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Abstract: The support vector machine (SVM) is a powerful and widely
used classification algorithm. This paper uses the Karush-Kuhn-Tucker con-
ditions to provide rigorous mathematical proof for new insights into the
behavior of SVM. These insights provide unexpected relationships between
SVM and two other linear classifiers: the mean difference and the maxi-
mal data piling direction. For example, we show that in many cases SVM
can be viewed as a cropped version of these classifiers. By carefully ex-
ploring these connections we show how SVM tuning behavior is affected by
data characteristics including: balanced vs. unbalanced classes, low vs. high
dimension, separable vs. non-separable data. These results provide further
insights into tuning SVM via cross-validation by explaining observed patho-
logical behavior and motivating improved cross-validation methodology.
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1. Introduction

The support vector machine (SVM) is a popular and well studied classification
algorithm (for an overview see Schölkopf, Smola 2002; Shawe-Taylor, Cristianini
2004; Steinwart, Christmann 2008; Mohri et al. 2012; Murphy 2012). Classical
classification algorithms, such as logistic regression and linear discrimination
analysis (LDA) are motivated by fitting a statistical distribution to the data.
Hard margin SVM on the other hand is motivated directly as an optimization
problem based on the idea that a good classifier should maximize the margin
between two classes of separable data. Soft margin SVM balances two competing
objectives; maximize the margin while penalizing points on the wrong side of
the margin.

Interpretability, explainability, and more broadly understanding why a model
makes its decisions are active areas of research in machine learning (Guidotti
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Fig 1. SVM reduces to another classifier under the condition stated in the arrow. Solid
line means the relation always holds. Dashed line means the relation may or may not hold
depending on the data. For example, SVM reduces to the mean difference when the classes
are balanced and C is sufficiently small (C ≤ Csmall) which is shown in Theorem 4.1.

et al., 2018; Doshi-Velez, Kim, 2017). There is a large body of research providing
theoretical guarantees and computational advances for studying SVM (Vapnik,
2013; Steinwart, Christmann, 2008). Several papers have shed some light on
SVM by placing it in a probabilistic framework (Sollich, 2002; Polson et al., 2011;
Franc et al., 2011). Here we take a different approach based on optimization and
geometry, to understand the inner workings of SVM.

The main setting of this paper is the two class classification problem. We focus
on linear classifiers, but the results extend to corresponding kernel classifiers. We
consider a wide range of data analytic regimes including: high vs. low dimension,
balanced vs. unbalanced class sizes and separable vs. non-separable data. Our
results also extend to the multi-class case.

Using the KKT conditions, this paper demonstrates novel insights into how
SVM’s behavior is related to a given dataset and furthermore how soft-margin
SVM’s behavior is affected by the tuning parameter. We discover a number of
connections between SVM and two other classifiers: the mean difference (MD)
and maximal data piling classifier (MDP). These connections are summarized
in Figure 1. In particular, when soft-margin SVM tuning parameter C is small,
soft margin SVM behaves like a possibly cropped (see Section 2 below) MD
classifier (Theorem 4.2). When the data are high dimensional, hard SVM (and
soft margin with large C) behaves like a cropped MDP classifier (Theorem 3.2,
Corollary 3.3, Theorem 4.2). The connection between SVM and the MD further
implies connections between SVM, after a data transformation, and a variety
of other classifiers such as naive Bayes (NB) (see Section 2.1). The connection
between SVM and MDP provides novel insights into the geometry of the MDP
classifier (Sections 3.1, A.1).

These insights explain several observed and surprising SVM behaviors, which
motivated this paper (Section 1.1). These insights have immediate application
to data analysis e.g. by improving SVM cross-validation methodology (Section
6). Online supplementary material including code to reproduce the figures and
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Fig 2. (Balanced classes) The top rows show the SVM fit for three values of C. The bottom
row shows diagnostics which are described in the text for a range of values of C. Figure 2d
shows that the cross-validation error curve can be very different from the training and test
error. Figure 2f shows that for small enough values of C, the SVM and MD directions are
the same.

simulations can be found at: https://github.com/idc9/svm_geometry.

1.1. Motivating example

This section uses a simple, two dimensional example to demonstrate a number
of instances of pathological or surprising SVM behavior, which the rest of the
paper explains and builds on.

Figures 2 and 3 show the result of fitting soft-margin SVM for a range of
tuning parameters. The data in both figures are generated from a two dimen-
sional Gaussian with identity covariance such that the distance between the
class means is 4. In Figure 2 the classes are balanced (20 points in each class).
The data points in Figure 3 are the same points as the first figure, but one
additional point is added to the positive class (blue squares) so the classes are
unbalanced. In both cases the classes are linearly separable.

The top row of panels show the data along with the SVM separating hyper-
plane (solid line) for three different values of C. The marginal hyperplanes are
shown as dashed lines and the filled in symbols are support vectors. The bottom
three panels show various functions of C. The bottom left panel shows three
error curves: training, cross-validation (5-folds), and test set error. The bottom
middle panel shows the margin width. Finally, the bottom right panel shows the
angle between the soft margin SVM direction and both the hard margin SVM

https://github.com/idc9/svm_geometry
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Fig 3. (Unbalanced classes). The panels are the same as in Figure 2, but the data now have
one additional point added. When C is small, the top left panel shows SVM classifies every
point to the larger class (the separating hyperplane is pushed past the smaller class). For this
unbalanced example the cross-validation, train and test error all behave similarly, unlike the
balanced case (compare Figure 3d to 2d). When C is small, the angle between SVM and the
MD is small but not exactly zero (compare Figure 3f to 2f).

direction and the mean difference direction. The vertical dashed lines indicate
the values of Csmall and Clarge which are discussed below. See references above
or Appendices C, D for definitions of the margin and support vectors.

Important features of these plots include:

1. For balanced classes (Figure 2), the training, cross-validation and test set
error is low for most values of C, then suddenly shoots up to around 50%
error for a small enough values of C (see Figure 2d). For balanced classes
(Figure 2), this tuning error explosion for small C only happens for cross
validation, not the tuning or test sets (see Figure 2d). This pathologi-
cal behavior is concerning for a number of reasons. It demonstrates an
example when performance with cross-validation may not reflect test set
performance. Moreover, it is not clear why this behavior is happening.

2. Figure 2f shows that the SVM decision boundary can be parallel to the
mean difference decision boundary when the data are balanced. This be-
havior is surprising because the SVM optimization problem is not imme-
diately connected to the means of the two classes. Similarly, Figure 3f
demonstrates an example when the SVM and MD decision boundaries are
almost parallel for unbalanced classes.

3. Both Figures 2f and 3f show that soft margin SVM becomes exactly equiv-
alent to hard margin SVM for some finite value of C when the data are
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separable.

Theorem 4.1 gives a complete answer to why and when the first two of these
behaviors occur. For the first example, if the data are unbalanced then the in-
tercept term will always go off to infinity for small enough values of the tuning
parameter. While SVM finds a good direction, its performance is betrayed by
its intercept. For the second example, when C is smaller than a threshold value
Csmall (Definition 4.3), the SVM direction will be equivalent to the MD direc-
tion when the data are balanced. Similarly, when the data are unbalanced and
C < Csmall the SVM direction is close to the MD direction. In this latter case,
Equations (8), (9) show the SVM direction must satisfy constraints that make
it a cropped mean difference direction.

This threshold Csmall (Definition 4.3) governing when SVM behaves like the
MD depends on diameter of the training data. Similarly, a threshold Clarge

(Definition 4.4) governing when soft margin SVM becomes hard margin SVM
depends on the gap between the two training classes These two thresholding
values are shown as dotted vertical lines in the bottom three panels of Figures
2 and 3.

Careful study of these behaviors, including the given formulas for the two
thresholds, shows ways in which soft margin SVM’s behavior can change de-
pending on characteristics of the data including: balanced vs. unbalanced classes,
whether d ≥ n − 1, the two class diameter, whether the classes are separable
and the gap between the two classes when they are separable. These results then
lead to new insights into SVM tuning (Section 6).

1.2. Related literature

Hastie et al. (2004) show how to efficiently compute the entire SVM tuning path.
While a consequence of their technical results shows that for small enough C,
SVM behaves like the MD, they don’t make the explicit connection to the MD
classifier. For balanced classes they prove SVM is equivalent to the MD. For
unbalanced we give a stronger, more specific characterization as a cropped MD
(see Theorem 4.1 and Lemma 4.1). Additionally, they did not find the important,
general threshold values Csmall or Clarge which depend on the diameter (gap) of
the data which have useful consequences for cross-validation.

Connections between SVM and other classifiers have been studied before, for
example, Jaggi (2014) studies connections between SVM and logistic regression
with an L1 penalty.

The nu-SVM literature gives another perspective on SVM optimization
(Schölkopf et al., 2000; Crisp, Burges, 2000; Bennett, Bredensteiner, 2000; Chen
et al., 2005; Mavroforakis, Theodoridis, 2006; Barbero et al., 2015). The nu-SVM
literature is focused on computation and there is not much overlap with our re-
sults.

SVM robustness properties have been previously studied (Schölkopf et al.
2000; Steinwart, Christmann 2008), however, the cropped MD characterization
of SVM for small C appears to be new.
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We find the gap and diameter (Definitions 4.2, 4.1) of the dataset are impor-
tant quantities for SVM tuning. These quantities show up in other places in the
SVM literature, for example, their ratio is an important quantity in statistical
learning theory (Vapnik, 1999).

Some previous papers have suggested modifying SVM’s intercept (Crisp,
Burges, 2000). We suggest a particular modification (Section B) which addresses
the margin bounce phenomena (Section 5.3).

SVM tuning has been extensively studied (Steinwart, Christmann, 2008,
Chapter 11) with focus on: cheaply computing the full tuning path (Hastie
et al., 2004), tuning kernel parameters (Sun et al., 2010), optimizing alterna-
tive metrics which attempt to better approximate the test set error (Chapelle,
Vapnik, 2000; Ayat et al., 2005), providing default values for tuning parameters
(Mattera, Haykin, 1999; Cherkassky, Ma, 2004), and empirical (Duan et al.,
2003; Duarte, Wainer, 2017) as well as theoretical (Lin et al., 2002) study of
tuning parameter selection. Our tuning results provide different kinds of insights
whose applications are discussed in more detail in Section 6 and B.

2. Setup and notation

A linear classifier is defined via the normal vector to its discriminating hyper-
plane and an intercept (or offset). A key idea in this paper is to compare direc-
tions of linear classifiers. Comparing the direction between two classifiers means
comparing their normal vector directions; we say two directions are equivalent
if one is a scalar multiple of the other. Note that two classifiers may have the
same direction, but lead to different classification algorithms (i.e. the intercepts
may differ).

Suppose we have n labeled data points {(xi, yi)}ni=1 and index sets I+, I−
such that yi = 1 if i ∈ I+, yi = −1 if i ∈ I− and xi ∈ R

d. Let n+ = |I+|
and n− = |I−| be the class sizes. We consider linear classifiers whose decision
function is given by

f(x) = wTx+ b,

where w ∈ R
d is the normal vector and b ∈ R is the intercept (classification rule

sign(f(x))).
Given two vectors v,w ∈ R

d we consider their directions to be equivalent if
there exists a ∈ R, a �= 0 such that aw = v (and we will write w ∝ v).

In this paper we consider the following linear classifiers: hard margin SVM,
soft margin SVM (which we refer to as SVM), mean difference (also called
nearest centroid), and the maximal data piling direction.

For a linear classifier where w =
∑n

i=1 αixi for some weights α we say the
linear classifier is cropped if some of the αi = 0 for some values of i. This is
similar to the notion of a trimmed mean (Stigler, 1973).

Often linear classification algorithms can be extended to a wide range of non-
linear classification algorithms using the kernel trick (Schölkopf, Smola, 2002).
We focus on the linear case, but our mathematical results extend to the kernel
case.
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2.1. Mean difference and convex classifiers

The mean difference (MD) classifier (sometimes referred to as nearest centroid
classifiers) selects the hyperplane that lies half way between the two class means
(Anderson, 1962; Tibshirani et al., 2002). The MD classifier is of course a special
case of LDA in the case of spherical covariance matrices (Friedman et al., 2001).
In particular the vector wmd is given by the difference of the class means

wmd :=
1

n+

∑
i∈I+

xi −
1

n−

∑
i∈I−

xi

:= x̄+ − x̄−.

(1)

We say a linear classifier is a convex classifier if its normal vector, w, is
given as the difference of points lying in the convex hulls of the two classes (i.e.
w = c+ − c− where c± ∈ conv({xi|i ∈ I±})). We define convex directions, Cvx,
to be the set of directions such a classifier can take.

Definition 2.1. Let Cvx denote the set of all vectors associated with the direc-
tions that go between the convex hulls of the two classes i.e.

Cvx := {a (c+ − c−) |a ∈ R, a �= 0, and cj ∈ conv({xi}i∈Ij ), j = ±}.

The set Cvx may be all of Rd if, for example, the two convex hulls intersect.
When the data are linearly separable Cvx is a strict subset of Rd. This set of
directions will play an important role in later sections.

2.2. Data transformation

It is common to transform the data before fitting a linear classifier (e.g. mean
center variables then scale by their standard deviation). A number of classifiers
can be viewed as either: apply a data transformation then fit a more simple
classifier (such as MD) or as a distinct classifier. These classifiers include: naive
Bayes, linear discriminant analysis, nearest shrunken centroid, regularized dis-
criminant analysis, and more (Friedman et al., 2001).

For example, when d < n− 1 the linear discriminant direction is given by

wlda := Σ̂−1
pool(x̄+ − x̄−), (2)

letting X− and X+ be the data matrix for the respective classes and the pooled

sample covariance is Σ̂pool :=
1

n−2

[
(X+ −X+)

T (X+ −X+) + (X− −X−)
T (X−

− X−)
]
. Note the inevitability of Σ̂pool plays an important role in the next

section. LDA is equivalent to transforming the data by the pooled sample co-

variance matrix (i.e. multiplied each data point by Σ̂
−1/2
pool ) then computing the

MD classifier.
The technical results of this paper connect SVM to MD (and various other

convex classifiers), however, they apply more generally. If the analyst first trans-
forms the data before fitting SVM, as is common in practice, then our results
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connect SVM to the more general classifier. For example, naive Bayes is equiv-
alent to first transforming the data by a certain diagonal covariance matrix; in
this case, our results connect SVM to naive Bayes.

2.3. Maximal data piling direction

For linear classifiers one frequently projects the data onto the one dimensional
subspace spanned by the normal vector. Data piling, first discussed by Marron
et al. (2007), is when multiple points have the same projection on the line
spanned by the normal vector. For example, all points on SVM’s margin have
the same image under the projection map. Ahn, Marron (2010) showed that
when d ≥ n− 1 there are directions such that each class is projected to a single
point i.e. there is complete data piling.

Definition 2.2. A vector w ∈ R
d gives complete data piling for two classes of

data if there exist a, b ∈ R, with a �= 0 such that

wTxi = ayi + b for each i = 1, . . . , n,

where b is the midpoint of the projected classes and a is half the distance between
the projected classes.

The maximal data piling (MDP) direction, as its name suggests, searches
around all directions of complete data piling and finds the one that maximizes
the distance between the two projected class images (Ahn et al., 2012; Lee et al.,
2013; Ahn, Marron, 2010). The MDP direction takes an analytical form,

wmdp = Σ̂−(x̄+ − x̄−), (3)

where A− is the Moore-Penrose inverse of a matrix A and Σ̂ := 1
n−1 (X −

X̄)T (X − X̄) is the global sample covariance matrix.

The MDP direction has an interesting relationship to LDA. Recall the formula
for LDA show in Equation (2) above. Ahn, Marron (2010) showed that in low
dimensional settings LDA and the MDP formula are the same (though in low
dimensional settings MDP does not give complete data piling); when d < n− 1
the above two equations are equivalent.

Another view of this relation comes from the optimization perspective. LDA
attempts to find the direction that maximizes the ratio of the projected “be-
tween-class variance to the within-class variance,” (Bishop, 2006). This problem
is well defined only in low dimensions; in high dimensions when d ≥ n− 1 there
exist directions of complete data piling where the within class projected variance
is zero. In the high dimensional setting MDP searches around these directions of
zero within class variance to find the one that maximizes the distance between
the two classes (i.e. the between-class variance).
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2.4. Support vector machine

Hard margin support vector machine is only defined when the data are linearly
separable; it seeks to find the direction that maximizes the margin separating the
two classes. It is defined as the solution to the following optimization problem,

minimize
w∈Rd,b∈R

1

2
||w||2

subject to yi(x
T
i w + b) ≥ 1, for i = 1, . . . , n.

(4)

The marginal hyperplanes are given by {x|wTx = ±1} and no training points
lie strictly between the marginal hyperplanes for hard-margin SVM. The mar-
gin width ρ is the orthogonal distance from the marginal hyperplanes to the
separating hyperplane.

When the data are not separable Problem (4) can be modified to give soft
margin SVM by adding a tuning parameter C and slack variables ξi which allow
points to be on the wrong side of the marginal hyperplanes,

minimize
w∈Rd,b∈R

1

2
||w||2 + C

∑
i

ξi

subject to yi(x
T
i w + b) ≥ 1− ξi, for i = 1, . . . , n

ξi ≥ 0, for i = 1, . . . , n.

(5)

For soft-margin SVM, the marginal hyperplanes/width are defined in the same
way as above (see the dashed lines in Figures 2 and 3). In both cases the direction
is a linear combination1 of the training data points

wsvm =
∑
i∈I+

αixi −
∑
i∈I−

αixi.

Points which receive non-zero weights are called support vectors. It can be
checked that points lying strictly outside of the space between the marginal
hyperplanes receive zero weight. For hard-margin SVM all support vectors lie
directly on a marginal hyperplane. For soft-margin SVM, support vectors can lie
either directly on a marginal hyperplane or strictly within the marginal hyper-
planes; we denote the former by margin vectors and the latter by slack vectors.
See Mohri et al. (2012) or sections C.2 and D for a more detailed discussion.

3. Hard margin SVM in high dimensions

This section provides novel insights into the geometry of complete data piling
which are then used to characterize the relationship between hard margin SVM
and MDP in high dimensions. The results are stated below then proved in
Appendix C.

1It turns out this linear combination always gives a direction that points between the
convex hull of the two classes (see Definition 2.1).
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For this section we assume d ≥ n−1 and the data are in general position and
separable, which implies the data are linearly independent if d ≥ n and affine
independent if d = n− 1.

3.1. Complete data piling geometry

Define the set P of complete data piling directions using ideas from Definition
2.2.

Definition 3.1. Let P denote the vectors associated with directions that give
complete data piling i.e.

P := {v ∈ R
d|∃a, b ∈ R, a �= 0 s.t. vTxi = a · yi + b for each i = 1, . . . , n}.

Note the set of complete data piling directions can be empty, however, if the
data are in general position then P �= ∅ when d ≥ n − 1. In this case, Ahn,
Marron (2010) point out there are infinitely many of such directions in the n
dimensional subspace generated by the data that give complete data piling; in
fact there is a great circle of directions in this subspace (if we parameterize
directions by points on the unit sphere).

Theorem 3.1 shows there is a single complete data piling direction that is also
within the (n− 1 dimensional) affine hull of the data. The remaining directions
in P are linear combinations of this unique direction in the affine hull and any
vector normal to that hull.

Theorem 3.1. The set of complete data piling directions, P , intersects the
affine hull of the data in a single direction which is the maximal data piling
direction.

Theorem 3.1 is proved in Appendix C.1.

3.2. Hard margin SVM and complete data piling

A simple corollary of Theorem 3.1 is:

Corollary 3.1. The intersection of the convex directions, Cvx, and the complete
data piling directions, P , is either empty or a single direction i.e.

Cvx ∩ P = ∅ or Cvx ∩ P = {av|a ∈ R}.

If a convex classifier gives complete data piling then it has to also be the MDP;
furthermore, there can be at most one convex classifier which gives complete
data piling.

The core results for hard margin SVM are summarized in the following the-
orem. Note that this theorem also characterizes when SVM has complete data
piling.
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Theorem 3.2. The hard margin SVM and MDP directions are equivalent if
and only if there is a non-empty intersection between the convex directions, C,
and the complete data piling directions, P . In this case, the intersection is a
single direction which is the hard margin SVM direction and the MDP direction
i.e.

whm−svm ∝ wmdp ⇐⇒ P ∩ C �= ∅ ⇐⇒ whm−svm ∝ wmdp = C ∩ P.

We use the equality sign to indicate C∩P is a single direction. Theorem 3.2 is
a consequence of Corollary 3.1, Lemma C.1, Lemma C.2 and the KKT conditions
which are all provided in C. Appendix E gives an alternate characterization of
the event P ∩ C �= ∅ through a linear program. As a corollary of this theorem
we can characterize when MD/MDP or SVM/MD are equivalent.

Corollary 3.2. The hard margin SVM and MD directions are equivalent if and
only if all three of hard margin SVM, MD and MDP are equivalent i.e.

whm−svm ∝ wmd ⇐⇒ wmd ∝ wmdp.

Another corollary of this theorem is that hard margin SVM is always the
MDP of the support vectors.

Corollary 3.3. Let V be the set of support vectors for hard margin SVM, then
whm−svm is the MDP of V .

This corollary says that we can interpret hard margin SVM as a cropped
MDP (i.e. it ignores points which are far away from the separating hyperplane).

4. Soft margin SVM small and large C regimes

This section characterizes the behavior of SVM for the small and large regimes
of the cost parameter C. We make no assumptions about the dimension of the
data d. The main results for the small and large C regimes are provided in this
section while the KKT conditions and proofs are provided in Appendix D.

We first make two geometric definitions that play an important role in char-
acterizing SVM’s tuning behavior. The two class diameter measures the spread
of the data.

Definition 4.1. Let the two class diameter be

D := max
x+∈I+,x−∈I−

||x+ − x−||.

Definition 4.2. Let the two class gap G be the minimum distance between
points in the convex hulls of the two classes i.e.

G := min
cj∈conv({xi}i∈Ij

)
||c+ − c−||.

Using the above geometric quantities we define two threshold values of C
which determine when the SVM enters its different behavior regimes.
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Definition 4.3. For two classes of data let

Csmall :=
2

max (n+, n−)D2
, (6)

where D is the diameter of the training data.

Definition 4.4. If the two data classes are linearly separable let

Clarge :=
2

G2
, (7)

where G is the gap between the classes.

As illustrated in Figures 2 and 3, the main result for the small C regime
is given by Theorem 4.1 and Corollary 4.1. We call the support vectors lying
strictly within the margin slack vectors (see Section 2.4 or Definition D.2).

Theorem 4.1. When every point in the smaller (negative) class is a slack
vector,

a. If the classes are balanced then the SVM direction becomes the mean dif-
ference direction i.e. wsvm ∝ wmd.

b. If the classes are unbalanced then the SVM direction satisfies the con-
straints in Equations (8), (9) making it a cropped mean difference.

wsvm =
∑

i∈M+

αixi + C
∑
i∈L+

xi − C
∑
i∈I−

xi, (8)

subject to ∑
i∈M+

αi = C(|L+| − n−). (9)

Furthermore, C < Csmall is a sufficient condition such that every point in the
smaller class is a slack vector.

Theorem 4.1 characterizes a kind of cropped mean difference. The mean dif-
ference direction points between the mean of the first class and the mean of
the second class. Recall wsvm always goes between points in the convex hulls
of the two classes. Equation (8) says that in the small C regime wsvm points
between the mean of the smaller (negative) class (the third term) and a point
that is close to the mean in the larger (positive) class. The cropping happens by
ignoring non-support vectors. While points on the margin do not necessarily re-
ceive equal weight, Equation (9) bounds the amount of weight put on points on
margin points. Note Equations (8), (9) are stronger than the simple constraint
that

∑
i∈I+

αi = n−C (Lemma 2 from Hastie et al. (2004)) since all of the slack
vectors in the positive class receive the same weight.

This theorem suggests that the mean difference can be used to warm start
the computation of the SVM tuning path for small values of C. A similar idea is
discussed in Hastie et al. (2004). Note that our theorem suggests that the mean
difference may be a good approximation of the initial SVM value for small C
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that is cheaper to compute than the Quadratic program discussed in Section 3
of Hastie et al. (2004).

Lemma 4.1 strengthens Lemma 4.1 in the case n+ � d i.e. there can’t be too
many margin vectors in Equation (8).

Lemma 4.1. If the data are in general position the larger class can have at
most n− + d− 1 support vectors.

As C continues to shrink past Csmall the margin width continues to grow.
Eventually the separating hyperplane will be pushed past the smaller class and
every training point will be classified to the larger class (see Figure 3d).

Corollary 4.1. If the classes are unbalanced and C < 1
2Csmall then every train-

ing point is classified to the larger (positive) class.

If the data are separable then in the large C regime soft margin SVM becomes
equivalent to hard margin SVM for sufficiently large C.

Theorem 4.2. If the training data are separable then when C > Clarge, soft
margin SVM is equivalent to the hard margin SVM solution i.e. wsvm =
whm−svm.

Note that Csmall and Clarge are lower and upper bounds—their respective
limiting behavior may happen for C larger that Csmall and C smaller than Clarge.
In practice, these threshold values are a reasonable approximation. Furthermore,
the 1

D2 scale is important for small values of C (this can be seen in the proofs
of Corollary D.1 and Lemma D.3)

5. Discussion of SVM regimes

For sufficiently small values of C, SVM is related to the mean difference. When
the data are separable, for sufficiently large values of C soft margin SVM is
equivalent to hard margin SVM. We note this discussion applies more broadly
than just binary, linear SVM. For example, when a kernel is used SVM is related
to the kernel mean difference classifier.

5.1. Small C regime and the mean difference

For sufficiently small C (when every point in the smaller class is a slack vector)
Theorem 4.1 shows how soft margin SVM is related to the mean difference.

If the data are unbalanced then the SVM direction becomes a cropped mean
difference direction as characterized by Equations (8), (9). The direction points
from the mean of the smaller class to a cropped mean of a subset of points
in the larger class. The cropped mean of the larger class gives equal weight to
slack vectors, puts smaller weight on margin vectors and ignores points that are
outside the margin (non-support vectors). Furthermore, the number of margin
vectors is bounded by the dimension when the data are in general position
(Lemma 4.1).
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In the small C regime, if the data are balanced then the SVM direction
becomes exactly the mean difference direction. Note Lemma 1 from Hastie et al.
(2004) proves this result for balanced classes, proves a weaker version in the
unbalanced case, does not give the threshold Csmall, and does not discuss the
connection between SVM and the MD classifier.

The lower bound Csmall is important because it shows SVM’s MD like be-
havior applies for every dataset set. Furthermore, it shows that the value of C
where the MD like behavior begins depends on the data diameter and class sizes(
i.e. is proportional to 1

max (n+,n−)D2

)
. This dependence on the data diameter

has important consequences for cross-validation which are discussed in Section
6.

Note the cropped MD interpretation is often valid for a wide range of C
(i.e. values of C larger than Csmall). In particular, as C shrinks, more vectors
become slack vectors receiving equal weight (see proofs and results in Section
4). As C shrinks to Csmall, the angle between SVM and the cropped MD defined
in Theorem 4.1 approaches zero. This can be seen, for example, in Figure 3f.

Finally, note that the relation between SVM and the MD also relates SVM to
a larger set of classifiers by taking data transformation into account (see Section
2.2). It is common to apply a transformation to the data before fitting SVM (e.g.
mean centering then scaling by some covariance matrix estimate). In this case,
the small C regime of SVM will be a (cropped) version of the transformed MD
classifier. This insight connects SVM to, for example, the naive Bayes classifier.
A similar connection can be made between SVM and LDA when the data are
sphered by the inverse covariance matrix. Similarly, our results also connect
kernel SVM to the kernel (cropped) MD classifier.

SVM’s MD behavior discussed in this section raises the question of how much
performance gain SVM achieves over (robust, transformed) mean difference clas-
sifiers. This is discussed more in Section A.3.

5.2. Class imbalance and the MD regime

Theorem 4.1 gives some insights into SVM when the classes are imbalanced.
When SVM is in the MD regime as discussed above (i.e. C ≤ Csmall), every
point in the smaller (negative) class has to be a support vector receiving equal
weight. In some scenarios the MD or a cropped MD may perform very well.
However, this result says in the small C regime, SVM cannot crop the smaller
class (it can still crop the smaller class when C > Csmall). This insight can
explain some scenarios where SVM performs well for small values of C, but
then its performance suddenly degrades for even smaller values of C (i.e. an
outlier is forced into the smaller class’s slack vectors).

Lemma 4.1 says that (under weak conditions) the larger (positive) class can
have at most n− + d+1 support vectors (n− = size of the smaller class). In the
case n+ � n−, d then SVM can only use a small number of data points from
the larger class to estimate the SVM direction (this is true for all values of C).
This means SVM is forced to do a lot of cropping for the larger (positive) class
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which may be a good thing in some scenarios (i.e. if the larger class has many
outliers).

5.3. Small C regime and margin bounce

As C shrinks, the margin (distance between the marginal hyperplanes) increases.
When the classes are unbalanced, the marginal hyperplane of the larger class
has to stay within the convex hull of the larger class causing the separating
hyperplane to move off to infinity. For small enough values of C (≤ 1

2Csmall),
this means the separating hyperplane is pushed past the smaller class and every
point is classified to the larger class (Corollary 4.1). We call this behavior margin
bounce (see Figure 3a for an example). In other words, for small values of C,
SVM picks a reasonable direction, but a bad intercept.

When the classes are exactly balanced, the margin bounce may or may not
happen (we have seen data examples of both). It would be an interesting follow
up question to determine conditions for when the margin bounce happens for
balanced classes.

This insight has a few consequences.

1. For Figure 3d (unbalanced classes) it explains why the three tuning error
curves are large for small values of C.

2. For Figure 2d (balanced classes) it explains why only the cross-validation
error curve is bad for small values of C, but the tuning and test set error
curves are fine (i.e. the cross-validation training sets are typically unbal-
anced).

3. For small values of C SVM picks a bad intercept, but a fine direction. We
exploit this fact in Section B to develop an improved intercept for SVM

4. The value of C when the margin starts exploding depends on the diameter
of the two classes. This has important implications for cross-validation
which are discussed in Section 6.

5.4. Large C regime and the hard-margin SVM

If the data are separable, Theorem 4.2 says that for sufficiently large values of
C, soft margin SVM will be equivalent to hard margin SVM. Note that in high-
dimensions (i.e. d > n) the data are always separable. If the original dataset is
non-separable, but a kernel is used the transformed dataset may be separable
(for example, if the implicit kernel dimension is larger than n).

Furthermore, the value of C above which soft-margin SVM becomes equiv-
alent to hard margin SVM depends on the gap between the two classes (see
Definition 4.2). This can have important consequences for cross-validation as
discussed in Section 6.
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5.5. Hard-margin SVM and the (cropped) maximal data piling
direction

In high dimensions, (i.e. d ≥ n− 1) Theorem 3.2 gives geometric conditions for
when hard margin SVM gives complete data piling i.e. when the SVM direction
is equivalent to the MDP direction. Hard margin SVM always has some data
piling; support vectors in the same class project to the same point. In this case
SVM is the MDP direction of the support vectors. In this sense, hard margin
SVM can be viewed as a cropped MDP direction where points away from the
margin are ignored.

Complete data piling is a strict constraint and the SVM normal vector can
usually wiggle away from the MDP direction to find a larger margin. This raises
the question: is complete data piling with hard margin SVM a probability zero
event when the data are generated by an absolutely continuous distribution? We
suspect the answer is no: it occurs with positive, but typically small probability.
For example consider three points in R

2.

Often data piling may not be desirable e.g. the normal vector may be sensitive
to small scale noise artifacts Marron et al. (2007). Additionally, the projected
data have a degenerate distribution since multiple data points lie on top of each
other. However there are cases, such as an autocorrelated noise distribution,
when the maximal data piling direction performs well, Miao (2015).

Corollary 3.3 (SVM is the MDP of the support vectors) also gives an alter-
native characterization of hard margin SVM. Hard margin SVM searches over
every subset of the data points which have a nonempty set of complete data pil-
ing directions, computes the MDP of each such subset, and selects the direction
giving the largest separation. This characterization is mathematically interest-
ing because it says we can a priori restrict the hard margin SVM optimization
problem, Equation (4), to search over a finite set of directions (i.e. the complete
data piling directions of the subsets of the data). Furthermore, in some cases, the
MDP (Equation (3)) can be cheaply computed or approximated. For example,

the analyst may use a low rank approximation to Σ̂− and/or select a judicious
subset of data points. In these scenarios, it may make sense to approximate hard
margin SVM with the MDP.

5.6. Multiple classes

Often multi-class classification problems are reduced to a number of binary class
problems e.g. using one vs. one (OVO) or one vs. all (OVA) schemes (Friedman
et al., 2001). Our results apply to each of these binary classification problems.
For example, in a multi-class problem, even if the classes are roughly balanced,
the OVA scheme may produce unbalanced classes where the behavior discussed
in Section 5.2 becomes applicable.
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6. Insights into tuning SVM via cross-validation

Tuning SVM using cross-validation means attempting to estimate the tuning
curve of the test set (the green line marked with triangles in Figures 2d, 3d)
using the tuning curve from cross-validation (the red line marked with circles).
It is known that the optimal hyper-parameter settings for the full training set
(of size n) may differ from the optimal settings for the cross-validation sets (of
size

(
1− 1

k

)
n); for example, the smaller dataset often favors larger values of C

(more regularization) Steinwart, Christmann (2008).
The results of this paper give a number of insights into how features of the

data cause the cross-validation tuning curve to differ from the test set tuning
curve. In particular, we have shown that the tuning curve is sensitive to: (1)
balanced vs. unbalanced classes (2) the two class diameter D (3) whether or not
the classes are separable, (4) whether or not d ≥ n− 1 (5) the gap between the
two classes G.

Each of these characteristics can change between the full training set and the
cross-validation training sets. When the characteristics change, so can SVM’s
behavior for small and large values of C. Therefore SVM may behave differently
for the cross-validation folds than for the full training data.

One dramatic example of this change in behavior can be seen in Figure 2d
as discussed in Sections 5.3, and 1.1. In this case, the full dataset is balanced,
but the cross-validation folds are typically unbalanced.

Another example of tuning behavior differences between the training and
cross-validation data can be seen by looking carefully at Figure 3d. In this figure
we can see the cross-validation error rate shoots up for larger values of C than
the train/test error rates. The error increases dramatically for small values of C
because of the margin bounce phenomena discussed in Section 5.3. The value of
Csmall that guarantees this behavior is a function of the two class diameter D
(see Definition 4.3). Since there are fewer points in the cross-validation training
set, the diameter is smaller meaning the value of Csmall is larger causing the
margin to explode for larger values of C.

Different data domains in terms of n � d, n ∼ d, and n � d can make the
above characteristics more or less sensitive to change induced by subsampling.
For example, if n � d then subsampling is least likely to change whether d ≥
n−1 or significantly modify the diameter D. With a kernel, however, even if the
original n � d then it may no longer be true that n � dimplicit where dimplicit

is the dimension of the implicit kernel space. An interesting, possible exception
to this was given by Rahimi, Recht (2008) where dimplicit may be small.

When n is larger than d, but not by much, then subsampling is likely to
change whether or not d ≥ n− 1 and whether or not the data are separable. In
this case the full training data may not be separable, but the cross-validation
sets may be. This means large values of C will cause soft margin SVM to become
hard margin SVM for cross-validation, but never for the full training data. This
could result in the SVM direction being very different between cross-validation
and training.

When d ≥ n − 1 soft margin SVM will become hard margin SVM for C ≥
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Clarge which depends on the gap G between the two classes. Subsampling the
data will cause this gap to increase meaning Clarge decreases. In this case the
hard margin behavior will occur for smaller values of C in the cross-validation
sets than for the full training set.

It is desirable to perform cross-validation in a way that is least likely to change
some of the above characteristics between the full and the cross-validation train-
ing data set. For example,

• If the full training data are balanced one should ensure the cross-validation
training classes are also balanced.

• Cross-validation with a large number of folds (e.g. leave one out CV) is
least likely to modify the above characteristics of the data.

• When n > d it could be judicious to ensure ncv > d for each cross-
validation set.

• Chapelle, Vapnik (2000) (Section 4) suggests re-scaling the data using
the covariance matrix. The analyst may modify this idea by additionally
rescaling each cross-validation training set such that the diameter is (ap-
proximately) the same as the diameter of the full training set.

• Previous papers have proposed default values for C based on the given
dataset Mattera, Haykin (1999); Cherkassky, Ma (2004). Our results sug-
gest other default values in the interval [Csmall, Clarge] (when the latter
exists) may be reasonable. Furthermore, default values which lie in the
middle of this range may be preferable. For example, the analyst may
try a simple MD classifier (producing similar results to a small C), one
moderate and one large value of C for SVM.

Section B demonstrates how these insights can be applied to develop an better
SVM intercept for cross-validation.

Appendix A: Additional discussion

A.1. Geometry of complete data piling

Theorems 3.1 and 3.2 give further insight into the geometry of complete data
piling directions. In this section we consider directions to be points on the unit
sphere; the equivalence class of a single direction is represented by two antipodal
points.

When d ≥ n there are an infinite number of directions P that give complete
data piling. If we restrict ourselves to the n dimensional subspace generated
by the data there are still an infinite number of directions that give complete
data piling Ahn, Marron (2010); within this subspace P forms a great circle of
directions. Theorem 3.1 says that if we further restrict ourselves to the n − 1
dimensional affine hull of the data there is only a single direction of complete
data piling and this direction is the maximal data piling direction. The afore-
mentioned great circle of directions intersects the subspace parallel to the affine
hull of the data at two points (i.e. a single direction).
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Note Equation (3) shows wmdp is a linear combination of the data and Theo-
rem 3.1 shows furthermore that wmdp an affine direction. Finally, Theorem 3.2
also characterizes the stronger condition when the MDP is a convex classifier
(see Section 2.1) i.e. when the MDP direction points between the convex hulls
of the two classes (wmdp ∈ C).

A.2. nu-SVM and the reduced convex hull

A number of papers look at an alternative formulation of the SVM optimiza-
tion problem (so called nu-SVM). These papers give an interesting, geometric
perspective that characterizes soft margin SVM in terms of hard margin SVM
(see citations in Section 1.2).

Recall the convex hull of a set of points is given by H({xi}ni=1) :=
{
∑m

i=1 λixi|
∑n

i=1 λi = 1, λi ≥ 0}. Suppose we decrease the upper bound on the
coefficients such that λi ≤ c for some c ≥ 0. Define the reduced convex hull
(RCH) as

Rc({xi}ni=1) :=

{
n∑

i=1

λixi|
n∑

i=1

λi = 1, λi ≤ c

}
Note Rc ⊆ H, Rc = H ⇐⇒ c = 1 and c = 1

n ⇐⇒ Rc = { 1
n

∑n
i=1 xi} (i.e. a

single point). Also note that, Rc is not necessarily a dilation of H e.g. see Figure
5 from Bennett, Bredensteiner (2000) for an example. Furthermore, define Ec

to be the set of extreme points of Rc (the RCH of a finite set of points is a
polytope and the extreme points are the vertices of this polytope).

Similarly to Definition 2.1 of the convex directions for two classes, we define
the set of reduced convex directions, RCc

Definition A.1. Let 0 ≤ c ≤ min
(

1
n+

, 1
n−

)
and let RCc denote the set of all

vectors associated with the directions that go between the c reduced convex hulls
convex hulls of the two classes i.e.

RCc = {a (c+ − c−) |a ∈ R, a �= 0, and cj ∈ Rc({xi}i∈Ij ), j = ±}.

Similarly, let ERCc denote the set of extreme points of RCc (where the points
are marked by their respective class labels). Note that even if the convex hulls
of the two classes intersect, there (usually2) exists a c′ ≥ 0 such that the c′

reduced convex hulls of the two classes do not intersect.
The nu-SVM literature shows that for every C, there exists a c ≥ 0 that

soft margin SVM direction with tuning parameter C is equivalent to the hard
margin SVM direction of the extreme points of the c-reduce convex hull of the
data (ERCc) which are a subset of the convex hull of the original data.

We point this geometric insight out because it gives similar geometric insights
into SVM as our paper. Furthermore, the RCH formulation connects soft margin

2If, for example, the class means are identical the RCH formulation may breakdown.
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SVM to the maximal data piling direction; in particular, soft margin SVM is
the MDP of the extreme points of the RCH.

A.3. Relations between SVM and other classifiers

We have shown SVM can be exactly or approximately equivalent to the mean
difference or maximal data piling direction (or possibly cropped versions of these
two classifiers). When the data are balanced and C is sufficiently small, SVM
becomes exactly the mean difference. When the data are unbalanced, SVM
becomes a cropped version of the mean difference. Hard margin SVM is always
the maximal data piling direction of the support vectors meaning it can be
viewed as a cropped MDP. We gave conditions for when hard margin SVM is
exactly the MDP of the full dataset.

These results are mathematically interesting i.e. they give conditions when a
quadratic optimization problem reduces (exactly or approximately) to a problem
which has a closed form solution with a simple geometric interpretation. By
carefully studying how this behavior depends on the tuning parameter we give
a number of insights into tuning SVM (see Section 6).

Furthermore, these insights can be directly relevant to the data analyst. For
example, the analyst may learn something about the data when they encounter
scenarios in which SVM is either exactly or approximately equivalent to one
of these simple classifiers. In scientific applications using SVM, the data ana-
lyst may want to know more about why cross-validation selects a given tuning
parameter.

Our results help both practitioners and researchers transfer intuition from the
MD and MDP classifiers to SVM and vice versa. The mean difference classifier
is widely used (especially if one takes the data transformation perspective from
Section 2.2) and a lot is known about when it works well and doesn’t (e.g. if
the two classes are homoskedastic point clouds). While the MDP is an active
topic of research, as discussed in Miao (2015), we understand some cases when
the MDP works well and does not.

Finally, the results in this paper raise the question: how much performance
gain does SVM achieve over more simple classifiers? For example, for a particular
application it could be the case that the mean difference plus some combination
of simple data transformation, robust mean estimation, and/or kernels would
achieve a very similar test set error rate as SVM. This question is important
to practitioners because more simple models are often favored for reasons of
interpretability, computation, robustness, etc.

Appendix B: Improved SVM intercept for cross-validation

As discussed in Section 5.3, SVM’s intercept can be problematic for small values
of C; for small values of C the margin bounce causes every point to be classified
to the larger of the two classes. This fact alone may not be concerning, however,
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as Theorem 4.1 and Definition 4.3 show, SVM can behave differently, as a func-
tion of C, for cross-validation and on the full data set. The subsampled data
sets for cross-validation will have a smaller diameter, D, meaning the threshold
Csmall is larger for these datasets than for the full dataset. In particular, the
margin explosion happens a larger value of C during cross-validation than it
does for the full dataset. This will cause the cross-validation test set error to be
large for values of C where the test set error may in fact be small.

We can fix this issue by modifying the SVM intercept. This is significant
in that it only involves a minor modification of existing SVM software and
does not require new algorithms to be developed. Note that previous papers
have suggesting modifying SVM’s intercept Crisp, Burges (2000). Suppose we
fit SVM to a dataset and it returns normal vector and intercept wsvm and bsvm
respectively. Furthermore, define the SVM centroids by

msvm,+ =
1

A

∑
i∈I+

αixi,

where the αi are the support vectors weights and A is the total weight (Equation
(20)). Note this is a convex combination of points in the positive class (hence
the name SVM centroid). We define msvm,− similarly for the negative class.

Next define an new intercept by

bcentroid :=
1

2
wT

svm(msvm,+ +msvm,−) (10)

Note bcentroid is the value such that SVM’s separating hyperplane sits halfway
between msvm,+ and msvm,−. Furthermore, note this quantity can be computed
when a kernel is used.

The SVM intercept is only a problem when C is small and one class is entirely
support vectors (i.e. αi > 0∀i ∈ I+ or ∀i ∈ I−). Finally, we define a new intercept
as follows

b =

{
bcentroid, if one class is entirely support vectors

bsvm, otherwise
(11)

Note that when the optimal value of C is large, the margin explosion discussed
in this section is not an issue and b defined above will give the same result as
the original bsvm.

The intercepts bcentroid and b defined above are not the only options. One
could, for example, replace the SVM centroids with the class means (i.e. replace
msvm,− with x+). Alternatively, one could use cross-validation to select b sep-
arately from w. We focus on bcentroid because it is simple can be interpreted as
viewing SVM as a nearest centroid (as discussed in Section 2.1).

Below we demonstrate an example where b defined above improves SVM’s
test set performance. In this example, there are n+ = 51 and n− = 50 points
in each class living in d = 100 dimensions. The two classes are generated from
Gaussians with identity covariance and means which differ only in the first
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Fig 4. Tuning error curves for standard SVM intercept vs. improved SVM intercept.

coordinate; the mean of the positive class is the first standard basis vector and
the mean of the negative class is negative the first standard basis vector. Note
that MD is the Bayes rule in this example. We tune SVM using using 5-fold
cross-validation to select the optimal value of C the compute the resulting test
set error for an independent test set of 2000 points.

Figure 4 shows the error tuning curves (as in Figure 2d) for the two choices of
SVM intercepts for a single draw of the data. The x-axis is the tuning parameter
and the y-axis is the resulting SVM error for training, testing, and 5-fold cross-
validation test set error. In the left panel we see each error curve jumps up to
around 50% for small values of C for the regular SVM intercept. Furthermore,
this error explosion happens for a smaller value of C for the test set error than
for the cross-validation error (i.e. the blue test curve is to the left of the red cross
validation curve). In the right panel, with the SVM centroid intercept, the error
rate does not explode; moreover, the test error curve behaves similarly to the
cross-validation curve. The curves on the right and left panels are identical for
C > 10−2. For this data set, 5-fold cross-validation gives a test set error of 28.1%
for the regular SVM intercept, but 24.35% for the SVM centroid intercept.

Over 200 repetitions of this simulation, regular SVM has an mean test set
error of 25.95% (MD gives 23.95%). If we replace the regular SVM intercept,
bsvm with b defined above we get an average test set error of 24.80%; this
intercept gives an average improvement of 1.15% for this dataset (this difference
is statistically significant using a paired t-test which gives a p-value of 2×10−16).

When the classes are unbalanced other error metrics are used (e.g. F-score,
AUC, Choen’s Kappa, etc). If AUC is used i.e. the intercept is tuned indepen-
dently of the direction, issues with the intercept discussed in this section will
not occur. However, when other metrics are used the improved intercepts will
likely be more effective.

The intercept b defined above will not improve SVM’s performance in all
scenarios, but is not likely to harm the performance. The intercept b, however,
is simple to implement and can give a better test set error.
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Appendix C: Proofs for hard-margin SVM

C.1. Proofs for Section 3.1

Proof. of Theorem 3.1We first prove the existence and uniqueness of complete
data piling directions P in the affine hull of the data. We then show that this
unique, affine data piling direction is in fact the direction of maximal data piling.

Recall we assume that d ≥ n − 1 and the data are in general position. Let
the set of affine directions A be given as follows

A = {a1 − a2|aj ∈ aff({xi}n1 ), j = 1, 2}.

Note that A is the n − 1 dimensional subspace parallel to the affine space
aff({xi}n1 ) generated by the data i.e. A contains the origin.

We first show that without loss of generality d = n−1. Note that both A and
P are invariant to a fixed translation of the data. Therefore, we may translate
the data so that 0 ∈ aff({xi}n1 ) (e.g. translate by the mean of the data). The
data now span an n−1 dimensional subspace since the affine hull of the data now
contains the origin. Furthermore, span({x}n1 ) = aff({x}n1 ) = A. Thus without
loss of generality we may consider the data to in fact be n− 1 dimensional (i.e.
d = n− 1).

We are now looking for a vector v ∈ A that gives complete data piling. Note
by the above discussion and assumption we have A = R

d. This means we are
looking for v ∈ R

d and a, b ∈ R with a �= 0 satisfying the following n linear
equations

xT
i v = ayi + b for i = 1, . . . , n.

Since the magnitude of v is arbitrary we fix a = 1 without loss of generality.
We now have

xT
i v = yi + b for i = 1, . . . , n

which can be written in matrix form as

Xv + b1n = y (12)

where X ∈ R
n×d is the data matrix whose rows are the data vectors xi and

y ∈ R
n is the vector of class labels. This is a system of n equations in Rd+1

which can be seen by appending 1 onto the end of each xi i.e. x̃i = (xi, 1) ∈ R
d+1

and letting w = (v, b). Then Equation (12) becomes

X̃w = y (13)

where X̃ ∈ R
n×d+1 is the appended data matrix.

Recall that we assumed d = n−1 so Equation (13) is a system of n equations
in R

n. Further recall that the data are in general position meaning that the n
data points are affine independent in the n−1 dimensional subspace of the data.
Affine independence is equivalent to linear independence of {(xi, 1)}n1 . Therefore
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the matrix X̃ ∈ R
n×n has full rank and Equation (13) always has a solution,

v∗, and this solution is unique.
Existence of a solution to Equation (13) shows that P ∩A �= ∅. Uniqueness of

the solution to Equation (13) shows that this intersection P ∩A can have only
one direction of which v∗ is a representative element.

We now show that v∗ is in fact the maximal data piling direction. We no
longer assume that d = n− 1.

We first construct an orthonormal basis {ti}d1 of Rd as follows. Let the first
n − 1 basis vectors t1, . . . , tn−1 span A. Let tn be orthogonal to A but in the
span of the data {xi}n1 (recall the data span an n dimensional space while the
affine hull of the data is n− 1 dimensional). Let the remaining d− n+ 1 basis
vectors be orthogonal to A and the span of the data.

We show that the vector tn projects every data point onto a single point i.e.
xT
i tn = c for each i = 1, . . . n and some c ∈ R. Suppose we translate aff({xi}n1 )

along tn until the origin lies in the affine hull of the translated data. In particular,
the data now span an n−1 dimensional subspace that is orthogonal to tn (where
as before they spanned an n dimensional subspace). We now have that for some
c ∈ R

tTn (xi + ctn) = 0 for each i = 1, . . . , n

tTnxi = c for each i = 1, . . . , n

since tn is unit norm.
Let v ∈ R

d be a representative vector of the direction in the affine hull of the
data that gives complete data piling (given above). Suppose v has unit norm
and is oriented such that

vTxi = ayi + b

for some a, b ∈ R with a > 0 (note fixing a > 0 eliminates the antipodal
symmetry of data piling vectors).

We now show that v is in fact the maximal data piling direction. Let w ∈ R
d

be another vector with unit norm that gives complete data piling (i.e. w ∈ P ).
In particular, there exists av, aw, bv, bw ∈ R with av, aw > 0 such that

vTxi = avyi + bv for each i = 1, . . . , n.

wTxi = awyi + bw for each i = 1, . . . , n.

Assume for the sake of contradiction thatw projects the data possibly further
apart than v does. In particular assume that aw ≥ av.

Since {ti}d1 is a basis we can write

w =
d∑

i=1

αiti.

Next compute the dot products with the data. For any j = 1, . . . , n,

wTxj =

(
n−1∑
i=1

αiti

)T

xj + αnt
T
nxj +

d∑
i=n+1

αit
T
i xj .
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Recall the basis vectors tn+1, . . . , td are orthogonal to the data points so the
third term in the sum is zero. Furthermore, the dot product of tn with each
data point is a constant. Thus we now have

wTxj =

(
n−1∑
i=1

αiti

)T

xj + αnc, for all j = 1, . . . , n.

Thus we can see the vector

w′ =
n−1∑
i=1

αiti

also gives complete data piling. However this vector lies in A since it is a linear
combination of the first n − 1 basis vectors. We have shown that there is only
one direction in A with complete data piling thus

∑n−1
i=1 αiti ∝ v. In particular,

for some α > 0
n−1∑
i=1

αiti = αv.

So we now have

w′ = αv + αntn.

Recall ||v|| = ||w|| = 1 and tn is orthogonal to v by construction. Therefore
α2 + α2

n = 1. In particular if αn > 0 then α < 1.

Let x+ and x− be any point from the positive and negative class respectively.
By construction we have

vT (x+ − x−) = av.

wT (x+ − x−) = aw.

However expanding this last line we get

wT (x+ − x−) = (αv + αntn)
T (x+ − x−)

wT (x+ − x−) = αvT (x+ − x−) + αnt
T
n (x+ − x−).

But tTnx+ = tTnx− = c so the last term is zero. Thus we now have

wT (x+ − x−) = αav.

Thus

αav = aw.

However unless w = v (so αn = 0) we have 0 < α < 1. Therefore aw < av
contradicting the assumption that aw ≥ av. Therefore v is the maximal data
piling direction.
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C.2. Proofs for Section 3.2

Derivation and discussion of the KKT conditions can be found in Mohri et al.
(2012). From the Lagrangian of Problem (4) we can derive the KKT conditions

whm−svm =

n∑
i=1

αiyixi, (14)

n∑
i=1

αiyi = 0, (15)

αi = 0 or yi(w
Txi + b) = 1, (16)

with αi ≥ 0 for each i = 1, . . . , n.
Condition (15) says that the sum of the weights in both classes has to be

equal. Combining this with (14) we find that the hard margin SVM direction is
given by

whm−svm ∝
∑
i∈I+

αi

A
xi −

∑
i∈I−

αi

A
xi, (17)

where
∑

i∈I+
αi =

∑
i∈I−

αi := A. Thus whm−svm ∈ C i.e. the hard margin
SVM direction is always a convex direction. As discussed in Bennett, Breden-
steiner (2000); Pham (2010) hard margin SVM is equivalent to finding the near-
est points in the convex hulls of the two classes.

The last KKT condition (16) says that a point xi either lies on one of the
marginal hyperplanes {x|wT

hm−svmx = ±1} or receives zero weight. In the for-
mer case when αi �= 0, xi is called a support vector. The margin width, ρ, is
given by the magnitude of the normal vector

ρ2 =
1

||whm−svm||22
=

1∑n
i=1 αi

:=
1

||α||1
. (18)

The following lemma about SVM and MDP is a consequence of the fact that
complete data piling directions satisfy the SVM KKT conditions.

Lemma C.1. If hard margin SVM has complete data piling then the SVM
direction is equivalent to the MDP direction i.e.

whm−svm ∈ P =⇒ whm−svm ∝ wmdp.

Lemma C.2. If P ∩ Cvx �= ∅ then wsvm ∈ P ∩ Cvx.

Proof. Let v ∈ P ∩ Cvx. We show v satisfies the KKT conditions. The lemma
then follows since the KKT conditions necessary and sufficient for hard margin
SVM (the constraints are qualified, see Chapter 4 of Mohri et al. 2012).

Since v ∈ Cvx we have that v ∝ c+ − c− where cj ∈ conv({xi}i∈Ij ). For
some constant a > 0

v = a

⎛⎝∑
i∈I+

λixi −
∑
i∈I−

λixi

⎞⎠ ,
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where ∑
i∈I+

λi =
∑
i∈I+

λi = 1 and λi ≥ 0.

Since v ∈ P we can select b,v such that

yi(x
T
i v + b) = 1 ∀i.

But these three equations are the KKT conditions with αi = aλi.

Appendix D: Proofs for soft-margin SVM

The KKT conditions for soft margin SVM are (see Mohri et al. 2012 for deriva-
tions)

wsvm =
∑
i∈I+

αixi −
∑
i∈I−

αixi, (19)

∑
i∈I+

αi =
∑
i∈I−

αi := A, (20)

αi + μi = C for i = 1, . . . , n, (21)

αi = 0 or yi(w
Txi + b) = 1− ξi for i = 1, . . . , n, (22)

ξi = 0 or μi = 0 for each i, (23)

For soft margin SVM we define the marginal hyper planes to be {x|xTwsvm =
±1} and the margin width (or just margin), ρ the distance from the separating
hyperplane to the marginal hyperplanes. By construction ρ = 1

||wsvm|| . A points

is a support vector if and only if it is contained within the marginal hyperplanes.

As with hard margin SVM, the soft margin direction is always a convex
direction. Again points xi such that αi �= 0 are called support vectors. We
further separate support vectors into two types.

Definition D.1. Margin vectors are support vectors xi such αi �= 0 and ξi = 0.

Definition D.2. Slack vectors are support vectors xi such αi �= 0 and ξi > 0.

Margin vectors are support vectors lying on one of the two marginal hy-
perplanes. Slack vectors are support vectors lying strictly on the inside of the
marginal hyperplanes. Call the set of margin vectors in each class Mj and the
set of slack vectors Lj for j = ±.

The KKT conditions imply

• all support vectors receive weight upper bounded by C (xi ∈ Mj =⇒
0 < αi ≤ C)

• slack vectors receive weight exactly C (xi ∈ Lj =⇒ αi = C)
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Furthermore, the following constraint balances the weights between the two
classes

C|L+|+
∑

i∈M+

αi = C|L−|+
∑

i∈M−

αi. (24)

We assume that the positive class is the larger of the two classes i.e. n+ ≥ n−.
Unbalanced classes means n+ > n−.

D.1. Small C regime

As C → 0 the margin width increases to infinity (ρ → ∞). As the margin width
grows as many points as possible become slack vectors and all slack vectors get
the same weight αi = C. Hence if the classes are balanced the SVM direction
will be equivalent to the mean difference. If the classes are unbalanced then
there will be some margin vectors which receive weight αi ≤ C. The number of
margin vectors is bounded by the class sizes and the dimension.

Note the diameter, D, does not change if we consider the convex hull of the
two classes (proof of Lemma D.1 is a straightforward exercise).

Lemma D.1.

max
cj∈conv({xi}i∈Ij

)
||c+ − c−|| = max

xj∈I+
||x+ − x−|| =: D.

As C → 0 the magnitude of wsvm goes to zero. In particular, the KKT
conditions give the following bound.

Lemma D.2. For a given C the magnitude of the SVM solution is

||wsvm|| ≤ n+C ·D.

Proof. From the KKT conditions we have

wsvm =
∑
i∈I+

αixi −
∑
i∈I−

αixi

and ∑
i∈I+

αi =
∑
i∈I−

αi =: A.

Computing the magnitude of wsvm

||wsvm|| = A

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
i∈I+

αi

A
xi −

∑
i∈I−

αi

A
xi

∣∣∣∣∣∣
∣∣∣∣∣∣ .

Since the two terms are convex combinations we get

||wsvm|| ≤ A sup
cj∈conv({xi}i∈Ij

)

||c+ − c−||.
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applying Lemma D.1

||wsvm|| = A max
xj∈I+

||x+ − x−||

||wsvm|| = AD.

Since 0 ≤ αi ≤ C we get A ≤ n+C thus proving the bound.

Since the magnitude ofwsvm determines the margin width, using the previous
lemma we get the following corollary.

Corollary D.1. The margin ρ goes to infinity as C goes to zero. In particular

ρ =
1

||wsvm|| ≥
1

n+CD
.

Since the margin width increases, for small enough C the smaller class be-
comes all slack variables.

Lemma D.3. If C < Csmall then all points in the smaller class become slack
vectors (ξi > 0 for all i ∈ I−).

Proof. By Corollary D.1 the margin width goes to infinity as C → 0 since

ρ ≥ 1

n+CD
.

Recall the margin width, ρ, is the distance from the separating hyperplane to
the marginal hyperplanes. Note that if ρ > 1

2D then at least one class must be
complete slack. Thus if C < 2

n+D2 at least one class must be complete slack i.e.

ξi > 0 for all i ∈ Ij for j = + and/or j = −. If the classes are balanced then
either class can become complete slack (or both classes).

If the classes are unbalanced i.e. n− < n+ then the smaller class becomes
complete slack. To see this, assume for the sake of contradiction that the larger
class becomes complete slack i.e. ξi �= 0 for each i ∈ I+. Then the KKT condi-
tions imply αi = C for each i ∈ I+. KKT condition (20) says∑

i∈I+

αi =
∑
i∈I−

αi

n+C =
∑
i∈I−

αi.

But αi ≤ C and n− < n+ by assumption therefore this constraint cannot be
satisfied.

If the classes are balanced then the margin swallows both classes and the
SVM direction becomes the mean difference direction.

Lemma D.4. If the classes are balanced and C < Csmall the SVM direction is
equivalent to the mean difference direction i.e. wsvm ∝ wmd.
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Proof. When C < Csmall one of the classes (without loss of generality the nega-
tive class) becomes slack i.e. ξi > 0 for each i ∈ I− thus αi = C for each i ∈ I−.
The KKT conditions then require∑

i∈I+

αi =
∑
i∈I−

αi = n−C.

Since αi ≤ C and |I+| = n− this constraint can only be satisfied if αi = C for
each i ∈ I+. We now have

wsvm =
∑
i∈I+

Cxi −
∑
i∈I−

Cxi

wsvm = C
n

2
(x̄+ − x̄−) ∝ wmd.

Lemma D.5. If the classes are unbalanced and C < Csmall the SVM solution
satisfies the the constraints in Equations (8), (9).

Proof. Recall for C < Csmall we have ξi > 0 for i ∈ I−. From the KKT conditions
ξi > 0 =⇒ μi = 0 =⇒ αi = 0 meaning αi = C for each i ∈ I−. The weight
balance constraint (24) from the KKT conditions becomes

C|L+|+
∑

i∈M+

αi = C|L−|+
∑

i∈M−

αi,

which then implies the conditions on wsvm.

Corollary D.2. When C < Csmall the larger (positive) class can have at most
n− slack vectors. If the larger class has more than n− support vectors then at
least one of them must be a margin vector.

D.2. Large C regime

Lemma D.6. If there is at least one slack vector then for a given C

||wsvm|| ≥ CG,

or equivalently

ρ ≤ 1

CG
,

where G is the class gap.

Proof. From the KKT conditions

||wsvm|| = ||
∑
i∈I+

αixi −
∑
i∈I−

αixi||,

||wsvm|| = A||
∑
i∈I+

αi

A
xi −

∑
i∈I−

αi

A
xi||,
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where A =
∑

i∈I+
αi =

∑
i∈I−

αi. Since the two sums are convex combinations,
using the definition of G we get

||wsvm|| ≥ AG.

Since there is at least one slack vector there is at least one i such that αi = C
thus A ≥ C and the result follows.

Appendix E: Convex and complete data piling directions

Theorem 3.2 gives a geometric characterization when the set of convex directions
intersects the set of complete data piling directions. We can also characterize
this event through a linear program.

An alternative way of deciding if C ∩ P = ∅ and computing the intersection
if it exists is through the following linear program (proof of Theorem E.1 is a
straightforward exercise in linear programming).

Theorem E.1. C ∩ P �= ∅ if and only if there is a solution to the following
linear program

minimize
α∈R

n+ ,β∈R
n− ,v∈Rd,b∈R

1

subject to Xv + 1nb = y∑
i∈I+

αixi −
∑
i∈I−

βixi = v

∑
i∈I+

αi = 1

∑
i∈I−

βi = 1

αi, βi ≥ 0 for i = 1, . . . , n.

(25)

In the case a solution v exists then v ∈ C ∩ P .

The vector 1n ∈ R
n is the vector of ones, X is the R

n×d data matrix and
y ∈ R

n is the vector of class labels. The first constraint says v must be a
complete data piling direction, v ∈ P . The remaining constraints say v must be
a convex direction, v ∈ C.

Note that solving this linear program is at least as hard as solving the original
SVM quadratic program therefore Theorem E.1 is not of immediate computa-
tional interest. This theorem, however, does give an alternate mathematical
description C ∩ P �= ∅ which may be of theoretical interest.
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