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Abstract: We consider the problem of constructing confidence intervals
for the median of a response Y ∈ R conditional on features X ∈ R

d in a
situation where we are not willing to make any assumption whatsoever on
the underlying distribution of the data (X,Y ). We propose a method based
upon ideas from conformal prediction and establish a theoretical guarantee
of coverage while also going over particular distributions where its perfor-
mance is sharp. Additionally, we prove an equivalence between confidence
intervals for the conditional median and confidence intervals for the re-
sponse variable, resulting in a lower bound on the length of any possible
conditional median confidence interval. This lower bound is independent of
sample size and holds for all distributions with no point masses.
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1. Introduction

Consider a dataset (X1, Y1), . . . , (Xn, Yn) ⊆ R
d×R and a test point (Xn+1, Yn+1),

with all datapoints being drawn i.i.d. from the same distribution P . Given
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our training data, can we provide a confidence interval for the expected value
μ(Xn+1) = E[Yn+1|Xn+1]?

Methods for inferring the conditional mean are certainly not in short supply.
In fact, most existing methods predict not just the conditional mean at a data-
point E[Yn+1|Xn+1], but the full conditional mean function E[Y |X = x] for all
x ∈ R

d. To the best of our knowledge, however, each approach relies on some
assumptions in order to guarantee coverage. For instance, the classical linear
regression model is often used but is only accurate if Y |X is normal with mean
μ(x) = E[Y |X = x] affine in x and standard deviation independent of x. Non-
parametric regressions cannot estimate the conditional mean without imposing
smoothness conditions and assuming that the conditional distribution is suffi-
ciently light tailed. Since reliable conditional mean inference is a very common
problem, these methods are nevertheless used all the time, e.g. in predicting dis-
ease survival times, classifying spam emails, pricing financial assets, and more.
The issue is that the assumptions these methods make rarely hold in practice.
Thus, the question remains: is it possible to estimate the conditional mean at a
datapoint in a distribution-free setting, with no assumptions on P?

It turns out that it is not only impossible to get a nontrivial confidence
interval for the conditional mean E[Y |X = Xn+1], but it is actually impossible
to get a confidence interval for E[Y ] itself. This result originates in [1], where
the authors show that any parameter sensitive to tails of a distribution cannot
be estimated when no restrictions exist on the distribution class; an example of
a distribution with a non-estimable mean is given in Appendix B.3.

Thus, within the distribution-free setting, making progress on inferring the
conditional mean requires a modification to the problem statement. One strategy
is to restrict the range of Y . An example of this is in [2], which introduces an
algorithm that calculates a confidence interval for the conditional mean in the
case where Y ∈ {0, 1}. However, even with this restriction, Barber shows that
there exists a fundamental bound limiting how small any such confidence interval
can be.

The other strategy is to modify the measure of central tendency that we
study. Bahadur and Savage’s result suggests that the best parameters to study
are robust to distribution outliers; this observation motivates our investigation
of the conditional median.

In a nutshell, the conditional median is possible to infer because of the strong
and quantifiable relationship between any particular sampled datapoint (Xi, Yi)
and Median(Y |X = Xi). Its robustness to outliers means that even within
the distribution-free setting, there is no need to worry about ‘hidden’ parts of
the distribution. Additionally, there already exists a well-known algorithm for
estimating Median(Y ) given a finite number n of i.i.d. samples. Explored in [12]
and covered in Appendix B.4, this algorithm produces intervals with guaranteed
rates of coverage and widths going to zero as the sample size goes to infinity,
suggesting that an algorithm for the conditional median might also perform
well. We note that there already exists literature dealing with estimating the
conditional quantile through quantile regression; [9] provides an introduction
to different methods. The difference between quantile regression and our work
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here is that quantile regression requires continuity conditions and only provides
theoretical guarantees at the asymptotic level, as seen in [5], [19], and [13]; the
methods described here provide coverage guarantees on finite sample sizes and
require no assumptions.

Our goal in this paper is to combine ideas from regular median inference with
procedures from distribution-free inference in order to understand how well an
algorithm can cover the conditional median and, more generally, conditional
quantiles. In particular, we want to see if the properties of the median and
quantiles lead to a valid inference method while also examining the limits of
this inference.

It is important to note that the quantity we are attempting to study is
Median(Y |X = Xn+1), not Median(Y |X = x). The first term is a random
variable dependent on Xn+1, whereas the second is fixed and exists for all x
in the support of P . We focus on the first quantity because we are in the
distribution-free setting; as we know nothing about the class of distributions
that P belongs to, it is more tractable to make inferences about datapoints as
opposed to pointwise across the full distribution.

Another way to frame this is to think of our goal as to cover the value of
the conditional median function when weighting by the marginal distribution
PX , as opposed to covering the full conditional median function over all x ∈ R

d.
Because we are predicting the conditional median at an unknown value Xn+1,
our success is not measured by whether or not we predict the conditional median
correctly at all possible x ∈ R

d, but by how often we predict the conditional
median correctly across PX .

The methods used in this paper are similar to those from distribution-free
predictive inference, which focuses on predicting Yn+1 from a finite training set.
The field of conformal predictive inference began with [20] and was built up by
works such as [18] and [21]; it has been generating interest recently due to its ver-
satility and lack of assumptions. Applications of conformal predictive inference
range from criminal justice to drug discovery, as seen in [15] and [7] respectively.

While this paper relies on techniques from predictive inference, our focus
is on parameter inference, which is quite different from prediction because it
focuses on predicting a function of the conditional distribution Yn+1|Xn+1 as
opposed to the datapoint Yn+1. For example, using sample datapoints from
an unknown normal distribution to estimate the true mean of the distribution
would constitute parameter inference; using the estimated quantiles of the dat-
apoints to create a predictive confidence interval for the next datapoint would
constitute predictive inference. Whereas predictive inference exploits the fact
that (Xn+1, Yn+1) is exchangeable with the sample datapoints, parameter in-
ference requires another layer of analysis, as (Xn+1,Median(Yn+1|Xn+1)) is not
exchangeable with (Xi, Yi). This additional complexity demands modifying ap-
proaches from predictive inference to produce valid parameter inference.
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1.1. Terminology

We begin by setting up definitions to formalize the concepts above. Throughout
this paper, we assume that any distribution (X,Y ) ∼ P is over R

d × R unless
explicitly stated otherwise. Each result in this paper holds true for all values of
d and n.

Given a feature vector Xn+1, we let Ĉn(Xn+1) ⊆ R denote a confidence
interval for some functional of the conditional distribution Yn+1|Xn+1. Note that
we use the phrase confidence interval for convenience; in its most general form,
Ĉn(Xn+1) is a subset of R. This interval is a function of the point Xn+1 at which
we seek inference as well as of our training data D = {(X1, Y1), . . . , (Xn, Yn)}.
We write Ĉn to refer to the general algorithm that maps D to the resulting
confidence intervals Ĉn(x) for each x ∈ R

d.
In order for Ĉn to be useful, we want it to capture, or contain, the parameter

we care about with high probability. We formalize this as follows:

Definition 1. We say that Ĉn satisfies distribution-free median coverage at
level 1− α, denoted by (1− α)-Median, if

P
{
Median(Yn+1|Xn+1) ∈ Ĉn(Xn+1)

}
≥ 1− α

for all distributions P on (X,Y ) ∈ R
d × R.

Definition 2. For 0 < q < 1, let Quantileq(Yn+1|Xn+1) refer to the qth quantile

of the conditional distribution Yn+1|Xn+1. We say that Ĉn satisfies distribution-
free quantile coverage for the qth quantile at level 1−α, denoted by (1−α, q)-
Quantile, if

P{Quantileq(Yn+1|Xn+1) ∈ Ĉn(Xn+1)} ≥ 1− α

for all distributions P on (X,Y ) ∈ R
d × R.

The probabilities in Definitions 1 and 2 are both taken over the training data
D = {(X1, Y1), . . . , (Xn, Yn)} and test point Xn+1. Thus, satisfying (1 − α)-
Median is equivalent to satisfying (1− α, 0.5)-Quantile.

These concepts are similar to predictive coverage, with the key difference
being that our goal is now to predict a function of Xn+1 rather than a new
datapoint Yn+1.

Definition 3. We say that Ĉn satisfies distribution-free predictive coverage at
level 1− α, denoted by (1− α)-Predictive, if

P
{
Yn+1 ∈ Ĉn(Xn+1)

}
≥ 1− α for all distributions P on (X,Y ) ∈ R

d × R,

where this probability is taken over the training dataD={(X1, Y1), . . . , (Xn, Yn)}
and test point (Xn+1, Yn+1).

Finally, we define the type of conformity scores that we will use in our general
quantile inference algorithm.



Conditional median inference 4629

Definition 4. We say that a function f : (Rd,R) → R is a locally nondecreasing
conformity score if, for all x ∈ R

d and y, y′ ∈ R with y ≤ y′, we have f(x, y) ≤
f(x, y′).

1.2. Summary of results

We find that there exists a distribution-free predictive inference algorithm that
satisfies both (1− α/2)-Predictive and (1− α)-Median. Moreover, an improved
version of this algorithm also satisfies (1−α, q)-Quantile. Together, these prove
that there exists nontrivial algorithms Ĉn that satisfy (1−α)-Median and (1−
α, q)-Quantile for all 0 < q < 1.

We go on to show that conditional median inference and predictive inference
are nearly equivalent problems. Specifically, we show that any algorithm that
contains Median(Yn+1|Xn+1) with probability 1 − α must also contain Yn+1

with probability at least 1−α, and that any algorithm that contains Yn+1 with
probability at least 1− α/2 must contain Median(Yn+1|Xn+1) with probability
1− α.

Taken together, these results give us somewhat conflicting perspectives. On
the one hand, there exist distribution-free algorithms that capture the condi-
tional median and conditional quantile with high likelihood; on the other hand,
any such algorithm will also capture a large proportion of the distribution itself,
putting a hard limit on how well such algorithms can ever perform.

2. Confidence intervals for the conditional median

This section proves the existence of algorithms obeying distribution-free median
and quantile coverage. We then focus on situations where these algorithms are
sharp.

2.1. Basic conditional median inference

Algorithm 1 below operates by taking the training dataset and separating it
into two halves of sizes n1+n2 = n. Next, a regression algorithm μ̂ is trained on
D1 = {(X1, Y1), . . . , (Xn1 , Yn1)}. The residuals Yi−μ̂(Xi) are calculated for n1 <
i ≤ n, and the 1− α/2 quantile of the absolute value of these residuals is then
used to create a confidence band around the prediction μ̂(Xn+1). The expert
will recognize that this is identical to a well-known algorithm from predictive
inference as explained later.

Theorem 1. For all distributions P , all regression algorithms μ̂, and all split
sizes n1 + n2 = n, the output of Algorithm 1 contains Median(Yn+1|Xn+1) with
probability at least 1− α. That is, the algorithm satisfies (1− α)-Median.

The proof of Theorem 1 is covered in Appendix A.1.
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Algorithm 1: Confidence Interval for Median(Yn+1|Xn+1) with Coverage
1− α
Input:

Number of i.i.d. datapoints n ∈ N.
Split sizes n1 + n2 = n.
Datapoints (X1, Y1), . . . , (Xn, Yn) ∼ P ⊆ (Rd,R).
Test point Xn+1 ∼ P .
Regression algorithm μ̂.
Coverage level 1− α ∈ (0, 1).

Process:

Randomly split {1, . . . , n} into disjoint I1 and I2 with |I1| = n1 and |I2| = n2.
Fit regression function μ̂ : Rd → R on {(Xi, Yi) : i ∈ I1}.
For i ∈ I2 set Ei = |Yi − μ̂(Xi)|.
Compute Q1−α/2(E), the (1− α/2)(1 + 1/n2)-th empirical quantile of {Ei : i ∈ I2}.

Output:

Confidence interval Ĉn(Xn+1) = [μ̂(Xn+1)−Q1−α/2(E), μ̂(Xn+1) +Q1−α/2(E)] for
Median(Yn+1|Xn+1).

Remark 2.1. Algorithm 1 works independently of how μ̂ is trained; this means
that any regression function may be used, from simple linear regression to more
complicated machine learning algorithms. It is important to note that μ̂(x)
does not need to be an estimate of the true conditional mean μ(x); while one
option is to train it to predict the conditional mean, it can be fit to predict
the conditional median, conditional quantile, or any other measure of central
tendency. The best choice for what to fit μ̂ to may depend on one’s underlying
belief about the distribution.

We return at last to the connection with predictive inference. Introduced in
[14] and [20] and studied in [11], [3], [15], and several other papers, the split
conformal method was initially created to achieve distribution-free predictive
coverage guarantees. In particular, [20] shows that Algorithm 1 satisfies (1 −
α/2)-Predictive, implying that in order to capture Median(Yn+1|Xn+1) with
probability 1 − α, our algorithm produces a wider confidence interval than an
algorithm trying to capture Yn+1 with the same probability.

2.2. General conditional quantile inference

Algorithm 1 is a good first step towards a usable method for conditional median
inference; however, it may be too rudimentary to be used in practice. Algorithm
2 is a more general version of Algorithm 1 that results in conditional quantile
coverage and better empirical performance. This provides a better understand-
ing of how diverse parameter inference algorithms can be.

Algorithm 2 differs from Algorithm 1 in two ways. First, we use the rq quantile
of the lower scores to create the confidence interval’s lower bound, and the
1 − s(1 − q) quantile of the upper scores (corresponding to the top s(1 − q) of
the score distribution) for the upper bound. Second, the functions we fit are no
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Algorithm 2: Confidence Interval for Quantileq(Yn+1|Xn+1) with Coverage
1− α
Input:

Number of i.i.d. datapoints n ∈ N.
Split sizes n1 + n2 = n.
Datapoints (X1, Y1), . . . , (Xn, Yn) ∼ P ⊆ (Rd,R).
Test point Xn+1 ∼ P .
Locally nondecreasing conformity score algorithms f lo and fhi.
Quantile level q ∈ (0, 1).
Coverage level 1− α ∈ (0, 1).
Split probabilities r + s = α.

Process:

Randomly split {1, . . . , n} into disjoint I1 and I2 with |I1| = n1 and |I2| = n2.
Fit conformity scores f lo, fhi : (Rd,R) → R on {(Xi, Yi) : i ∈ I1}.
For i ∈ I2 set Elo

i = f lo(Xi, Yi)) and Ehi
i = fhi(Xi, Yi)).

Compute Qlo
rq(E), the rq(1 + 1/n2)− 1/n2 empirical quantile of {Elo

i : i ∈ I2}, and
Qhi

1−s(1−q)
(E), the (1− s(1− q))(1 + 1/n2) empirical quantile of {Ehi

i : i ∈ I2}.
Output:

Confidence interval
Ĉn(Xn+1) = {y : Qlo

rq(E) ≤ f lo(Xn+1, y), fhi(Xn+1, y) ≤ Qhi
1−s(1−q)

(E)} for

Quantileq(Yn+1|Xn+1).

longer regression functions, but instead locally nondecreasing conformity scores.
These scores are described in Definition 4; see Remark 2.3 for examples.

Theorem 2. For all distributions P , all locally nondecreasing conformity scores
f lo and fhi, all split sizes n1 + n2 = n, and all 0 < q < 1, the output of
Algorithm 2 contains Quantileq(Yn+1|Xn+1) with probability at least 1−α. That
is, Algorithm 2 satisfies (1− α, q)-Quantile.

The proof of Theorem 2 is covered in Appendix A.2 and is similar to that
of Theorem 1; the main modifications come from the changes described above.
Regarding the first change, the asymmetrical quantiles on the lower and upper
end of the Ei’s balance the fact that datapoints have asymmetrical probabilities
of being on either side of the conditional quantile. Regarding the second change,
because the conformity scores Ei still preserve relative ordering, they do not
affect the relationship between datapoints and the conditional quantile.

Remark 2.2. One possible choice for r and s is r = s = α/2. This is motivated by
the logic that r and s decide the probabilities of failure on the lower bound and
the upper bound, respectively; if we want the bound to be equally accurate on
both ends, it makes sense to set r and s equal. Another choice is r = (1−q)α and
s = qα; this results in the quantiles for Qlo

rq and Qhi
1−s(1−q) being approximately

equal, with the algorithm taking the q(1 − q)α quantile of the scores on both
the lower and upper ends.

Remark 2.3. The versatility of the conformity scores f lo and fhi is what differen-
tiates Algorithm 2 from Algorithm 1 and makes it a viable option for conditional
quantile inference. Below are a few examples of possible scores and the style of
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intervals they produce.

- f lo(Xi, Yi) = fhi(Xi, Yi) = Yi − μ̂(Xi), where μ̂ : Rd → R is trained on
{(Xi, Yi) : i ∈ I1} as a central tendency estimator. This is the conformity
score used in Algorithm 1 and [20], resulting in a confidence interval of the
form [μ̂(Xn+1)+clo, μ̂(Xn+1)+chi] for some clo, chi ∈ R. This score is best
when the conditional distribution Y |X = x is similar for all x and either
the mean or median can be estimated with reasonable accuracy. Note that
if the conditional distribution Y −E[Y |X] is independent of X, Algorithm
2 will output the same confidence interval for μ̂(x) = E[Y |X = x] and
μ̂(x) = Median(Y |X = x).

- f lo(Xi, Yi) = fhi(Xi, Yi) =
Yi−μ̂(Xi)

σ̂(Xi)
, where μ̂ : Rd → R and σ̂ : Rd → R

+

are trained on {(Xi, Yi) : i ∈ I1} as a central tendency estimator and
conditional absolute deviation estimator, respectively. This score results
in a confidence interval of the form [μ̂(Xn+1) + cloσ̂(Xn+1), μ̂(Xn+1) +
chiσ̂(Xn+1)] for some clo, chi ∈ R. Unlike the previous example, this score
no longer results in a fixed-length confidence interval; it is best used when
there is high heteroskedasticity in the underlying distribution. This is the
conformity scores used to create adaptive predictive intervals in [10]. Note
that a normalization constant γ > 0 can be added to the denominator
σ̂(Xi) to create stable confidence intervals.

- f lo(Xi, Yi) = Yi−Q̂lo(Xi) and fhi(Xi, Yi) = Yi−Q̂hi(Xi), where Q̂
lo, Q̂hi :

R
d → R are trained on {(Xi, Yi) : i ∈ I1} to estimate the rq quan-

tile and the 1 − s(1 − q) quantile of the conditional distribution, respec-
tively. This choice results in a confidence interval of the form [Q̂lo(Xn+1)+
clo, Q̂

hi(Xn+1) + chi] for some clo, chi ∈ R. These scores are best when one
can estimate the conditional quantiles reasonably well and the conditional
distribution Y |X = x is heteroskedastic. Note that if Q̂lo and Q̂hi are
trained well, then the resulting confidence interval will be approximately
[Q̂lo(Xn+1), Q̂

hi(Xn+1)]. These are the scores used to create the predictive
intervals seen in [16] and [17].

- f lo(Xi, Yi) = fhi(Xi, Yi) = F̂Y |X=Xi
(Yi), where F̂Y |X=x : Rd × R → [0, 1]

is trained on {(Xi, Yi) : i ∈ I1} to be the estimated cumulative distribution
function of the conditional distribution Y |X. Using this score will result in
a confidence interval [F̂−1

Y |X=Xn+1
(clo), F̂

−1
Y |X=Xn+1

(chi)] for some clo, chi ∈
[0, 1], similar to the predictive intervals in [6] and [8]. This can be a good
approach when the conditional distribution Y |X is particularly complex.

- f lo(Xi, Yi) = fhi(Xi, Yi) = log Yi − μ̂(Xi), where μ̂ : Rd → R is trained
on {(Xi, Yi) : i ∈ I1} as a log central tendency estimator. This results in
a confidence interval of the form [clo exp(μ̂(Xn+1)), chi exp(μ̂(Xn+1))] for
some clo, chi ∈ R

+. This score works well when Y is known to be positive
and one wants to minimize the approximation ratio; it is equivalent to
taking a log transformation of the data.

In general, a good choice for f lo(Xi, Yi) and fhi(Xi, Yi) depends on one’s
underlying belief about the distribution as well as on the sample size n, though
some scores perform better in practice. The choice of n1 and n2 represents a
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balance between model training and interval tightness; increasing n1 increases
the amount of data for f lo and fhi, and increasing n2 results in a better quantile
for the predictive interval. [17] contains more information on the effect of the
conformity score on the size of predictive intervals as well as the impact of
the ratio n1/n on interval width and coverage. We also simulate the impact of
different scores on conditional quantile intervals in Section 4.

Remark 2.4. Algorithm 2 can be generalized to use more than one split, resulting
in multiple confidence intervals that can then be combined into one output. For
more information, [22] describes how to apply k-fold cross validation to split
conformal inference, and [4] describes the special case of having n different
splits using the jackknife+ procedure.

2.3. Algorithm sharpness

Now that we have seen that Algorithms 1 and 2 achieve coverage, an impor-
tant question to ask is whether or not the terms for the error quantile can be
improved. Do our methods consistently overcover the conditional median, and
if so, is it possible to take a lower quantile of the error terms and still have
Theorems 1 and 2 hold? In this section, we prove that this is impossible by
going over a particular distribution P δ for which the 1−α/2 term in Algorithm
1 is necessary. Additionally, we go over a choice μ̂c with the property that Algo-
rithm 1 always results in 1−α/2 coverage when ran with input μ̂c; this implies
that there does not exist a distribution with the property that Algorithm 1 will
always provide a sharp confidence interval for the conditional median regardless
of the regression algorithm.

For each δ > 0, consider (X,Y ) ∼ P δ over R×R, where P δ
X = Unif[−0.5, 0.5]

and Y |X d
= X B; B ∈ {0, 1} is here an independent Bernoulli variable with

P(B = 1) = 0.5 + δ. That is, 0.5 + δ of the distribution is on the line segment
Y = X from (−0.5,−0.5) to (0.5, 0.5), and 0.5− δ of the distribution is on the
line segment Y = 0 from (−0.5, 0) to (0.5, 0). Thus, Median(Y |X = x) = x. A
visualization of P δ is shown in Figure 1.

Fig 1. A distribution for which it is difficult to estimate the conditional median.
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We know that Algorithm 1 is accurate for all distributions P and all algo-
rithms μ̂. Consider the regression algorithm μ̂ : R → R such that μ̂(x) = 0 for
all x ∈ R; in other words, μ̂ predicts Yi = 0 for all Xi. We show that Algorithm
1 returns a coverage almost exactly equal to 1− α.

Theorem 3. For all ε > 0, there exist N and δ > 0 such that if we sample
n > N datapoints from the distribution P δ and use Algorithm 1 with μ̂ = 0 as
defined above and n1 = n2 = n/2 to get a confidence interval for the conditional
median,

P
{
Median(Yn+1|Xn+1) ∈ Ĉn(Xn+1)

}
≤ 1− α+ ε.

The proof is in Appendix A.3. Theorem 3 does not directly prove that the
1− α/2 term in Algorithm 1 is sharp. However, we can see that if Algorithm 1
used the 1−α′/2 quantile of the residuals with α′ > α, then by Theorem 3 there
would exist a choice for δ and n where the probability of conditional median
coverage would be less than 1 − α. Therefore, the 1 − α/2 term is required for
the probability of coverage to always be at least 1− α.

Remark 2.5. It is possible to generalize Theorem 3 to Algorithm 2 as well; we can
change P δ to have Y |X ∼ X B with B ∼ Bernoulli(q + 1[X ≥ 0](1 − 2q) + δ).
This results in Quantileq(Y |X = x) = x for all x ∈ [−0.5, 0.5]. Then, if we

consider the conformity scores f lo(Xi, Yi) = fhi(Xi, Yi) = Yi, it can be shown
for large n and small δ that Algorithm 2 returns a confidence interval that has
a conditional quantile coverage of at most 1 − α + ε, meaning that the rq and
1− s(1− q) terms in the quantiles for the error scores are sharp.

These results may seem somewhat pedantic because we are restricting μ̂(x) to
be the zero function and f lo(Xi, Yi) and fhi(Xi, Yi) to be Yi; this simplification
is done to better illustrate our point. Even when f lo(Xi, Yi) and fhi(Xi, Yi) are
trained using more complicated approaches, there still exist distributions that
result in only 1− α coverage for Algorithm 2. For an example of a distribution
where Algorithm 2 only achieves 1− α coverage for standard conformity scores
f lo(Xi, Yi) and fhi(Xi, Yi), refer to P3 in Section 4. The existence of P δ and
similarly ‘confusing’ distributions helps to show why capturing the conditional
median can be tricky in a distribution-free setting.

At the same time, there exist conformity scores for which Algorithms 1 and
2 have rates of coverage that are always near 1 − α/2. For c > 0, define the
randomized regression function μ̂c as follows: set M = max

i∈I1

|Yi| and μ̂c(x) = Ax

for all x ∈ R
d, where Ax

i.i.d.∼ N (0, (cM)2). We prove the following:

Theorem 4. For all ε > 0, there exists c and N such that for all n > N , there
is a split n1 + n2 = n such that when Algorithm 1 is ran using the regression
function μ̂c on n datapoints with I1 of size n1 and I2 of size n2, the resulting
interval will be finite and will satisfy

P
{
Median(Yn+1|Xn+1) ∈ Ĉn(Xn+1)

}
≥ 1− α/2− ε

for any distribution P .
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The proof for this theorem is in Appendix A.4.

Remark 2.6. Theorem 4 can be extended to Algorithm 2 by taking f lo(Xi, Yi) =
fhi(Xi, Yi) = Yi − μ̂c(Xi). The corresponding result shows that given a large
enough number of datapoints and a particular data split, there exist conformity
scores that result in Algorithm 2 capturing the conditional quantile nontrivially
with probability at least 1− rq − s(1− q) for all distributions P .

Due to the definition of μ̂c, the resulting confidence intervals will be near-
useless; the predictions will be so far off that the intervals will have width several
times the range of the (slightly clipped) marginal distribution PY . However, they
still will be finite, and will still achieve predictive inference at a rate roughly
equal to 1 − α/2. The existence of scores that always result in higher-than-
needed rates of coverage means that any result like Theorem 3 that provides a
nontrivial upper bound for either Algorithm 1 or Algorithm 2’s coverage of the
conditional median on a specific distribution will have to restrict the class of
regression functions and/or conformity scores.

3. Median intervals and predictive intervals are equivalent

Up until this point, we have looked at the existence and accuracy of algorithms
for estimating the conditional median. This section shows that any algorithm
for the conditional median is also a predictive algorithm, and vice versa. As a
consequence, this means there exists a strong lower bound on the size of any
conditional median confidence interval.

Theorem 5. Let Ĉn be any algorithm that satisfies (1− α)-Median. Then, for
any nonatomic distribution P on R

d × R, we have that

P
{
Yn+1 ∈ Ĉn(Xn+1)

}
≥ 1− α.

That is, Ĉn satisfies (1− α)-Predictive for all nonatomic distributions P .

Proof. The proof above uses the same approach from the proof of Theorem 1
in [2]. Consider an arbitrary Ĉn that satisfies (1−α)-Median, and let P be any
distribution over Rd ×R for which PX is nonatomic. Pick some M ≥ n+1, and

sample L = {(Xj , Y j) : 1 ≤ j ≤ M} i.i.d.∼ P . We define two different ways of
sampling our data from L.

Fix L and pick (X1, Y1), . . . , (Xn+1, Yn+1) without replacement from L. Call
this method of sampling Q1. It is clear that after marginalizing over L, the
(Xi, Yi)’s are effectively drawn i.i.d. from P ; thus, we have that

PP {Yn+1 ∈ Ĉn(Xn+1)} = EL
[
PQ1{Yn+1 ∈ Ĉn(Xn+1)|L}

]
.

Now, pick (X1, Y1), . . . , (Xn+1, Yn+1) with replacement from L, and call this
method of sampling Q2. Note that because PX is nonatomic, the Xj ’s are dis-
tinct with probability 1, which means that MedianQ2(Y |X = Xj) = Y j . Then,
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as Ĉn applies to all distributions, it applies to our point distribution over L;
thus, we have that for all L,

PQ2{Yn+1 ∈ Ĉn(Xn+1)|L} =PQ2{MedianQ2(Y |X = Xn+1) ∈ Ĉn(Xn+1)|L}
≥1− α.

Let R be the event that any two of the (Xi, Yi) are equal to each other;
that is, R = {(Xa, Ya) = (Xb, Yb) for any a < b}. Note that under Q2, for
1 ≤ a < b ≤ n+ 1, the probability of (Xa, Ya) and (Xb, Yb) being equal is 1/M .
Then, by the union bound,

PQ2{R} ≤
∑

1≤a<b≤n+1

PQ2{(Xa, Ya) = (Xb, Yb)} ≤ n2

M
,

where the last step is from the fact that the number of possible pairs (a, b) is
bounded above by n2. Meanwhile, we know that PQ1{R} = 0 by the definition
of Q1.

We can use this to bound the total variation distance between Q1 and Q2. For
any fixed L and any event E, note that PQ1{E} = PQ1{E|RC} = PQ2{E|RC}.
Then, we can calculate

|PQ1{E} − PQ2{E}|
=|PQ1{E|RC} − (PQ2{E|RC}PQ2{RC}+ PQ2{E|R}PQ2{R})|
=|PQ2{E|RC}PQ2{R} − PQ2{E|R}PQ2{R}|
=PQ2{R}|PQ2{E|RC} − PQ2{E|R}|
≤n2/M.

Therefore, for any fixed L, the total variation distance between the distribu-
tions Q1 and Q2 is at most n2/M , implying that

PQ1{Yn+1 ∈ Ĉn(Xn+1)|L} ≥ PQ2{Yn+1 ∈ Ĉn(Xn+1))|L}−n2/M ≥ 1−α−n2/M,

which means that

PP {Yn+1 ∈ Ĉn(Xn+1)} = EL
[
PQ1{Yn+1 ∈ Ĉn(Xn+1)|L}

]
≥ 1− α− n2/M.

Taking the limit as M goes to infinity gives the result.

Remark 3.1. Theorem 5 also applies to all algorithms that satisfy (1 − α, q)-
Quantile; for our uniform distribution over L, Quantileq(Y |X = Xj) = Y j , so
the proof translates exactly. As a result, this means that all algorithms that
satisfy (1 − α, q)-Quantile also satisfy (1 − α)-Predictive for all nonatomic dis-
tributions P .

Remark 3.2. The approach taken in the proof of Theorem 5 is similar to those
used to show the limits of distribution-free inference in other settings. As men-
tioned earlier, [2] shows that in the setting of distributions P over Rd × {0, 1},
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any confidence interval Ĉn(Xn+1) for E[Y |X = Xn+1] with coverage 1−α must
contain Yn+1 with probability 1−α for all nonatomic distributions P , and goes
on to provide a lower bound for the length of the confidence interval. Addi-
tionally, [3] proves a similar theorem about predictive algorithms Ĉn(Xn+1) for
Yn+1 that are required to have a weak form of conditional coverage. The proof
for the result from [2] involves the same idea of marginalizing over a large finite
sampled subset L in order to apply Ĉn to the distribution over L; the proof for
the result from [3] focuses on sampling a large number of datapoints conditioned
on whether or not they belong to a specific subset B ⊆ R

d × R. In both cases,
studying two sampling distributions and measuring the total variation distance
between them was crucial. Thus, it seems that this strategy may have further
use in the future when studying confidence intervals for other parameters or
data in a distribution-free setting.

We now prove a similar result in the opposite direction.

Theorem 6. Let Ĉn be any algorithm that only outputs confidence intervals
and satisfies (1− α/2)-Predictive. Then, Ĉn satisfies (1− α)-Median.

Proof. Consider any distribution P . For all x ∈ R
d in the support of P , set

m(x) = Median(Y |X = x).
We know that under the distribution P , P{Yn+1 ∈ Ĉn(Xn+1)} ≥ 1 − α/2.

Then, we can condition on whether or not the conditional median is contained
in Ĉn as follows:

1− α/2

≤P{Yn+1 ∈ Ĉn(Xn+1)}
=P{Yn+1 ∈ Ĉn(Xn+1)|m(Xn+1) ∈ Ĉn(Xn+1)}P{m(Xn+1) ∈ Ĉn(Xn+1)}

+ P{Yn+1 ∈ Ĉn(Xn+1)|m(Xn+1) 	∈ Ĉn(Xn+1)}P{m(Xn+1) 	∈ Ĉn(Xn+1)}

≤P{m(Xn+1) ∈ Ĉn(Xn+1)}+
1

2
P{m(Xn+1) 	∈ Ĉn(Xn+1)}

=
1

2
+

1

2
P{m(Xn+1) ∈ Ĉn(Xn+1)}.

The key insight here is that because Ĉn only outputs confidence intervals,
Ĉn(Xn+1) can cover at most half of the conditional distribution of Y |X = Xn+1

if m(Xn+1) is not contained in the confidence interval.
Shifting the constant over and multiplying by 2 tells us that P{m(Xn+1) ∈

Ĉn(Xn+1)} ≥ 1− α, as desired.

Remark 3.3. Theorem 6 can be modified to replace (1−α)-Median with (1−α, q)-
Quantile. In particular, let Ĉn(x) = [L̂n(x), Ĥn(x)] be any algorithm that only
outputs confidence intervals and satisfies P{Yn+1 ≥ L̂n(Xn+1)} ≥ 1 − rq and
P{Yn+1 ≤ Ĥn(Xn+1)} ≥ 1 − s(1 − q) for some r + s = α. Then, Ĉn satisfies
(1− α, q)-Quantile.

Alternatively, we can also conclude that if Ĉn only outputs confidence in-
tervals and satisfies (1−min{q, 1− q}α)-Predictive, then it satisfies (1− α, q)-
Quantile. The proofs of both of these statements are in Appendix A.5.
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Theorem 5 tells us that conditional median inference is at least as imprecise
as predictive inference. As a result, because all predictive intervals have nonvan-
ishing widths (assuming nonzero conditional variance) no matter the sample size
n, it is not possible to write down conditional median algorithms with widths
converging to 0. Thus, it may be better to study other distribution parame-
ters similar to the conditional median if we are looking for better empirical
performance. For discussion on related distribution parameters that are worth
studying and may result in stronger inference, refer to Section 5.2.

Theorem 6 tells us that one way to approach conditional median inference
is to apply strong predictive algorithms. It also suggests that improvements in
predictive inference may translate to conditional median inference.

Lastly, we know that Algorithm 1 captures Yn+1 with probability 1 − α/2.
Because there is space between the bounds of Theorems 5 and 6, there may exist
a better conditional median algorithm that only captures Yn+1 with probability
1−α. Based on our result from Section 2.3, any such algorithm will likely follow
a format different than the split conformal approach. Studying this problem in
more detail, particularly on difficult distributions P , might lead to more accurate
conditional median algorithms.

4. Simulations

In this section, we analyze the impact of different conformity scores on the
outcome of Algorithm 2. Specifically, we look at the four following conformity
scores:

Score 1: f lo
1 (Xi, Yi) = fhi

1 (Xi, Yi) = Yi − μ̂(Xi). We train μ̂ to predict the
conditional mean using quantile regression forests on the dataset {(Xi, Yi) :
i ∈ I1}.

Score 2: f lo
2 (Xi, Yi) = fhi

2 (Xi, Yi) = Yi−μ̂(Xi)
σ̂(Xi)

. We train μ̂ and σ̂ jointly using

random forests on the dataset {(Xi, Yi) : i ∈ I1}.
Score 3: f lo

3 (Xi, Yi) = Yi − Q̂lo(Xi) and fhi
3 (Xi, Yi) = Yi − Q̂hi(Xi). We train

Q̂lo and Q̂hi to predict the conditional α/2 quantile and 1−α/2 quantile,
respectively, using quantile regression forests on the dataset {(Xi, Yi) : i ∈
I1}.

Score 4: f lo
4 (Xi, Yi) = fhi

4 (Xi, Yi) = F̂Y |X=Xi
(Yi). We create F̂Y |X=Xi

(Yi) by
using 101 quantile regression forests trained on {(Xi, Yi) : i ∈ I1} to
estimate the conditional qth quantile for q ∈ {0, 0.01, . . . , 0.99, 1} and use
linear interpolation between quantiles to estimate the conditional CDF.
Our training method ensures that quantile predictions will never cross.

To compare the performance of Algorithm 2 against a method that does
not have a distribution-free guarantee, we also consider a nonconformalized
algorithm that outputs Ĉn(Xn+1) = [Q̂lo(Xn+1), Q̂

hi(Xn+1)], where Q̂
lo and Q̂hi

are trained on D to predict the conditional α/2 quantile and 1− α/2 quantile,
respectively, using quantile regression forests. We refer to this algorithm as QRF.
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In order to test the conditional median coverage rate, we must look at dis-
tributions for which the conditional median is known and, therefore, focus on
simulated datasets. We consider the performance of Algorithm 2 and QRF on
these three distributions:

Distribution 1: We draw (X,Y ) ∼ P1 from R
d × R, where d = 10. Here, X =

(X1, . . . , Xd) is an equicorrelated multivariate Gaussian vector with mean
zero and Var(Xi) = 1, Cov(Xi, Xj) = 0.25 for i 	= j. We set Y = (X1 +
X2)2 − X3 + σ(X)ε, where ε ∼ N (0, 1) is independent of X and σ(x) =
0.1 + 0.25‖x‖22 for all x ∈ R

d.
Distribution 2: We draw (X,Y ) ∼ P2 from R × R. Draw X ∼ Unif[−4π, 4π]

and Y = U1/4f(X), where U ∼ Unif[0, 1] is independent of X and f(x) =
1 + |x| sin2(x) for all x ∈ R.

Distribution 3: We draw (X,Y ) ∼ P3 from R× R. Draw X ∼ Unif[−1, 1] and
set Y = B · f(X), where B ∼ Bernoulli(0.5+ 2δ) is independent of X and
f(x) = γ{Mx} − γ

2 − (−1)�Mx�(1− γ
2 ) for all x ∈ R. Note that {r} is the

fractional part of r. We set δ = 0.0001 and M = 1/γ = 25.

Distributions 2 and 3 are shown in Figure 2.

Fig 2. Plots of n = 10, 000 datapoints from the two distributions P2 and P3 overlaid with the
conditional medians. The left panel is a case where the conditional distribution Y |X has high
heteroskedasticity. The right is a case where it is nearly impossible to tell the location of the
conditional median.

For each distribution, we run Algorithm 2 using each conformity score, as
well as QRF, to get a confidence interval for the conditional median. We run
500 trials; in each trial, we set n = 5, 000 with n1 = n2 = n/2 and α = 0.1 with
r = s = α/2. For a separate study on the impact of n on the confidence interval
width and coverage, we refer the reader to [17]. We test coverage on 5, 000
datapoints for each trial. The average coverage rate, average interval width, and
other statistics for each distribution and conformity score are shown in Figure 3.
An example of the resulting confidence intervals for a single trial on Distribution
2 are displayed in Figure 4.
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Fig 3. For each distribution and conformity score, we calculate: average coverage (AC),

an estimate of P{Median(Yn+1|Xn+1) ∈ Ĉn(Xn+1)}; standard deviation of average

coverage (SDAC), an estimation of Var(P{Median(Yn+1|Xn+1) ∈ Ĉn(Xn+1)|D})1/2,
where D = {(X1, Y1), . . . , (Xn, Yn)}; minimum conditional coverage (MCC), an esti-

mate of min
x

P{Median(Y |X = x) ∈ Ĉn(x)}; average width (AW), an estimate of

E[len(Ĉn(Xn+1))]; and standard deviation of average width (SDAW), an estimate of

Var(E[len(Ĉn(Xn+1))|D])1/2. Estimations are averaged over 500 trials. 1 − α = 0.9 for all
trials.

Comparing the QRF algorithm with Algorithm 2, we see that while the widths
are significantly lower for all three distributions, the coverage for Distribution
3 is much less than 1− α. In particular, compared against Conformity Score 3,
which has the same framework but includes a constant buffer on both ends due
to the calibration set, we see how much extra width Algorithm 2 adds in the
calibration step for Conformity Score 3.

Looking first at rates of coverage, we see that all scores have coverage much
greater than 1 − α on Distributions 1 and 2. However, Distribution 3 is a case
where all scores have near-identical rates of coverage at just about 1−α. Further
investigation into the confidence intervals produced for Distribution 3 suggests
that the algorithms are often failing to capture the conditional median when its
absolute value is almost exactly 1.

The minimum conditional coverage on Distributions 1 and 3 is near 0 for each
conformity score. Interestingly, the scores with the worst minimum conditional
coverage on Distribution 1 have the relative best minimum conditional coverage
on Distribution 3, and vice versa. Scores 1, 3, and 4 have a minimum conditional
coverage greater than 1−α on Distribution 2, implying that these scores achieve
point-wise conditional coverage.

Regarding interval width, Score 1 performs significantly worse on Distribu-
tions 1 and 2 than all other scores; meanwhile, the 3 other scores have roughly
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Fig 4. Confidence intervals (pink regions) from one trial for each conformity score on Dis-
tribution 2. Note that all scores result in a coverage well over 1− α = 0.9.

equal average widths. On Distribution 3, Scores 3 and 4 produce intervals with
significantly less width than Scores 1 and 2.

Overall, we see that Score 1 is significantly worse than the other scores on
distributions with a wide range in conditional variance; Scores 3 and 4 behave
very similarly on all distributions and perform slightly better than Score 2 on
Distribution 3.

5. Discussion

This paper introduced two algorithms for capturing the conditional median of
a datapoint within the distribution-free setting, as well as a particular distribu-
tion where the performance of these algorithms was sharp. Our lower bounds
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prove that in the distribution-free setting, conditional median inference is fun-
damentally as difficult as prediction itself, thereby setting a concrete limit to
how well any median inference algorithm can ever perform. We also showed
that any predictive algorithm can be used as a median algorithm at a different
coverage level, suggesting that the two problems are near-equivalent.

5.1. Takeaways

A few observations may prove useful. For one, distributions such as P δ from
Section 2.3 and P3 from Section 4 will likely show up again. Because each distri-
bution is a mixture of two disjoint distributions with roughly equal weights, it is
hard to identify which half contains the median. It is likely that similar distribu-
tions will show up as the performance-limiting distribution for distribution-free
parameter inference. Further, the proof technique of sampling a large finite num-
ber of datapoints and then marginalizing (Section 3) is similar to those in [2]
and [3], pointing out to possible future use. Lastly, our results and those of [2]
indicate that the value of conditional parameters cannot be known with higher
accuracy than the values of future samples.

5.2. Further work

We hope that this paper motivates further work on conditional parameter in-
ference. We see three immediate potential avenues:

• One direction is to extend our methods to study other conditional param-
eters similar to the conditional median. For example, the smoothed con-
ditional median, equal to the conditional median convolved with a kernel,
may be easier to infer than the conditional median. This parameter would
allow for smarter inference in the case of smooth distributions without
making smoothness a requirement for inference. Similarly, the truncated
mean and other measures of central tendency may be amenable to model-
free inference and analysis, as may the conditional interquartile range and
other robust measures of scale.

• Another direction is to get tighter bands by imposing mild shape con-
straints on the conditional median function. For instance, if we know that
Median(Y |X = x) is convex, then the results from Section 3 no longer
apply. Similarly, assuming that Median(Y |X = x) is decreasing in x or
Lipschitz would yield intervals with vanishing widths in the limit of large
samples. For instance, when predicting economic damages caused by tor-
nadoes using wind speed as a covariate, one may assume that the median
damage is nondecreasing as wind speed increases.

• A third subject of study is creating full conformal inference methods based
off of our split conformal algorithms. Unlike split conformal inference,
the full conformal method does not rely on splitting the dataset into a
fitting half and a ranking half; instead, it calculates the conformity of
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a potential datapoint (Xn+1, y) to the full dataset D and includes y in
its confidence region only if (Xn+1, y) is similar enough to the observed
datapoints. The study of full conformal inference has grown alongside
that of split conformal inference; the method can be seen in [20], [18],
and [10]. Standard full conformal algorithms do not guarantee coverage
of the conditional median; however, there may exist modifications similar
to locally nondecreasing conformity scores that result in a full conformal
algorithm that captures the conditional median.

Appendix A: Theorem proofs

A.1. Proof of Theorem 1

Theorem 1 follows directly from Theorem 6. In particular, [20] shows that Al-
gorithm 1 satisfies (1 − α/2)-Predictive. Because Algorithm 1 always outputs
a confidence interval, we have that Algorithm 1 satisfies (1 − α)-Median by
Theorem 6.

A.2. Proof of Theorem 2

We can prove Theorem 2 from the extension of Theorem 6 described in Remark
3.3. We know that Algorithm 2 always outputs a confidence interval because
it is the intersection of 2 confidence intervals. Define Elo

n+1 = f lo(Xn+1, Yn+1))
and Ehi

n+1 = fhi(Xn+1, Yn+1)). We can bound the probability of Yn+1 being at
least the lower bound by P{Elo

n+1 ≥ Qlo
rq(E)} and bound the probability of Yn+1

being at most the upper bound by P{Ehi
n+1 ≤ Qhi

1−s(1−q)(E)}.
Qlo

rq(E) is defined as the rq(1 + 1/n2) − 1/n2-th quantile of {Elo
i : i ∈ I2},

which is equal to the �n2(rq(1+1/n2)−1/n2)� = �rq(n2+1)−1� smallest value
of {Elo

i : i ∈ I2}. Then, because {Elo
i : i ∈ I2} ∪ {Elo

n+1} are exchangeable, as
f lo is only fit on {(Xi, Yi) : i ∈ I1}, we have that the distribution of |{Elo

i <
Elo

n+1 : i ∈ I2}| is bounded above by the uniform distribution on {0, 1, . . . , n2}.
Therefore,

P{Elo
n+1 ≥ Qlo

rq(E)} ≥
n2∑

�rq(n2+1)−1�+1

1

n2 + 1

=
n2 + 1− �rq(n2 + 1)�

n2 + 1

≥ (n2 + 1)(1− rq)

n2 + 1

=1− rq.

Similarly, Qhi
1−s(1−q)(E) is defined as the (1−s(1−q))(1+1/n2)-th quantile of

{Ehi
i : i ∈ I2}, which equals the �n2(1−s(1−q))(1+1/n2)� = �(1−s(1−q))(n2+
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1)� smallest value of {Ehi
i : i ∈ I2}. Then, because {Ehi

i : i ∈ I2} ∪ {Ehi
n+1} are

exchangeable, we have that the distribution of |{Ehi
i ≤ Ehi

n+1 : i ∈ I2}| is
bounded below by the uniform distribution on {0, 1, . . . , n2}. Therefore,

P{Ehi
n+1 ≤ Qhi

1−s(1−q)(E)} ≥
�(1−s(1−q))(n2+1)�−1∑

0

1

n2 + 1

=
�(1− s(1− q))(n2 + 1)�

n2 + 1

≥1− s(1− q).

Combining these two results and applying the extension of Theorem 6 tells
us that Algorithm 2 satisfies (1− α, q)-Quantile as desired.

A.3. Proof of Theorem 3

We show that given ε, there exists δ and N such that for all n > N , running
Algorithm 1 on P δ with our chosen μ̂ results in a confidence interval that con-
tains the conditional median with probability at most 1 − α + ε. Our approch
is similar to that in Appendix B.1; however, we apply the inequalities in the
opposite directions and use some analysis in order to get an upper bound as
opposed to a lower bound.

First, note that {(Xi, Yi) : i ∈ I1} is irrelevant to our algorithm, as μ̂ is set
to be the zero function. Then, for each i ∈ I2, Ei = |Yi|. Thus, Q1−α/2(E) is the
(1− α/2)(1 + 1/n2)-th empirical quantile of {|Yi| : i ∈ I2}, and our confidence
interval is Ĉn(Xn+1) = [−Q1−α/2(E), Q1−α/2(E)]. Because the parameter we
want to cover is Median(Y |X = Xn+1) = Xn+1,

Median(Yn+1|Xn+1) ∈ Ĉn(Xn+1) if and only if |Xn+1| ≤ Q1−α/2({|Yi| : i ∈ I2}).

Define MR = #{i ∈ I2 : |Xi| ≥ |Xn+1|} and ME = #{i ∈ I2 : |Yi| ≥
|Xn+1|}. Now, note that Q1−α/2({|Yi| : i ∈ I2}) is the �n2(1−α/2)(1+1/n2)� =
�(1− α/2)(n2 + 1)� smallest value of {|Yi| : i ∈ I2}, which equals the n2 + 1−
�(1− α/2)(n2 + 1)� largest value. Letting m = n2 + 1− �(1− α/2)(n2 + 1)�,

|Xn+1| ≤ Q1−α/2({|Yi| : i ∈ I2}) if and only if ME ≥ m.

We now build up the following two lemmas.

Lemma A.1. For all 0 ≤ M ≤ n2,

P
{
MR = M

}
=

1

n2 + 1
.

Proof. This holds from the fact that the values {|Xi| : i ∈ I2} ∪ {|Xn+1|} are
i.i.d. and have a distribution over [0, 0.5] with no point masses. As a result, MR

is uniformly distributed over {0, 1, . . . , n2}.
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Lemma A.2. ME |MR ∼ Binom(MR, 0.5 + δ).

Proof. First, note that for all i ∈ I2, if |Xi| < |Xn+1|, then P{|Yi| ≥ |Xn+1|} =
0. This is because if |Xi| < |Xn+1|, then |Yi| ≤ |Xi| < |Xn+1|. Additionally, if
|Xi| ≥ |Xn+1|, then P{|Yi| ≥ |Xn+1|} = 0.5 + δ. This is due to the fact that if
|Xi| ≥ |Xn+1|, we have that |Yi| = 0 with probability 0.5−δ and |Yi| = |Xi| with
probability 0.5 + δ. With probability 1, |Xn+1| > 0. Therefore, |Yi| ≥ |Xn+1| if
and only if |Yi| = |Xi|, which occurs with probability 0.5 + δ.

Furthermore, the events {|Yi| = |Xi|} are mutually independent for all i ∈ I2
(the pairs (Xi, Yi) are i.i.d.). Then, since

ME =
∑
i∈I2

1[|Yi| ≥ |Xn+1|] =
∑
i∈I2

1[|Xi| ≥ |Xn+1|]1[|Yi| = |Xi|]

and each term 1[|Yi| = |Xi|] is i.i.d. Bernoulli with probability 0.5 + δ, and
MR =

∑
i∈I2

1[|Xi| ≥ |Xn+1|], the result follows.

We now apply our two lemmas:

P
{
ME ≥ m

}
=

n2∑
j=0

P
{
MR = j

}
P
{
ME ≥ m|MR = j

}

=
1

n2 + 1

n2∑
j=0

j∑
k=m

P
{
ME ≥ m|MR = j

}

=
1

n2 + 1

n2∑
j=0

j∑
k=m

(
j

k

)
(0.5 + δ)k(0.5− δ)j−k;

the second equality follows from Lemma A.1, and the last from Lemma A.2.
Now, by applying the same train of logic as used in Appendices B.1 and B.2,

P
{
ME ≥ m

}
=

1

n2 + 1

n2∑
j=0

(
1−

m−1∑
k=0

(
j

k

)
(0.5 + δ)k(0.5− δ)j−k

)

=1− 1

n2 + 1

n2∑
j=0

m−1∑
k=0

(
j

k

)
(0.5 + δ)k(0.5− δ)j−k

=1− 1

n2 + 1

m−1∑
k=0

(0.5 + δ

0.5− δ

)k
n2∑
j=0

(
j

k

)
(0.5− δ)j

=1− 1

n2 + 1

m−1∑
k=0

(0.5 + δ

0.5− δ

)k( (0.5− δ)k

(0.5 + δ)k+1
−

∞∑
j=n2+1

(
j

k

)
(0.5− δ)j

)
,

where the last equality is from evaluating the generating function G(
(
t
k

)
; z) =∑∞

t=0

(
t
k

)
zt at z = 0.5− δ.

Finally, in order to bring this into a coherent bound, we expand the equation
to bring out the 1−α term and isolate the remainder, which we can then show
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goes to 0:

P
{
ME ≥ m

}
=1− 1

n2 + 1

m−1∑
k=0

( 1

0.5 + δ
−

(0.5 + δ

0.5− δ

)k ∞∑
j=n2+1

(
j

k

)
(0.5− δ)j

)

=1− m

n2 + 1
· 1

0.5 + δ
+

m−1∑
k=0

(0.5 + δ

0.5− δ

)k ∞∑
j=n2+1

(
j

k

)
(0.5− δ)j

≤1− m

n2 + 1
· 1

0.5 + δ

+
m−1∑
k=0

(0.5 + δ

0.5− δ

)k
(
n2 + 1

k

)
(0.5− δ)n2+1 1

1− (0.5− δ) n2+1
n2+1−k

,

where the inequality arises from upper bounding the summation
∑∞

j=n2+1

(
j
k

)
×

(0.5− δ)j by

(
n2 + 1

k

)
(0.5− δ)n2+1

∞∑
j=0

(
n2 + 1

n2 + 1− k
(0.5− δ)

)j

using the maximum ratio of consecutive terms. Applying m ≤ (n2+1)α/2 twice
gives

P
{
ME ≥ m

}
=1− m

n2 + 1
· 1

0.5 + δ

+
(0.5 + δ

0.5− δ

)m−1 1

1− (0.5− δ) n2+1
n2+1−m

m−1∑
k=0

(
n2 + 1

k

)
(0.5− δ)n2+1

≤1− m

n2 + 1
· 1

0.5 + δ

+
(0.5 + δ

0.5− δ

)m−1(
2 +

α

1− α

)m−1∑
k=0

(
n2 + 1

k

)
(0.5− δ)n2+1

≤1− α+
2αδ

1 + 2δ

+
(
2 +

α

1− α

)(0.5 + δ

0.5− δ

)(n2+1)α/2

·

∑�(n2+1)α/2�
k=0

(
n2 + 1

k

)

2n2+1
.

Because α < 1,

∑�(n2+1)α/2�
k=0

(
n2+1

k

)
2n2+1

→ 0 as n2 → ∞;

this is due to the fact that ∑n2+1
k=0

(
n2+1

k

)
2n2+1

= 1
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and that the standard deviation of Binom(n2, 0.5) is O(
√
n2), meaning that

∑n2+1−�(n2+1)α/2�
k=�(n2+1)α/2�+1

(
n2+1

k

)
2n2+1

→ 1.

Furthermore, as Binom(n2, 0.5) approaches a normal distribution as n2 → ∞
and Φ(−c

√
n2) is O(d−n2) for some d > 1, for small enough δ,

(
0.5 + δ

0.5− δ

)(n2+1)α/2 ∑�(n2+1)α/2�
k=0

(
n2+1

k

)
2n2+1

→ 0 as n2 → ∞.

Thus, we can pick D and N such that for all δ < D and n ≥ N ,

(
0.5 + δ

0.5− δ

)(n2+1)α/2 ∑�(n2+1)α/2�
k=0

(
n2+1

k

)
2n2+1

≤ ε/2,

noting that n2 = n/2. Then, setting δ = min{ ε
4α−2ε , D} and 2αδ

1+2δ ≤ ε/2 yields

P
{
ME ≥ m

}
≤ 1− α+ ε/2 + ε/2 = 1− α+ ε.

This says that the probability P{ME ≥ m} of the confidence interval containing
the conditional median is at most 1− α+ ε.

A.4. Proof of Theorem 4

We show that given ε there exists c, N , and n1 + n2 = n for all n > N such
that running Algorithm 1 on n > N datapoints from an arbitrary distribution
P with regression function μ̂c and split sizes n1 + n2 = n results in a finite
confidence interval that contains the conditional median with probability at
least 1− α/2− ε.

For each x in the support of P , define m(x) = Median(Y |X = x) and recall
that M = max

i∈I1

|Yi|. We begin with two lemmas.

Lemma A.3. For all i ∈ I2, P{|Yi| ≤ M} ≥ 1− 1
n1+1 .

Proof. This results from the fact that |Yi| is exchangeable with |Yj | for all j ∈ I1;
thus, the probability that |Yi| is the unique maximum of the set {Yj : j ∈
I1 ∪ {i}} is bounded above by 1

n1+1 . Taking the complement yields the desired
result.

Lemma A.4. For all i ∈ I2 ∪ {n+ 1}, P{|m(Xi)| ≤ M} ≥ 1− 2
n1+1 .

Proof. Note that |m(Xi)| is exchangeable with |m(Xj)| for all j ∈ I1. Letting
MR = #{|m(Xj)| ≥ |m(Xi)| : j ∈ I1}, exchangeability gives that the CDF of
MR is bounded below by the CDF of the uniform distribution over {0, 1, . . . , n1}.
For each j ∈ I1, the event {|Yj | ≥ |m(Xj)|} occurs with probability at least 1/2
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by definition of the median; moreover, these events are mutually independent.
Therefore, if we condition on MR, we have that

P{|m(Xi)| > max
j∈I1

|Yj |
∣∣MR = k} ≤

∏
j∈I1

|m(Xj)|≥|m(Xi)|

P{|Yj | < |m(Xj)|} ≤ 2−k.

Putting this together, we see that

P{|m(Xi)| > max
j∈I1

|Yj |} =

n1∑
k=0

P{MR = k}P{|m(Xi)| > max
j∈I1

|Yj |
∣∣MR = k}

≤
n1∑
k=0

P{MR = k} 1

2k

≤ 1

n1 + 1

n1∑
k=0

1

2k

≤ 2

n1 + 1
.

Taking the complement yields the desired result.

Let A be the event {|Yi| ≤ M for all i ∈ I2 and |m(Xi)| ≤ M for all i ∈
I2 ∪ {n + 1}}. By Lemmas A.3 and A.4, P{A} ≥ 1 − 3n2 + 2

n1 + 1
. Select N =⌊12/α+ 10

ε

⌋
+�2/α�+1, and for all n > N , set n2 = �2/α�+1 and n1 = n−n2.

As a result, we have that 1/n2 < α/2 and
3n2 + 2

n1 + 1
< ε/2, so P{A} ≥ 1− ε/2.

Next, let B be the event {|μ̂c(Xi1) − μ̂c(Xi2)| > 2M for all i1 	= i2 ∈ I2 ∪
{n + 1}}. Note that lim

c→∞
P{B} = 1 by definition of μ̂c. Select c such that

P{B} ≥ 1− ε/2. By the union bound, P{A ∩B} ≥ 1− ε.

Lemma A.5. On the event A ∩B, for all i ∈ I2,

|m(Xi)− μ̂c(Xi)| ≥ |m(Xn+1)− μ̂c(Xn+1)|
if and only if |Yi − μ̂c(Xi)| ≥ |m(Xn+1)− μ̂c(Xn+1)|.

Proof. Notice that on the eventA∩B, |m(Xi)−μ̂c(Xi)|, |Yi−μ̂c(Xi)| ∈ [|μ̂c(Xi)|−
M, |μ̂c(Xi)| + M ]. This holds because |m(Xi)|, |Yi| ≤ M on the event A. Sim-
ilarly, |m(Xn+1) − μ̂c(Xn+1)| ∈ [|μ̂c(Xn+1)| − M, |μ̂c(Xn+1)| + M ]. These two
intervals both have length 2M , but their centers are at a distance greater
than 2M on the event B, meaning that the intervals are disjoint. Therefore,
|m(Xi) − μ̂c(Xi)| ≥ |m(Xn+1) − μ̂c(Xn+1)| implies that all elements of the
first interval are greater than all elements of the second, so |Yi − μ̂c(Xi)| ≥
|m(Xn+1) − μ̂c(Xn+1)|; similarly, |Yi − μ̂c(Xi)| ≥ |m(Xn+1) − μ̂c(Xn+1)| also
implies that all elements of the first interval are greater than all elements of the
second, so |m(Xi)− μ̂c(Xi)| ≥ |m(Xn+1)− μ̂c(Xn+1)|.
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Looking at Algorithm 1, we have that m(Xn+1) ∈ Ĉn(Xn+1) if |m(Xn+1)−
μ̂c(Xn+1)| ≤ Q1−α/2(E), where Ei = |Yi − μ̂c(Xi)| for all i ∈ I2. Because
1/n2 < α/2, Q1−α/2(E) is finite and thus the confidence interval is bounded.
By Lemma A.5, on the event A∩B, |m(Xn+1)− μ̂c(Xn+1)| ≤ Q1−α/2(E) if and
only if |m(Xn+1) − μ̂c(Xn+1)| ≤ Q1−α/2(F ), where Fi = |m(Xi) − μ̂c(Xi)| for
all i ∈ I2.

Define C to be the event {|m(Xn+1)−μ̂c(Xn+1)| ≤ Q1−α/2(F )}. We have just

shown that on the event A∩B∩C, we have m(Xn+1) ∈ Ĉn(Xn+1). Additionally,
because the elements of {|m(Xi)− μ̂c(Xi)| : i ∈ I2 ∪{n+1}} are exchangeable,
we have that P{C} ≥ 1− α/2. Then, by the union bound,

P{m(Xn+1) ∈ Ĉn(Xn+1)} ≥ P{A ∩B ∩ C} ≥ 1− α/2− ε,

proving the desired result.

A.5. Proving extensions of Theorem 6

We show the following two results:
Let Ĉn(x) = [L̂n(x), Ĥn(x)] be any algorithm that only outputs confidence in-

tervals and satisfies P{Yn+1 ≥ L̂n(Xn+1)} ≥ 1−rq and P{Yn+1 ≤ Ĥn(Xn+1)} ≥
1−s(1−q) for some r+s = α. Then, Ĉn satisfies (1−α, q)-Quantile. Secondly, if
Ĉn only outputs confidence intervals and satisfies (1−min{q, 1−q}α)-Predictive,
then it satisfies (1− α, q)-Quantile.

Consider a distribution P , and for all x ∈ R
d in the support of P , let q(x) be

Quantileq(Y |X = x). We prove the first result in two parts.

Conditioning on whether or not q(Xn+1) is greater than or equal to L̂(Xn+1),
note that

1− rq ≤P{Yn+1 ≥ L̂n(Xn+1)}
=P{Yn+1 ≥ L̂n(Xn+1)|q(Xn+1) ≥ L̂n(Xn+1)}P{q(Xn+1) ≥ L̂n(Xn+1)}

+ P{Yn+1 ≥ L̂n(Xn+1)|q(Xn+1) < L̂n(Xn+1)}P{q(Xn+1) < L̂n(Xn+1)}
≤P{q(Xn+1) ≥ L̂n(Xn+1)}+ (1− q)P{q(Xn+1) < L̂n(Xn+1)}
=(1− q) + q · P{q(Xn+1) ≥ L̂n(Xn+1)}

where we use the fact that if q(Xn+1) < L̂n(Xn+1), at most 1− q of the condi-
tional distribution of Y |X = Xn+1 can be at least L̂n(Xn+1). Subtracting 1− q
from both sides and dividing by q tells us that 1−r ≤ P{q(Xn+1) ≥ L̂n(Xn+1)}.

Similarly,

1− s(1− q)

≤P{Yn+1 ≤ Ĥn(Xn+1)}
=P{Yn+1 ≤ Ĥn(Xn+1)|q(Xn+1) ≤ Ĥn(Xn+1)}P{q(Xn+1) ≤ Ĥn(Xn+1)}

+ P{Yn+1 ≤ Ĥn(Xn+1)|q(Xn+1) > Ĥn(Xn+1)}P{q(Xn+1) > Ĥn(Xn+1)}
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≤P{q(Xn+1) ≤ Ĥn(Xn+1)}+ q · P{q(Xn+1) > Ĥn(Xn+1)}
=q + (1− q)P{q(Xn+1) ≤ Ĥn(Xn+1)}.

Subtracting q from both sides and dividing by 1 − q tells us that 1 − s ≤
P{q(Xn+1) ≤ Ĥn(Xn+1)}.

Then, by the union bound, we have that 1− α = 1− (r+ s) ≤ P{q(Xn+1) ≥
L̂n(Xn+1) ∩ q(Xn+1) ≤ Ĥn(Xn+1)} = P{q(Xn+1 ∈ Ĉn(Xn+1)}, proving the
first result.

We can prove the second result in the exact same fashion as the proof of
Theorem 6. We have that

1−min{q, 1− q}α
≤P{Yn+1 ∈ Ĉn(Xn+1)}
=P{Yn+1 ∈ Ĉn(Xn+1)|q(Xn+1) ∈ Ĉn(Xn+1)}P{q(Xn+1) ∈ Ĉn(Xn+1)}

+ P{Yn+1 ∈ Ĉn(Xn+1)|q(Xn+1) 	∈ Ĉn(Xn+1)}P{q(Xn+1) 	∈ Ĉn(Xn+1)}
≤P{q(Xn+1) ∈ Ĉn(Xn+1)}+max{q, 1− q}P{q(Xn+1) 	∈ Ĉn(Xn+1)}
=max{q, 1− q}+min{q, 1− q}P{q(Xn+1) ∈ Ĉn(Xn+1)}.

Subtracting max{q, 1−q} and dividing by min{q, 1−q} yields the desired result.

Appendix B: Additional results

B.1. Alternate Proof of Theorem 1

The proof of the theorem relies on two lemmas: the first establishes a connection
between Median(Yn+1|Xn+1) and Median(Y |X = Xi)’s using exchangeability,
and the second gives us a relationship between Median(Y |X = Xi)’s and the
Yi’s.

We begin with some notation. For all x ∈ R
d in the support of P , set m(x) =

Median(Y |X = x). Also, for 1 ≤ i ≤ n + 1, let R(Xi) = |m(Xi) − μ̂(Xi)|,
and for 1 ≤ i ≤ n let E(Xi) = |Yi − μ̂(Xi)|. Finally, put MR = #{i ∈ I2 :
R(Xi) ≥ R(Xn+1)} as the number of i ∈ I2 for which R(Xi) ≥ R(Xn+1),
and ME = #{i ∈ I2 : E(Xi) ≥ R(Xn+1)} as the number of i ∈ I2 for which
E(Xi) ≥ R(Xn+1).

Note that Median(Yn+1|Xn+1) ∈ Ĉn(Xn+1) = [μ̂(Xn+1) − Q1−α/2(E),
μ̂(Xn+1)+Q1−α/2(E)] if and only if |Median(Yn+1|Xn+1)−μ̂(Xn+1)| = R(Xn+1)
is at most Q1−α/2(E). Thus, we must study the value of R(Xn+1) in relation to
the elements of {E(Xi) : i ∈ I2}.

The first lemma relates R(Xn+1) to the other R(Xi)’s.

Lemma B.1. For all 0 ≤ m ≤ n2,

P
{
MR ≥ m

}
≥ 1− m

n2 + 1
.
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Proof. Our statement follows from the fact that our samples are i.i.d. Because
μ̂ is independent of (Xi, Yi) for i ∈ I2 and independent of Xn+1, the values
{R(Xi) : i ∈ I2}∪{R(Xn+1)} are i.i.d. as well. Then, the probability of less than
m values in {R(Xi) : i ∈ I2} being at least R(Xn+1) is bounded above by m

|I2|+1 ,

as the ordering of these values is uniformly random. Taking the complement of
both sides gives the result.

The second lemma gives a direct relationship between E(Xi) and R(Xi).
(Note that the events {E(Xi) ≥ R(Xi)} below are mutually independent.)

Lemma B.2. For all i ∈ I2,

P
{
E(Xi) ≥ R(Xi)

}
≥ 1/2.

Proof. We see that P{Yi ≥ m(Xi)} ≥ 1/2 and P{Yi ≤ m(Xi)} ≥ 1/2 by the
definition of the conditional median. Furthermore, the events {Yi ≥ m(Xi)} and
{Yi ≤ m(Xi)} are independent of the events {m(Xi) ≥ μ̂(Xi)} and {m(Xi) ≤
μ̂(Xi)} given Xi, as μ̂ is a function of {(Xi, Yi) : i ∈ I1} and the datapoints
are i.i.d. Then, conditioned on Xi, if m(Xi) ≥ μ̂(Xi), with probability 1/2
we have that m(Xi) ≤ Yi, in which case |m(Xi) − μ̂(Xi)| = m(Xi) − μ̂(Xi) ≤
Yi− μ̂(Xi) = |Yi− μ̂(Xi)|. Similarly, conditioned on Xi again, if m(Xi) < μ̂(Xi),
with probability 1/2 we have that m(Xi) ≥ Yi, in which case |m(Xi)− μ̂(Xi)| =
μ̂(Xi)−m(Xi) ≤ μ̂(Xi)−Yi = |Yi − μ̂(Xi)|. The conclusion holds conditionally
in both cases; marginalizing out Xi yields the desired result.

We now study the number of datapoints obeying E(Xi) ≥ R(Xn+1) by com-
bining these lemmas together. Consider any 0 ≤ m ≤ n2. Note that by condi-
tioning on MR,

P
{
ME ≥ m

}
=

n2∑
j=0

P
{
MR = j

}
P
{
ME ≥ m|MR = j

}

≥
n2∑
j=0

P
{
MR = j

} j∑
k=m

(
j

k

)
2−j

≥
n2∑
j=0

1

n2 + 1

j∑
k=m

(
j

k

)
2−j .

The first inequality holds true by Lemma B.2, which implies that P{ME ≥
m|MR = j} can be bounded below by the probability that M ≥ m for M ∼
Binom(j, 0.5). The second inequality is due to Lemma B.1. We know that∑j

k=m

(
j
k

)
2−j is a nondecreasing function of j; by Lemma B.1, the CDF of the

distribution of MR is lower bounded by the CDF of the uniform distribution
over {0, 1, . . . , n2}, meaning that

EMR

[
MR∑
k=m

(
MR

k

)
2−MR

]
≥ 1

n2 + 1

n2∑
j=0

j∑
k=m

(
j

k

)
2−j .
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This gives

n2∑
j=0

1

n2 + 1

j∑
k=m

(
j

k

)
2−j =

n2∑
j=0

1

n2 + 1

(
1−

m−1∑
k=0

(
j

k

)
2−j

)

=1− 1

n2 + 1

n2∑
j=0

m−1∑
k=0

(
j

k

)
2−j

=1− 1

n2 + 1

m−1∑
k=0

n2∑
j=0

(
j

k

)
2−j

≥1− 1

n2 + 1

m−1∑
k=0

∞∑
j=0

(
j

k

)
2−j

=1− 1

n2 + 1

m−1∑
k=0

2

=1− 2m

n2 + 1
.

The second-to-last equality comes from evaluating the generating function
G(

(
t
k

)
; z) =

∑∞
t=0

(
t
k

)
zt at z = 0.5.

Putting it together, in Algorithm 1, Q1−α/2(E) is set to be the (1−α/2)(1+
1/n2)-th quantile of {Ei : i ∈ I2}. This is equal to the �n2(1−α/2)(1+1/n2)� =
�(1 − α/2)(n2 + 1)� smallest value of {Ei : i ∈ I2}. This means that if ME ≥
n2−�(1−α/2)(n2+1)�+1, then R(Xn+1) will be at most the n2−�(1−α/2)(n2+
1)�+ 1 largest value of {Ei : i ∈ I2}, which is equal to the �(1− α/2)(n2 + 1)�
smallest value, or Q1−α/2(E).

However, we have calculated a lower bound for the inverse CDF ofME earlier.
Substituting this in, we get that

P{R(Xn+1) ≤ Q1−α/2(E)} ≥P{ME ≥ n2 − �(1− α/2)(n2 + 1)�+ 1}
≥P{ME ≥ n2 + 1− (1− α/2)(n2 + 1)}
=P{ME ≥ α/2(n2 + 1)}
≥1− α

by our previous calculation, completing our proof.

B.2. Alternate Proof of Theorem 2

Our approach is similar to that in Appendix B.1. The main difference in the
proof arises from the fact that Algorithm 2 no longer uses the absolute value
and uses two separate fitted functions, meaning that it is important to bound
the probability of the confidence interval covering the desired value from both
sides.

We begin with some definitions. For all x ∈ R
d in the support of P , let q(x)

be Quantileq(Y |X = x). For all 1 ≤ i ≤ n+ 1, define:
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• Rlo(Xi) = f lo(Xi, q(Xi)) and Rhi(Xi) = fhi(Xi, q(Xi)).
• Elo(Xi) = f lo(Xi, Yi) and Ehi(Xi) = fhi(Xi, Yi).
• M lo

R = #{i ∈ I2 : Rlo(Xi) ≤ Rlo(Xn+1)} and Mhi
R = #{i ∈ I2 :

Rhi(Xi) ≥ Rhi(Xn+1)} as the number of i ∈ I2 for which Rlo(Xi) ≤
Rlo(Xn+1) and Rhi(Xi) ≥ Rhi(Xn+1) respectively.

• M lo
E = #{i ∈ I2 : Elo(Xi) ≤ Rlo(Xn+1)} and Mhi

E = #{i ∈ I2 :
Ehi(Xi) ≥ Rhi(Xn+1)} as the number of i ∈ I2 for which Elo(Xi) ≤
Rlo(Xn+1) and Ehi(Xi) ≥ Rhi(Xn+1) respectively.

Now, note that Quantileq(Y |X = Xn+1) ∈ Ĉn(Xn+1) precisely

when f lo(Xn+1,Quantileq(Y |X = Xn+1)) = Rlo(Xn+1) ≥ Qlo
rq and

fhi(Xn+1,Quantileq(Y |X = Xn+1)) = Rhi(Xn+1) ≤ Qhi
1−s(1−q). As such, we

proceed to develop two lemmas which extend those from Section B.1: the first
helps us to understand the distributions of Mhi

R and M lo
R , and the second studies

the individual relationships between Elo(Xi) and Rlo(Xi) and between Ehi(Xi)
and Rhi(Xi). With both of these lemmas, we are able to bound the probability
of each event {Rlo(Xn+1) ≥ Qlo

rq} and {Rhi(Xn+1) ≤ Qhi
1−s(1−q)}.

Lemma B.3. For all 0 ≤ m ≤ n2,

P
{
M lo

R ≥ m
}
≥ 1− m

n2 + 1

and
P
{
Mhi

R ≥ m
}
≥ 1− m

n2 + 1
.

Proof. We prove the result for Mhi
R ; the same approach holds for M lo

R . Because
fhi is independent of (Xi, Yi) for i ∈ I2 and independent of Xn+1, the values in
{Rhi(Xi) : i ∈ I2}∪{Rhi(Xn+1)} are i.i.d.. Thus, the probability of less than m
values in {Rhi(Xi) : i ∈ I2} being at leastRhi(Xn+1) is bounded above by m

|I2|+1 ,

as the ordering of these values is uniformly random. Taking the complement of
both sides establishes the claim.

Lemma B.4. For all i ∈ I2,

P
{
Elo(Xi) ≤ Rlo(Xi)

}
≥ q

and
P
{
Ehi(Xi) ≥ Rhi(Xi)

}
≥ 1− q.

Proof. We see that P{Yi ≤ q(Xi)} ≥ q and P{Yi ≥ q(Xi)} ≥ 1 − q by the
definition of the conditional quantile. Then, with probability at least q we have
that Elo(Xi) = f lo(Xi, Yi) ≤ f lo(Xi, q(Xi)) = Rlo(Xi) by the definition of
a locally nondecreasing conformity score. Similarly, with probability at least
1 − q we have that Ehi(Xi) = fhi(Xi, Yi) ≥ fhi(Xi, q(Xi)) = Rhi(Xi), thereby
concluding the proof.

We now study the number of i ∈ I2 such that Ehi(Xi) ≥ Rhi(Xn+1) by
combining these two lemmas together. Consider any 0 ≤ m ≤ n2, and note that



4654 D. Medarametla and E. Candès

by conditioning on Mhi
R , we have

P
{
Mhi

E ≥ m
}
=

n2∑
j=0

P
{
Mhi

R = j
}
P
{
Mhi

E ≥ m|Mhi
R = j

}

≥
n2∑
j=0

P
{
Mhi

R = j
} j∑

k=m

(
j

k

)
(1− q)kqj−k

≥
n2∑
j=0

1

n2 + 1

j∑
k=m

(
j

k

)
(1− q)kqj−k.

The first inequality holds because P{Mhi
E ≥ m|Mhi

R = j} can be bounded below
by the probability that M ≥ m for M ∼ Binom(j, 1 − q) by Lemma B.4. The
second inequality holds since the CDF Mhi

R is greater than or equal to the
CDF of the uniform distribution over {0, 1, . . . , n2} by Lemma B.3. Then, as∑j

k=m

(
j
k

)
(1− q)kqj−k is a nondecreasing function of j, we have

EMhi
R

⎡
⎣Mhi

R∑
k=m

(
Mhi

R

k

)
(1− q)kqM

hi
R −k

⎤
⎦ ≥ 1

n2 + 1

n2∑
j=0

j∑
k=m

(
j

k

)
(1− q)kqj−k.

We now solve the summation, which gives

n2∑
j=0

1

n2 + 1

j∑
k=m

(
j

k

)
(1− q)kqj−k =

n2∑
j=0

1

n2 + 1

(
1−

m−1∑
k=0

(
j

k

)
(1− q)kqj−k

)

=1− 1

n2 + 1

n2∑
j=0

m−1∑
k=0

(
j

k

)
(1− q)kqj−k

=1− 1

n2 + 1

m−1∑
k=0

n2∑
j=0

(
j

k

)
(1− q)kqj−k

≥1− 1

n2 + 1

m−1∑
k=0

(1− q

q

)k ∞∑
j=0

(
j

k

)
qj

=1− 1

n2 + 1

m−1∑
k=0

1

1− q

=1− 1

1− q
· m

n2 + 1
,

where the second-to-last equality is from evaluating the generating function
G(

(
t
k

)
; z) =

∑∞
t=0

(
t
k

)
zt at z = q.

Note that this same calculation works for counting the i ∈ I2 with Elo(Xi) ≤
Rlo(Xn+1) using the same lemmas, substituting M lo

E for Mhi
E , M lo

R for Mhi
R , and

q for 1− q within the calculation. This gives

P
{
M lo

E ≥ m
}
≥ 1− 1

q
· m

n2 + 1
.



Conditional median inference 4655

Now, in Algorithm 2, Qhi
1−s(1−q)(E) is defined as the (1−s(1−q))(1+1/n2)-th

quantile of {Ehi
i : i ∈ I2}. This is equal to the �n2(1−s(1−q))(1+1/n2)� = �(1−

s(1−q))(n2+1)� smallest value of {Ehi
i : i ∈ I2}. Thus, if Mhi

E ≥ n2−�(1−s(1−
q))(n2+1)�+1, then Rhi(Xn+1) will be at most the n2−�(1−s(1−q))(n2+1)�+1
largest value of {Ehi

i : i ∈ I2}, which is equal to the �(1 − s(1 − q))(n2 + 1)�
smallest value, or Qhi

1−s(1−q)(E). Then, using our earlier lower bound for the

inverse CDF of Mhi
E , we get that

P{Rhi(Xn+1) ≤ Qhi
1−s(1−q)(E)} ≥P{Mhi

E ≥ n2 − �(1− s(1− q))(n2 + 1)�+ 1}
≥P{Mhi

E ≥ n2 + 1− (1− s(1− q))(n2 + 1)}
=P{Mhi

E ≥ s(1− q)(n2 + 1)}
≥1− s.

Similarly, Qlo
rq(E) is defined as the rq − (1− rq)/n2-th quantile of {Elo

i : i ∈
I2}. This is equal to the �n2(rq− (1−rq)/n2)� = �(n2+1)rq−1� smallest value
of {Elo

i : i ∈ I2}. Thus, if M lo
E ≥ �(n2 + 1)rq − 1�, then Rlo(Xn+1) will be at

least Qlo
rq(E). Then, our lower bound for the M lo

E inverse CDF tells us that

P{Rlo(Xn+1) ≥ Qlo
rq(E)} ≥P{M lo

E ≥ �(n2 + 1)rq − 1�}
≥P{M lo

E ≥ (n2 + 1)rq}
≥1− r.

Finally, by the union bound, we have that

P{Qlo
rq(E) ≤ Rlo(Xn+1) and Rhi(Xn+1) ≤ Qhi

1−s(1−q)(E)} ≥ 1− r − s = 1− α

completing our proof.

B.3. Impossibility of capturing the distribution mean

Instead of proving the impossibility of capturing the conditional mean of a
distribution, we prove a more general result: we show that there does not exist
an algorithm to capture the mean of a distribution Y ∼ P given no assumptions
about P . This is a more general form of our result because if we set X ⊥⊥ Y in
(X,Y ) ∼ P , then E[Y |X] = E[Y ], meaning that the impossibility of capturing
the mean results in the conditional mean being impossible to capture as well.

Consider an algorithm Ĉn that, given i.i.d. samples Y1, . . . , Yn ∼ P , returns
a (possibly randomized) confidence interval Ĉn(D), D = {Yi, 1 ≤ i ≤ n}, with
length bounded by some function of P that captures E[Y ] with probability at
least 1− α, i.e. P{E[Y ] ∈ Ĉn(D)} ≥ 1− α. Pick a > α, with a < 1. Consider a
distribution P where for Y ∼ P , P{Y = 0} = a1/n and P{Y = u} = 1 − a1/n

for some u. Then for Y1, . . . , Yn ∼ P , P{Y1 = · · · = Yn = 0} ≥ a. Consider
Ĉn({0, . . . , 0}); by our assumption on Ĉn, there must exist some m ∈ R for
which P{m ∈ Ĉn({0, . . . , 0})} < 1 − α/a. Then, setting u = m

1−a1/n yields
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E[Y ] = m. With probability a, Ĉn(D) = Ĉn({0, . . . , 0}), so

P{E[Y ] = m 	∈ Ĉn(D)} > a · α
a
= α.

This implies that P{E[Y ] ∈ Ĉn(D)} < 1− α as desired, completing the proof.

B.4. Capturing the distribution median

Algorithm 3: Confidence Interval for Median(Y ) with Coverage 1− α

Input:
Number of i.i.d. datapoints n ∈ N.
Datapoints Y1, . . . , Yn ∼ P ⊆ R.
Coverage level 1− α ∈ (0, 1).

Process:

Order the Yi as Y(1) ≤ · · · ≤ Y(n).
Calculate the largest k ≥ 0 such that for X ∼ Binom(n, 0.5), we have
P{X < k} ≤ α/2.

Output:

Confidence interval Ĉn = [Y(k), Y(n+1−k)] for Median(Y ).
(Note that Y(0) = −∞ and Y(n+1) = ∞)

We now show that Algorithm 3 captures the median of P with probability
at least 1 − α. Let m = Median(P ), let M lo = #{Yi ≤ m : 1 ≤ i ≤ n} be
the number of Yi at most m, and let Mhi = #{Yi ≥ m : 1 ≤ i ≤ n} be the
number of Yi at least m. Note that by the definition of m, we have that for all
i, P{Yi ≤ m} ≥ 0.5, and P{Yi ≥ m} ≥ 0.5 as well. Additionally, the events
{Yi ≤ m} are mutually independent for all i, as are the events {Yi ≥ m}. This
implies that both M lo and Mhi follow a Binom(n, 0.5) distribution.

Since Ĉn = [Y(k), Y(n+1−k)], we have that m ∈ Ĉn if and only if M lo ≥ k and

Mhi ≥ k. Then,

P{m ∈ Ĉn} =P{M lo ≥ k and Mhi ≥ k}
=1− P{M lo < k or Mhi < k}
≥1− (P{M lo < k}+ P{Mhi < k})
≥1− (α/2 + α/2)

=1− α.
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