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Abstract: Quantile regression has been successfully used to study hetero-
geneous and heavy-tailed data. Varying-coefficient models are frequently
used to capture changes in the effect of input variables on the response as
a function of an index or time. In this work, we study high-dimensional
varying-coefficient quantile regression models and develop new tools for
statistical inference. We focus on development of valid confidence intervals
and honest tests for nonparametric coefficients at a fixed time point and
quantile, while allowing for a high-dimensional setting where the number
of input variables exceeds the sample size. Performing statistical inference
in this regime is challenging due to the usage of model selection techniques
in estimation. Nevertheless, we can develop valid inferential tools that are
applicable to a wide range of data generating processes and do not suffer
from biases introduced by model selection. We performed numerical simu-
lations to demonstrate the finite sample performance of our method, and
we also illustrated the application with a real data example.
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1. Introduction

Most statistical work on regression problems has centered on the problem of
modeling the mean of a response variable Y ∈ R as a function of a feature
vector X ∈ R

p. Under some assumptions, for instance assuming homoscedastic
Gaussian noise, modeling the mean is sufficient to capture the entire distribu-
tion of Y conditioned on the observed features X = x. In many applications,
however, where these types of assumptions may not be appropriate, it is often
far more meaningful to model the median (or some other specified quantile) of
Y given the observed feature vector X. In particular, in applications where we
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are interested in extreme events—for instance, modeling changes in stock prices,
or modeling birth weight of infants—modeling, e.g., the 90% quantile may be
far more informative than modeling the mean. In other settings, the mean is
overly sensitive to outliers, while the median or some other quantile does not
have this disadvantage. Fixing τ to be the desired quantile (e.g., τ = 0.5 for the
median), we write q(x; τ) to be the τth quantile for the variable Y conditional
on observing X = x, that is, q(x; τ) is the function that satisfies

q(x; τ) = inf
q∈R

{P {Y ≤ q | X = x} ≥ τ}.

In this paper, we are interested in a high-dimensional setting, where the vector
X includes an extremely large number of measured features—perhaps larger
than the sample size itself. A linear model, q(x; τ) = x�β(τ), may be considered
to be a reasonable approximation in many settings, but if the measurements are
gathered across different points in time, the effect of the features on the response
Y may not be stationary. To achieve broader applicability of our model, we
are furthermore interested in models with time-varying coefficients for the τth
quantile for the variable Y conditional on observing X = x at index U = u,

q(x; τ, u) = inf
q∈R

{P {Y ≤ q | X = x, U = u} ≥ τ},

where x ∈ R
p is the feature vector as before, τ ∈ (0, 1) is the desired quantile,

and u ∈ U represents the time of the measurement or any other index variable
that captures non-stationary effects of the features—for example, u may be used
to encode spatial location. We assume that q(x; τ, u) approximately follows a
linear model x�β(τ, u).

Fixing a quantile τ and a time point (or index value) u, we are interested
in performing inference on a low-dimensional subset of coefficients of interest,
βA(τ, u) for some fixed subset A ⊂ {1, . . . , p}. Specifically, we want to construct
confidence intervals for these parameters or test null hypotheses such as H0 :
βj(τ, u) = 0, ∀j ∈ A. In practice, we may have in mind some particular features
of interest, and the other features are confounding variables that we need to
control for; or, we may be interested in testing each of the p features individually,
cycling through them in turn and treating the others as confounders.

Prior work Our work is related to the literature on high-dimensional infer-
ence, varying-coefficient models, and quantile regression. Statistical inference for
parameters in high-dimensional models has received a lot of attention recently.
For example, in the �1-regularized linear regression model (LASSO) Tibshirani
(1996) one can quantify the uncertainty about the unknown parameters by de-
biasing the estimator (Zhang and Zhang, 2013; van de Geer and Bühlmann,
2013; Javanmard and Montanari, 2013b,a) or using a double LASSO selection
procedure (Belloni and Chernozhukov, 2013). Extensions to generalized linear
models were investigated in Belloni et al. (2016b), van de Geer et al. (2014),
and Farrell (2015). Meinshausen (2015) studied construction of one-sided con-
fidence intervals for groups of variables under weak assumptions on the design
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matrix. Lockhart et al. (2014) studied significance of the input variables that
enter the model along the lasso path. Lee et al. (2013) and Taylor et al. (2014)
performed post-selection inference conditional on the selected model. Kozbur
(2013) extended approach developed in Belloni et al. (2013a) to a nonparametric
regression setting, where a pointwise confidence interval is obtained based on the
penalized series estimator, while Lu et al. (2020) studied a kernel-sieve hybrid
estimator for inference in sparse additive models. Yu et al. (2020a) considered
testing in high-dimensional parametric models with cone constraints. Hypothe-
sis testing and confidence intervals for low-dimensional parameters in graphical
models were studied in (Ren et al., 2015; Wang and Kolar, 2014; Janková and
van de Geer, 2015; Janková and van de Geer, 2017), elliptical copula models
(Barber and Kolar, 2018; Lu et al., 2018), Markov networks (Wang and Kolar,
2016; Yu et al., 2016, 2020b), differential networks (Xia et al., 2015; Belilovsky
et al., 2016; Liu, 2017; Kim et al.), and networks of point processes (Wang et al.,
2020). Varying-coefficient models were introduced as a general framework that
tied together generalized additive models and dynamic generalized linear models
Hastie and Tibshirani (1993). Estimation and inference for varying coefficient
models in the mean have been widely studied. See, for example, Fan and Zhang
(2000), Hoover et al. (1998), Zhang et al. (2002), Huang et al. (2004), Na et al.
(2019), and Na and Kolar (2021). Quantile regression was studied in the presence
of outliers and non-normal errors in Koenker (1984), while quantile regression
with time-varying coefficient models was studied in, for example, Kim (2007)
and Kai et al. (2011). Statistical inference for high-dimensional linear quantile
regression was studied in Belloni et al. (2013b, 2015, 2016a); Bradic and Kolar
(2017) and a closely related problem of inference in composite quantile regression
was investigated in Zhao et al. (2014). Tang et al. (2013) studied estimation of
quantile varying-coefficient models in a high-dimensional setting. However, how
to perform statistical inference for high-dimensional varying coefficient models
remains an open question.

Our contribution Below, we summarize the main contributions of this work.

• We propose several approaches for constructing valid post-selection confi-
dence intervals for the varying-coefficient quantile regression model. These
approaches are asymptotically equivalent and rely on finding an approxi-
mate root of the decorrelated score. To make the construction computa-
tionally feasible with the non-differentiable loss that is used in quantile
regression, we rely on a one-step approximation and reparameterization.

• We provide the asymptotic normality results for the proposed estimators.
Establishing this results requires a novel analysis that generalizes the ex-
isting techniques. Specifically, we carefully overcome the challenges that
arise from the non-differentiable loss used in quantile regression, the bias
from the penalized regression to handle the high dimensionality, and the
bias from linear approximation to handle the nonparametric component
in appearing in varying coefficient models.

• We use extensive simulation studies and real data analysis to demonstrate
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the finite sample performance of our proposed estimators.

2. Preliminaries

In this section, we carefully develop background necessary to understand the
algorithms that are presented in the subsequent section. In Section 2.1 we pro-
vide a brief overview of estimation in the varying-coefficient quantile regression
model. Next, we illustrate the challenges in the high-dimensional inference in
Section 2.2. In Section 2.3, we describe the decorrelated score method that can be
used for high-dimensional inference when the loss function is twice differentiable.
Finally, we modify the decorrelated score method to suit the non-differentiable
setting of varying-coefficient quantile regression and sketch the main steps of
the analysis in Section 2.4. Note that the results in Section 2.1-2.3 are not new
and are presented for ease of readability.

2.1. Varying-coefficient quantile regression

For a random variable Y ∈ R, its τ -quantile can be equivalently described as the
value q that minimizes the expectation E [τ · (Y − q)+ + (1− τ) · (Y − q)−] (for
any t ∈ R, we write t+ = max{t, 0} and t− = max{−t, 0}). For a linear quantile
regression problem, at a particular value of the index variable u ∈ U ⊆ R, we
are therefore interested in estimating

β(τ, u) = argmin
b∈Rp

E
[
τ · (Y −X�b)+ + (1− τ) · (Y −X�b)−

∣∣ U = u
]
, (1)

where the expectation is taken over a draw of the random pair (X,Y ) when the
index variable is equal to U = u (in other words, we can think of drawing the
triplet (X,Y, U) and conditioning on the event U = u).

Of course, we cannot compute this expected value or even obtain an unbiased
estimate, unless by some chance our training data contains many data points
(xi, yi, ui) with ui = u. Instead, by assuming that β(τ, u) is reasonably smooth
with respect to the index variable u ∈ U , we can use a kernel method, and
approximate the expected value in (1) with

n∑
i=1

wi ·
[
τ · (yi − x�

i b)+ + (1− τ) · (yi − x�
i b)−

]
,

where the weights are given as wi = (nh)−1K
(
h−1 (ui − u)

)
, the function K(·)

is the kernel function, and h is the bandwidth. This approximation can be
interpreted as assuming that β(τ, u) is locally approximately constant for values
ui ≈ u, and thus defines a loss function on the sampled data that would hopefully
be minimized at some b(τ, u) ≈ β(τ, u), but would suffer bias from the error in
this approximation. We can reduce the approximation bias by instead treating
β(τ, u) as locally approximately linear for values ui ≈ u, that is,

x�
i β(τ, ui) ≈ x�

i β(τ, u) + (ui − u) · x�
i ∇uβ(τ, u).
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Defining Γi = (x�
i , (ui − u) · x�

i )
� ∈ R

2p for each observation i = 1, . . . , n, this
yields a new loss function,

L(b) =
n∑

i=1

wi·
[
τ ·(yi−Γ�

i b)++(1−τ)·(yi−Γ�
i b)−

]
=

n∑
i=1

wi·ρτ
(
yi − Γ�

i b
)
, (2)

where the function ρτ (v) = v(τ −1 {v < 0}). We are now interested in minimiz-
ing (2) over a larger parameter vector, b = (b�0 , b

�
1 )

� ∈ R
2p, where b0, b1 ∈ R

p.
We would expect the minimum to be attained at some b� = (b��0 , b��1 )� ≈
(β(τ, u)�,∇uβ(τ, u)

�)� if the local linear approximation is sufficiently accu-
rate. Note that we omit the indices (τ, u) to simplify the notation, as they are
fixed.

In a high dimensional setting where the dimension of the covariates X, p, is
growing faster than the sample size n, we use a group �1-penalty to estimate b�

under the assumption that the coefficient functions are approximately sparse.
In particular, we minimize the following optimization program

b̂ = argmin
b∈R2p

n∑
i=1

wi · ρτ
(
yi − Γ�

i b
)
+ λb‖b‖1,2, (3)

where ‖b‖1,2 =
∑p

j=1

√
b2j + b2j+p is the �1,2 group norm that simultaneously

shrinks the coefficients bj and bj+p, j = 1, . . . , p, to zero. Consistency results

for b̂ have not been established in the existing literature as it is challenging to
deal with both the non-differentiable loss function and a nonparametric model.
Analysis for this model is more challenging compared to the partially linear
varying-coefficient model (Wang et al., 2009), where the nonparametric part is
low-dimensional. Furthermore, the model in (1) is strictly more general than
the partially linear varying-coefficient model.

2.2. High dimensional inference

We describe the challenges that arise in high-dimensional inference. Suppose first
that we are interested in performing inference on a low-dimensional parameter
b� ∈ R

p, where the dimension p is fixed as the sample size n tends to infinity.
After observing data, we can estimate b� by minimizing some loss function
L(b) = L(b; data). For instance, in a regression problem with features xi and
response yi, i = 1, . . . , n, typically we would have L(b) = n−1

∑n
i=1 �(b;xi, yi),

where �(·) is the negative log-likelihood under some assumed model.
In this classical setting, we can derive the well-known asymptotically normal

distribution of the estimator b̂ around the true parameter value b�, by consider-
ing the score ∇L(b). Namely, assuming that the loss is twice differentiable, by

taking a Taylor expansion, we can see that the estimator b̂ satisfies

0 = ∇L(̂b) = ∇L(b�) +∇2L(b�) · (̂b− b�) + ΔTaylor, (4)
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where ΔTaylor is the error in the Taylor expansion, equal to

ΔTaylor =

(∫ 1

0

∇2L
(
(1− t)b� + t̂b

)
dt−∇2L(b�)

)
· (̂b− b�).

Then by solving for b̂, we have

b̂ = b� +
(
−∇2L(b�)

)−1

·
(
∇L(b�) + ΔTaylor

)
.

Asymptotic normality of the error b̂ − b� then follows from two required prop-
erties: first, that the

√
n-score at the true parameter,

√
n∇L(b�), should be

asymptotically normal via a central limit theorem argument, while the Taylor
expansion error ΔTaylor is vanishing at some appropriately fast rate; and sec-
ond, that the term ∇2L(b�) should converge in probability to some fixed and
invertible matrix (specifically, to its expectation).

In high dimensions, however, the above analysis fails. If b ∈ R
p where the

dimension p grows faster than the sample size n, then ∇2L(b�) will likely not
converge in probability, and in general will not even be invertible. We can in-
stead frame the argument in terms of a low-dimensional parameter of interest
combined with a high-dimensional nuisance parameter. We write b = (a�, c�)�,
where a ∈ R

k is the low-dimensional parameter of interests, while c ∈ R
p−k is

the high-dimensional nuisance parameter. For example, if we are working in a
regression model, where the loss takes the form L(b) =

∑
i �̃(yi;x

�
i b) for some

loss function �̃ (e.g., squared loss for a linear regression), then we might decom-
pose the high-dimensional parameter vector as b = (a�, c�)� to separate the
coefficients on k features of interest (without loss of generality, the first k coor-
dinates of the feature vectors Xi) and the remaining p − k features, which we
think of as potential confounders that need to be controlled for in the regression.

Suppose that our estimate of the low-dimensional parameter vector of inter-
est, a, is obtained by solving

â = argmin
a

L(a, c̃),

where c̃ is some preliminary estimator of c. For example, in a high-dimensional
regression problem, we may run an �1-penalized regression first to obtain an
initial sparse estimate of the parameters. Once an initial estimate is obtained, we
can refit the low-dimensional vector a without a penalty to remove the shrinkage
bias. In this setting, we have

0 = ∇aL(â, c̃) = ∇aL(a�, c�) +∇2
aaL(a�, c�) · (â− a�)+

∇2
acL(a�, c�) · (c̃− c�) + ΔTaylor2. (5)

where

ΔTaylor2
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=

(∫ 1

0

∇2
aaL ((1− t)a� + tâ, (1− t)c� + tc̃) dt−∇2

aaL(a�, c�)
)
· (â− a�)

+

(∫ 1

0

∇2
acL ((1− t)a� + tâ, (1− t)c� + tc̃) dt−∇2

acL(a�, c�)
)
· (c̃− c�). (6)

Therefore,

â = a� +
(
−∇2

aaL(a�, c�)
)−1(

∇aL(a�, c�) +∇2
acL(a�, c�)(c̃− c�) + ΔTaylor2

)
.

Let S = (S�
a , S�

c )� = (∇aL�,∇cL�)� denote the score vector and the negative
Hessian matrix is

H =

(
Haa Hac

Hca Hcc

)
= −

(
∇2

aaL ∇2
acL

∇2
caL ∇2

ccL

)
.

With this notation, we have

â = a� +
(
Haa(a

�, c�)
)−1

·
(
Sa(a

�, c�)−Hac(a
�, c�) · (c̃− c�) + ΔTaylor2

)
.

To assure the asymptotic normality of the error â − a�, we need to handle the
following four terms:

• Asymptotic normality of
√
nSa(a

�, c�), which will hold by a central limit
theorem argument as before;

• Convergence in probability of Haa(a
�, c�) to a fixed invertible matrix,

which holds since a ∈ R
k is low-dimensional;

• Some control on the distribution of the term Hac(a
�, c�) · (c̃− c�);

• Sufficiently small bound on ΔTaylor2, which will hold as long as we assume
that (â, c̃) is sufficiently close to (a�, c�).

The third term, Hac(a
�, c�) · (c̃ − c�), is the main challenge — since c is high-

dimensional, in general it will not be possible to explicitly characterize the
distribution of the error c̃− c� in its estimate. Therefore, we note that a naive
refitting does not result in an asymptotically normal estimator and a different
strategy is needed for high-dimensional inference.

One strategy to solve this problem is to modify the score method. Specifically,
we want the term Hac(a

�, c�) ·(c̃−c�) to vanish at a sufficiently fast rate, so that
it is smaller than the asymptotically normal term Sa(a

�, c�). The decorrelated
score method, described next, provides such a result.

2.3. The decorrelated score method

When â is defined as the minimizer of the objective function at some fixed
estimator c̃ for the nuisance parameter, â = argmina L(a, c̃), we can equivalently
obtain â as the solution to the score equation 0 = ∇aL(a, c̃). To decorrelate
the score equations, we will instead define â as the solution to 0 = ∇aL(a, c̃)−
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V �∇cL(a, c̃), where V ∈ R
(p−k)×k is a carefully chosen matrix, whose choice will

be discusses in detail shortly. The Taylor expansion around the true parameter
then gives us

0 = Sa(â, c̃)− V �Sc(â, c̃) = Sa(a
�, c�)− V �Sc(a

�, c�)

−
(
Haa(a

�, c�)− V �Hca(a
�, c�)

)
· (â− a�)

−
(
Hac(a

�, c�)− V �Hcc(a
�, c�)

)
· (c̃− c�) + Rem. (7)

Solving for â, we then obtain

â = a� +
(
Haa(a

�, c�)− V �Hca(a
�, c�)︸ ︷︷ ︸

Term 1

)−1

·

((
Sa(a

�, c�)− V �Sc(a
�, c�)

)
︸ ︷︷ ︸

Term 2

−

(
Hac(a

�, c�)− V �Hcc(a
�, c�)

)
· (c̃− c�)︸ ︷︷ ︸

Term 3

+Rem

)
. (8)

In order to show that â is asymptotically normal, we would like to show that
Term 1 converges in probability to a fixed (and invertible) matrix; Term 2 con-
verges to a normal distribution via a central limit theorem argument; and Term
3 is vanishing (relative to Term 2). The role of the matrix V is precisely to
make Term 3 of smaller order compared to Term 2. Specifically, the matrix V is
chosen so that ∇2

acL(a�, c�) ≈ V �∇2
ccL(a�, c�), enabling us to show that Term

3 is vanishing without obtaining a limiting distribution for the high-dimensional
estimator c̃. In general, the matrix V cannot be known in advance and is there-
fore data-dependent rather than fixed. However, in applications we will have
that V converges to some fixed matrix sufficiently fast and all the statements
above still hold.

Finding the roots of the score equation may be numerically difficult. We
present two methods that can be used in order to obtain â that approximately
satisfies the score equation next.

The first method is the one-step correction method. Define

W =

(
Ik
−V

)
·
(
Haa(a

�, c�)− V �Hca(a
�, c�)

)−�
.

Expanding W�S(ã, c̃) at (a�, c�) and reorganizing the terms, we obtain

ã+W�S(ã, c̃) = a� +W�S(a�, c�)−W�H·c(a
�, c�) · (c̃− c�) + Rem,

where H·c =

(
Hac

Hcc

)
and b̃ = (ã�, c̃�)� is a preliminary, consistent estimator

of b�. Note that the form of the equation above is the same as in (8). This
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motivates us to define the one-step corrected estimator

ǎOS = ã+W�S(ã, c̃).

Similar to the earlier discussion after (8), the normality of ǎOS will follow if we
choose the matrix W so that W�H·c ≈ 0k,p−k and W itself converges to some
fixed matrix sufficiently fast.

The second method for constructing â relies on the reparametrization of the
loss function. In the method sketched above, â is defined as the minimizer of the
objective function at a fixed preliminary estimate c̃ of the nuisance parameter,
i.e., â = argmina L(a, c̃). We saw above that the bottleneck in this analysis
is the nonzero off-diagonal block of the Hessian matrix, Hac(a

�, c�). To avoid
the problematic term in the Taylor expansion, we can reparametrize the loss in
such a way that the new off-diagonal block will become close to zero. Specifically,
consider defining â as the solution to a different optimization problem,

â = argmin
a

L
(
a, c̃− V (a− ã)

)
, (9)

where ã, c̃ are preliminary estimates of a�, c�.
To better understand the approach in (9), consider again a regression setting

where the distribution of each response variable yi is modeled as a function of
x�
i b = (x�

i,A, x
�
i,Ac)(a�, c�)�, where the subset A ⊂ {1, . . . , p} indexes the k

features of interest corresponding to the subvector a of the regression coeffi-
cients. In this setting, the negative Hessian matrix Hac(a

�, c�) will be nonzero
whenever features in A are correlated with features in Ac; thus, to set this block
of the Hessian matrix to be (close to) zero, we can think of modifying the fea-
tures of interest in the set A by regressing out the confounding features in Ac.
Specifically, let vj ∈ R

p−k be the coefficient vector when regressing the feature
j ∈ A on all features in Ac. Then

x�
i b = (x�

i,A, x
�
i,Ac)(a�, c�)� =

(
xi,A − V �xi,Ac

)�
a+ x�

i,Ac

(
c+ V a

)
,

where V ∈ R
(p−k)×k is the matrix with columns vj . Note that, in this rearranged

expression, the features of interest have been modified to be approximately or-
thogonal to, or approximately independent from, the nuisance features. Suppose
we take c̃ + V ã as the preliminary estimate of the coefficients c + V a on the
confounding features in this new model. If we then re-estimate the parameter
vector of interest a, obtaining a new estimate â, then the final fitted regression
is given by(

xi,A − V �xi,Ac

)�
â+ x�

i,Ac

(
c̃+ V ã

)
= (xi,A, xi,Ac)�

(
â, c̃− V (â− ã)

)
,

thus motivating the form of the optimization problem given above in (9).
Defining â as the solution to the decorrelated optimization problem (9), the

Taylor expansion then gives us

0 = ∇aL
(
a, c̃− V (a− ã)

)∣∣∣
a=â
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= Sa(â, c̃− V (â− ã))− V �Sc(â, c̃− V (â− ã))

= Sa(a
�, c�)− V �Sc(a

�, c�)−
(
Haa(a

�, c�)− V �Hca(a
�, c�)

)
· (â− a�)

−
(
Hac(a

�, c�)− V �Hcc(a
�, c�)

)
· (c̃− V (â− ã)− c�) + Rem,

where Rem is redefined appropriately as the error term in this new expansion.
Solving for â, we then obtain

â = a� +
(
Haa(a

�, c�)− V �Hca(a
�, c�)︸ ︷︷ ︸

Term 1

)−1

·
((

Sa(a
�, c�)− V �Sc(a

�, c�)
)

︸ ︷︷ ︸
Term 2

−
(
Hac(a

�, c�)− V �Hcc(a
�, c�)

)
· (c̃− V (â− ã)− c�)︸ ︷︷ ︸

Term 3

+Rem

)
. (10)

Therefore, â is going to be asymptotically normal if Term 1 converges in prob-
ability to a fixed (and invertible) matrix;

√
n· Term 2 converges to a mean-zero

normal distribution via a central limit theorem argument; and Term 3 and the
remaining error Rem are vanishing (relative to Term 2). As before, the role of
the matrix V is in controlling Term 3. Specifically, the matrix V is chosen so
that Hac(a

�, c�) ≈ V �Hcc(a
�, c�), enabling us to show that Term 3 is vanishing

without obtaining a limiting distribution for the high-dimensional initial esti-
mates ã, c̃. In general, the matrix V cannot be known in advance and is therefore
data-dependent rather than fixed, but in our analysis we will see that as long as
V itself is sufficiently close to some fixed matrix, all the statements above will
still hold.

2.4. Non-differentiable loss in quantile regression

When the loss function L is non-differentiable, which is the case in quantile
regression, approaches based on the decorrelated score method cannot be di-
rectly applied. However, a simple modification allows us to proceed in a similar
way as before. Assuming that the loss is nondifferentiable and convex, we let
S(a, c) denote the subdifferential of the loss. While S(·) might be highly nondif-
ferentiable, its expected value is smooth in many problems. Therefore, we can
compute the Hessian as the gradient of the expected value of S(·). In particular,
we define the expected score function ES(a, c) as the expectation of the score
S(·) at any fixed parameter choice (a, c). Here it is important to note that, for
a random parameter vector (â, c̃), the expected score function ES(â, c̃) is not
equal to E [S(â, c̃)], since this second quantity would evaluate its expectation
with respect to the random values of â and c̃ as well. With the expected score
function defined, we let

H(a, c) = −∇ES(a, c)

be the negative gradient of the expected score.
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We specialize the discussion so for to the quantile regression problem at
hand. We will base the inference procedures on the local linear formulation of
the estimation problem for the varying-coefficient quantile regression model (3).
Suppose A = {1, . . . , k} is the index set for the parameters of interest. Let
Y ∈ R

n be the response and U ∈ R
n be the index for the varying coefficient.

The matrix of input variables is denoted as X = (XA, XAc) ∈ R
n×p, where

XA ∈ R
n×k represents the features of interest and XAc ∈ R

n×(p−k) the other
features. Let

Γ(u) = (XA, XAc , diag(U − u)XA, diag(U − u)XAc) ∈ R
n×2p,

and Γ�
i (u) = (x�

i,A, x
�
i,Ac , (ui − u) · x�

i,A, (ui − u) · x�
i,Ac) represents the ith row

vector of Γ(u). The score function for quantile regression is given as

S(a0, a1, c0, c1) =
∑
i∈[n]

wi · Γi(u) ·Ψτ

(
yi − x�

i,Aa0 − x�
i,Acc0

−(ui − u) · x�
i,Aa1 − (ui − u) · x�

i,Acc1
)
,

where Ψτ (u) = τ − 1I(u < 0). Let b0 = (a�0 , c
�
0 )

� ∈ R
p, b1 = (a�1 , c

�
1 )

� ∈ R
p,

and b = (b�0 , b
�
1 )

� ∈ R
2p. Then the above score function can be written as

S(b) =
∑
i∈[n]

wi · Γi(u) ·Ψτ

(
yi − Γ�

i (u) · b
)
. (11)

Let b� = b�(τ, u) be defined as a solution to 0 = E [S(b)] when h → 0. Let
q̃i(τ, u) = Γ�

i (u)b
�(τ, u) be a local linear approximation to qi(τ) = q(xi; τ, ui).

Since (τ, u) is fixed, we write Γi(u) = Γi, q̃i(τ, u) = q̃i and qi(τ) = qi for
notational simplicity. Finally, we use Δi = Δi(τ, u) = q̃i − qi to denote the ap-
proximation error from using the local linear model for the conditional quantile.

An approximate negative Hessian corresponding to the expected score func-
tion is given as

H� = H(b�; τ, u) =
∑
i∈[n]

wi · fi(qi +Δi) · ΓiΓ
�
i . (12)

Let V � ∈ R
2k×2p be the rows related to XA, XA(U − u) of an approximate

inverse of H such that
‖V �H� − Ea‖∞,F ≤ λ�,

where
‖V �‖∞,F = sup

i∈[k],j∈[p]

‖V �
(i,i+k),(j,j+p)‖F ,

Ea = (e1, · · · , e2k)� ∈ R2k×2p, and λ� is a parameter that will be precisely given
in Section 4.

With these preliminaries, we define the one-step correction estimator ǎOS as
ǎOS = â− Sd(̂b, V̂ ), where

Sd(b, V ) :=
∑
i∈[n]

Sdi(b, V ) =
∑
i∈[n]

−wiV ΓiΨτ (yi − Γ�
i b), (13)

and V̂ , b̂ are plug-in estimators of V �, b� to be defined later, and â = b̂1:2k.
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3. Algorithm

We provide computational details for the three proposed estimators. The first
estimator is based on finding the root of the decorrelated-score; the second
estimator is based on the one-step correction; and the third estimator is based on
the reparametrization of the loss function. As discussed in the previous section,
all these estimators are asymptotically equivalent. Estimation proceeds in three
steps with the first two steps being the same for all three estimators. In the first
step we obtain a pilot estimator of b�, while in the second step we obtain V̂ . We
provide details next.
Step 1. Obtain the initial estimator b̂ini by minimizing the optimization pro-
gram (3). The kernel weights are given as wi = (nh)−1K

(
h−1Ui − u

)
, while the

penalty parameter λb is defined in a data dependent fashion as

λb = cb
√

τ(1− τ) log(nhp) ·
(
max
j∈[p]

Sn

[
w2

i x
2
ij

])1/2

, (14)

where Sn [zi] denotes the summation, Sn [zi] =
∑

i∈[n] zi, and cb is a data inde-

pendent constant. We subsequently threshold elements of b̂ini to obtain b̂ with

b̂j =

⎧⎪⎪⎨⎪⎪⎩
b̂inij · 1

{(
b̂inij

)2
+
(
b̂inij+p

)2
> λ2

b

}
, j = 1, . . . , p,

b̂inij · 1
{(

b̂ini2j

)2
+
(
b̂inij−p

)2
> λ2

b

}
, j = p+ 1, . . . , 2p,

to ensure the sparsity of the estimator for Theorem 1.
Step 2. Obtain V̂ by

V̂ = argmin
V ∈R2k×2p

{
trace

(
1

2
V ĤV � − EaV

�
)
+ λV ‖V ‖1,F

}
, (15)

where λV = n−1cv
√
nhΦ−1

(
1− 0.05

2nhp

)
with cv being a data independent con-

stant; and Ĥ =
∑

i∈[n] wif̂iΓiΓ
�
i with wi being the kernel weight as defined in

Step 1 and f̂i is computed with a data adaptive procedure as

f̂i =
1
{
|yi − Γ�

i b̂| ≤ hf

}
2hf

with

hf = (Φ−1(τ + hp)− Φ−1(τ − hp))min

{√
Var(ê),

Q0.75(ê)−Q0.25(ê)

1.34

}
,

where

êi = yi − Γ�
i b̂, Qα(ê) = inf

q

{
q :

∑
i wi1 {êi ≤ q}∑

i wi
≥ α

}
,
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Var(ê) =

∑
i wi

(
êi −

∑
j wj êj∑
j wj

)2
∑

i wi
,

and

hp = n−1/3{Φ−1(0.975)}2/3
{
1.5[φ(Φ−1(τ))]2

2[Φ−1(τ)]2 + 1

}1/3

is the Powell bandwidth defined in Koenker (2005, Section 3.4.4).
Step 3. Here we obtain our final estimator ǎ using one of the three procedures.

1. Finding the root of the decorrelated score. We would like to construct ǎ by
solving for

∑
i S̃i(a) = 0 where S̃i(a) = Sdi((a

�, ĉ�)�, V̂ ) with Sdi defined

in (13). Because
∑

i S̃i(a) is not continuous, we can approximately solve
the equation by

ǎDS = argmin[
∑
i

S̃i(a)]
�[
∑
i

S̃i(a)S̃
�
i (a)]−1[

∑
i

S̃i(a)]. (16)

Minimizing the above problem is not computationally simple. The follow-
ing two strategies might be preferred, as discussed in Section 2.3.

2. The one step correction estimator. We compute the estimator as

ǎOS = â+
∑
i∈[n]

wiV̂ Γ�
i Ψτ (yi − Γ�

i b̂). (17)

3. The reparametrization estimator. We first obtain Γ̃i, ỹi as Γ̃i = Γi,A −
V̂2Γi,Ac and ỹi = yi − Γ�

i,Ac(ĉ+ V̂ �
2 â), where V̂2 = V̂ −1

11 V̂12, V̂11 = V̂1:2k ∈
R

2k×2k and V̂12 = V̂(2k+1):2p ∈ R
2k×2(p−k). Then the estimators is com-

puted as

ǎRP = argmin
a

∑
i

wi · ρτ
(
ỹi − Γ̃�

i a
)
. (18)

With the estimator ǎ, being ǎDS , ǎOS , or ǎPR, we can perform statistical in-
ference about the parameter of interests, a. For any one of the three estimamors,
we have that

Σ̂−1/2
a (ǎ− a) ∼ N (0, Ik),

where the covariance matrix is computed as

Σ̂a = nh
∑
i

w2
i V̂ Γ�

i Ψ
2
τ (yi − Γ�

i b̂)ΓiV̂
�.

We end this section with some remarks on the computation. The kernel
weights we chose in our simulation studies are given as

wi = (nh)−11 {|Ui − u|/h < 0.5}

with h = chn
−1/3 and ch = 4. However, we note that any kernel function that

satisfies Assumption 1 presented later in Section 4.1 can be used. Many fre-
quently used kernels, such as the Gaussian kernel and box kernel, satisfy this
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assumption. We also set cb = 0.4 and cv = 0.02 in our numerical studies. The
performance of the algorithm is not very sensitive to the choice of these pa-
rameters. Both in Step 1 and Step 2 of the algorithm, one can perform optional
refitting of the selected coefficients to improve finite sample performance. For ex-
ample, in Step 1, let S ∈ R

s be the support of the covariates in Γ corresponding
to b̂, and Γi,S and bS are the corresponding entries in Γi and b, then

b̂post =

{
argmin

b∈Rp

n∑
i=1

wi · ρτ
(
yi − Γ�

i,SbS
)
: bj = 0 ∀j ∈ Sc

}

can be used to replace b̂.

4. Main results

In this section, we present our main results. We start by detailing the assump-
tions in Section 4.1. Results on estimation consistency are presented in Sec-
tion 4.2. Finally, we give results on the asymptotic normality of the estimator
in Section 4.3.

4.1. Assumptions

We state the assumptions needed to establish our results.

Assumption 1 (Kernel assumptions). The kernel function K(·) satisfies

K(t) ≤ ν0 < ∞ for all t,

∫
K(u)du = ν1 < ∞,∫

K2(u)du = ν2 < ∞,

∫
K(u)u2du = μ2 < ∞,∫

K(u)u4du = μ4 < ∞.

The kernel is chosen by a statistician, so the above assumption does not put
restrictions on the data generating process. A number of standard kernels such
as the Gaussian kernel, box kernel, and Epanechnikov kernel, all satisfy the
above assumption.

Assumption 2 (Assumptions on U). We assume U has bounded support. With-
out loss of generality, we assume U ∈ [0, 1]. Let fU (u) be the density of U . There
exists f̄ such that fU (u) ≤ f̄ .

From Assumptions 1 and 2, the kernel weights wi’s satisfy the following with
high probability

‖wi‖∞ ≤ Bw =
ν0
nh

≤ BK

nh
,
∑
i

wi ≤ BK ,
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∑
i

wi

(
ui − u

h

)2

≤ BK , and
∑
i

wi

(
ui − u

h

)4

≤ BK

for some constant BK > 0.

Assumption 3 (Assumptions on the distribution of Y ). Let fi(y) be the condi-
tional density of Yi given Xi = xi, Ui = ui. We assume that there exist constants
f, f̄ , f̄ ′ such that

0 < f ≤ fi(y) ≤ f̄ , and |f ′
i(y)| ≤ f̄ ′ for all y.

This type of assumption on the conditional distribution of Y is commonly used
in the literature on quantile regression, for example, see Belloni et al. (2016a).

Assumption 4 (Approximate linear sparsity and smoothness of q(x; τ, u)).
Assume there exists a smooth and sparse β�(τ, u) such that:

• u �→ β�(τ, u) is differentiable for all τ ∈ [ε, 1− ε] and

‖β�(τ, u′)− β�(τ, u)− (u′ − u) · ∇uβ
�(τ, u)‖2 ≤ Bβ(u

′ − u)2;

• the supports of β�(u, τ) and ∂uβ
�(τ, u) are sparse; that is, for the sets

S :=
{
j ∈ [p] | β�

j (τ, u) �= 0
}

and
S′ :=

{
j ∈ [p] | β�

j (τ, u) �= 0 or ∂uβ
�
j (τ, u) �= 0

}
,

we have s := |S| � n and |S′| ≤ s1 := c1s for some constant c1.

We assume that the quantile function qi = q(xi; τ, ui) can be well approximated
by a linear function x�

i β
�(τ, ui); specifically,

P
{
Y ≤ x�

i β
�(τ, ui)

∣∣ X = xi, U = ui

}
= τ +Ri,

where √∑
i

wiR2
i = εR = O

(√
log(np)

nh

)
.

This assumption requires that the conditional quantiles of Y approximately
follow a linear varying-coefficient model and the approximation error is vanishing
as n → ∞. In addition, the varying-time coefficient β�(τ, u) is Hölder smooth,
sparse and has sparse first derivatives.

For the case when u and τ are fixed, we will write β� = β�(τ, u). Let b� =

b�(τ, u) =
(
β�(τ, u)�,∇�

u β
�(τ, u)

)�
and write qi = q(xi; τ, ui), q̃i = Γ�

i b
� as a

local linear approximation to qi. Let

H =
∑
i∈[n]

wi · fi(qi) · ΓiΓ
�
i and H� =

∑
i∈[n]

wi · fi(q̃i) · ΓiΓ
�
i .
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Assumption 5 (Assumptions on the Hessian). Let V � be the rows related to
[XA, XA(U − u)] of an approximate inverse of H�. We assume that

‖H�V � − Ea‖∞,F ≤ λ� = O

(
BV

√
log p

nhhf

)
, ‖V �‖0,F ≤ s2 = c2s,

where ‖V ‖0,F := |{(i, j) : i ∈ [k], j ∈ [p], V �
(i,i+k),(j,j+p) �= 0}|, ‖V ‖∞,F :=

maxi∈[k],j∈[p]‖V �
(i,i+k),(j,j+p)‖F and maxi∈[n] ‖V �Γi‖2 = BV � log p. Further-

more, we have

(nh)−1sB2
V log p = o(1) and log(B2

V hfh) = o(log p).

Assumption 5 holds when XA follows a multivariate approximately sparse
linear model with respect to XAc , where we require the coefficients to be ap-
proximately linear, sparse and smooth (see Appendix C). For example, when
the distribution of X does not depend on U and the exact sparse linear model
holds, Assumption 5 obviously holds.

Assumption 6 (Assumptions on X). We make the following assumptions on
the covariate X:

• Boundedness: there exists a constant BX such that with high probability,

max
i

‖xi‖∞ ≤ BX and max
j∈[p]

∑
i

w2
i x

2
ij ≤

B2
XB2

K

nh
.

• Restricted eigenvalues: Consider the following cones

C(s1) = {θ : ‖θ‖0 ≤ s1 and ‖θ‖2 = 1}, and

C(S2) = {Θ ∈ R
2k×2p : ‖ΘSc

2
‖1,F ≤ 6‖ΘS2‖1,F and ‖Θ‖1,F = 1},

where S2 =
{
(i, j) : ‖V �

(i,i+k),(j,j+p)‖F > 0
}

is the support of V � By As-

sumption 5, |S2| ≤ s2. We assume there exist 0 < κ2
− ≤ κ2

+ < ∞ such
that

κ2
− ≤

∑
i∈[n]

wi(Γ
�
i θ)

2 ≤ κ2
+ for all θ ∈ C(s1) and (19)

κ2
− ≤

∑
i∈[n]

witrace(Θ
�ΓiΓ

�
i Θ) ≤ κ2

+ for all Θ ∈ C(S2). (20)

• For some constant κq > 0,

inf
‖δ‖1,2≤ 7|S′|·

√
log p

κ−
√

nh

Sn[wi(Γ
�
i δ)2]= |S′| log p

nh

(
f ·
∑

i∈[n] wi ·
(
Γ�
i δ
)2)3/2

f̄ ′ ·
∑

i∈[n] wi ·
(
Γ�
i δ
)3 ≥ κq. (21)
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The assumptions on the design X are mild and commonly used in the literature
on high-dimensional estimation and inference. For example, boundedness and
restricted eigenvalue condition was used in Negahban et al. (2012). The condition
(21) is a mild growth condition, which is satisfied for many design matrices X,
see Belloni et al. (2016a) and Belloni and Chernozhukov (2011).

Finally, we need the following growth condition.

Assumption 7 (Growth conditions). We assume

h � O(n−1/3), hf � O(n−1/3), and (nhhf )
−1/2

s log p log(np) = o(1).

With these assumptions, we are ready to present our main results next.

4.2. Consistency and sparsity results of the initial estimators

We establish the asymptotic properties of the initial estimators in Step 1 and
Step 2 from Section 3.

Theorem 1. Under Assumptions 1, 2, 3, 4, 6 and 7, the estimator b̂ from Step
1 in Section 3 satisfies

Sn

[
wi ·

(
Γ�
i

(
b̂− b�

))2]
≤ Op

(
s log(np)

nh

)
, (22)

‖b̂− b�‖1,2 ≤ Op

(
s

√
log(np)

nh

)
, and (23)

‖b̂‖0,2 ≤ Op(s), (24)

where Sn [zi] :=
∑

i∈[n] zi, ‖b‖1,2 :=
∑p

i=1

√
b2i + b2i+p, and ‖b‖0,2 is defined as

the �0 norm of the vector
(√

b21 + b21+p, · · · ,
√

b2p + b22p

)
.

Theorem 1 gives us convergence results regarding the �1,2-penalized quantile
regression estimator from (3). In particular, (22) gives the rate of convergence
rate of the prediction �2-norm, (23) gives the �1,2-norm of the error, and (24)

gives the sparsity of b̂ in Step 1 of Section 3. Both Theorem 2 and Theorem 3
rely on these conditions. The extra growth condition in Assumption 6 is mild.

Specifically, with the penalty parameter λb � O

(√
log p
nh

)
the assumption is

satisfied. The sparsity here is achieved by truncating the small components in
b̂ini to zero, while maintaining the same rate of convergence.

Theorem 2. Suppose the assumptions for Theorem 1 hold and the estimator
b̂ obtained in Step 1 satisfies (22), (23), and (24). Furthermore, suppose that

λV ≥ 2λ� and Assumption 5 holds for λ�. Then V̂ from Step 2 satisfies

‖V̂ − V �‖F ≤ Op

(
BV

√
s log(np)

nhhf

)
and (25)



High-dimensional varying-coefficient quantile regression 5713

‖V̂ − V �‖1,F ≤ Op

(
sBV

√
log(np)

nhhf

)
, (26)

where ‖V ‖1,F :=
∑

i∈[k],j∈[p]‖V(i,i+k),(j,j+p)‖F .
Theorem 2 gives the convergence rate of the �1,2-norm and prediction �2-norm

of V̂ in Step 2 of Section 3. Because the Ĥ in the objective function relies on
the estimator b̂, both the convergence and sparsity results from Theorem 1 are
needed.

4.3. Normality result of the final estimators

We state the asymptotic normality result for the one step estimator.

Theorem 3 (Normality for the one-step estimator). Assume that Assumptions
1 – 7 hold and (22), (23), (24), (25), (26) hold. Then the one step estimator
defined in (17) satisfies

√
nhΣ̂−1/2

a (ǎOS − a�) →d N (0, I2k),

where the covariance matrix Σ̂a is estimated as either

Σ̂a = nhV̂

{∑
i

w2
i ΓiΨτ (yi − Γ�

i b̂)Ψτ (yi − Γ�
i b̂)

�Γ�
i

}
V̂ � (27)

or

Σ̂a = τ(1− τ)ν2V̂

⎧⎨⎩∑
j

wjΓjΓ
�
j

⎫⎬⎭ V̂ �. (28)

Theorem 3 tells us that the one step estimator is
√
nh-consistent. The co-

variance (28) is the expected version of (27), where (27) comes from the central
limit theorem. The estimators from the decorrelated score (ǎDS) and reparam-
eterization (ǎRP ) are both asymptotically equivalent to ǎOS ; the detailed proof
is in the appendix.

5. Numerical studies

Through an empirical study, we investigate the finite sample performance of
our confidence interval construction approach and show that it works under
high-dimensional settings and is robust to different error distributions.

For each individual, the data is generated independently and identically dis-
tributed from the following distribution of {U,X1, X−1, ε, Y }. First, we generate
the index variables as U ∼ Unif[0, 2] and the confounding variables as

X−1 | U ∼ N (μ(U),Σ(U)),
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where μj(U) = a0 · j · (Ua1 − 1) and Σ(U) is an autoregressive (AR) covariance

with elements Σ(U)i,j = ρ(U)|i−j| and the parameter ρ(U) = ρ1+b0(U
b1−1). Note

that when a1 = b1 = 0 we have a model where the nuisance covariates X−1 | U
are homogeneous and do not depend on the index variable U . We then generate
X1 and Y . Let ν ∈ Rp−1 with νj−1 = 1/j2, j = 2, · · · , p, and β = ( 12 , cyν

�)�.
Then

X1 = X−1(cxν) + εx, where εx ∼ N (0, 1) and is independent of (X−1, U),

Y = Xβ(U) + ε, where β(U) = β(c0U
c1 + 1− c0),

and ε | X,U ∼ σe(U) · Fe ·
√

(2− γ + γ ·X2
1 )/2.

Note that ε is allowed to depend on X. In particular, γ = 0 leads to a ho-
mogeneous setting and γ = 1 leads to a heterogeneous setting. Here σe(U) =
σe(1 + d0(U

d1 − 1)) and Fe is either the standard Gaussian or t distribution
with 3 degrees of freedom (t(3)).

Specially, this data generation process leads to the following quantiles:

q(x; τ, u) = xβ(u) + σe(u) ·
√
(2− γ + γ · x2

1)/2 · qe(τ),

where qe(τ) is the τ -th quantile of the distribution Fe. In this simulation, we
are interested in the inference for β1(τ, u) ∈ R

1 at the point (τ, u) = (0.5, 1). At
this point, q(x; 0.5, 1) = xβ(1) satisfy Assumption 5.

The coefficients cx and cy are used to control the R2 in different regres-
sion equations. We use R2

y to denote the R2 in the equation Y − X1β1(U) =
X−1β−1(U) + ε, while R2

x denotes the R2 in the equation X1 = X−1(cxν) + εx.
We vary the parameters and choose cy, cx to form different combinations of
(R2

y, R
2
x). Details can be found in Appendix B.

We evaluate the performance of our algorithms described in Section 3 (DS
(16), OS (17) and RP (18)) and compare them with the Oracle and the Naive
methods. For the oracle method, we assume that the true (low dimensional)
set of predictors is known in advance and our inference is based on the kernel
weighted quantile regression on the true set of variables. For the Naive method,
we fit the kernel weighted penalized regression as in Step 1. Then we fit the post-

regularized regression and do the inference treating the set Ŝ =
{
j : β̂j �= 0

}
as

fixed. We compare their performance from M = 100 simulations in terms of the
bias, empirical standard deviation (SD), the expected estimated standard error
(ESE), and coverage rate for the 95% nominal confidence intervals (CR).

The simulation results for two settings with normally distributed and t(3)-
distributed ε’s are listed in Table 1. Additional simulation results are presented
in Table 2 in Appendix B. From the simulation, the oracle method consistently
produce confidence intervals with coverage rate close to the nominal value 95%
in all simulation settings. The Naive estimator has some significant bias when
R2

y is small and R2
x is large. Furthermore, without any correction, the confidence

intervals tend to have significantly lower coverage than the nominal value. The
OS, DS, and PR estimators have relatively low bias compared to the naive
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Table 1

Simulation results for the correlation setting (R2
x, R

2
y) = (0.7, 0.3).

ε distribution γ Method Bias SD ESE CR

Normal

0

One Step 0.022 0.063 0.076 0.97
Decorrelated score 0.057 0.139 0.124 0.92
Reparameterization 0.045 0.055 0.076 0.97

Naive 0.274 0.047 0.045 0.41
Oracle −0.004 0.062 0.067 0.95

1

One Step 0.093 0.149 0.190 0.96
Decorrelated score 0.174 0.134 0.297 0.99
Reparameterization 0.148 0.142 0.190 0.97

Naive 0.246 0.120 0.150 0.62
Oracle −0.034 0.133 0.140 0.94

t(3)

0

One Step 0.022 0.083 0.084 0.96
Decorrelated score 0.077 0.112 0.145 0.95
Reparameterization 0.054 0.071 0.084 0.93

Naive 0.249 0.075 0.057 0.10
Oracle −0.020 0.042 0.051 0.95

1

One Step 0.090 0.193 0.212 0.95
Decorrelated score 0.185 0.163 0.313 0.98
Reparameterization 0.167 0.173 0.212 0.94

Naive 0.234 0.156 0.186 0.73
Oracle −0.01 0.126 0.164 0.98

method in all settings; also, their coverage rates are closer to the nominal value
than the naive method.

We plot the trend of coverage rate for all methods with the change of R2
y

and R2
x in Figure 1 to better understand the performance of the different meth-

ods as the data generating distribution changes. We find that the confidence
intervals from the Naive method significantly undercover when the response Y
has low correlation with the covariates X and X1 has high correlation with the
confounding variables X−1. On the other hand, the proposed methods provide
satisfactory coverage across all settings.

Regarding the widths of the confidence intervals, the Naive method under-
estimates the standard error in some data settings, resulting in low coverage
rates. The OS, DS, and PR methods provide CI’s with the correct coverage rate
and the widths of the CI’s are slightly larger than those of the Oracle method.
Among the three proposed methods, the OS method has the best finite sample
performance in terms of stability and computational cost.

6. Real data example

As an illustration of our method, we apply our methods to analyze the plasma
beta-carotene level data set collected by a cross-sectional study (Nierenberg
et al., 1989). This dataset consists of 315 observations on 14 variables. Our
interest is to study the relationship between the plasma beta-carotene level and
the following variables: age, sex, smoking status, quetelet (BMI), vitamin use,
number of calories consumed per day, grams of fiber consumed per day, number
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Fig 1. Left: CR of different methods with R2
y fixed at 0.3 and changing R2

x. Right: CR of

different methods with R2
x fixed at 0.7 and changing R2

y. In the simulation, the error term ε
is normally distributed and γ = 0.

Fig 2. Inference for fat. Left: fixing scaled dietary beta-carotene level at 0, 95% confidence
intervals for different τ . Right: fixing τ = 0.5, 95% confidence intervals for different beta-
carotene levels.

of alcoholic drinks consumed per week, cholesterol consumed per day, dietary
beta-carotene consumed per day and dietary retinol consumed per day.

We fit our varying coefficient model by using dietary beta-carotene consump-
tion as the index U . We replace all categorical variables with dummy variables
and standardize all variables. Then we include all two-way interactions in our
model, so we have 116 confounding variables in total. We take the plasma beta-
carotene level as the outcome Y , the fat intake (in grams) or the fiber intake
(in grams) as the treatment effect XA respectively, and the remaining variables
as the confounding variables. We use our model to make inference on β(τ, u) at
different beta-carotene consumption level u and different quantiles τ .

Our results are shown in Figures 2 and 3. The Naive method is shown in red
and we compare it with the one-step correction (OS) method. From Figure 2,
the result of the naive method suggests that the fat intake is significantly nega-
tively correlated with the plasma beta-carotene level; however, the OS method
suggests that this negative effect is not significant. For fiber, the Naive method
underestimated the positive effect of fiber intake on the plasma beta-carotene
level, whereas the OS method showed that this positive relationship is signifi-



High-dimensional varying-coefficient quantile regression 5717

Fig 3. Inference for fiber. Left: fixing scaled dietary beta-carotene level at 0, 95% confidence
intervals for different τ . Right: fixing τ = 0.5, 95% confidence intervals for different beta-
carotene levels.

cant. Furthermore, from Figure 3 (right plot), we can see an increasing trend of
the effect of fiber intake with the increasing level of dietary beta-carotene.

7. Discussion

We studied high-dimensional quantile regression model with varying coefficients
that allows us to capture non-stationary effects of the input variables across
time. Despite the importance in practical applications, no valid statistical infer-
ential tools were previously available for this problem. We addressed this issue
by developing new tools for statistical inference, allowing us to construct valid
confidence bands and honest tests for nonparametric coefficient functions of time
and quantile. Performing statistical inference in this regime is challenging due to
the usage of model selection techniques in estimation. Our inferential results do
not rely on correct model selection and are valid for a range of data generating
procedures, where one cannot expect for perfect model recovery. The statistical
framework allows us to construct a confidence interval at a fixed point in time
and a fixed quantile based on a normal approximation, as well as a uniform
confidence band for the nonparametric coefficient function based on a Gaussian
process approximation. We perform numerical simulations to demonstrate the
finite sample performance of our method. In addition, we also illustrate the
performance of the methods through an application to a real data example.

Appendix A: Technical details

A.1. Notations

We summarize the additional notation used throughout the appendix. We let
Ψτ (u) = τ − 1 {u < 0}, ρτ (u) = uΨτ (u), and use

Wi(δ) = ρτ (yi − (qi + δ))− ρτ (yi − qi) ;

W#
i (δ) = −δΨτ (yi − qi); and
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W �
i (δ) =

∫ δ

0

[1 {yi ≤ qi + z} − 1 {yi ≤ qi}] dz

= (yi − (qi + δ)) [1 {qi + δ ≤ yi < qi} − 1 {qi ≤ yi < qi + δ}] .

We denote the sum as Sn [·] =
∑

i∈[n] · and ESn [·] = E [Sn [·]]. Denote the
negative Hessian

H = Sn

[
wifi(qi) · ΓiΓ

�
i

]
,

H� = Sn

[
wifi(q̃i) · ΓiΓ

�
i

]
,

H(δ) = ESn

[
wif̂i(δ) · ΓiΓ

�
i

]
= Sn

[
wi · E

[
f̂i(δ)

]
· ΓiΓ

�
i

]
, and

Ĥ(δ) = Sn

[
wif̂i(δ) · ΓiΓ

�
i

]
,

where

f̂i(δ) =
1
{∣∣yi − Γ�

i (b� + δ)
∣∣ ≤ hf

}
2hf

.

Let Δi = q̃i − qi. Recall that V � ∈ R
2k×2p are the rows related to XA,

XA(U − u) of an approximate inverse of H� such that ‖H�V � − Ea‖∞,F ≤ λ�

and ‖V �‖F,0 ≤ s2 = c2s. Its estimator V̂ is as defined in (15). The one step cor-

rection estimator ǎOS = â− S(â, ĉ, V̂ ), where S(a, c, V ) = −
∑

i wiV ΓiΨτ (yi −
Γ�
i (a

�, c�)�).

A.2. Proof of Theorem 3

Recall the definitions of ǎOS in (17) and Sd(b, V ) in (13). We have

ǎOS − a� = â− a� −
{
Sd((â

�, ĉ�)�, V �)− Sd((a
��, c��)�, V �)

}
−
{
Sd((â

�, ĉ�)�, V̂ )− Sd((â
�, ĉ�)�, V �)

}
− Sd((a

��, c��)�, V �).

By Lemma 1 and Lemma 2 (presented later in Section A.4), we have

∥∥â− a� −
{
Sd((â

�, ĉ�)�, V �)− Sd((a
��, c��)�, V �)

}∥∥
2
= op

(√
1

nh

)
and

‖Sd((â
�, ĉ�)�, V̂ )− Sd((â

�, ĉ�)�, V �)‖2 = op

(√
1

nh

)
.

Therefore,

ǎOS − a� = −Sd((a
��, c��), V �) + op

(√
1

nh

)
=
∑
i

wiV
�ΓiΨτ (yi − qi)
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−
∑
i

wiV
�Γi {Ψτ (yi − qi)−Ψτ (yi − q̃i)}+ op

(√
1

nh

)

=
∑
i

wiV
�ΓiΨτ (yi − qi) + op

(√
1

nh

)
.

The last equality holds by Lemma 3, which we present later in Section A.4.
Because Assumptions 3 and 6 hold, by Lindeberg CLT, we have

√
nh
∑
i

wiV
�ΓiΨτ (yi − qi) → N(0,Σ)

and, therefore, √
nhΣ−1/2

(
ǎOS − a�

) d−→ N(0, I2k),

where Σ = τ(1 − τ)ν2 limn→∞ E
[{

V �ΓΓ�V ��} ∣∣ U = u
]
. By Lemma 4 (pre-

sented later in Section A.4), for both forms of Σ̂a, we have

Σ̂a
p−→ Σ.

Therefore by Slutsky’s Theorem,

√
nhΣ̂−1/2

a

(
ǎOS − a�

) d−→ N(0, I2k).

A.3. Asymptotic equivalence of decorrelated score, one-step and
reparameterization estimators

Denote

Hac(f, V ) =
∑
i

wifiV ΓiΓ
�
i

[
02(p−k)×2k I2(p−k)

]�
, and

Haa(f, V ) =
∑
i

wifiV ΓiΓ
�
i

[
I2k 02k×2(p−k)

]�
.

The decorrelated score estimator ǎDS in (16) that minimizes

Sd((a
�, ĉ�)�, V̂ )�Ψ−1Sd((a

�, ĉ�)�, V̂ ),

where

Ψ =
∑
i

w2
i V̂ ΓiΨτ (yi − Γ�

i b̂)Ψτ (yi − Γ�
i b̂)

�Γ�
i V̂

�,

is asymptotically equivalent to the one-step estimator.
To show this, given the optimization range

Aτ = {a : ‖a− a�‖2 <
C

logn
},
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we have

‖Sd((ǎ
DS�, ĉ�)�, V̂ )‖2 = op

(√
1

nh

)
and

Sd((ǎ
DS�, ĉ�)�, V̂ )

= Sd((a
��, c��)�, V �) +

(
Sd((a

��, c��)�, V̂ )− Sd((a
��, c��)�, V �)

)
︸ ︷︷ ︸

=op
(√

1
nh

)
+
(
Sd((a

��, ĉ�)�, V̂ )− Sd((a
��, c��)�, V̂ )

)
︸ ︷︷ ︸

=op
(√

1
nh

)
+
(
Sd((ǎ

DS�, ĉ�)�, V̂ )− Sd((a
��, ĉ�)�, V̂ )

)
= Sd((a

��, c��)�, V �) +Haa(f, V
�)(ǎDS − a�)

+ o(‖ǎDS − a�‖2) + op

(√
1

nh

)
. (29)

Therefore, we have

ǎDS − a� = −Haa(f, V
�)−1Sd((a

��, c��)�, V �) + op

(√
1

nh

)
,

which is asymptotic equivalent to the one-step estimator.
For the reparameterization estimator in (18), we need to assume that V̂

can be decomposed as V̂ = V̂11

[
I2k −v̂

]
where V̂11 is invertible with high

probability, and v̂ = −V̂ −1
11 V̂12. Similarly we have V � = V �

11

[
I2k −v�

]
where

v� = −[V �
11]

−1V �
12. Let

s(a, c, v) =
∑
i

wi

[
I2k −v

]
ΓiΨτ (yi − Γ�

i (a, c)),

hac(f, v) =
∑
i

wifi
[
I2k −v

]
ΓiΓ

�
i

[
02(p−k)×2k I2(p−k)

]�
, and

haa(f, v) =
∑
i

wifi
[
I2k −v

]
ΓiΓ

�
i

[
I2k 02k×2(p−k)

]�
.

We have ǎRP minimizing L(a, ĉ+ v̂�(â−a)) as defined in (8). The optimization
of the low-dimension quantile regression will approximately solve the following
score

s(a, ĉ+ v̂�(â− a), v̂)

= s(a, ĉ, v̂) + hac(f̂ , v̂)v̂
�(â− a) + o(‖v̂�(â− a)‖2) + op

(√
1

nh

)
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in the sense that

s(ǎRP , ĉ+ v̂�(â− ǎ), V̂ ) = op

(√
1

nh

)
.

Since

hac(f̂ , v̂)v̂
�(â− a) = op

(√
1

nh

)
,

the equivalence of v̂ and the lasso estimator from a regression of Γ1:2k on
Γ(2k+1):2p implies that a similar expansion as decorrelated score (13) holds.
Therefore, we have

s(ǎRP , ĉ, v̂)

= s(a�, c�, v�) + haa(f, v
�)(ǎRP − a�) + o(‖ǎRP − a�‖2) + op

(√
1

nh

)

and ǎRP − a� is asymptotically equivalent to [haa(f, v
�)]−1s(a�, c�, v�), which

converges to a normal distribution.

A.4. Lemmas for the normality results

Lemma 1. Suppose that Assumptions 1-6 and the conditions (22)-(26) hold.
Then

‖â− a� −
{
Sd((â

�, ĉ�)�, V �)− Sd((a
��, c��)�, V �)

}
‖2 = op

(√
1

nh

)
.

Proof. From the definition of Sd(b, V ) in (13), we can rewrite the objective as

â− a� −
{
Sd((â

�, ĉ�)�, V �)− Sd((a
��, c��)�, V �)

}
= â− a� +

∑
i

wiV
�ΓiΨτ (yi − Γ�

i (â
�, ĉ�)�)

−
∑
i

wiV
�ΓiΨτ (yi − Γ�

i (a
��, c�

�
)�)

= â− a� +
∑
i

wiV
�Γi

[
1 {yi ≤ Γib

�} − 1
{
yi ≤ Γib̂

}]
= â− a� +

∑
i

wiV
�Γi

[
Fi(yi ≤ Γib

�)− Fi(yi ≤ Γib̂)
]

︸ ︷︷ ︸
I

+
∑
i

wiV
�Γi

[
(1 {yi ≤ Γib

�} − Fi(yi ≤ Γib
�))− (1

{
yi ≤ Γib̂

}
− Fi(yi ≤ Γib̂))

]
︸ ︷︷ ︸

II

.
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For the term I, we use Taylor expansion and have

I = â− a� +
∑
i

wiV
�Γi

(
Fi(yi ≤ Γib

�)− Fi(yi ≤ Γib̂)
)

= â− a� +
∑
i

wiV
�Γi

(
fi(Γib

�)Γi(b
� − b̂) +

f ′
i(Γib̃i)

2
(b� − b̂)�Γ�

i Γi(b
� − b̂)

)
= â− a� + V �H�(b� − b̂) +R1

= â− a� + Ea(b
� − b̂) + (V �H� − Ea)(b

� − b̂) +R1

= (V �H� − Ea)(b
� − b̂) +R1,

where b̃i = tib
� + (1− ti)̂b and

R1 =
∑
i

wiV
�Γi

f ′
i(Γib̃i)

2
(b� − b̂)�Γ�

i Γi(b
� − b̂).

By (22),

‖R1‖2 ≤ 2kBV f̄ ′
∑
i

wi|Γi(b
� − b̂)|2 = Op

(
sBV log(np)

nh

)
.

We also have

‖(V �H� − Ea)(b
� − b̂)‖2

≤ ‖(V �H� − Ea)‖∞,F ‖b� − b̂‖1,2 = Op

(
λ� · s

√
log(np)

nh

)
,

where the norm ‖·‖∞,F is defined as

‖V ‖∞,F = sup
i∈[k],j∈[p]

‖V(i,i+k),(j,j+p)‖F

and the second inequality is because of Assumption 5 and (22). Furthermore, since

λ� = O
(
BV

√
log p
nhhf

)
by Assumption 5, we have

‖I‖2 = Op

(
λ� · s

√
log(np)

nh

)
= Op

(
BV s log(np)

nh
√

hf

)
= op

(√
1

nh

)
.

For the term II, by Lemma 5 (presented later in Section A.4) we have

‖II‖2 = Op

(
BKBV

√
f̄BX

mrb log p

nh

)
.

Plugging the rate for rb from condition (23), ‖II‖2 = op
(√

1
nh

)
, which completes the

proof.

Lemma 2. Suppose Assumptions 1-7 and conditions (22)-(26) hold. Then

‖Sd((â
�, ĉ�)�, V̂ )− Sd((â

�, ĉ�)�, V �)‖2

= Op

(
sBV log(np)

nh
√
hf

)
= op

(√
1

nh

)
.
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Proof. Using the Hölder’s inequality, we have

‖Sd((â
�, ĉ�)�, V̂ )− Sd((â

�, ĉ�)�, V �)‖2
≤ ‖V̂ − V �‖1,F ‖

∑
i

wiΓiΨτ (yi − Γ�
i (â

�, ĉ�)�)‖∞,2

= ‖V̂ − V �‖1,F ‖
∑
i

wiΓiΨτ (yi − Γ�
i b̂)‖∞,2

≤ ‖V̂ − V �‖1,F ·
[
‖
∑
i

wiΓiΨτ (yi − qi)‖∞,2

+‖
∑
i

wiΓi[Ψτ (yi − Γ�
i b̂)−Ψτ (yi − qi)]‖∞,2

]
.

Note that

‖V̂ − V �‖1,F = Op

(
sBV

√
log(np)

nhhf

)
by (26) and

‖
∑
i

wiΓiΨτ (yi − qi)‖∞,2 = Op(

√
log(p)

nh
)

by (44) and (45) in Lemma 8 (presented later in section A.5). Furthermore,

‖
∑
i

wiΓi[Ψτ (yi − Γ�
i b̂)−Ψτ (yi − qi)]‖∞,2

≤ ‖
∑
i

wiΓi[Ψτ (yi − Γ�
i b̂)−Ψτ (yi − Γ�

i b
�)]‖∞,2

+ ‖
∑
i

wiΓi[Ψτ (yi − Γ�
i b

�)−Ψτ (yi − qi)]‖∞,2.

The first term in the last inequality can be bounded as

‖
∑
i

wiΓi[Ψτ (yi − Γ�
i b̂)−Ψτ (yi − Γ�

i b
�)]‖∞,2

= ‖
∑
i

wiΓi

(
1 {yi ≤ Γib

�} − 1
{
yi ≤ Γib̂

})
‖∞,2

≤ ‖
∑
i

wiΓi

(
Fi(yi ≤ Γib

�)− Fi(yi ≤ Γib̂)
)
‖∞,2

+ ‖
∑
i

wiΓi

(
1 {yi ≤ Γib

�} − Fi(yi ≤ Γib
�))− (1

{
yi ≤ Γib̂

}
− Fi(yi ≤ Γib̂))

)
‖∞,2

= Op

(
s log(np)

nh
√

hf

)
+Op

(
BKBV

√
f̄BX

mrb log(np)

nh

)
,

where the first part of the last equation is the same as the proof in Lemma 1 and
the second part comes from Lemma 5 (presented later in Section A.4), where rb ≤
Op

(
s
√

log(np)
nh

)
because of (23) and BV � O(log p).
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For the second term, applying Lemma 3 (presented next) with a union bound, we
have

‖
∑
i

wiΓi[Ψτ (yi − Γ�
i b

�)−Ψτ (yi − qi)]‖∞,2 = op

(√
log(np)

nh

)
.

Combining the two bounds, we have

‖Sd((â
�, ĉ�)�, V̂ )− Sd((â

�, ĉ�)�, V �)‖F

= Op

(
sBV

√
log(np)

nhhf

)
·

{
Op

(
s log(np)

nh
√

hf

)
+Op

(√
s(log(np))7/2

(nh)3/2

)
+ op

(√
log(np)

nh

)}

= op

(√
1

nh

)
.

The last equality is because of Assumption 7. This completes the proof.

Lemma 3. Under Assumptions 1, 2, 4, and 6, for any V ∈ C(S2) ⊂ R
2k×2p

such that maxi∈[n]‖V Γi‖2 = O(log p) ≤ BV and h ≤ O(n−1/3) as assumed in
Assumption 7, we have∥∥∥∥∥∑

i

wiV Γi[Ψτ (yi − qi)−Ψτ (yi − q̃i)]

∥∥∥∥∥
2

= Op

(√
BV BK

f̄

nh
· (h2 + εR) +

f̄κ+‖V ‖F
nh

· (h2 + εR)

)
.

Proof. We have

‖Sn [wiV Γi[Ψτ (yi − qi)−Ψτ (yi − q̃i)]]‖2
= ‖Sn [wiV Γi [1 {yi ≤ q̃i} − 1 {yi ≤ qi}]]‖2
≤ ‖(Sn − ESn) [wiV Γi(1 {yi ≤ q̃i} − 1 {yi ≤ qi})]‖2︸ ︷︷ ︸

I

+ ‖Sn [wiV Γi [Fi(q̃i)− Fi(qi)]]‖2︸ ︷︷ ︸
II

.

By Lemma 6 (presented later in this section),

I = Op

(
BV BK

√
f̄

nh
· (h2 + εR)

)
.

For the term II, using the mean value theorem and the Cauchy–Schwarz in-
equality, we have
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II ≤ f̄

√∑
i

witrace(V ΓiΓ�
i V

�) ·
√∑

i

wi(q̃i − qi)2

= Op

(
f̄κ+‖V ‖F · (h2 + εR)

)
,

where the last equality is because of Lemma 12 and Assumption 6. The proof
follows from the rate of h given in Assumption 7.

Lemma 4. Let

Σ̂a1 := nh
∑
i

w2
i V̂ ΓiΨτ (yi − Γ�

i b̂)Ψτ (yi − Γ�
i b̂)

�Γ�
i V̂

�, (30)

Σ̂a2 := τ(1− τ)ν2V̂

⎧⎨⎩∑
j

wjΓjΓ
�
j

⎫⎬⎭ V̂ �, (31)

and

Σ = τ(1− τ)ν2 lim
n→∞

E
[
V �ΓΓ�V �� ∣∣ U = u

]
.

Then Σ̂ai
p−→ Σ for i = 1, 2.

Proof. From the consistency of V̂ and b̂, we have ‖V̂ − V �‖F = op(1) and

max
i

|Ψτ (yi − Γ�
i b̂)−Ψτ (yi − qi)| = op(1).

Therefore,

Σ̂a1 = nh
∑
i

w2
i V̂ ΓiΨτ (yi − Γ�

i b̂)Ψτ (yi − Γ�
i b̂)

�Γ�
i V̂

�

= nh
∑
i

w2
i V

�ΓiΨτ (yi − Γ�
i b̂)Ψτ (yi − Γ�

i b̂)
�Γ�

i V
�� + op(1)

= (nh)−1
∑
i

K2(
Ui − u

h
)V �ΓiΨτ (yi − Γ�

i b̂)Ψτ (yi − Γ�
i b̂)

�Γ�
i V

�� + op(1)

= E

[
(nh)−1

∑
i

K2(
Ui − u

h
)V �ΓiΨτ (yi − qi)Ψτ (yi − qi)

�Γ�
i V

��

]
+ op(1)

= Σ + op(1),

which shows (30),

From the condition (55), we have ‖V̂ − V �‖F = op(1). By the strong law of
large numbers,∥∥∥∥∥∥

∑
j

wjV
�ΓjΓ

�
j V

�� − E
[
V �ΓΓ�V �� ∣∣ U = u

]∥∥∥∥∥∥
F

= op(1).

Then by the continuous mapping theorem, we have ‖Σ̂a2 − Σ‖F = op(1). This
shows (31). The proof is complete now.
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Lemma 5. Suppose Assumptions 1, 2, 3, and 6 hold. For any V ∈ C(S2) ⊂
R

2k×2p that satisfies maxi∈[n] ||V Γi||2 = BV = O(log p) and rb � s
√

log(np)
nh , we

have

sup
‖δ‖0,2≤m
‖δ‖1,2≤rb

∥∥(Sn − ESn)
[
wiV Γi(1

{
yi ≤ Γ�

i b
�
}
− 1

{
yi ≤ Γ�

i (b
� + δ)

}
)
]∥∥

2

= Op

(
BKBV

√
f̄BX

mrb log(np)

nh

)
.

Proof. Let W =
{
W̃1, . . . , W̃K

}
be the 1

2 -net for
{
W ∈ R

2k | ‖W‖2 ≤ 1
}
. That

is, for all W ∈ R
2k with ‖W‖2 ≤ 1, there exists

W̃ ∈ W ⊆
{
W ∈ R

2k | ‖W‖2 ≤ 1
}

such that ‖W̃ −W‖2 ≤ 1
2 . We have that K ≤ 52k. Then

sup
‖δ‖0,2≤m
‖δ‖1,2≤rb

∥∥(Sn − ESn)
[
wi · V Γi

(
1
{
yi ≤ Γ�

i b
�
}
− 1

{
yi ≤ Γ�

i (b
� + δ)

})]∥∥
2

≤ 2 · max
W̃∈W

sup
‖δ‖0,2≤m
‖δ‖1,2≤rb

(Sn − ESn)
[
wi ·

(
|1
{
yi ≤ Γ�

i b
�
}
− 1

{
yi ≤ Γ�

i (b
� + δ)

}
|
)
· |W̃�V Γi|

]
.

For the expectation, we have

E
[
|1
{
yi ≤ Γ�

i b
�
}
− 1

{
yi ≤ Γ�

i (b
� + δ)

}
|
]

≤ E
[
−|Γ�

i δ| ≤ yi − Γ�
i b

� ≤ |Γ�
i δ|
]

= Fi

(
Γ�
i b

� + |Γ�
i δ|
)
− Fi

(
Γ�
i b

� − |Γ�
i δ|
)

≤ 2f̄ ·
∣∣Γ�

i δ
∣∣

≤ 2f̄BXrb.

For a fixed W̃ ∈ W and |S| ≤ m, define

ai = wi · |W̃�V Γi|, and

GS =
{
(yi, xi, ui) �→ ai · 1

{
−|Γ�

i δ| ≤ yi − Γ�
i b

� ≤ |Γ�
i δ|
}
:

support (δ) = S, ‖δ‖2 ≤ rb

}
.

G = ∪S:|S|≤mGS

Let G(·) = (nh)−1BK

(
W̃�V Γi

)
be an envelope of G. Then ‖G‖∞ ≤ BKBV

nh .

For a fixed g ∈ G, let

gi = g(yi, xi, ui) = ai · 1
{
−|Γ�

i δ| ≤ yi − Γ�
i b

� ≤ |Γ�
i δ|
}
.



High-dimensional varying-coefficient quantile regression 5727

Therefore, the variance is bounded as

σ2
G ≤ sup

g∈G

∑
i∈[n]

E
[
g2i
]
� f̄BXrb

∑
i∈[n]

a2i � f̄BXB2
KB2

V

nh
· rb,

since ∑
i∈[n]

a2i ≤ B2
V

∑
i∈[n]

w2
i ≤ B2

KB2
V

nh
.

The VC dimension for the space

FS =
{
(yi, xi, ui) �→ 1

{
−|Γ�

i δ| ≤ yi − Γ�
i b

� ≤ |Γ�
i δ|
}
: support (δ) = S, ‖δ‖2 ≤ rb

}
is O(m). Therefore, applying Lemma 22 (presented later in Section A.8),

sup
Q

N

(
ε · BKBV

nh
,GS , ‖·‖L2(Q)

)
≤
(
C

ε

)cm

,

and

sup
Q

N

(
ε · BKBV

nh
,G, ‖·‖L2(Q)

)
≤
(
C

ε

)cm

· pm.

Applying Lemma 21 (presented later in Section A.7) with σG = BKBV

√
f̄BXrb

nh
,

‖G‖∞ ≤ BKBV
nh

, V = cm, U = BKBV
nh

, and A = Cm1/cmp1/c then gives us

E

⎡⎣sup
g∈G

∑
i∈[n]

gi − E [gi]

⎤⎦
≤

⎛⎝cm
BKBV

nh
log

(
Cp1/c√
f̄BXrbh

)
+BKBV

√
f̄BXrb
nh

√√√√cm log

(
Cp1/c√
f̄BXrbh

)⎞⎠
= O

(
BKBV

√
f̄BX

mrb log(p ∨ n)

nh

)
,

under the conditions of the lemma and the growth condition in Assumption 7. Lemma
25 then gives us

sup
g∈G

∑
i∈[n]

gi − E [gi] = Op

(
BKBV

√
f̄BX

mrb log(np)

nh

)
.

A union bound over W̃ ∈ W concludes the proof.

Lemma 6. Suppose Assumptions 1, 2, 3, 4, 6 and 7 hold. For all V ∈ C(S2) ⊂
R

2k×2p with BV = maxi∈[n] ||V Γi||2, we have

‖(Sn − ESn) [wiV Γi(1 {yi ≤ q̃i} − 1 {yi ≤ qi})]‖2

= OP

(
BKBV

√
f̄

nh
· (h2 + εR)

)
.
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Proof. Let W =
{
W̃1, . . . , W̃K

}
be the 1

2 -net for
{
W ∈ R

2k | ‖W‖2 ≤ 1
}
. We

have that K ≤ 52k and

‖(Sn − ESn) [wi · V Γi (1 {yi ≤ q̃i} − 1 {yi ≤ qi})]‖2
≤ 2 · max

W̃∈W
(Sn − ESn)

[
wi ·

(
|1 {yi ≤ q̃i} − 1 {yi ≤ qi|} · |W̃�V Γi|

)]
.

Let

ai = wi · |W̃�V Γi|, and

gi = g(yi, xi, ui) = ai · (1 {yi ≤ q̃i} − 1 {yi ≤ qi}) .

Since

E [|1 {yi ≤ q̃i} − 1 {yi ≤ qi} |] ≤ 2f̄ · |qi − q̃i| ,

we have∑
i∈[n]

E
[
g2i
]
�
∑
i

2f̄ · |qi − q̃i| a2i =
∑
i

2f̄ · |qi − q̃i|w2
i

(
W̃�V Γi

)2
≤ f̄B2

KB2
V

nh

√
Sn

[
wi (qi − q̃i)

2
]
.

Then by Lemma 12 and Assumption 6, we have

∑
i∈[n]

E
[
g2i
]
= Op

(
f̄B2

KB2
V

nh
· (h2 + εR)

)
.

The result follows from the Bernstein’s inequality and the union bound over
W .

A.5. Consistency of the initial estimator b̂ini

We show the convergence guarantee of the initial estimator b̂ini defined in Section
3 Step 1. Notice that in the following two sections, we slightly abuse the notation
by denoting b̂ini from Section 3 as b̂, and b̂ from Section 3 is defined as b̂λ, since
it is obtained by thresholding at the level λ.

Let
Wi(δ) = ρτ (yi − (qi + δ))− ρτ (yi − qi), (32)

which can be decomposed as

Wi(δ) = −δΨτ (yi − qi) +

∫ δ

0

[1 {yi ≤ qi + z} − 1 {yi ≤ qi}] dz

=: W#
i (δ) +W �

i (δ),

(33)
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using the Knight’s identity. Note that we can also write

W �
i (δ) = (yi − (qi + δ)) [1 {qi + δ ≤ yi < qi} − 1 {qi ≤ yi < qi + δ}] . (34)

With this notation, we study properties of the following penalized quantile re-
gression estimator

b̂ = argmin
b

∑
i∈[n]

wi · ρτ (yi − Γ�
i b) + λ‖b‖1,2, (35)

where the groups are formed by pairs (b0j , b1j) for j ∈ [p] and

wi = (nh)−1K

(
Ui − u

h

)
.

The estimated quantile function is denoted as q̂i = Γ�
i b̂.

Theorem 4. Under Assumptions 1, 3, 4 and 6, we have

Sn

[
wi ·

(
Γ�
i

(
b̂− b�

))2]
= Op

(
s log(np)

nh

)
and

‖b̂− b�‖1,2 = Op

(
s

√
log(np)

nh

)
.

Proof. Denote S′ = support{b�}.
Let rb be a rate satisfying rb = Op

(√
s log(np)

nh

)
. Recall that

κq = inf
‖δ‖1,2≤ 7|S′|·

√
log p

κ−
√

nh

Sn[wi(Γ
�
i δ)2]= |S′| log p

nh

(
f · Sn

[
wi ·

(
Γ�
i δ
)2])3/2

f̄ ′ · Sn
[
wi ·

(
Γ�
i δ
)3] .

As n grows, we have

κq ≥ rb

√
f. (36)

In order to establish that Sn

[
wi ·

(
Γ�
i

(
b̂− b�

))2]
≤ r2b , we use the proof by

contradiction.

Suppose that Sn

[
wi ·

(
Γ�
i

(
b̂− b�

))2]
> r2b . Since the objective function is

convex, there exists a vector

b̌ = b� + (̂b− b�)
rb√

Sn

[
wi ·

(
Γ�
i

(
b̂− b�

))2]
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such that Sn

[
wi ·

(
Γ�
i

(
b̌− b�

))2]
= r2b and

Sn [wi · (ρτ (yi − q̌i)− ρτ (yi − q̃i))] ≤ λ
(
‖b̌‖1,2 − ‖b�‖1,2

)
,

is satisfied. We separate our analysis into two parts, according to whether

3‖(b̌− b�)S′‖1,2 ≥ 2
λSn

[
wi ·W �

i (q̃i − qi)
]
in (39) or not.

First, suppose that 3‖(b̌− b�)S′‖1,2 ≥ 2
λSn

[
wi ·W �

i (q̃i − qi)
]
. By Lemma 7

(presented next), ‖(b̌− b�)N ′‖1,2 ≤ 6‖(b̌− b�)S′‖1,2 and

‖b̌− b�‖1,2 ≤ 7‖(b̌− b�)S′‖1,2 ≤ 7
√
|S′|‖(b̌− b�)S′‖2

≤ 7
√
|S′| · rb
κ−

= Op

(
s

√
log(np)

nh

)
. (37)

Starting from (40), we have that

λ‖b̌− b�‖1,2 ≥ ESn

[
wi ·

(
Wi

(
Γ�
i b̌− qi

)
−Wi

(
Γ�
i b

� − qi
))]

+ (Sn − ESn)
[
wi ·

(
Wi

(
Γ�
i b̌− qi

)
−Wi

(
Γ�
i b

� − qi
))]

.

Lemma 10 (presented later in this section) gives us

ESn

[
wi ·

(
Wi

(
Γ�
i b̌− qi

)
−Wi

(
Γ�
i b

� − qi
))]

≥
fr2b ∧ κq

√
frb

3
≥

fr2b
3

,

where the second inequality follows under (36). On the event EQR(λ), we have

(Sn − ESn)
[
wi ·

(
W#

i

(
Γ�
i b̌− qi

)
−W#

i

(
Γ�
i b

� − qi
))]

≥ −λ

2
‖b̌− b�‖1,2.

Lemma 9 (presented later in this section) gives us

sup

‖δ‖1,2≤
7
√

|S′|·rb
κ−

Sn[wi(Γ
�
i δ)2]=r2b

∣∣∣(Sn − ESn)
[
wi ·

(
W �

i

(
Γ�
i b̌− qi

)
−W �

i

(
Γ�
i b

� − qi
))]∣∣∣ = op(rb).

Putting everything together, we obtain that

0 ≥
frb

3
− 7λ

√
|S′|

2κ−
− op(rb) > 0,

which is a contradiction.
The second part of the upper bound is established in the case when

3‖(b̌− b�)S′‖1,2 < (2/λ)Sn

[
wi ·W �

i (q̃i − qi)
]
.

Then we have that

‖(b̌− b�)N′‖1,2 ≤ 4

λ
Sn

[
wi ·W �

i (q̃i − qi)
]
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and

‖b̌− b�‖1,2 ≤ 6

λ
Sn

[
wi ·W �

i (q̃i − qi)
]
= Op

(
s

√
log(np)

nh

)
,

where the last equation is because of Lemmas 8 and 11. The same argument as above
gives us a contradiction, which completes the proof.

Lemma 7. On the event

EQR(λ) =

⎧⎨⎩max
j∈[p]

sup
v:=(v0,v1)∈R2

‖v‖2=1

∑
i

wi · (xijv0 + xij(ui − u)v1) ·Ψτ (yi − qi) ≤
λ

2

⎫⎬⎭
(38)

we have

‖(̂b− b�)N ′‖1,2 ≤ 3‖(̂b− b�)S′‖1,2 +
2

λ
Sn

[
wi ·W �

i (q̃i − qi)
]
, (39)

where N ′ = S′ c.

Proof. Our starting point is the observation that

Sn [wi · (ρτ (yi − q̂i)− ρτ (yi − q̃i))] ≤ λ
(
‖b�‖1,2 − ‖b̂‖1,2

)
, (40)

since b̂ minimizes (35). Due to convexity of ρτ (·), we have

Sn [wi · (ρτ (yi − q̂i)− ρτ (yi − qi))] ≥ Sn [wi · (qi − q̂i) ·Ψτ (yi − qi)] . (41)

Using (33), we have

Sn [wi · (ρτ (yi − q̃i)− ρτ (yi − qi))]

= Sn [wi · (qi − q̃i) ·Ψτ (yi − qi)] + Sn

[
wi ·W �

i (q̃i − qi)
]
. (42)

Combining (41) and (42) with (40), we have

Sn [wi · (q̃i − q̂i) ·Ψτ (yi − qi)]− Sn

[
wi ·W �

i (q̃i − qi)
]
≤ λ

(
‖b�‖1,2 − ‖b̂‖1,2

)
.

(43)
On the event EQR(λ),

Sn [wi · (q̃i − q̂i) ·Ψτ (yi − qi)] ≥ −λ

2
‖b� − b̂‖1,2.

Combining with the display above, we obtain that

−λ

2
‖b� − b̂‖1,2 ≤ Sn

[
wi ·W �

i (q̃i − qi)
]
+ λ

(
‖b�‖1,2 − ‖b̂‖1,2

)
.

Since
‖b�‖1,2 − ‖b̂‖1,2 ≤ ‖

(
b� − b̂

)
S′
‖1,2 − ‖

(
b� − b̂

)
N ′

‖1,2,

we have

λ

2
‖(̂b− b�)N ′‖1,2 ≤ Sn

[
wi ·W �

i (q̃i − qi)
]
+

3λ

2
‖(̂b− b�)S′‖1,2,

which completes the proof.
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Lemma 8. Under Assumption 6, for

λ = 4 ·
(
max
j∈[p]

Sn

[
w2

i x
2
ij

])1/2√
log(4p/γ) = O

(√
log p

nh

)
, (44)

we have

P {EQR(λ)} ≥ 1− γ.

Proof. We prove that

max
j∈[p]

|Sn [wi · xij ·Ψτ (yi − qi)]| ≤
λ

2
√
2

(45)

and

max
j∈[p]

|Sn [wi · xij(ui − u) ·Ψτ (yi − qi)]| ≤
λ

2
√
2
. (46)

Let

Zi =
wi · xij ·Ψτ (yi − qi)√

Sn

[
w2

i x
2
ij

]
and note that |Zi| ≤ 1 and E [Zi] = 0. The Hoeffding’s inequality (Theorem 2.8
Boucheron et al., 2013) gives us that

|Sn [Zi]| ≤
√

2 log(2/γ)

with probability 1− γ. An application of the union bound gives us that

max
j∈[p]

Sn [wi · xij ·Ψτ (yi − qi)] ≤
(
max
j∈[p]

Sn

[
w2

i x
2
ij

])1/2√
2 log(4p/γ)

with probability 1− γ/2. This proves (45). Equation (46) is shown in the same
way by noting that

Sn

[
w2

i x
2
ij(ui − u)2

]
≤ Sn

[
w2

i x
2
ij

]
.

Lemma 9. Let b̌ = b� + δ,

gi(δ) = wi ·
(
W �

i

(
Γ�
i b̌− qi

)
−W �

i

(
Γ�
i b

� − qi
))

= wi · (yi − Γ�
i b̌)

[
1
{
Γ�
i b̌ ≤ yi < qi

}
− 1

{
qi < yi < Γ�

i b̌
}]

− wi · (yi − Γ�
i b

�)
[
1
{
Γ�
i b

� ≤ yi < qi
}
− 1

{
qi < yi < Γ�

i b
�
}]

.

Then

sup
‖δ‖1,2≤R1

Sn[wi(Γ
�
i δ)2]≤R2

|(Sn − ESn) [wi · gi(δ)]|
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� R1

√
B2

XB2
K

nh
log(p) +R1

√√√√(BwBX

√
B2

XB2
K

nh
log(p) +Bw

R2

R1

)
log(1/γ)

+R1BwBX log(1/γ)

with probability 1− γ.

Proof. We will apply Lemma 25. Note that

|gi(δ)| ≤ wi(yi − Γ�
i b̌) ·

[
1
{
Γ�
i b̌ ≤ yi < qi

}
− 1

{
qi < yi < Γ�

i b̌
}

−1
{
Γ�
i b

� ≤ yi < qi
}
+ 1

{
qi < yi < Γ�

i b
�
}]

+ wi(Γ
�
i b̌− Γ�

i b
�)
[
1
{
Γ�
i b

� ≤ yi < qi
}
− 1

{
qi < yi < Γ�

i b
�
}]

≤ 2|wiΓ
�
i δ| ≤ 2BwBXR1.

Therefore, |gi(δ)− E [gi(δ)] | ≤ 4BwBXR1. For the variance, we have

E

[∑
i

(gi(δ)− E [gi(δ)])
2

]
≤ E

[∑
i

g2i (δ)

]
≤ 4

∑
i∈[n]

w2
i

(
Γ�
i δ
)2 ≤ 4BwR2.

Finally, we bound the supremum of the process. We have

E

⎡⎢⎢⎣ sup
‖δ‖1,2≤R1

Sn[wi(Γ
�
i δ)2]=R2

|(Sn − ESn) [gi(δ)]|

⎤⎥⎥⎦
(i)

≤2E

⎡⎢⎢⎣ sup
‖δ‖1,2≤R1

Sn[wi(Γ
�
i δ)2]=R2

|Sn [εi · gi(δ)]|

⎤⎥⎥⎦
(ii)

≤ 4E

⎡⎢⎢⎣ sup
‖δ‖1,2≤R1

Sn[wi(Γ
�
i δ)2]=R2

∣∣Sn [εiwiΓ
�
i δ
]∣∣
⎤⎥⎥⎦

≤4‖δ‖1,2E
[
max
j∈[p]

∣∣∣∣Sn [εiwi

∥∥∥∥[ xij

xij(Ui − u)

]∥∥∥∥
2

]∣∣∣∣]
(iii)

≤ 8‖δ‖1,2
√

B2
XB2

K

nh
log(2p),

where (i) follows from symmetrization (Lemma 11.4 Boucheron et al., 2013),
(ii) from contraction inequality (Theorem 11.6 Boucheron et al., 2013), and (iii)
from a maximum inequality for sub-Gaussian random variables (Theorem 2.5
Boucheron et al., 2013). The result now follows by plugging the pieces into
Lemma 25.
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Lemma 10. Suppose Assumptions 3 and 6 hold. For a fixed δ, we have

ESn

[
wi ·

(
Wi

(
Γ�
i (b� + δ)− qi

)
−Wi

(
Γ�
i b

� − qi
))]

≥ 1

3
·
(
fSn

[
wi ·

(
Γ�
i δ
)2] ∧ κq ·

(
f · Sn

[
wi ·

(
Γ�
i δ
)2])1/2)

.

Proof. Using (33), we have

E

[
W#

i

(
Γ�
i (b� + δ)− qi

)
−W#

i

(
Γ�
i b

� − qi
)]

= −
(
Γ�
i δ
)
· E [ψτ (yi − qi)] = 0

and

E

[
W �

i

(
Γ�
i (b� + δ)− qi

)
−W �

i

(
Γ�
i b

� − qi
)]

= E

[∫ Γ�
i δ

0

[
1
{
yi ≤ Γ�

i b
� + z

}
− 1

{
yi ≤ Γ�

i b
�
}]

dz

]

=

∫ Γ�
i δ

0

[
Fi

(
Γ�
i b

� + z
)
− Fi

(
Γ�
i b

�
)]

dz

=

∫ Γ�
i δ

0

[
zfi
(
Γ�
i b

�
)
+

z2

2
f ′
i

(
Γ�
i b

� + z̃
)]

dz (z̃ ∈ [0, z])

≥
f

2

(
Γ�
i δ
)2 − f̄ ′

6

(
Γ�
i δ
)3

.

Combining the last two displays, we obtain

ESn

[
wi ·

(
Wi

(
Γ�
i (b� + δ)− qi

)
−Wi

(
Γ�
i b

� − qi
))]

≥
f

2
Sn

[
wi ·

(
Γ�
i δ
)2]− f̄ ′

6
Sn

[
wi ·

(
Γ�
i δ
)3]

. (47)

We lower bound the above display in two cases. First, consider the case where(
f · Sn

[
wi ·

(
Γ�
i δ
)2])1/2 ≤ κq.

From the definition of κq, we then obtain that

f̄ ′ · Sn
[
wi ·

(
Γ�
i δ
)3] ≤ f · Sn

[
wi ·

(
Γ�
i δ
)2]

,

which combined with (47) gives us

ESn

[
wi ·

(
Wi

(
Γ�
i (b� + δ)− qi

)
−Wi

(
Γ�
i b

� − qi
))]
≥

f

3
Sn

[
wi ·

(
Γ�
i δ
)2]

. (48)

Next, we consider the case where(
f · Sn

[
wi ·

(
Γ�
i δ
)2])1/2

> κq.
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Let b̄ = b� + (1 − α)δ for some α ∈ (0, 1) to be determined later. Using the
convexity of ρτ (·), we have that

ESn

[
wi ·

(
Wi

(
Γ�
i (b� + δ)− qi

)
−Wi

(
Γ�
i b

� − qi
))]

≥ 1

1− α

(
ESn

[
wi ·

(
Wi(Γ

�
i b̄− qi)−Wi(q̃i − qi)

)])
≥ 1

1− α

(
f

2
Sn

[
wi ·

(
Γ�
i

(
b̄− b�

))2]− f̄ ′

6
Sn

[
wi ·

(
Γ�
i

(
b̄− b�

))3])
,

(49)

where the second inequality follows from (47). We want to choose α such that

f · Sn
[
wi ·

(
Γ�
i

(
b̄− b�

))2]
= f̄ ′

Sn

[
wi ·

(
Γ�
i

(
b̄− b�

))3]
,

which leads to

1− α =
f · Sn

[
wi ·

(
Γ�
i δ
)2]

f̄ ′Sn
[
wi ·

(
Γ�
i δ
)3] .

Combining with (49), we have

ESn

[
wi ·

(
Wi

(
Γ�
i (b� + δ)− qi

)
−Wi

(
Γ�
i b

� − qi
))]

≥ 1

3
·

(
f · Sn

[
wi ·

(
Γ�
i δ
)2])2

f̄ ′Sn
[
wi ·

(
Γ�
i δ
)3]

≥ κq

3
·
(
f · Sn

[
wi ·

(
Γ�
i δ
)2])1/2

.

(50)

The proof follows by combining the lower bounds in (48) and (50).

Lemma 11. Under our model assumptions,

Sn

[
wi ·W �

i (q̃i − qi)
]

≤ 2
√
2 log(2/γ) ·

(
f̄ · Sn

[
wi · (q̃i − qi)

2
]
+

√
Sn

[
w2

i (q̃i − qi)
2
])

(51)

holds with probability 1− γ.

Proof. We will prove the lemma using Theorem 2.16 of de la Peña et al. (2009).

Note that W �
i (q̃i − qi) is positive and

E

[
W �

i (q̃i − qi)
]
=

∫ q̃i−qi

0

[Fi(qi + z)− Fi(qi)] dz

=

∫ q̃i−qi

0

fi(z̃i)zdz ≤ f̄

2
(q̃i − qi)

2
,
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where z̃i is a point between 0 and z. Therefore, the Markov’s inequality gives us

P

{
Sn

[
wi ·W �

i (q̃i − qi)
]
≥ 2f̄ · Sn

[
wi · (q̃i − qi)

2
]}

≤ 1

4
.

Furthermore, since |W �
i (q̃i − qi)| ≤ |q̃i − qi|, we have that

P

{
Sn

[(
wi ·W �

i (q̃i − qi)
)2]

≥ Sn

[
w2

i (q̃i − qi)
2
]}

= 0 ≤ 1

4
.

Invoking Theorem 2.16 of de la Peña et al. (2009), define

a = 2f̄Sn

[
wi · (q̃i − qi)

2
]
, b =

√
Sn

[
w2

i (q̃i − qi)
2
]
,

Sn = Sn

[
wi ·W �

i (q̃i − qi)
]
, V 2

n = Sn

[(
wi ·W �

i (q̃i − qi)
)2]

,

and observe that Vn ≤ b2, we obtain that

P {Sn ≥ x(a+ b+ Vn)} ≤ 2e
−x2

2 ,

which completes the proof.

Lemma 12. Under Assumptions 1, 2, 4, and 6, we have that∑
i

wi (q̃i − qi)
2 ≤ 2h4sB2

XBβBK + 2
ε2R
f2 = O

(
h4 + ε2R

)
and ∑

i

w2
i (q̃i − qi)

2 ≤ Bw · (2h4sB2
XBβBK + 2

ε2R
f2 ) = O

(
h3

n
+

ε2R
nh

)
.

Proof. First, the assumption on the density fi proves that∣∣x�
i β

�(τ, ui)− qi
∣∣ ≤ Ri

f
.

Then∑
i

wi(q̃i − qi)
2

≤ 2
∑
i

wi(q̃i − x�
i β

�(τ, ui)))
2 + 2

∑
i

wi(x
�
i β

�(τ, ui)− qi)
2

≤ 2
∑
i

wi[x
�
i (β

�(τ, ui)− β�(τ, u)− (ui − u) · ∇uβ
�(τ, u))]2 + 2

∑
i

wi
R2

i

f2

≤ 2
∑
i

wi‖xi‖2∞
∥∥β�(τ, ui)− β�(τ, u)− (ui − u) · ∇uβ

�(τ, u)
∥∥2
1
+ 2

ε2R
f2
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≤ 2sB2
XBβ

∑
i

wi(ui − u)4 + 2
ε2R
f2

= h4 · 2sB2
XBβ

∑
i

wi

(
ui − u

h

)4

+ 2
ε2R
f2

≤ 2h4sB2
XBβBK + 2

ε2R
f2 ,

which proves the first statement.
The second statement immediately follows since∑
i

w2
i (q̃i − qi)

2 ≤ ‖w‖∞ ·
∑
i

wi(q̃i − qi)
2 ≤ 2h4sBwB

2
XBβBK + 2Bw

ε2R
f2 .

A.6. Proof of Theorem 1

Throughout the section, use b̂λ to denote b̂ defined in Section 3. In particular, b̂

is defined in (35), b̂λ is b̂ thresholded at level λ, i.e., b̂λj = b̂j ·1
{
b̂2j + b̂2j+p > λ2

}
,

1 ≤ j ≤ p, and b̂λj = b̂j · 1
{
b̂2j + b̂2j−p > λ2

}
, p+ 1 ≤ j ≤ 2p.

Let S′ = support(b�). By Assumption 4, |S′| ≤ cs for some absolute constant
c. Therefore,

‖b̂λ − b�‖1,2 ≤ ‖(̂bλ − b�)S′‖1,2 + ‖(̂bλ)S′ c‖1,2
≤ ‖(̂bλ − b̂)S′‖1,2 + ‖(̂b− b�)S′‖1,2 + ‖(̂bλ)S′ c‖1,2
≤ csλ+ ‖(̂b− b�)S′‖1,2 + ‖(̂bλ)S′ c‖1,2
≤ csλ+ ‖b̂− b�‖1,2,

where the third inequality comes from the definition of b̂λ. Furthermore, notice
that ‖b̂λ − b�‖1,2 ≥ (‖b̂λ‖0,2 − |S′|)λ. Therefore we have

‖b̂− b�‖1,2 ≥
[
‖b̂λ‖0,2 − 2cs

]
λ.

Therefore, ‖b̂λ‖0,2 ≤ 2cs+ ‖b̂− b�‖1,2/λ.

Because λ = O(
√

log(np)
nh ) and ‖b̂− b�‖1,2 = Op

(
s
√

log(np)
nh

)
from Theorem 4,

‖b̂λ‖0,2 ≤ Op(s). Now we have shown (23) and (24).
To show (22), we first use the triangle inequality,√
Sn

[
wi ·

(
Γ�
i

(
b̂λ − b�

))2]

≤
√

Sn

[
wi ·

(
Γ�
i

(
b̂λ − b̂

))2]
+

√
Sn

[
wi ·

(
Γ�
i

(
b̂− b�

))2]
.
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Without loss of generality, we can order the components so that (̂bλj − b̂j)
2 +

(̂bλj+p− b̂j+p)
2 is decreasing. Let T1 be the set of cs indices corresponding to the

largest values of (̂bλj − b̂j)
2 + (̂bλj+p − b̂j+p)

2, similarly, let Tk be the set of cs

indices corresponding to the largest values of (̂bλj − b̂j)
2+ (̂bλj+p− b̂j+p)

2 outside

∪k−1
m=1Tm. By monotonicity, ‖(̂bλ − b̂)Tk

‖2 ≤ ‖(̂bλ − b̂)Tk−1
‖1,2/

√
cs. Then we

have,√
Sn

[
wi ·

(
Γ�
i

(
b̂λ − b̂

))2]

=

√√√√	 p
cs 
∑

k=1

Sn

[
wi

(
Γ�
i

(
b̂λ − b̂

)
Tk

)2
]

≤

√√√√Sn

[
wi ·

(
Γ�
i

(
b̂λ − b̂

)
T1

)2
]
+

√√√√	 p
cs 
∑

k=2

Sn

[
wi

(
Γ�
i

(
b̂λ − b̂

)
Tk

)2
]

≤ κ+‖(̂bλ − b̂)T1‖2 + κ+

	 p
cs 
∑

k=2

‖(̂bλ − b̂)Tk
‖2

≤ κ+‖(̂bλ − b̂)T1‖2 + κ+

	 p
cs 
∑

k=1

‖(̂bλ − b̂)Tk
‖1,2/

√
cs

≤ κ+λ+ κ+‖(̂bλ − b̂)‖1,2/
√
cs

= Op

(√
s log(np)

nh

)
.

In addition, from Theorem 4, Sn

[
wi ·

(
Γ�
i

(
b̂− b�

))2]
≤ Op

(
s log(np)

nh

)
. There-

fore, the first inequality holds.

A.7. Proof of Theorem 2

Our starting point is the basic inequality

λV

(
‖V �‖1,F − ‖V̂ ‖1,F

)
≥ trace

(
1

2
δ�v Ĥ(δb)δv + δ�v

(
Ĥ(δb)−H�

)
V � + δ�v (H�V � − Ea)

)
, (52)

where δb = b̂− b� and δv = V̂ − V �. The above display can be rearranged as

trace

(
1

2
δ�v Ĥ(δb)δv

)
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≤ λV

(
‖V �‖1,F − ‖V̂ ‖1,F

)
− trace

(
δ�v

(
Ĥ(δb)−H�

)
V �
)

− trace
(
δ�v (H�V � − Ea)

)
.

Denote

D := BA

(√
f̄ · log(p/γ)

nhhf

+f̄ ′

⎛⎝2BKhf + 2BK

(
h4sBXBβ +

ε2R
f2

) 1
2

+ s

√
BK log(np)

nh

⎞⎠⎞⎠ ,

where BA is defined in Lemma 13. By Lemma 13, with probability at least
1− 2γ, ∣∣∣trace(δ�v (Ĥ(δb)−H�

)
V �
)∣∣∣ ≤ ‖δv‖F ·D.

By assumption 5,∣∣trace (δ�v (H�V � − Ea)
)∣∣ ≤ ‖δv‖1,F ‖H�V � − Ea‖∞,F ≤ λ�‖δv‖1,F .

Since ‖V �‖1,F − ‖V̂ ‖1,F ≤ ‖(δv)S‖1,F − ‖(δv)N‖1,F , we have

λV ‖(δv)N‖1,F
≤ λV ‖(δv)S‖1,F +

∣∣∣trace(δ�v (Ĥ(δb)−H�
)
V �
)∣∣∣+ ∣∣trace (δ�v (H�V � − Ea)

)∣∣
≤ λV ‖(δv)S‖1,F + ‖δv‖F ·D + λ�‖δv‖1,F

≤ λV ‖(δv)S‖1,F + ‖δv‖F ·D +
λV

2
‖δv‖1,F .

Therefore,

λV

2
‖(δv)N‖1,F ≤ 3λV

2
‖(δv)S‖1,F + ‖δv‖F ·D. (53)

We consider two cases according to whether 3λV

2 ‖(δv)S‖1,F ≥ ‖δv‖F ·D or not.
If

3λV

2
‖(δv)S‖1,F ≥ ‖δv‖F ·D,

then
‖(δv)N‖1,F ≤ 6‖(δv)S‖1,F .

Therefore, we have

‖V̂ − V �‖1,F ≤ 7‖(V̂ − V �)S‖1,F ≤ 7
√
s2‖(V̂ − V �)S‖F ≤ 7

√
s2‖δv‖F . (54)

On the other hand, from the basic inequality (52),

λV ‖V̂ − V �‖1,F
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≥ trace

(
1

2
δ�v Ĥ(δb)δv + δ�v

(
Ĥ(δb)−H�

)
V � + δ�v (H�V � − Ea)

)
≥

fκ2
−

2
‖δv‖2F − op(1)

(
‖δv‖F +

‖δv‖1,F√
s2

)2

− 3λV

2
‖(δv)S‖1,F − λ�‖δv‖1,F ,

where the second inequality above is because δv ∈ C(S2). Therefore, Assump-
tion 6 holds and we can apply Lemma 18. Because λV ≥ 2λ�, after rearrange-
ment and combining with (54), we get

‖δv‖F ≤ 24λV
√
s2

fκ2
− − op(1)

= Op

(√
s log p

nhhf

)

and

‖δv‖1,F ≤ 7
√
s2‖δv‖F = Op

(
s

√
log p

nhhf

)
.

On the other hand, if

3λV

2
‖(δv)S‖1,F ≤ ‖δv‖F ·D, (55)

then, from (53), we have

λV

2
‖(δv)N‖1,F ≤ 2‖δv‖F ·D. (56)

Therefore

λV

2
‖(δv)N‖1,F ≤ 2D‖δv‖F ≤ 2D‖δv‖1,F = 2D (‖(δv)N‖1,F + ‖(δv)S‖1,F ) ,

which implies

‖(δv)N‖1,F ≤
4D
λV

1− 4D
λV

‖(δv)S‖1,F .

From Assumption 5, we can see that BA � BXBV . Then under Assumption 7,

h � n−1/3 and hf � n−1/3, and by Assumption 4, εR �
√

log np
nh , we have

D � λ� � BV

√
log p

nhhf
.

Therefore, there exists λV > 2λ� so that 4D
λV

≤ 6
7 . With such a choice of λV ,

δv ∈ C(S). Therefore, from (55) and (56),

λV ‖δv‖1,F ≤ 14

3
‖δv‖FD.
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On the other hand, by applying Lemma 18 to the basic inequality (52), we have

λV ‖δv‖1,F ≥ fκ2
−‖δv‖2F − op(1)

(
‖δv‖F +

‖δv‖1,F√
s2

)2

− 2‖δv‖FD.

Combining the two we have

20

3
D‖δv‖F ≥ fκ2

−‖δv‖2F − op(1)

(
‖δv‖F +

14D

3λV
√
s2

‖δv‖F
)2

.

Because D � λV = O(BV

√
log p
nhhf

), we have

‖δv‖F ≤ 20

3

D

fκ2
− − op(1)

= Op

(
BV

√
s log p

nhhf

)
and

‖δv‖1,F ≤ 14D

3λV

√
s2‖δv‖F = Op

(
sBV

√
log p

nhhf

)
.

To complete the proof, we need to establish a few technical lemmas next.

Lemma 13. Suppose that the growth conditions in Assumption 7 is satisfied,

and rb � s
√

log(np)
nh . Define BA = maxl‖Ail‖F and Ail = ΓilΓ

�
i V

� where l ∈ [p]

and Γil = (Γi,l,Γi,l+p)
�. For any γ > 0 such that f̄ ≥ (nhhf )

−1 log(p/γ) and
rb = O (hf log(p/γ)/BX), we have

max
l∈[p]

sup
‖δb‖0,2≤m
‖δb‖1,2≤rb

∥∥∥Sn [wi(f̂i(δb)− fi(q̃i))ΓilΓ
�
i V

�
]∥∥∥

F

≤ BA

(√
f̄ · log(p/γ)

nhhf

+f̄ ′

⎛⎝2BKhf + 2BK

(
h4sBXBβ +

ε2R
f2

)1/2

+ s

√
log(np)

nh

√
BK

⎞⎠⎞⎠
with probability 1− 2γ.

Proof. We have

max
l∈[p]

sup
‖δb‖0,2≤m
‖δb‖1,2≤rb

∥∥∥Sn [wi(f̂i(δb)− fi(q̃i))ΓilΓ
�
i V

�
]∥∥∥

F

≤max
l∈[p]

sup
‖δb‖0,2≤m
‖δb‖1,2≤rb

[∥∥∥(Sn − ESn)
[
wi(f̂i(δb)− f̂i(0)) ·Ail

]∥∥∥
F

+
∥∥∥(Sn − ESn)

[
wi · (f̂i(0)− fi(q̃i)) ·Ail

]∥∥∥
F
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+
∥∥∥ESn [wi(f̂i(δb)− f̂i(0))ΓilΓ

�
i V

�
]∥∥∥

F

]

+
∥∥∥ESn [wi(f̂i(0)− fi(q̃i))ΓilΓ

�
i V

�
]∥∥∥

F

]

≤max
l∈[p]

sup
‖δb‖0,2≤m
‖δb‖1,2≤rb

[∥∥∥(Sn − ESn)
[
wi(f̂i(δb)− f̂i(0)) ·Ail

]∥∥∥
F

+
∥∥∥(Sn − ESn)

[
wi · f̂i(0) ·Ail

]∥∥∥
F
+
∥∥∥ESn [wi(f̂i(δb)− f̂i(0))ΓilΓ

�
i V

�
]∥∥∥

F

]

+
∥∥∥ESn [wi(f̂i(0)− fi(q̃i))ΓilΓ

�
i V

�
]∥∥∥

F

]

≤BA

(√
f̄ · log(p/γ)

nhhf

+f̄ ′

⎛⎝BKhf + 2BK

(
h4sBXBβ +

ε2R
f2

)1/2

+ s

√
log(np)

nh

√
BK +BKhf

⎞⎠⎞⎠ ,

where the last inequality follows by first combining Lemmas 14, 15, 16 and 17
and plugging in our condition for rb, h and hf .

Lemma 14. Under the conditions of Lemma 13, we have

max
l∈[p]

sup
‖δb‖0,2≤m
‖δb‖1,2≤rb

∥∥∥(Sn − ESn)
[
wi ·

(
f̂i(δb)− f̂i(0)

)
·Ail

]∥∥∥
F

� BKBA

hf

√
f̄BX

rb (m log p+ log(1/γ))

nh

with probability 1− γ, where Ail and BA are defined in Lemma 13.

Proof. Let W =
{
W̃1, . . . , W̃K

}
be the 1

2 -net for
{
W ∈ R

2k×2k | ‖W‖F ≤ 1
}
.

We have that K ≤ 54k
2

and

max
l∈[p]

sup
‖δb‖0,2≤m
‖δb‖1,2≤rb

∥∥∥(Sn − ESn)
[
wi ·

(
f̂i(δb)− f̂i(0)

)
·Ail

]∥∥∥
F

≤ 2 · max
W̃∈W

max
l∈[p]

sup
‖δb‖0,2≤m
‖δb‖1,2≤rb

(Sn − ESn)
[
wi · (f̂i(δb)− f̂i(0)) · trace

(
W̃�Ail

)]
.

Our goal is to apply Lemma 25 to bound the right hand side.
Note that

2hf

(
f̂i(δb)− f̂i(0)

)
= 1

{
hf < yi − Γ�

i b
� ≤ hf + Γ�

i δb
}
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− 1
{
hf + Γ�

i δb < yi − Γ�
i b

� ≤ hf

}
− 1

{
−hf ≤ yi − Γ�

i b
� < −hf + Γ�

i δb
}

+ 1
{
−hf + Γ�

i δb ≤ yi − Γ�
i b

� < −hf

}
.

We proceed to bound

max
W̃∈W
l∈[p]
|S|≤m

sup
support(δb)=S
‖δb‖1,2≤rb

(Sn − ESn)

[
wi

2hf
· 1
{
hf < yi − Γ�

i b
� ≤ hf + Γ�

i δb
}
· |trace

(
W̃�Ail

)
|
]
,

while the other terms are bounded similarly. For a fixed W̃ ∈ W , l ∈ [p] and
|S| ≤ m, define

ai =
wi

2hf
· trace

(
W̃�Ail

)
, and

GS =
{
(yi, xi, ui) �→ ai · 1

{
hf < yi − Γ�

i b
� ≤ hf + Γ�

i δb
}
:

support (δb) = S, ‖δb‖1,2 ≤ rb

}
,

G = ∪S:|S|≤mGS

Let G(·) be an envelope of G and note that ‖G‖∞ ≤ BKBA

nhhf
. For a fixed g ∈ G,

let
gi = g(yi, xi, ui) = ai · 1

{
hf < yi − Γ�

i b
� ≤ hf + Γ�

i δb
}
.

We have that

E
[
1
{
hf < yi − Γ�

i b
� ≤ hf + Γ�

i δb
}]

= Fi

(
Γ�
i b

� + hf + Γ�
i δb
)
− Fi

(
Γ�
i b

� + hf

)
≤ f̄ ·

∣∣Γ�
i δb
∣∣

≤ f̄BXrb,

and, therefore, the variance is bounded as

σ2
G ≤ sup

g∈G

∑
i∈[n]

E
[
g2i
]
≤ f̄BXrb

∑
i∈[n]

a2i ≤ f̄BXB2
KB2

A · rb
nhh2

f

,

since ∑
i∈[n]

a2i ≤ B2
A

h2
f

∑
i∈[n]

w2
i ≤ B2

KB2
A

nhh2
f

.

The VC dimension for the space

FS =
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(yi, xi, ui) �→ ·1

{
hf < yi − Γ�

i b
� ≤ hf + Γ�

i δb
}
: support (δb) = S, ‖δb‖1,2 ≤ rb

}
is |S| ≤ m. Therefore, applying Lemma 22 and Lemma 24,

sup
Q

logN

(
ε · BKBA

nhhf
,GS , ‖·‖L2(Q)

)
� m log(1/ε).

Since there are
(
p
m

)
different supports S in G, we have

sup
Q

logN

(
ε · BKBA

nhhf
,G, ‖·‖L2(Q)

)
� m(log(1/ε) + log(p)).

Applying Lemma 21 with σG = BKBA
hf

√
f̄rbBX

nh
, ‖G‖∞ ≤ BKBA

nhhf
, V = cm, and A =

Cp1/c, we have

E

⎡⎣sup
g∈G

∑
i∈[n]

gi − E [gi]

⎤⎦
�

⎛⎝m
BKBA

nhhf
log

p√
f̄ rbBXh

+
BKBA

hf

√
f̄ rbBX

nh

√
m log

p√
f̄ rbBXh

⎞⎠
� BKBA

hf

√
f̄BX

mrb log p

nh
,

where the last inequality follows from the conditions on rb in Lemma 13 and Assump-
tion 7. Finally, Lemma 25 gives us

sup
g∈G

∑
i∈[n]

gi − E [gi] �
BKBA

hf

√
f̄BX

rb (m log p+ log(1/γ))

nh
,

with probability 1− γ, and, by the union bound over W̃ ∈ W, l ∈ [p],

max
W̃∈W
l∈[p]

|S|≤m

sup
support(δb)=S
‖δb‖1,2≤rb

(Sn − ESn)
[
wi · 1

{
hf < yi − Γ�

i b
� ≤ hf + Γ�

i δb
}
· trace

(
W̃�Ail

)]

� BKBA

hf

√
f̄BX

rb
(
2m log p+ log(54k2/γ)

)
nh

.

Handling other terms in the same way, we obtain

max
l∈[p]

sup
‖δb‖0,2≤m
‖δb‖1,2≤rb

∥∥∥(Sn − ESn)
[
wi ·

(
f̂i(δb)− f̂i(0)

)
·Ail

]∥∥∥
F

� BKBA

hf

√
f̄BX

rb (m log p+ log(1/γ))

nh
,

with probability 1− γ, which completes the proof.
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Lemma 15. Under the conditions of Lemma 13, we have

max
l∈[p]

∥∥∥(Sn − ESn)
[
wi · f̂i(0) ·Ail

]∥∥∥
F
≤
√
f̄B2

KB2
A

log(p/γ)

nhhf

with probability 1− γ.

Proof. Let W be as in the proof of Lemma 14. Then

max
l∈[p]

∥∥∥(Sn − ESn)
[
wi · f̂i(0) ·Ail

]∥∥∥
F

≤ 2 max
W̃∈W

max
l

(Sn − ESn)
[
wi · f̂i(0) · trace

(
W̃�Ail

)]
.

Let Zi = wi · f̂i(0) · trace
(
W̃�Ail

)
. Then

∑
i∈[n]

E
[
Z2
i

]
≤
∑
i∈[n]

w2
i

h2
f

· trace
(
W̃�Ail

)2
· E
[
1
{∣∣yi − Γ�

i b
�
∣∣ ≤ hf

}]
= O

(
f̄B2

KB2
A

nhhf

)
,

and

max
i∈[n]

|Zi| ≤ O

(
f̄BKBA

nhhf

)
.

The result follows from Lemma 25 and the union bound.

Lemma 16. Suppose conditions of Lemma 13 hold. Then

max
l∈[p]

∥∥∥E�
l

(
E

[
Ĥ(δb)

]
− E

[
Ĥ(0)

])
V �
∥∥∥
F
≤ f̄ ′BA

(
s

√
BK log(np)

nh
+BKhf

)
.

Proof. For a fixed δb, the mean value theorem gives us

2hf

∣∣∣E [f̂i(δb)]− E

[
f̂i(0)

]∣∣∣
=
∣∣∣Fi

(
Γ�
i (b

� + δb) + hf

)
− Fi

(
Γ�
i (b

� + δb)− hf

)
− Fi

(
Γ�
i b

� + hf

)
+ Fi

(
Γ�
i b

� − hf

) ∣∣∣
≤ 2hf f̄

′(
∣∣Γ�

i δb
∣∣+ hf ),

Therefore, we have that

max
l∈[p]

∥∥∥E�
l

(
E

[
Ĥ(δb)

]
− E

[
Ĥ(0)

])
V �
∥∥∥
F

≤ f̄ ′BA

∑
i∈[n]

wi ·
(∣∣Γ�

i δb
∣∣+ hf

)
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≤ f̄ ′BA

⎛⎝√∑
i∈[n]

wi

(
Γ�
i δb
)2√∑

i∈[n]

wi + hf

∑
i∈[n]

wi

⎞⎠
≤ f̄ ′BA

(
s

√
log(np)

nh

√
BK +BKhf

)
,

where the last inequality follows from Lemma 12 and Assumption 6.

Lemma 17. Suppose conditions of Lemma 13 hold. Then

max
l∈[p]

∥∥∥E�
l

(
E

[
Ĥ(0)

]
−H�

)
V �
∥∥∥
F
≤ f̄ ′BA

⎛⎝BKhf + 2

(
h4sBXBβ +

ε2R
f2

)1/2
⎞⎠ .

Proof. The mean value theorem gives us

2hfE

[
f̂i(0)

]
= Fi

(
Γ�
i b

� + hf

)
− Fi

(
Γ�
i b

� − hf

)
= 2hf · fi(qi) + 2hf · (fi(q̌i)− fi(qi)) ,

where q̌i is a point between Γ�
i b

� − hf and Γ�
i b

� + hf . Therefore, we have∣∣∣E [f̂i(0)]− fi(qi)
∣∣∣ ≤ f̄ ′ |q̌i − qi| ≤ f̄ ′ (|q̃i − qi|+ hf ) , and

|fi(q̃i)− fi(qi)| ≤ f̄ ′ |q̃i − qi| .

Finally, we have

max
l∈[p]

∥∥∥E�
l

(
E

[
Ĥ(0)

]
−H�

)
V �
∥∥∥
F

≤ f̄ ′BA

∑
i∈[n]

wi · (2 |q̃i − qi|+ hf )

≤ f̄ ′BA

⎛⎜⎝hf

∑
i∈[n]

wi + 2

⎛⎝∑
i∈[n]

wi

⎞⎠1/2

·

⎛⎝∑
i∈[n]

wi (q̃i − qi)
2

⎞⎠1/2
⎞⎟⎠

≤ f̄ ′BABK

⎛⎝hf + 2

(
h4sB2

XBβ +
ε2R
f2

)1/2
⎞⎠ ,

where the last inequality follows from Lemma 12 and Assumption 6.

Lemma 18. Assume BV satisfies Assumption 5, that (nh)−1sB2
V log p = o(1)

and log(B2
V hfh) = O(log p). Let S1 be the support of b� and S2 be the support

of V � as defined in Assumption 6, with |S1| = s1 and |S2| = s2. Define

Δb(rb, s1) = {δ ∈ R
2p, ‖δ‖2 ≤ rb, ‖δ‖0 ≤ s1} and

C(S) = {Θ ∈ R
2k×2p : ‖ΘSc‖1,F ≤ 6‖ΘS‖1,F }.
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Then

trace
(
δ�v Ĥ(δb)δv

)
≥ fκ−‖δv‖2F − op(1)

(
‖δv‖F +

‖δv‖1,F√
s2

)2

for all δb ∈ Δb(rb, s1) and δv ∈ C(S2).

Proof. For a fixed δb, we have that fi(δb) ≥ f and δv ∈ C(S2). Therefore,

trace
(
δ�v H(δb)δv

)
≥ f

∑
i∈[n]

witrace(δ
�
v ΓiΓ

�
i δv) ≥ fκ2

−‖δv‖2F .

The proof now follows from Lemma 19 and Lemma 20 (presented next),

trace
(
δ�v Ĥ(δb)δv

)
≥ trace

(
δ�v H(δb)δv

)
− trace

(
δ�v

(
Ĥ(δb)−H(δb)

)
δv

)
≥ trace

(
δ�v H(δb)δv

)
− sup

δ∈Δv(s2)

sup
δb∈Δb(rb,s1)

∣∣∣trace(δ� (Ĥ(δb)−H(δb)
)
δ
)∣∣∣ (‖δv‖F +

‖δv‖1,F√
s2

)2

≥ fκ2
−‖δv‖2F − op(1)

(
‖δv‖F +

‖δv‖1,F√
s2

)2

,

where Δv(s2) is as defined in Lemma 20.

Lemma 19 (Based on proposition 5 in (Sun and Zhang, 2013)). For any fixed
matrix M ∈ Rp×p and matrices u ∈ R

k×p and s ∈ N,

trace
(
u�Mu

)
≤
(
‖u‖F +

‖u‖1,F√
s

)2

‖M‖Ss ,

where Ss = {u ∈ R
k×p|‖u‖F = 1, ‖u‖0,F ≤ s} and

‖M‖Ss = max
u,v∈Ss

trace
(
u�Mv

)
.

Lemma 20. Under the conditions of Lemma 18, we have

sup
δv∈Δv(s2)

sup
δb∈Δb(rb,s1)

∣∣∣trace(δ�v (Ĥ(δb)−H(δb)
)
δv

)∣∣∣
= Op

(√
(s1 + s2)f̄κ+BKB2

V log(p)

nhhf

)
,

where

Δv(s2) = {δ ∈ R
2k×2p, ‖δ‖F = 1, ‖δ‖0,F ≤ s2},

Δb(rb, s1) = {δ ∈ R
2p, ‖δ‖2 ≤ rb, ‖δ‖0 ≤ s1}.
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Proof. We have

sup
δv∈Δv(s2)

sup
δb∈Δb(rb,s1)

∣∣∣trace(δ�v (Ĥ(δb)−H(δb)
)
δv

)∣∣∣
= sup

δv∈Δv(s2)

sup
δb∈Δb(rb,s1)

(Sn − ESn)
{
wi(2hf )

−1 · 1
{∣∣yi − Γ�

i (b
� + δb)

∣∣ ≤ hf

}}
· ‖δvΓi‖22

≤ 2 sup
δv∈Nε

sup
δb∈Δb(rb,s1)

(Sn − ESn)
{
wi(2hf )

−1 · 1
{∣∣yi − Γ�

i (b
� + δb)

∣∣ ≤ hf

}}
· ‖δvΓi‖22,

where Nε is an ε-net for Δv(s2). We have |Nε| ≤ 52ks2 . Fix δv ∈ Nε. Define

ai = (2hf )
−1wi · trace

{
δvΓiΓ

�
i δ

�
v

}
,

GS =
{
(yi, xi, ui) �→ ai · 1

{∣∣yi − Γ�
i (b

� + δb)
∣∣ ≤ hf

}
:

support(δb) = S, ‖δb‖2 ≤ rb

}
,

G = ∪S:|S|≤s1GS .

Let G(·) = BKB2
V

2nhhf
be an envelope of G. For a fixed g ∈ G, let

gi = g(yi, xi, ui) = ai · 1
{∣∣yi − Γ�

i (b
� + δb)

∣∣ ≤ hf

}
.

Therefore, the variance is bounded as

σ2
G ≤ sup

g∈G

∑
i∈[n]

E
[
g2i
]
� f̄hf

∑
i∈[n]

(4h2
f )

−1w2
i · ‖δvΓi‖42 � f̄κ+BKB2

V

nhhf
.

The VC dimension for the space GS is O(|S|). Therefore, using Lemma 22,

sup
Q

logN(ε,G, ‖·‖L2(Q)) � s1 (log(p) + log(1/ε)) .

Applying Lemma 21 we obtain

E

⎡⎣sup
g∈G

∑
i∈[n]

gi − E [gi]

⎤⎦ �
√

s1f̄κ+BKB2
V log(p)

nhhf
,

under our assumptions. Using Lemma 25,

sup
g∈G

∑
i∈[n]

gi − E [gi] = Op

(√
s1B2

V log(p)

nhhf

)
.

A union bound over Nε completes the proof.
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A.8. Empirical Process Results

Definition 1. The covering number N(ε,F , ‖·‖) is the minimal number of balls
{g | ‖g − f‖ ≤ ε} of radius ε needed to cover the set F .

Let ‖F‖∞ = sup{‖f‖∞, f ∈ F}. Furthermore, define

Σ2
F = E

⎡⎣sup
f∈F

∑
i∈[n]

W 2
i (f)

⎤⎦ and σ2
F = sup

f∈F

∑
i∈[n]

E
[
W 2

i (f)
]

(57)

where Wi(f), f ∈ F , i ∈ [n] are real valued random variables.

Lemma 21. Let F be a measurable uniformly bounded class of functions satis-
fying

N
(
ε‖F‖L2(P ),F , L2(P )

)
≤
(
A

ε

)V

for all probability measures P , where F := supf∈F |f | is the envelope function

and A, V are constants dependent on F . Let σ2
F =supf∈F

∑
i∈n E

[
(fi − E [fi])

2
]

and U ≥ supf∈F‖f‖∞ be such that 0 < σF ≤ √
nU . Then there exists a univer-

sal constant C such that

E

⎡⎣sup
f∈F

∑
i∈[n]

fi − E [fi]

⎤⎦ ≤ C

⎡⎣V U log

√
nAU

σF
+ σF

√
V log

√
nAU

σF

⎤⎦ .

Proof. This is essentially Proposition 2.1 of Giné and Guillou (2001) combined
with symmetrization Koltchinskii and Yuan (2010).

Lemma 22 (Theorem 2.6.7 of van der Vaart and Wellner (1996)). Suppose F
is a function class with a bounded VC-dimension, V, and an envelope F . Then
there exist absolute constants c, C > 0 such that

sup
Q

N
(
ε‖F‖Q,2,F , ‖·‖L2(Q)

)
≤
(
C

ε

)cV

for all ε ∈ (0, 1) and the probability measure Q ranges over distributions such
that ‖F‖Q,2 > 0.

Lemma 23 (Lemma 22 of Nolan and Pollard (1987)). Let K : R �→ R be a
bounded variation function. The function class

K =

{
K

(
s− ·
h

)
| h > 0, s ∈ R

}
, (58)

indexed by the kernel bandwidth and the location s, satisfies the uniform entropy
condition

sup
Q

N(ε,K, ‖ · ‖L2(Q)) ≤ Cε−v, for all ε ∈ (0, 1), (59)

for some C > 0 and v > 0.
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Lemma 24 (Lemma 26 of Lu et al. (2018)). Let F and G be two function
classes satisfying

sup
Q

N(a1ε,F , ‖ · ‖L2(Q)) ≤ C1ε
−v1 and sup

Q
N(a2ε,G, ‖ · ‖L2(Q)) ≤ C2ε

−v2

for some C1, C2, a1, a2, v1, v2 > 0 and any 0 < ε < 1. Define

F× = {fg | f ∈ F , g ∈ G} and F+ = {f + g | f ∈ F , g ∈ G}.

Then for any ε ∈ (0, 1),

sup
Q

N(ε,F×, ‖ · ‖L2(Q)) ≤ C1C2

(
2a1U

ε

)v1 (2a2U

ε

)v2

and

sup
Q

N(ε,F+, ‖ · ‖L2(Q)) ≤ C1C2

(
2a1
ε

)v1 (2a2
ε

)v2

,

where U = ‖F‖∞ ∨ ‖G‖∞.

Lemma 25. Let
Z = sup

f∈F

∑
i∈[n]

Wi(f)

where E [Wi(f)] = 0 and |Wi(f)| ≤ M for all i ∈ [n] and f ∈ F . Then

Z ≤ E [Z] + 4

(√
(4ME [Z] + σ2

F ) log(1/δ)
∨

M log(1/δ)

)
with probability 1− δ.

Proof. The lemma is a simple consequence of Theorems 11.8 and 12.2 in
Boucheron et al. (2013). Assume that M = 1. Then Theorem 12.2 in
Boucheron et al. (2013) gives us

P {Z ≥ E [Z] + t} ≤ exp

(
− t2

2 (2 (Σ2
F + σ2

F ) + t)

)
.

Hence, with probability 1− δ, we have

Z ≤ E [Z] +
√
8 (Σ2

F + σ2
F ) log(1/δ)

∨
4 log(1/δ).

Furthermore, Theorem 11.8 in Boucheron et al. (2013) gives us that

Σ2
F + σ2

F ≤ 8E [Z] + 2σ2
F .

Combining with the display above, we get

Z ≤ E [Z] + 4

(√
(4E [Z] + σ2

F ) log(1/δ)
∨

log(1/δ)

)
with probability 1− δ. We can rescale the equation above by M to conclude the
proof of the lemma.
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Appendix B: Numerical studies

Detailed data settings In our numerical study, we set the parameters

(a0, a1, b0, b1, c0, c1, d0, d1, ρ, σe) = (1, 0.1, 1, 0.1, 1, 0.5, 1, 0.2, 0.2, 1)

to represent a general setting. We study the cases where γ = 0 and γ = 1, and
choose cy and cx to form different combinations of (R2

y, R
2
x).

Additional simulation results In Table 2, we present the performance of
methods with different combinations of (R2

x, R
2
y).

Table 2

Simulation results with data settings varying (R2
x, R

2
y) with heterogeneous ε (i.e. γ = 1).

ε distribution (R2
x, R

2
y) Method Bias SD ESE CR

Normal

(0.3, 0.3)

One Step −0.007 0.081 0.080 0.94
Decorrelated score 0.003 0.077 0.092 0.98
Reparameterization 0.011 0.081 0.080 0.94

Naive 0.017 0.089 0.090 0.96
Oracle −0.012 0.075 0.091 0.97

(0.3, 0.7)

One Step 0.001 0.111 0.095 0.93
Decorrelated score 0.05 0.090 0.110 0.97
Reparameterization 0.05 0.088 0.095 0.93

Naive 0.260 0.215 0.095 0.47
Oracle −0.012 0.076 0.091 0.97

(0.7, 0.7)

One Step −0.029 0.179 0.188 0.96
Decorrelated score 0.155 0.202 0.249 0.92
Reparameterization 0.068 0.162 0.188 0.95

Naive 0.388 0.248 0.146 0.38
Oracle −0.013 0.183 0.197 0.95

t(3)

(0.3, 0.3)

One Step 0.008 0.132 0.139 0.96
Decorrelated score 0.010 0.130 0.145 0.96
Reparameterization 0.008 0.130 0.139 0.94

Naive 0.008 0.130 0.148 0.98
Oracle −0.010 0.098 0.119 0.97

(0.3, 0.7)

One Step −0.007 0.118 0.126 0.96
Decorrelated score 0.016 0.112 0.145 0.97
Reparameterization 0.024 0.102 0.126 0.95

Naive 0.066 0.163 0.125 0.90
Oracle −0.010 0.100 0.119 0.97

(0.7, 0.7)

One Step −0.027 0.382 0.441 0.95
Decorrelated score 0.032 0.328 0.454 0.95
Reparameterization 0.031 0.302 0.441 0.97

Naive 0.045 0.314 0.318 0.93
Oracle 0.001 0.211 0.268 0.98

Appendix C: Remarks on Assumption 5

Assumption 5 holds when XA follows a multivariate approximately sparse lin-
ear model, where we require the coefficients to be approximately linear, sparse,
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and smooth. Specifically, we assume that there exists a smooth and sparse
ζ�1 (u), · · · , ζ�k(u), that is,

• u �→ ζ�j (u) is differentiable for j = 1, · · · , k and

‖ζ�j (u′)− ζ�j (u)‖2 ≤ Bζ‖u′ − u‖;
‖ζ�j (u′)− ζ�j (u)− (u′ − u) · ∇uζ

�
j (u)‖2 ≤ Bζ(u

′ − u)2;

• the supports of β�(u, τ) and ∂uβ
�(τ, u) are sparse, i.e.

Sj :=
{
j ∈ [p] | ζ�j (u) �= 0

}
and

S′
j :=

{
j ∈ [p] | ζ�j (u) �= 0 or ∂uζ

�
j (u) �= 0

}
,

sj := |S| � n and |S′| ≤ s1j := c1jsj for some constants c1j ; such that

with ζ�(u) = (ζ�1 (u), · · · , ζ�k(u))�, the residual ri = xi,A−ζ�(ui)xi,Ac is approx-
imately orthogonal to xi,Ac weighted by wifi(q̃i). Specifically,

max
{
‖
∑
i

wifi(q̃i)rix
�
i,Ac‖∞,

‖
∑
i

wifi(q̃i)ri
ui − u

h
x�
i,Ac‖∞, ‖

∑
i

wifi(q̃i)ri
(ui − u)2

h2
x�
i,Ac‖∞

}
= ε2r = O

(
log(np)

nhhf

)
.

Based on our model assumption, for a fixed u, let

r� = r�(u) =

(
ζ�(u) h∇uζ

�(u)
0 ζ�(u)

)
.

We have the following sparse linear regression model

wifi(q̃i)

(
xi,A

ui−u
h xi,A

)
= wifi(q̃i)r

�

(
xi,Ac

ui−u
h xi,Ac

)
+ wifi(q̃i)r̃i

where

r̃i =

(
ri + (ζ�(ui)− ζ�(u)− (ui − u) · ∇uζ

�(u))xi,Ac

u−ui

h (ri + (ζ�(ui)− ζ�(u))xi,Ac)

)
.

If Σ11 =
∑

i wifi(q̃i)r̃ir̃
�
i is invertible, then we can have a specific V � in the form

of Σ−1
11 (I2k,−r�) satisfy Assumption 5. The sparsity of ζ�(u) guarantees the

sparsity of V �, so we just need to show ‖H�V � − Ea‖∞,F ≤ λ�, where the norm
‖·‖∞,F for V ∈ R2k×2p is defined as ‖V ‖∞,F = supi∈[k],j∈[p]‖V(i,i+k),(j,j+p)‖F .
If we show that

‖Σ−1
11

∑
i

wifi(q̃i)r̃iΓ
�
i,Ac‖∞,F ≤ λ�,

then

‖Σ−1
11

∑
i

wifi(q̃i)r̃iΓ
�
i,A − I2k‖∞,F
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= ‖Σ−1
11 (
∑
i

wifi(q̃i)r̃iΓ
�
i,A −

∑
i

wifi(q̃i)r̃ir̃
�
i )‖∞,F

= ‖Σ−1
11 (
∑
i

wifi(q̃i)r̃iΓ
�
i,Ac)‖∞,F ≤ λ�

Since Σ11 is invertible, it is sufficient to bound ‖
∑

i wifi(q̃i)r̃iΓ
�
i,Ac‖∞,F . Given

that

‖
∑
i

wifi(q̃i)r̃iΓ
�
i,Ac‖∞,F

≤ sup
l∈[k],j∈[p−k]

‖
∑
i

wifi(q̃i)(
ril + xi,Ac(ζ�l (ui)− ζ�l (u)− (ui − u)∇uζ

�
l (u))

u−ui
h

(ril + xi,Ac (ζ�l (ui)− ζ�l (u)))
)(xi,Ac

j
,
ui − u

h
xi,Ac

j
)‖F

= sup
l∈[k],j∈[p−k]

{[
∑
i

wifi(q̃i)(ril + xi,Ac(ζ�l (ui)− ζ�l (u)− (ui − u) · ∇uζ
�
l (u)) · xi,Ac

j
]2

+ [
∑
i

wifi(q̃i)(ril + xi,Ac(ζ�l (ui)− ζ�l (u)− (ui − u) · ∇uζ
�
l (u)) ·

ui − u

h
xi,Ac

j
]2

+ [
∑
i

wifi(q̃i)
u− ui

h
(ril + xi,Ac (ζ�l (ui)− ζ�l (u))) · xi,Ac

j
]2

+ [
∑
i

wifi(q̃i)
u− ui

h
(ril + xi,Ac (ζ�l (ui)− ζ�l (u))) ·

ui − u

h
xi,Ac

j
]2}−1/2

= O(εr + h) ≤ λ�,

we have that Assumption 5 holds.
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