (6.16)

for c′ > 0 depending only on the ratio E|X − μ|1+δ/σ1+δ. When X has sub-
Gaussian distribution, we instead use the Hanson-Wright inequality [HW71] and
deduce that

π ≤ e
−cn σ4

‖X‖4
ψ2
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where c > 0 is an absolute constant and ‖X‖ψ2 is the ψ2 norm of X 6. In this
case, (6.15) yields that

Pr

⎛⎝1

k

k∑
j=1

1

σ̂p
j

≤ 1

(4σ)p

⎞⎠ ≤ e−c(P )kn ≤ e−c̃(P )N (6.17)

c(P ) := c1
σ4

‖X‖4
ψ2

for an absolute constant c1 > 0.

Next, we consider the case O > 0. Let σ̂(1), . . . , σ̂(k) be the increasing order
statistics corresponding to σ̂1, . . . , σ̂k. If O ≤ Ck for C < 1, then at least a
fraction of data buckets is outlier-free. Let us call the index set of these buckets
J so that Card(J) ≥ �(1− C)k�, whence

1

k

k∑
i=1

1

σ̂p
i

≥
� (1−C)k

2 �
k

1

σ̂p
(�(1−C)k/2)�)

.

Hence, we get that

Pr

(
1

k

k∑
i=1

1

σ̂p
i

≤
(
1− C

4σ

)p
)

≤ Pr
(
σ̂p
(�(1−C)k/2)�) ≥ 2σ

)
.

The final result follows from (6.16) and (6.17) replacing k by �(1− C)k�.

Lemma 6.6. Let σ̂n be such that σ̂n = Vn

√
1−Q2

n, and let Õ = {|Qn| ≤
1/2} ∩ {V 2

n ≥ σ2/4} using previous notations. Then

lim
n→∞

E

∣∣∣∣σp

σ̂p
n
1{Õ} − 1

∣∣∣∣ = 0.

Proof. We have that Qn ≤ 1/2 and σ̂2
n ≥ 3/4V 2

n ≥ 3/16σ2 on Õ. Therefore,

E

∣∣∣∣σp

σ̂p
n
1{Õ} − 1

∣∣∣∣ ≤ E

∣∣∣∣ σ̂p
n − σp

σ̂p
n

∣∣∣∣1{Õ}+ Pr(Õc) ≤ cpE

∣∣∣∣ σ̂n − σ

σ̂n

∣∣∣∣1{Õ}+ Pr(Õc)

where we have used that for x ≥ 3y/16 > 0,

|xp − yp|
xp

=
|x− y|

x

p−1∑
i=0

(y
x

)p−i

≤
(
16

3

)p |x− y|
x

.

Moreover,

E

∣∣∣∣σp

σ̂p
n
1{Õ} − 1

∣∣∣∣ ≤ CpE

∣∣∣∣V 2
n − σ2

V 2
n + σ2

∣∣∣∣1{Õ}+ c′pE

(
Q2

nV
2
n

V 2
n + σ2

1{Õ}
)
+ Pr(Õc)

≤ CpE

∣∣∣∣V 2
n − σ2

V 2
n + σ2

∣∣∣∣1{Õ}+
c′p
n

+ e−cn,

6The ψ2 norm of X is defined via ‖X‖ψ2
:= inf

{
C > 0 : E exp

(
|X/C|2

)
≤ 2
}
.
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where we employed inequality (6.9) and Lemma 3.1. Observing that the random

variable
∣∣∣V 2

n−σ2

V 2
n+σ2

∣∣∣1{Õ} converges to 0 in probability (in view of the Law of

Large Numbers) and is bounded, hence the convergence holds also in L1. This
completes the proof.

6.4. Proof of Theorem 3.1.

Let p ≥ 1. Denote μ̂ := μ̂N,p and consider the events

Oj := {|Qj | ≤ 1/2} ∩ {Vj ≥ σ/2}.

Set

E :=

k⋂
j=1

Oj . (6.18)

Using Lemma 3.1 and inequality (3.3), we get that

Pr(Ec) ≤ ke−cn

for some constant c > 0 depending on the distribution of X. Therefore, for all
t > 0

Pr(|μ̂N,p − μ| ≥ t) ≤ Pr({|μ̂N,p − μ| ≥ t} ∩ E ∩ Ep) + ke−cn + Pr(Ec
p).

Recall the definition (3.1) of the t-statistics T1, . . . , Tk. The following chain of
inequalities holds:

Pr({|μ̂N,p − μ| ≥ t} ∩ E ∩ Ep) ≤ Pr

⎛⎝⎧⎨⎩
∣∣∣∣∣∣

k∑
j=1

Tj

σ̂p−1
j

∣∣∣∣∣∣ ≥ t
k

4pσp

⎫⎬⎭ ∩ E

⎞⎠
≤ Pr

⎛⎝∣∣∣∣∣∣
k∑

j=1

Tj

σ̂p−1
j

1{Oj}

∣∣∣∣∣∣ ≥ t
k

4pσp

⎞⎠
≤ Pr

⎛⎝∣∣∣∣∣∣
k∑

j=1

wj

∣∣∣∣∣∣ ≥ t
k

4pσ
− k

∣∣∣∣∣E
(
σp−1Tj

σ̂p−1
j

1{Oj}
)∣∣∣∣∣
⎞⎠

where wj :=
σp−1Tj

σ̂p−1
j

1{Oj}−E

(
σp−1Tj

σ̂p−1
j

1{Oj}
)
. It is easy to check that

√
nwj is

a centered sub-Gaussian random variable, since in view of Lemma 6.1 we have
that for all λ ∈ R,

E

(
e
√
nλwj

)
≤ ecpλ

2/2

for some cp > 0 depending only on p. Choosing t as

t = 4pσ

∣∣∣∣∣E
(
σp−1Tj

σ̂p−1
j

1{Oj}
)∣∣∣∣∣+ 4pσ

√
2cps

N
,
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we get that

Pr({|μ̂− μ| ≥ t} ∩ E ∩ Ep) ≤ Pr

⎛⎝∣∣∣∣∣∣
k∑

j=1

wj

∣∣∣∣∣∣ ≥ k

√
2cps

N

⎞⎠
≤ Pr

⎛⎝ k∑
j=1

√
2sN

cp
wj ≥ 2sk

⎞⎠+ Pr

⎛⎝−
k∑

j=1

√
2sN

cp
wj ≥ 2sk

⎞⎠
≤ 2

(
E

[
e

√
2s
cpk

√
nwj

])k

e−2s ≤ 2e−s,

where we used Chernoff bound on the last step. Combining the display above
with Lemma 6.4, we conclude that for all s > 0

Pr

(
|μ̂− μ| ≥ Cpσ

(
φ(δ, n) +

√
s+ ke−cn

N

))
≤ 2e−s + ke−cn + Pr(Ec

p),

for some Cp > 0 depending only on p. When ke−cn ≥ 1, the previous bound is
trivial. It follows that

Pr

(
|μ̂− μ| ≥ Cpσ

(
φ(δ, n) +

√
s+ 1

N

))
≤ 2e−s + ke−cn + Pr(Ec

p)

for all s > 0.

6.5. Proof of Theorem 3.2.

The proof follows similar steps as the argument used to establish Theorem
3.1. We will first show that with high probability the proportion of outliers
in each bucket of observations is less than 1/2. Indeed, letting Wj denote the
number of ouliers in the subsample indexed by Gj , it is straightfoward to see

that
∑k

j=1 Wj = O, and that the random variables {Wj , j = 1, . . . , k} are
negatively correlated. Consider the event

E2 =

k⋂
j=1

{Wj ≤ n/2}.

Recall that Wj =
∑

i∈Gj
1i∈Oj . Since

∑k
j=1 Wj = O, the random variables

(1i∈Oj )i∈Gj are 1-negatively correlated for each j = 1, . . . , k, as a sub-sequence
of a 1-negatively correlated sequence of random variables. Applying the Chernoff
bound for negatively correlated random variables (see [Doe20, section 1.10.2.2
and Theorem 1.10.23] for the definitions and the required version of the Chernoff
bound), we get that as long as O ≤ N/4,

Pr(Ec
2) ≤ ke−cn.
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Hence in what follows, we can restrict our attention on the event E2. We use
the superscript I to denote “clean” sample and C (“corrupted”) – otherwise.
Notice that

μ̄j − μ =
Wj

n
(μ̄C

j − μ) +

(
1− Wj

n

)
(μ̄I

j − μ) =
Wj

n
(μ̄C

j − μ̄I
j ) + μ̄I

j − μ

where μ̄C
j , μ̄

I
j are, respectively, empirical means of the corrupted and clean part

of the sub-sample indexed by Gj . We also have that

σ̂2
j =

Wj

n
(σ̂C

j )
2 +

(
1− Wj

n

)
(σ̂I

j )
2 +

Wj(n−Wj)

n2
(μ̄C

j − μ̄I
j )

2, (6.19)

where (σ̂C
j )

2, (σ̂I
j )

2 are, respectively, empirical variances of the corrupted and

clean sub-samples of Gj . Observe that σ̂2
j ≥ (σ̂I

j )
2/2, and, therefore, as in the

previous proof we deduce that the weights αj given by (2.2) can not be too
large even when outliers are present in the sample. Consider the events Oj :=
{|QI

j | ≤ 1/2} ∩ {V I
j ≥ σ/2} ∩ {Wj ≤ n/2}, and

E :=

k⋂
j=1

Oj .

Using Lemma 3.1 and inequality (3.3), we get that

Pr(Ec) ≤ ke−cn

for some constant c > 0 that depends only on the distribution of X. In the rest
of the proof we assume that the event E ∩Ep holds, with Ep defined in (3.5). On
this event, we have that

|μ̂− μ|1{E} ≤
(

4σ

1− C

)p
∣∣∣∣∣∣1k

k∑
j=1

Wj(μ̄
C
j − μ̄I

j )

nσ̂p
j

1{Oj}

∣∣∣∣∣∣︸ ︷︷ ︸
(A)

+

(
4σ

1− C

)p
∣∣∣∣∣∣1k

k∑
j=1

μ̄I
j − μ

σ̂p
j

1{Oj} − E

(
μ̄I
j − μ

σ̂p
j

1{Oj}
)∣∣∣∣∣∣︸ ︷︷ ︸

(B)

+

(
4σ

1− C

)p
1

k

k∑
j=1

∣∣∣∣∣E
(
μ̄I
j − μ

σ̂p
j

1{Oj}
)∣∣∣∣∣︸ ︷︷ ︸

(C)

.

We will proceed by estimating each of the terms separately.
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Control of (A): Using (6.19), observe that on Oj we have

σ̂2
j ≥

(σ̂I
j )

2

2
+

Wj

2n
(μ̄C

j − μ̄I
j )

2 ≥ C ′
(
σ2 +

Wj

n
(μ̄C

j − μ̄I
j )

2

)
,

for some absolute constant C ′ > 0. It comes out that∣∣∣∣∣∣1k
k∑

j=1

Wj(μ̄
C
j − μ̄I

j )

nσ̂p
j

1{Oj}

∣∣∣∣∣∣ ≤ 1

k

k∑
j=1

CpWj |μ̄C
j − μ̄I

j |

n
√

σ2 +
Wj

n (μ̄C
j − μ̄I

j )
2
p

≤ Cp

kσp−1

k∑
j=1

Wj |μ̄C
j − μ̄I

j |

n
√

σ2 +
Wj

n (μ̄C
j − μ̄I

j )
2

≤ Cpα(O)(1−p)/2

kσp−1

k∑
j=1

√
Wj/n,

where α(O) := 1 + min
j/Wj �=0

Wj(μ̄
C
j −μ̄I

j )
2

nσ2 . Hence it follows from Cauchy-

Schwarz inequality that∣∣∣∣∣∣1k
k∑

j=1

Wj(μ̄
C
j − μ̄I

j )

nσ̂p
j

1{Oj}

∣∣∣∣∣∣ ≤ 2pα(O)(1−p)/2

σp−1

√∑k
j=1 Wj(

√
O ∧

√
k)

k
√
n

.

As a consequence,∣∣∣∣∣∣1k
k∑

j=1

Wj(μ̄
C
j − μ̄I

j )

nσ̂p
j

1{Oj}

∣∣∣∣∣∣ ≤ 2pα(O)(1−p)/2

σp−1

(
O

k
√
n
∧
√

O

N

)
.

Observe that the previous statement holds pointwise, and is not proba-
bilistic in nature. It also suggests that the worst scenario occurs whenever
all buckets are corrupted.

Control of (B): Since σ̂2
j ≥

(
σ̂I
j

)2
/2 under Oj , we have that

Pr

(
σp−1

∣∣∣∣ μ̄I
i − μ

σ̂p
i

∣∣∣∣1{Oj} ≥ x

)
≤ Pr

(
σp−1

∣∣∣∣∣ μ̄I
i − μ(
σ̂I
j

)p
∣∣∣∣∣1{Oj} ≥ 2p/2x

)
.

Hence we can show, as in Lemma 6.1, that the random variable

σp−1 μ̄
I
i − μ

σ̂p
i

1{Oj}

is sub-Gaussian. Following the same arguments as in Theorem 3.1, this
leads to the bound

σp−1

∣∣∣∣∣∣1k
k∑

j=1

μ̄I
i − μ

σ̂p
i

1{Oj} − E

(
μ̄I
i − μ

σ̂p
i

1{Oj}
)∣∣∣∣∣∣ ≤ Cp

√
s

N

that holds with probability at least 1− 2e−s for some Cp > 0.
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Control of (C): As for the “bias term,” it is enough to observe that for un-
corrupted buckets, σ̂j = σ̂I

j , and the bias can be upper bounded exactly
as in Theorem 3.1. Hence

σp−1

k

∑
j∈I

∣∣∣∣∣E
(
μ̄I
j − μ

σ̂p
j

1{Oj}
)∣∣∣∣∣ ≤ φ(δ, n) + Cp

√
ke−cn

N
.

At the same time, for the corrupted part of the bias term, we have on Oj

that

σ̂p
j ≥ C ′

pσ̂j

(
σ2 +

Wj

n
(μ̄C

j − μ̄I
j )

2

)(p−1)/2

,

for some C ′
p > 0 depending only on p. Hence

σp−1

k

∣∣∣∣∣∣
∑
j∈C

E

(
μ̄I
j − μ

σ̂p
j

1{Oj}
)∣∣∣∣∣∣

≤ Cpσ
p−1

k

∑
j∈C

E

∣∣∣∣∣ μ̄I
j − μ

σ̂I
j (σ

2 +Wj/n(μ̄C
j − μ̄I

j )
2)(p−1)/2

1{Oj}
∣∣∣∣∣

≤ Cpα(O)(1−p)/2(O ∧ k)

k
E|T I

1 |1{O1} ≤ Cpα(O)(1−p)/2(O ∧ k)

k
√
n

≤ Cpα(O)(1−p)/2

(
O

k
√
n
∧
√

O

N

)
,

for some Cp > 0, where we have used inequality (6.9) and the fact that

O ∧ k ≤ O ∧
√
Ok.

This concludes the proof of the fact that with probability at least 1 − 2e−s −
ke−cn − Pr(Ec

p),

|μ̂N,p − μ| ≤ Cpσ

(1− C)p

(√
s+ 1

N
+ φ(δ, n) + α(O)(1−p)/2

(
O

k
√
n
∧
√

O

N

))
.

(6.20)

6.6. Proof of Theorem 3.3.

Using the definition of φ, it is easy to see that
√
Njφ(δ, nj) = o(1), implying

that kj = o(nj) which in turn implies that kj = o (ecnj ) for any constant c > 0.
We recall that

μ̂Nj ,p − μ =

1
kj

∑kj

i=1
Ti

σ̂p−1
i

1
kj

∑kj

i=1
1
σ̂p
i

.

Next, we will use the following decomposition that holds on the event E (6.18)
defined in the proof of Theorem 3.1.
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Nj(μ̂− μ)1{E}

= H

√
njVar

(
T1

σ̂p−1
1

1{O1}
)∑kj

i=1

(
Ti

σ̂
p−1
i

1{Oi}−E
Ti

σ̂
p−1
i

1{Oi}
)

√∑kj
i=1 Var

(
Ti

σ̂
p−1
i

1{Oi}
) +

√
NjE

T1

σ̂p−1
1

1{O1}

1
kj

∑kj

i=1

(
1
σ̂p
i
1{Oi} − E

1
σ̂p
i
1{Oi}

)
+ E

(
1
σ̂p
1
1{O1}

)
where H = 1{E}. Using Lemma 6.6, we have that

E
1

σ̂p
1

1{O1}
j→∞−−−→ σ−p.

Moreover using Lemma 6.4 we have

√
Nj

∣∣∣∣∣E T1

σ̂p−1
1

1{O1}
∣∣∣∣∣ ≤√Njφ(δ, nj) +

√
kje−cnj

j→∞−−−→ 0,

and √√√√njVar

(
T1

σ̂p−1
1

1{O1}
)

j→∞−−−→ σ1−p.

Since the independent variables Ti

σ̂p−1
i

1{Oi} and 1
σ̂p
i
1{Oi} are uniformly bounded,

they satisfy Lindeberg’s condition. Therefore,∑kj

i=1

(
Ti

σ̂p−1
i

1{Oi} − E
Ti

σ̂p−1
i

1{Oi}
)

√∑kj

i=1 Var
(

Ti

σ̂p−1
i

1{Oi}
) j→∞−−−→ N (0, 1)

in distribution, and

1

kj

kj∑
i=1

(
1

σ̂p
i

1{Oi} − E

(
1

σ̂p
i

1{Oi}
))

j→∞−−−→ 0

in probability. In addition, we have that

Pr(Ec) ≤ kje
−nj

j→∞−−−→ 0,

established as in the proof of Theorem 3.1. Putting everything together, we
finally conclude that √

Nj

(
μ̂Nj ,p − μ

) d−→ N (0, σ2)

in distribution as j → ∞.
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6.7. Proof of Theorem 4.1.

For any integer m, we denote by Ep(m) the event Ep defined via (3.5) with m
blocks. For every event A, Ac will denote its complementary. Observe that, as
long as 1/20 ≤ σ̃

σ ≤ 4, we have the following inclusions

{(k̃∨s) ≥ 3(O∨s)} ⊂ {k̃ ≥ 3(O∨s)} ⊂ {Ẽp(�3(O∨s)/2�)c} ⊂ {Ep(�3(O∨s)/2�)c}

where �3(O∨s)/2� denotes the integer part of 3(O∨O)/2. Therefore, we deduce,
using Lemma 3.2, that

Pr
(
(k̃ ∨ s) ≥ 3(O ∨ s)

)
≤ e−c2(O∨s).

Finally, we recall that when Ep holds and k ≤ 3(O ∨ s), then with probability
at least 1− 2e−s − ke−cN/(O∨s)

|μ̂N,p − μ| ≤ Cpσ

(√
s

N
+

√
O

N

)
,

as shown in (6.20). Combining the previous results, we conclude that

Pr

(
|μ̃p(s)− μ| ≥ Cpσ

(√
s

N
+

√
O

N

))

≤ Pr

({
|μ̃p(s)− μ| ≥ Cpσ

(√
s

N
+

√
O

N

)}
∩ {k̃ ≤ 3(O ∨ s)}

)
+ e−c2(O∨s)

≤
log2 (3(O∨s))∑

i=1

(2e−s + 2ie−cN/(O∨s)) + e−c2(O∨s)

≤ 2 log2 (3O)e−s + e−c(O∨s) + (O ∨ s)e−cN/(O∨s),

where we used in the last inequality the fact that {(k̃ ∨ s) ≤ 3(O ∨ s)} ⊂{(
1
k

∑k
j=1

1
σ̂p
j

)−1

≤
(

160σ
1−C

)p}
, so that event Ep holds.

6.8. Construction of a robust estimator of σ.

Let N ≥ 400. Without loss of generality, we can assume that N = 100k where
k is an integer and that {1, . . . , N} = G̃1 ∪ · · · ∪ G̃k where G̃j = {100(j − 1) +
1, . . . , 100j} for all j = 1, . . . , k. Let σ̃ be defined as follows:

σ̃ := median

⎛⎝ 1

50

∑
2i∈G̃1

|X2i −X2i−1|, . . . ,
1

50

∑
2i∈G̃k

|X2i −X2i−1|

⎞⎠
Under two moments assumption, the following result holds.
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Lemma 6.7. Assume that E|X−μ|2 < ∞, E|X−μ| ≥ σ/2 and that O ≤ N/400.
Then, with probability at least 1− e−cN , we have that

1/20 ≤ σ̃

σ
≤ 4,

where c > 0 is an absolute constant.

Note that Lemma 6.7 requires the new condition E|X −μ| ≥ σ/2. The latter
condition is mild and can be viewed as the equivalence between absolute first and
second moments which is less restrictive than the equivalence between centered
moments of order 2 and 2 + δ. This condition may also be seen as the price to
pay for adaptation under only two moments.

Proof. Using Jensen’s inequality, we get that E|X1−X2| ≥ E|X−μ| ≥ σ/2 and
E|X1 −X2| ≤ 2σ. Therefore,

Pr

(
1/20 ≤ σ̃

σ
≤ 4

)
≥ Pr

(∣∣∣∣ σ̃

E|X1 −X2|
− 1

∣∣∣∣ ≤ 9/10

)
.

Since

Pr

⎛⎝∣∣∣∣∣∣ 1

50E|X1 −X2|
∑

2i∈G̃1

|X2i −X2i−1| − 1

∣∣∣∣∣∣ ≥ 9/10

⎞⎠
≤ 200σ2

4050(E|X1 −X2|)2
≤ 1/5

and that O ≤ k/4, we conclude that

Pr

(∣∣∣∣ σ̃

E|X1 −X2|
− 1

∣∣∣∣ ≥ 9/10

)
≤ Pr

⎛⎝k−O∑
j=1

Zj ≥ k/4

⎞⎠
≤ Pr

⎛⎝k−O∑
j=1

(Zj − EZj) ≥ k/20

⎞⎠ ≤ e−cN ,

where Zj := 1
{∣∣∣ 1

50E|X1−X2|
∑

2i∈G̃1
|X2i −X2i−1| − 1

∣∣∣ ≥ 9/10
}
and c > 0.
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